xref: /illumos-gate/usr/src/uts/intel/os/fpu.c (revision dd72704bd9e794056c558153663c739e2012d721)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 1992, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright 2021 Joyent, Inc.
24  * Copyright 2021 RackTop Systems, Inc.
25  * Copyright 2022 Oxide Computer Company
26  */
27 
28 /*	Copyright (c) 1990, 1991 UNIX System Laboratories, Inc. */
29 /*	Copyright (c) 1984, 1986, 1987, 1988, 1989, 1990 AT&T   */
30 /*		All Rights Reserved				*/
31 
32 /*	Copyright (c) 1987, 1988 Microsoft Corporation		*/
33 /*		All Rights Reserved				*/
34 
35 /*
36  * Copyright (c) 2009, Intel Corporation.
37  * All rights reserved.
38  */
39 
40 #include <sys/types.h>
41 #include <sys/param.h>
42 #include <sys/signal.h>
43 #include <sys/regset.h>
44 #include <sys/privregs.h>
45 #include <sys/psw.h>
46 #include <sys/trap.h>
47 #include <sys/fault.h>
48 #include <sys/systm.h>
49 #include <sys/user.h>
50 #include <sys/file.h>
51 #include <sys/proc.h>
52 #include <sys/pcb.h>
53 #include <sys/lwp.h>
54 #include <sys/cpuvar.h>
55 #include <sys/thread.h>
56 #include <sys/disp.h>
57 #include <sys/fp.h>
58 #include <sys/siginfo.h>
59 #include <sys/archsystm.h>
60 #include <sys/kmem.h>
61 #include <sys/debug.h>
62 #include <sys/x86_archext.h>
63 #include <sys/sysmacros.h>
64 #include <sys/cmn_err.h>
65 #include <sys/kfpu.h>
66 
67 /*
68  * FPU Management Overview
69  * -----------------------
70  *
71  * The x86 FPU has evolved substantially since its days as the x87 coprocessor;
72  * however, many aspects of its life as a coprocessor are still around in x86.
73  *
74  * Today, when we refer to the 'FPU', we don't just mean the original x87 FPU.
75  * While that state still exists, there is much more that is covered by the FPU.
76  * Today, this includes not just traditional FPU state, but also supervisor only
77  * state. The following state is currently managed and covered logically by the
78  * idea of the FPU registers:
79  *
80  *    o Traditional x87 FPU
81  *    o Vector Registers (%xmm, %ymm, %zmm)
82  *    o Memory Protection Extensions (MPX) Bounds Registers
83  *    o Protected Key Rights Registers (PKRU)
84  *    o Processor Trace data
85  *
86  * The rest of this covers how the FPU is managed and controlled, how state is
87  * saved and restored between threads, interactions with hypervisors, and other
88  * information exported to user land through aux vectors. A lot of background
89  * information is here to synthesize major parts of the Intel SDM, but
90  * unfortunately, it is not a replacement for reading it.
91  *
92  * FPU Control Registers
93  * ---------------------
94  *
95  * Because the x87 FPU began its life as a co-processor and the FPU was
96  * optional there are several bits that show up in %cr0 that we have to
97  * manipulate when dealing with the FPU. These are:
98  *
99  *   o CR0.ET	The 'extension type' bit. This was used originally to indicate
100  *		that the FPU co-processor was present. Now it is forced on for
101  *		compatibility. This is often used to verify whether or not the
102  *		FPU is present.
103  *
104  *   o CR0.NE	The 'native error' bit. Used to indicate that native error
105  *		mode should be enabled. This indicates that we should take traps
106  *		on FPU errors. The OS enables this early in boot.
107  *
108  *   o CR0.MP	The 'Monitor Coprocessor' bit. Used to control whether or not
109  *		wait/fwait instructions generate a #NM if CR0.TS is set.
110  *
111  *   o CR0.EM	The 'Emulation' bit. This is used to cause floating point
112  *		operations (x87 through SSE4) to trap with a #UD so they can be
113  *		emulated. The system never sets this bit, but makes sure it is
114  *		clear on processor start up.
115  *
116  *   o CR0.TS	The 'Task Switched' bit. When this is turned on, a floating
117  *		point operation will generate a #NM. An fwait will as well,
118  *		depending on the value in CR0.MP.
119  *
120  * Our general policy is that CR0.ET, CR0.NE, and CR0.MP are always set by
121  * the system. Similarly CR0.EM is always unset by the system. CR0.TS has a more
122  * complicated role. Historically it has been used to allow running systems to
123  * restore the FPU registers lazily. This will be discussed in greater depth
124  * later on.
125  *
126  * %cr4 is also used as part of the FPU control. Specifically we need to worry
127  * about the following bits in the system:
128  *
129  *   o CR4.OSFXSR	This bit is used to indicate that the OS understands and
130  *			supports the execution of the fxsave and fxrstor
131  *			instructions. This bit is required to be set to enable
132  *			the use of the SSE->SSE4 instructions.
133  *
134  *   o CR4.OSXMMEXCPT	This bit is used to indicate that the OS can understand
135  *			and take a SIMD floating point exception (#XM). This bit
136  *			is always enabled by the system.
137  *
138  *   o CR4.OSXSAVE	This bit is used to indicate that the OS understands and
139  *			supports the execution of the xsave and xrstor family of
140  *			instructions. This bit is required to use any of the AVX
141  *			and newer feature sets.
142  *
143  * Because all supported processors are 64-bit, they'll always support the XMM
144  * extensions and we will enable both CR4.OXFXSR and CR4.OSXMMEXCPT in boot.
145  * CR4.OSXSAVE will be enabled and used whenever xsave is reported in cpuid.
146  *
147  * %xcr0 is used to manage the behavior of the xsave feature set and is only
148  * present on the system if xsave is supported. %xcr0 is read and written to
149  * through by the xgetbv and xsetbv instructions. This register is present
150  * whenever the xsave feature set is supported. Each bit in %xcr0 refers to a
151  * different component of the xsave state and controls whether or not that
152  * information is saved and restored. For newer feature sets like AVX and MPX,
153  * it also controls whether or not the corresponding instructions can be
154  * executed (much like CR0.OSFXSR does for the SSE feature sets).
155  *
156  * Everything in %xcr0 is around features available to users. There is also the
157  * IA32_XSS MSR which is used to control supervisor-only features that are still
158  * part of the xsave state. Bits that can be set in %xcr0 are reserved in
159  * IA32_XSS and vice versa. This is an important property that is particularly
160  * relevant to how the xsave instructions operate.
161  *
162  * Save Mechanisms
163  * ---------------
164  *
165  * When switching between running threads the FPU state needs to be saved and
166  * restored by the OS. If this state was not saved, users would rightfully
167  * complain about corrupt state. There are three mechanisms that exist on the
168  * processor for saving and restoring these state images:
169  *
170  *   o fsave
171  *   o fxsave
172  *   o xsave
173  *
174  * fsave saves and restores only the x87 FPU and is the oldest of these
175  * mechanisms. This mechanism is never used in the kernel today because we are
176  * always running on systems that support fxsave.
177  *
178  * The fxsave and fxrstor mechanism allows the x87 FPU and the SSE register
179  * state to be saved and restored to and from a struct fxsave_state. This is the
180  * default mechanism that is used to save and restore the FPU on amd64. An
181  * important aspect of fxsave that was different from the original i386 fsave
182  * mechanism is that the restoring of FPU state with pending exceptions will not
183  * generate an exception, it will be deferred to the next use of the FPU.
184  *
185  * The final and by far the most complex mechanism is that of the xsave set.
186  * xsave allows for saving and restoring all of the traditional x86 pieces (x87
187  * and SSE), while allowing for extensions that will save the %ymm, %zmm, etc.
188  * registers.
189  *
190  * Data is saved and restored into and out of a struct xsave_state. The first
191  * part of the struct xsave_state is equivalent to the struct fxsave_state.
192  * After that, there is a header which is used to describe the remaining
193  * portions of the state. The header is a 64-byte value of which the first two
194  * uint64_t values are defined and the rest are reserved and must be zero. The
195  * first uint64_t is the xstate_bv member. This describes which values in the
196  * xsave_state are actually valid and present. This is updated on a save and
197  * used on restore. The second member is the xcomp_bv member. Its last bit
198  * determines whether or not a compressed version of the structure is used.
199  *
200  * When the uncompressed structure is used (currently the only format we
201  * support), then each state component is at a fixed offset in the structure,
202  * even if it is not being used. For example, if you only saved the AVX related
203  * state, but did not save the MPX related state, the offset would not change
204  * for any component. With the compressed format, components that aren't used
205  * are all elided (though the x87 and SSE state are always there).
206  *
207  * Unlike fxsave which saves all state, the xsave family does not always save
208  * and restore all the state that could be covered by the xsave_state. The
209  * instructions all take an argument which is a mask of what to consider. This
210  * is the same mask that will be used in the xstate_bv vector and it is also the
211  * same values that are present in %xcr0 and IA32_XSS. Though IA32_XSS is only
212  * considered with the xsaves and xrstors instructions.
213  *
214  * When a save or restore is requested, a bitwise and is performed between the
215  * requested bits and those that have been enabled in %xcr0. Only the bits that
216  * match that are then saved or restored. Others will be silently ignored by
217  * the processor. This idea is used often in the OS. We will always request that
218  * we save and restore all of the state, but only those portions that are
219  * actually enabled in %xcr0 will be touched.
220  *
221  * If a feature has been asked to be restored that is not set in the xstate_bv
222  * feature vector of the save state, then it will be set to its initial state by
223  * the processor (usually zeros). Also, when asked to save state, the processor
224  * may not write out data that is in its initial state as an optimization. This
225  * optimization only applies to saving data and not to restoring data.
226  *
227  * There are a few different variants of the xsave and xrstor instruction. They
228  * are:
229  *
230  *   o xsave	This is the original save instruction. It will save all of the
231  *		requested data in the xsave state structure. It only saves data
232  *		in the uncompressed (xcomp_bv[63] is zero) format. It may be
233  *		executed at all privilege levels.
234  *
235  *   o xrstor	This is the original restore instruction. It will restore all of
236  *		the requested data. The xrstor function can handle both the
237  *		compressed and uncompressed formats. It may be executed at all
238  *		privilege levels.
239  *
240  *   o xsaveopt	This is a variant of the xsave instruction that employs
241  *		optimizations to try and only write out state that has been
242  *		modified since the last time an xrstor instruction was called.
243  *		The processor tracks a tuple of information about the last
244  *		xrstor and tries to ensure that the same buffer is being used
245  *		when this optimization is being used. However, because of the
246  *		way that it tracks the xrstor buffer based on the address of it,
247  *		it is not suitable for use if that buffer can be easily reused.
248  *		The most common case is trying to save data to the stack in
249  *		rtld. It may be executed at all privilege levels.
250  *
251  *   o xsavec	This is a variant of the xsave instruction that writes out the
252  *		compressed form of the xsave_state. Otherwise it behaves as
253  *		xsave. It may be executed at all privilege levels.
254  *
255  *   o xsaves	This is a variant of the xsave instruction. It is similar to
256  *		xsavec in that it always writes the compressed form of the
257  *		buffer. Unlike all the other forms, this instruction looks at
258  *		both the user (%xcr0) and supervisor (IA32_XSS MSR) to determine
259  *		what to save and restore. xsaves also implements the same
260  *		optimization that xsaveopt does around modified pieces. User
261  *		land may not execute the instruction.
262  *
263  *   o xrstors	This is a variant of the xrstor instruction. Similar to xsaves
264  *		it can save and restore both the user and privileged states.
265  *		Unlike xrstor it can only operate on the compressed form.
266  *		User land may not execute the instruction.
267  *
268  * Based on all of these, the kernel has a precedence for what it will use.
269  * Basically, xsaves (not supported) is preferred to xsaveopt, which is
270  * preferred to xsave. A similar scheme is used when informing rtld (more later)
271  * about what it should use. xsavec is preferred to xsave. xsaveopt is not
272  * recommended due to the modified optimization not being appropriate for this
273  * use.
274  *
275  * Finally, there is one last gotcha with the xsave state. Importantly some AMD
276  * processors did not always save and restore some of the FPU exception state in
277  * some cases like Intel did. In those cases the OS will make up for this fact
278  * itself.
279  *
280  * FPU Initialization
281  * ------------------
282  *
283  * One difference with the FPU registers is that not all threads have FPU state,
284  * only those that have an lwp. Generally this means kernel threads, which all
285  * share p0 and its lwp, do not have FPU state. Though there are definitely
286  * exceptions such as kcfpoold. In the rest of this discussion we'll use thread
287  * and lwp interchangeably, just think of thread meaning a thread that has a
288  * lwp.
289  *
290  * Each lwp has its FPU state allocated in its pcb (process control block). The
291  * actual storage comes from the fpsave_cachep kmem cache. This cache is sized
292  * dynamically at start up based on the save mechanism that we're using and the
293  * amount of memory required for it. This is dynamic because the xsave_state
294  * size varies based on the supported feature set.
295  *
296  * The hardware side of the FPU is initialized early in boot before we mount the
297  * root file system. This is effectively done in fpu_probe(). This is where we
298  * make the final decision about what the save and restore mechanisms we should
299  * use are, create the fpsave_cachep kmem cache, and initialize a number of
300  * function pointers that use save and restoring logic.
301  *
302  * The thread/lwp side is a a little more involved. There are two different
303  * things that we need to concern ourselves with. The first is how the FPU
304  * resources are allocated and the second is how the FPU state is initialized
305  * for a given lwp.
306  *
307  * We allocate the FPU save state from our kmem cache as part of lwp_fp_init().
308  * This is always called unconditionally by the system as part of creating an
309  * LWP.
310  *
311  * There are three different initialization paths that we deal with. The first
312  * is when we are executing a new process. As part of exec all of the register
313  * state is reset. The exec case is particularly important because init is born
314  * like Athena, sprouting from the head of the kernel, without any true parent
315  * to fork from. The second is used whenever we fork or create a new lwp.  The
316  * third is to deal with special lwps like the agent lwp.
317  *
318  * During exec, we will call fp_exec() which will initialize and set up the FPU
319  * state for the process. That will fill in the initial state for the FPU and
320  * also set that state in the FPU itself. As part of fp_exec() we also install a
321  * thread context operations vector that takes care of dealing with the saving
322  * and restoring of the FPU. These context handlers will also be called whenever
323  * an lwp is created or forked. In those cases, to initialize the FPU we will
324  * call fp_new_lwp(). Like fp_exec(), fp_new_lwp() will install a context
325  * operations vector for the new thread.
326  *
327  * Next we'll end up in the context operation fp_new_lwp(). This saves the
328  * current thread's state, initializes the new thread's state, and copies over
329  * the relevant parts of the originating thread's state. It's as this point that
330  * we also install the FPU context operations into the new thread, which ensures
331  * that all future threads that are descendants of the current one get the
332  * thread context operations (unless they call exec).
333  *
334  * To deal with some things like the agent lwp, we double check the state of the
335  * FPU in sys_rtt_common() to make sure that it has been enabled before
336  * returning to user land. In general, this path should be rare, but it's useful
337  * for the odd lwp here and there.
338  *
339  * The FPU state will remain valid most of the time. There are times that
340  * the state will be rewritten. For example in restorecontext, due to /proc, or
341  * the lwp calls exec(). Whether the context is being freed or we are resetting
342  * the state, we will call fp_free() to disable the FPU and our context.
343  *
344  * Finally, when the lwp is destroyed, it will actually destroy and free the FPU
345  * state by calling fp_lwp_cleanup().
346  *
347  * Kernel FPU Multiplexing
348  * -----------------------
349  *
350  * Just as the kernel has to maintain all of the general purpose registers when
351  * switching between scheduled threads, the same is true of the FPU registers.
352  *
353  * When a thread has FPU state, it also has a set of context operations
354  * installed. These context operations take care of making sure that the FPU is
355  * properly saved and restored during a context switch (fpsave_ctxt and
356  * fprestore_ctxt respectively). This means that the current implementation of
357  * the FPU is 'eager', when a thread is running the CPU will have its FPU state
358  * loaded. While this is always true when executing in userland, there are a few
359  * cases where this is not true in the kernel.
360  *
361  * This was not always the case. Traditionally on x86 a 'lazy' FPU restore was
362  * employed. This meant that the FPU would be saved on a context switch and the
363  * CR0.TS bit would be set. When a thread next tried to use the FPU, it would
364  * then take a #NM trap, at which point we would restore the FPU from the save
365  * area and return to user land. Given the frequency of use of the FPU alone by
366  * libc, there's no point returning to user land just to trap again.
367  *
368  * There are a few cases though where the FPU state may need to be changed for a
369  * thread on its behalf. The most notable cases are in the case of processes
370  * using /proc, restorecontext, forking, etc. In all of these cases the kernel
371  * will force a threads FPU state to be saved into the PCB through the fp_save()
372  * function. Whenever the FPU is saved, then the FPU_VALID flag is set on the
373  * pcb. This indicates that the save state holds currently valid data. As a side
374  * effect of this, CR0.TS will be set. To make sure that all of the state is
375  * updated before returning to user land, in these cases, we set a flag on the
376  * PCB that says the FPU needs to be updated. This will make sure that we take
377  * the slow path out of a system call to fix things up for the thread. Due to
378  * the fact that this is a rather rare case, effectively setting the equivalent
379  * of t_postsys is acceptable.
380  *
381  * CR0.TS will be set after a save occurs and cleared when a restore occurs.
382  * Generally this means it will be cleared immediately by the new thread that is
383  * running in a context switch. However, this isn't the case for kernel threads.
384  * They currently operate with CR0.TS set as no kernel state is restored for
385  * them. This means that using the FPU will cause a #NM and panic.
386  *
387  * The FPU_VALID flag on the currently executing thread's pcb is meant to track
388  * what the value of CR0.TS should be. If it is set, then CR0.TS will be set.
389  * However, because we eagerly restore, the only time that CR0.TS should be set
390  * for a non-kernel thread is during operations where it will be cleared before
391  * returning to user land and importantly, the only data that is in it is its
392  * own.
393  *
394  * Kernel FPU Usage
395  * ----------------
396  *
397  * Traditionally the kernel never used the FPU since it had no need for
398  * floating point operations. However, modern FPU hardware supports a variety
399  * of SIMD extensions which can speed up code such as parity calculations or
400  * encryption.
401  *
402  * To allow the kernel to take advantage of these features, the
403  * kernel_fpu_begin() and kernel_fpu_end() functions should be wrapped
404  * around any usage of the FPU by the kernel to ensure that user-level context
405  * is properly saved/restored, as well as to properly setup the FPU for use by
406  * the kernel. There are a variety of ways this wrapping can be used, as
407  * discussed in this section below.
408  *
409  * When kernel_fpu_begin() and kernel_fpu_end() are used for extended
410  * operations, the kernel_fpu_alloc() function should be used to allocate a
411  * kfpu_state_t structure that is used to save/restore the thread's kernel FPU
412  * state. This structure is not tied to any thread. That is, different threads
413  * can reuse the same kfpu_state_t structure, although not concurrently. A
414  * kfpu_state_t structure is freed by the kernel_fpu_free() function.
415  *
416  * In some cases, the kernel may need to use the FPU for a short operation
417  * without the overhead to manage a kfpu_state_t structure and without
418  * allowing for a context switch off the FPU. In this case the KFPU_NO_STATE
419  * bit can be set in the kernel_fpu_begin() and kernel_fpu_end() flags
420  * parameter. This indicates that there is no kfpu_state_t. When used this way,
421  * kernel preemption should be disabled by the caller (kpreempt_disable) before
422  * calling kernel_fpu_begin(), and re-enabled after calling kernel_fpu_end().
423  * For this usage, it is important to limit the kernel's FPU use to short
424  * operations. The tradeoff between using the FPU without a kfpu_state_t
425  * structure vs. the overhead of allowing a context switch while using the FPU
426  * should be carefully considered on a case by case basis.
427  *
428  * In other cases, kernel threads have an LWP, but never execute in user space.
429  * In this situation, the LWP's pcb_fpu area can be used to save/restore the
430  * kernel's FPU state if the thread is context switched, instead of having to
431  * allocate and manage a kfpu_state_t structure. The KFPU_USE_LWP bit in the
432  * kernel_fpu_begin() and kernel_fpu_end() flags parameter is used to
433  * enable this behavior. It is the caller's responsibility to ensure that this
434  * is only used for a kernel thread which never executes in user space.
435  *
436  * FPU Exceptions
437  * --------------
438  *
439  * Certain operations can cause the kernel to take traps due to FPU activity.
440  * Generally these events will cause a user process to receive a SIGFPU and if
441  * the kernel receives it in kernel context, we will die. Traditionally the #NM
442  * (Device Not Available / No Math) exception generated by CR0.TS would have
443  * caused us to restore the FPU. Now it is a fatal event regardless of whether
444  * or not user land causes it.
445  *
446  * While there are some cases where the kernel uses the FPU, it is up to the
447  * kernel to use the FPU in a way such that it cannot receive a trap or to use
448  * the appropriate trap protection mechanisms.
449  *
450  * Hypervisors
451  * -----------
452  *
453  * When providing support for hypervisors things are a little bit more
454  * complicated because the FPU is not virtualized at all. This means that they
455  * need to save and restore the FPU and %xcr0 across entry and exit to the
456  * guest. To facilitate this, we provide a series of APIs in <sys/hma.h>. These
457  * allow us to use the full native state to make sure that we are always saving
458  * and restoring the full FPU that the host sees, even when the guest is using a
459  * subset.
460  *
461  * One tricky aspect of this is that the guest may be using a subset of %xcr0
462  * and therefore changing our %xcr0 on the fly. It is vital that when we're
463  * saving and restoring the FPU that we always use the largest %xcr0 contents
464  * otherwise we will end up leaving behind data in it.
465  *
466  * ELF PLT Support
467  * ---------------
468  *
469  * rtld has to preserve a subset of the FPU when it is saving and restoring
470  * registers due to the amd64 SYS V ABI. See cmd/sgs/rtld/amd64/boot_elf.s for
471  * more information. As a result, we set up an aux vector that contains
472  * information about what save and restore mechanisms it should be using and
473  * the sizing thereof based on what the kernel supports. This is passed down in
474  * a series of aux vectors SUN_AT_FPTYPE and SUN_AT_FPSIZE. This information is
475  * initialized in fpu_subr.c.
476  */
477 
478 kmem_cache_t *fpsave_cachep;
479 
480 /* Legacy fxsave layout + xsave header + ymm */
481 #define	AVX_XSAVE_SIZE		(512 + 64 + 256)
482 
483 /*
484  * Various sanity checks.
485  */
486 CTASSERT(sizeof (struct fxsave_state) == 512);
487 CTASSERT(sizeof (struct fnsave_state) == 108);
488 CTASSERT((offsetof(struct fxsave_state, fx_xmm[0]) & 0xf) == 0);
489 CTASSERT(sizeof (struct xsave_state) >= AVX_XSAVE_SIZE);
490 
491 /*
492  * This structure is the x86 implementation of the kernel FPU that is defined in
493  * uts/common/sys/kfpu.h.
494  */
495 
496 typedef enum kfpu_flags {
497 	/*
498 	 * This indicates that the save state has initial FPU data.
499 	 */
500 	KFPU_F_INITIALIZED = 0x01
501 } kfpu_flags_t;
502 
503 struct kfpu_state {
504 	fpu_ctx_t	kfpu_ctx;
505 	kfpu_flags_t	kfpu_flags;
506 	kthread_t	*kfpu_curthread;
507 };
508 
509 /*
510  * Initial kfpu state for SSE/SSE2 used by fpinit()
511  */
512 const struct fxsave_state sse_initial = {
513 	FPU_CW_INIT,	/* fx_fcw */
514 	0,		/* fx_fsw */
515 	0,		/* fx_fctw */
516 	0,		/* fx_fop */
517 	0,		/* fx_rip */
518 	0,		/* fx_rdp */
519 	SSE_MXCSR_INIT	/* fx_mxcsr */
520 	/* rest of structure is zero */
521 };
522 
523 /*
524  * Initial kfpu state for AVX used by fpinit()
525  */
526 const struct xsave_state avx_initial = {
527 	/*
528 	 * The definition below needs to be identical with sse_initial
529 	 * defined above.
530 	 */
531 	.xs_fxsave = {
532 		.fx_fcw = FPU_CW_INIT,
533 		.fx_mxcsr = SSE_MXCSR_INIT,
534 	},
535 	.xs_header = {
536 		/*
537 		 * bit0 = 1 for XSTATE_BV to indicate that legacy fields are
538 		 * valid, and CPU should initialize XMM/YMM.
539 		 */
540 		.xsh_xstate_bv = 1,
541 		.xsh_xcomp_bv = 0,
542 	},
543 };
544 
545 /*
546  * mxcsr_mask value (possibly reset in fpu_probe); used to avoid
547  * the #gp exception caused by setting unsupported bits in the
548  * MXCSR register
549  */
550 uint32_t sse_mxcsr_mask = SSE_MXCSR_MASK_DEFAULT;
551 
552 /*
553  * Initial kfpu state for x87 used by fpinit()
554  */
555 const struct fnsave_state x87_initial = {
556 	FPU_CW_INIT,	/* f_fcw */
557 	0,		/* __f_ign0 */
558 	0,		/* f_fsw */
559 	0,		/* __f_ign1 */
560 	0xffff,		/* f_ftw */
561 	/* rest of structure is zero */
562 };
563 
564 /*
565  * This vector is patched to xsave_ctxt() or xsaveopt_ctxt() if we discover we
566  * have an XSAVE-capable chip in fpu_probe.
567  */
568 void (*fpsave_ctxt)(void *) = fpxsave_ctxt;
569 void (*fprestore_ctxt)(void *) = fpxrestore_ctxt;
570 
571 /*
572  * This function pointer is changed to xsaveopt if the CPU is xsaveopt capable.
573  */
574 void (*xsavep)(struct xsave_state *, uint64_t) = xsave;
575 
576 static int fpe_sicode(uint_t);
577 static int fpe_simd_sicode(uint_t);
578 static void fp_new_lwp(void *, void *);
579 static void fp_free_ctx(void *, int);
580 
581 static struct ctxop *
582 fp_ctxop_allocate(struct fpu_ctx *fp)
583 {
584 	const struct ctxop_template tpl = {
585 		.ct_rev		= CTXOP_TPL_REV,
586 		.ct_save	= fpsave_ctxt,
587 		.ct_restore	= fprestore_ctxt,
588 		.ct_fork	= fp_new_lwp,
589 		.ct_lwp_create	= fp_new_lwp,
590 		.ct_free	= fp_free_ctx,
591 	};
592 	return (ctxop_allocate(&tpl, fp));
593 }
594 
595 /*
596  * Copy the state of parent lwp's floating point context into the new lwp.
597  * Invoked for both fork() and lwp_create().
598  *
599  * Note that we inherit -only- the control state (e.g. exception masks,
600  * rounding, precision control, etc.); the FPU registers are otherwise
601  * reset to their initial state.
602  */
603 static void
604 fp_new_lwp(void *parent, void *child)
605 {
606 	kthread_id_t t = parent, ct = child;
607 	struct fpu_ctx *fp;		/* parent fpu context */
608 	struct fpu_ctx *cfp;		/* new fpu context */
609 	struct fxsave_state *fx, *cfx;
610 	struct xsave_state *cxs;
611 
612 	ASSERT(fp_kind != FP_NO);
613 
614 	fp = &t->t_lwp->lwp_pcb.pcb_fpu;
615 	cfp = &ct->t_lwp->lwp_pcb.pcb_fpu;
616 
617 	/*
618 	 * If the parent FPU state is still in the FPU hw then save it;
619 	 * conveniently, fp_save() already does this for us nicely.
620 	 */
621 	fp_save(fp);
622 
623 	cfp->fpu_flags = FPU_EN | FPU_VALID;
624 	cfp->fpu_regs.kfpu_status = 0;
625 	cfp->fpu_regs.kfpu_xstatus = 0;
626 
627 	/*
628 	 * Make sure that the child's FPU is cleaned up and made ready for user
629 	 * land.
630 	 */
631 	PCB_SET_UPDATE_FPU(&ct->t_lwp->lwp_pcb);
632 
633 	switch (fp_save_mech) {
634 	case FP_FXSAVE:
635 		fx = fp->fpu_regs.kfpu_u.kfpu_fx;
636 		cfx = cfp->fpu_regs.kfpu_u.kfpu_fx;
637 		bcopy(&sse_initial, cfx, sizeof (*cfx));
638 		cfx->fx_mxcsr = fx->fx_mxcsr & ~SSE_MXCSR_EFLAGS;
639 		cfx->fx_fcw = fx->fx_fcw;
640 		break;
641 
642 	case FP_XSAVE:
643 		cfp->fpu_xsave_mask = fp->fpu_xsave_mask;
644 
645 		VERIFY(fp->fpu_regs.kfpu_u.kfpu_xs != NULL);
646 
647 		fx = &fp->fpu_regs.kfpu_u.kfpu_xs->xs_fxsave;
648 		cxs = cfp->fpu_regs.kfpu_u.kfpu_xs;
649 		cfx = &cxs->xs_fxsave;
650 
651 		bcopy(&avx_initial, cxs, sizeof (*cxs));
652 		cfx->fx_mxcsr = fx->fx_mxcsr & ~SSE_MXCSR_EFLAGS;
653 		cfx->fx_fcw = fx->fx_fcw;
654 		cxs->xs_header.xsh_xstate_bv |=
655 		    (get_xcr(XFEATURE_ENABLED_MASK) & XFEATURE_FP_INITIAL);
656 		break;
657 	default:
658 		panic("Invalid fp_save_mech");
659 		/*NOTREACHED*/
660 	}
661 
662 	/*
663 	 * Mark that both the parent and child need to have the FPU cleaned up
664 	 * before returning to user land.
665 	 */
666 
667 	ctxop_attach(ct, fp_ctxop_allocate(cfp));
668 }
669 
670 /*
671  * Free any state associated with floating point context.
672  * Fp_free can be called in three cases:
673  * 1) from reaper -> thread_free -> freectx-> fp_free
674  *	fp context belongs to a thread on deathrow
675  *	nothing to do,  thread will never be resumed
676  *	thread calling ctxfree is reaper
677  *
678  * 2) from exec -> freectx -> fp_free
679  *	fp context belongs to the current thread
680  *	must disable fpu, thread calling ctxfree is curthread
681  *
682  * 3) from restorecontext -> setfpregs -> fp_free
683  *	we have a modified context in the memory (lwp->pcb_fpu)
684  *	disable fpu and release the fp context for the CPU
685  *
686  */
687 void
688 fp_free(struct fpu_ctx *fp)
689 {
690 	ASSERT(fp_kind != FP_NO);
691 
692 	if (fp->fpu_flags & FPU_VALID)
693 		return;
694 
695 	kpreempt_disable();
696 	/*
697 	 * We want to do fpsave rather than fpdisable so that we can
698 	 * keep the fpu_flags as FPU_VALID tracking the CR0_TS bit
699 	 */
700 	fp->fpu_flags |= FPU_VALID;
701 	/* If for current thread disable FP to track FPU_VALID */
702 	if (curthread->t_lwp && fp == &curthread->t_lwp->lwp_pcb.pcb_fpu) {
703 		/* Clear errors if any to prevent frstor from complaining */
704 		(void) fperr_reset();
705 		if (fp_kind & __FP_SSE)
706 			(void) fpxerr_reset();
707 		fpdisable();
708 	}
709 	kpreempt_enable();
710 }
711 
712 /*
713  * Wrapper for freectx to make the types line up for fp_free()
714  */
715 static void
716 fp_free_ctx(void *arg, int isexec __unused)
717 {
718 	fp_free((struct fpu_ctx *)arg);
719 }
720 
721 /*
722  * Store the floating point state and disable the floating point unit.
723  */
724 void
725 fp_save(struct fpu_ctx *fp)
726 {
727 	ASSERT(fp_kind != FP_NO);
728 
729 	kpreempt_disable();
730 	if (!fp || fp->fpu_flags & FPU_VALID ||
731 	    (fp->fpu_flags & FPU_EN) == 0) {
732 		kpreempt_enable();
733 		return;
734 	}
735 	ASSERT(curthread->t_lwp && fp == &curthread->t_lwp->lwp_pcb.pcb_fpu);
736 
737 	switch (fp_save_mech) {
738 	case FP_FXSAVE:
739 		fpxsave(fp->fpu_regs.kfpu_u.kfpu_fx);
740 		break;
741 
742 	case FP_XSAVE:
743 		xsavep(fp->fpu_regs.kfpu_u.kfpu_xs, fp->fpu_xsave_mask);
744 		break;
745 	default:
746 		panic("Invalid fp_save_mech");
747 		/*NOTREACHED*/
748 	}
749 
750 	fp->fpu_flags |= FPU_VALID;
751 
752 	/*
753 	 * We save the FPU as part of forking, execing, modifications via /proc,
754 	 * restorecontext, etc. As such, we need to make sure that we return to
755 	 * userland with valid state in the FPU. If we're context switched out
756 	 * before we hit sys_rtt_common() we'll end up having restored the FPU
757 	 * as part of the context ops operations. The restore logic always makes
758 	 * sure that FPU_VALID is set before doing a restore so we don't restore
759 	 * it a second time.
760 	 */
761 	PCB_SET_UPDATE_FPU(&curthread->t_lwp->lwp_pcb);
762 
763 	kpreempt_enable();
764 }
765 
766 /*
767  * Restore the FPU context for the thread:
768  * The possibilities are:
769  *	1. No active FPU context: Load the new context into the FPU hw
770  *	   and enable the FPU.
771  */
772 void
773 fp_restore(struct fpu_ctx *fp)
774 {
775 	switch (fp_save_mech) {
776 	case FP_FXSAVE:
777 		fpxrestore(fp->fpu_regs.kfpu_u.kfpu_fx);
778 		break;
779 
780 	case FP_XSAVE:
781 		xrestore(fp->fpu_regs.kfpu_u.kfpu_xs, fp->fpu_xsave_mask);
782 		break;
783 	default:
784 		panic("Invalid fp_save_mech");
785 		/*NOTREACHED*/
786 	}
787 
788 	fp->fpu_flags &= ~FPU_VALID;
789 }
790 
791 /*
792  * Reset the FPU such that it is in a valid state for a new thread that is
793  * coming out of exec. The FPU will be in a usable state at this point. At this
794  * point we know that the FPU state has already been allocated and if this
795  * wasn't an init process, then it will have had fp_free() previously called.
796  */
797 void
798 fp_exec(void)
799 {
800 	struct fpu_ctx *fp = &ttolwp(curthread)->lwp_pcb.pcb_fpu;
801 
802 	if (fp_save_mech == FP_XSAVE) {
803 		fp->fpu_xsave_mask = XFEATURE_FP_ALL;
804 	}
805 
806 	struct ctxop *ctx = fp_ctxop_allocate(fp);
807 	/*
808 	 * Make sure that we're not preempted in the middle of initializing the
809 	 * FPU on CPU.
810 	 */
811 	kpreempt_disable();
812 	ctxop_attach(curthread, ctx);
813 	fpinit();
814 	fp->fpu_flags = FPU_EN;
815 	kpreempt_enable();
816 }
817 
818 
819 /*
820  * Seeds the initial state for the current thread.  The possibilities are:
821  *      1. Another process has modified the FPU state before we have done any
822  *         initialization: Load the FPU state from the LWP state.
823  *      2. The FPU state has not been externally modified:  Load a clean state.
824  */
825 void
826 fp_seed(void)
827 {
828 	struct fpu_ctx *fp = &ttolwp(curthread)->lwp_pcb.pcb_fpu;
829 
830 	ASSERT(curthread->t_preempt >= 1);
831 	ASSERT((fp->fpu_flags & FPU_EN) == 0);
832 
833 	/*
834 	 * Always initialize a new context and initialize the hardware.
835 	 */
836 	if (fp_save_mech == FP_XSAVE) {
837 		fp->fpu_xsave_mask = XFEATURE_FP_ALL;
838 	}
839 
840 	ctxop_attach(curthread, fp_ctxop_allocate(fp));
841 	fpinit();
842 
843 	/*
844 	 * If FPU_VALID is set, it means someone has modified registers via
845 	 * /proc.  In this case, restore the current lwp's state.
846 	 */
847 	if (fp->fpu_flags & FPU_VALID)
848 		fp_restore(fp);
849 
850 	ASSERT((fp->fpu_flags & FPU_VALID) == 0);
851 	fp->fpu_flags = FPU_EN;
852 }
853 
854 /*
855  * When using xsave/xrstor, these three functions are used by the lwp code to
856  * manage the memory for the xsave area.
857  */
858 void
859 fp_lwp_init(struct _klwp *lwp)
860 {
861 	struct fpu_ctx *fp = &lwp->lwp_pcb.pcb_fpu;
862 
863 	/*
864 	 * We keep a copy of the pointer in lwp_fpu so that we can restore the
865 	 * value in forklwp() after we duplicate the parent's LWP state.
866 	 */
867 	lwp->lwp_fpu = fp->fpu_regs.kfpu_u.kfpu_generic =
868 	    kmem_cache_alloc(fpsave_cachep, KM_SLEEP);
869 
870 	if (fp_save_mech == FP_XSAVE) {
871 		/*
872 		 *
873 		 * We bzero since the fpinit() code path will only
874 		 * partially initialize the xsave area using avx_inital.
875 		 */
876 		ASSERT(cpuid_get_xsave_size() >= sizeof (struct xsave_state));
877 		bzero(fp->fpu_regs.kfpu_u.kfpu_xs, cpuid_get_xsave_size());
878 	}
879 }
880 
881 void
882 fp_lwp_cleanup(struct _klwp *lwp)
883 {
884 	struct fpu_ctx *fp = &lwp->lwp_pcb.pcb_fpu;
885 
886 	if (fp->fpu_regs.kfpu_u.kfpu_generic != NULL) {
887 		kmem_cache_free(fpsave_cachep,
888 		    fp->fpu_regs.kfpu_u.kfpu_generic);
889 		lwp->lwp_fpu = fp->fpu_regs.kfpu_u.kfpu_generic = NULL;
890 	}
891 }
892 
893 /*
894  * Called during the process of forklwp(). The kfpu_u pointer will have been
895  * overwritten while copying the parent's LWP structure. We have a valid copy
896  * stashed in the child's lwp_fpu which we use to restore the correct value.
897  */
898 void
899 fp_lwp_dup(struct _klwp *lwp)
900 {
901 	void *xp = lwp->lwp_fpu;
902 	size_t sz;
903 
904 	switch (fp_save_mech) {
905 	case FP_FXSAVE:
906 		sz = sizeof (struct fxsave_state);
907 		break;
908 	case FP_XSAVE:
909 		sz = cpuid_get_xsave_size();
910 		break;
911 	default:
912 		panic("Invalid fp_save_mech");
913 		/*NOTREACHED*/
914 	}
915 
916 	/* copy the parent's values into the new lwp's struct */
917 	bcopy(lwp->lwp_pcb.pcb_fpu.fpu_regs.kfpu_u.kfpu_generic, xp, sz);
918 	/* now restore the pointer */
919 	lwp->lwp_pcb.pcb_fpu.fpu_regs.kfpu_u.kfpu_generic = xp;
920 }
921 
922 /*
923  * Handle a processor extension error fault
924  * Returns non zero for error.
925  */
926 
927 /*ARGSUSED*/
928 int
929 fpexterrflt(struct regs *rp)
930 {
931 	uint32_t fpcw, fpsw;
932 	fpu_ctx_t *fp = &ttolwp(curthread)->lwp_pcb.pcb_fpu;
933 
934 	ASSERT(fp_kind != FP_NO);
935 
936 	/*
937 	 * Now we can enable the interrupts.
938 	 * (NOTE: x87 fp exceptions come thru interrupt gate)
939 	 */
940 	sti();
941 
942 	if (!fpu_exists)
943 		return (FPE_FLTINV);
944 
945 	/*
946 	 * Do an unconditional save of the FP state.  If it's dirty (TS=0),
947 	 * it'll be saved into the fpu context area passed in (that of the
948 	 * current thread).  If it's not dirty (it may not be, due to
949 	 * an intervening save due to a context switch between the sti(),
950 	 * above and here, then it's safe to just use the stored values in
951 	 * the context save area to determine the cause of the fault.
952 	 */
953 	fp_save(fp);
954 
955 	/* clear exception flags in saved state, as if by fnclex */
956 	switch (fp_save_mech) {
957 	case FP_FXSAVE:
958 		fpsw = fp->fpu_regs.kfpu_u.kfpu_fx->fx_fsw;
959 		fpcw = fp->fpu_regs.kfpu_u.kfpu_fx->fx_fcw;
960 		fp->fpu_regs.kfpu_u.kfpu_fx->fx_fsw &= ~FPS_SW_EFLAGS;
961 		break;
962 
963 	case FP_XSAVE:
964 		fpsw = fp->fpu_regs.kfpu_u.kfpu_xs->xs_fxsave.fx_fsw;
965 		fpcw = fp->fpu_regs.kfpu_u.kfpu_xs->xs_fxsave.fx_fcw;
966 		fp->fpu_regs.kfpu_u.kfpu_xs->xs_fxsave.fx_fsw &= ~FPS_SW_EFLAGS;
967 		/*
968 		 * Always set LEGACY_FP as it may have been cleared by XSAVE
969 		 * instruction
970 		 */
971 		fp->fpu_regs.kfpu_u.kfpu_xs->xs_header.xsh_xstate_bv |=
972 		    XFEATURE_LEGACY_FP;
973 		break;
974 	default:
975 		panic("Invalid fp_save_mech");
976 		/*NOTREACHED*/
977 	}
978 
979 	fp->fpu_regs.kfpu_status = fpsw;
980 
981 	if ((fpsw & FPS_ES) == 0)
982 		return (0);		/* No exception */
983 
984 	/*
985 	 * "and" the exception flags with the complement of the mask
986 	 * bits to determine which exception occurred
987 	 */
988 	return (fpe_sicode(fpsw & ~fpcw & 0x3f));
989 }
990 
991 /*
992  * Handle an SSE/SSE2 precise exception.
993  * Returns a non-zero sicode for error.
994  */
995 /*ARGSUSED*/
996 int
997 fpsimderrflt(struct regs *rp)
998 {
999 	uint32_t mxcsr, xmask;
1000 	fpu_ctx_t *fp = &ttolwp(curthread)->lwp_pcb.pcb_fpu;
1001 
1002 	ASSERT(fp_kind & __FP_SSE);
1003 
1004 	/*
1005 	 * NOTE: Interrupts are disabled during execution of this
1006 	 * function.  They are enabled by the caller in trap.c.
1007 	 */
1008 
1009 	/*
1010 	 * The only way we could have gotten here if there is no FP unit
1011 	 * is via a user executing an INT $19 instruction, so there is
1012 	 * no fault in that case.
1013 	 */
1014 	if (!fpu_exists)
1015 		return (0);
1016 
1017 	/*
1018 	 * Do an unconditional save of the FP state.  If it's dirty (TS=0),
1019 	 * it'll be saved into the fpu context area passed in (that of the
1020 	 * current thread).  If it's not dirty, then it's safe to just use
1021 	 * the stored values in the context save area to determine the
1022 	 * cause of the fault.
1023 	 */
1024 	fp_save(fp);		/* save the FPU state */
1025 
1026 	if (fp_save_mech == FP_XSAVE) {
1027 		mxcsr = fp->fpu_regs.kfpu_u.kfpu_xs->xs_fxsave.fx_mxcsr;
1028 		fp->fpu_regs.kfpu_status =
1029 		    fp->fpu_regs.kfpu_u.kfpu_xs->xs_fxsave.fx_fsw;
1030 	} else {
1031 		mxcsr = fp->fpu_regs.kfpu_u.kfpu_fx->fx_mxcsr;
1032 		fp->fpu_regs.kfpu_status = fp->fpu_regs.kfpu_u.kfpu_fx->fx_fsw;
1033 	}
1034 	fp->fpu_regs.kfpu_xstatus = mxcsr;
1035 
1036 	/*
1037 	 * compute the mask that determines which conditions can cause
1038 	 * a #xm exception, and use this to clean the status bits so that
1039 	 * we can identify the true cause of this one.
1040 	 */
1041 	xmask = (mxcsr >> 7) & SSE_MXCSR_EFLAGS;
1042 	return (fpe_simd_sicode((mxcsr & SSE_MXCSR_EFLAGS) & ~xmask));
1043 }
1044 
1045 /*
1046  * In the unlikely event that someone is relying on this subcode being
1047  * FPE_FLTILL for denormalize exceptions, it can always be patched back
1048  * again to restore old behaviour.
1049  */
1050 int fpe_fltden = FPE_FLTDEN;
1051 
1052 /*
1053  * Map from the FPU status word to the FP exception si_code.
1054  */
1055 static int
1056 fpe_sicode(uint_t sw)
1057 {
1058 	if (sw & FPS_IE)
1059 		return (FPE_FLTINV);
1060 	if (sw & FPS_ZE)
1061 		return (FPE_FLTDIV);
1062 	if (sw & FPS_DE)
1063 		return (fpe_fltden);
1064 	if (sw & FPS_OE)
1065 		return (FPE_FLTOVF);
1066 	if (sw & FPS_UE)
1067 		return (FPE_FLTUND);
1068 	if (sw & FPS_PE)
1069 		return (FPE_FLTRES);
1070 	return (FPE_FLTINV);	/* default si_code for other exceptions */
1071 }
1072 
1073 /*
1074  * Map from the SSE status word to the FP exception si_code.
1075  */
1076 static int
1077 fpe_simd_sicode(uint_t sw)
1078 {
1079 	if (sw & SSE_IE)
1080 		return (FPE_FLTINV);
1081 	if (sw & SSE_ZE)
1082 		return (FPE_FLTDIV);
1083 	if (sw & SSE_DE)
1084 		return (FPE_FLTDEN);
1085 	if (sw & SSE_OE)
1086 		return (FPE_FLTOVF);
1087 	if (sw & SSE_UE)
1088 		return (FPE_FLTUND);
1089 	if (sw & SSE_PE)
1090 		return (FPE_FLTRES);
1091 	return (FPE_FLTINV);	/* default si_code for other exceptions */
1092 }
1093 
1094 /*
1095  * This routine is invoked as part of libc's __fpstart implementation
1096  * via sysi86(2).
1097  *
1098  * It may be called -before- any context has been assigned in which case
1099  * we try and avoid touching the hardware.  Or it may be invoked well
1100  * after the context has been assigned and fiddled with, in which case
1101  * just tweak it directly.
1102  */
1103 void
1104 fpsetcw(uint16_t fcw, uint32_t mxcsr)
1105 {
1106 	struct fpu_ctx *fp = &curthread->t_lwp->lwp_pcb.pcb_fpu;
1107 	struct fxsave_state *fx;
1108 
1109 	if (!fpu_exists || fp_kind == FP_NO)
1110 		return;
1111 
1112 	if ((fp->fpu_flags & FPU_EN) == 0) {
1113 		if (fcw == FPU_CW_INIT && mxcsr == SSE_MXCSR_INIT) {
1114 			/*
1115 			 * Common case.  Floating point unit not yet
1116 			 * enabled, and kernel already intends to initialize
1117 			 * the hardware the way the caller wants.
1118 			 */
1119 			return;
1120 		}
1121 		/*
1122 		 * Hmm.  Userland wants a different default.
1123 		 * Do a fake "first trap" to establish the context, then
1124 		 * handle as if we already had a context before we came in.
1125 		 */
1126 		kpreempt_disable();
1127 		fp_seed();
1128 		kpreempt_enable();
1129 	}
1130 
1131 	/*
1132 	 * Ensure that the current hardware state is flushed back to the
1133 	 * pcb, then modify that copy.  Next use of the fp will
1134 	 * restore the context.
1135 	 */
1136 	fp_save(fp);
1137 
1138 	switch (fp_save_mech) {
1139 	case FP_FXSAVE:
1140 		fx = fp->fpu_regs.kfpu_u.kfpu_fx;
1141 		fx->fx_fcw = fcw;
1142 		fx->fx_mxcsr = sse_mxcsr_mask & mxcsr;
1143 		break;
1144 
1145 	case FP_XSAVE:
1146 		fx = &fp->fpu_regs.kfpu_u.kfpu_xs->xs_fxsave;
1147 		fx->fx_fcw = fcw;
1148 		fx->fx_mxcsr = sse_mxcsr_mask & mxcsr;
1149 		/*
1150 		 * Always set LEGACY_FP as it may have been cleared by XSAVE
1151 		 * instruction
1152 		 */
1153 		fp->fpu_regs.kfpu_u.kfpu_xs->xs_header.xsh_xstate_bv |=
1154 		    XFEATURE_LEGACY_FP;
1155 		break;
1156 	default:
1157 		panic("Invalid fp_save_mech");
1158 		/*NOTREACHED*/
1159 	}
1160 }
1161 
1162 static void
1163 kernel_fpu_fpstate_init(kfpu_state_t *kfpu)
1164 {
1165 	struct xsave_state *xs;
1166 
1167 	switch (fp_save_mech) {
1168 	case FP_FXSAVE:
1169 		bcopy(&sse_initial, kfpu->kfpu_ctx.fpu_regs.kfpu_u.kfpu_fx,
1170 		    sizeof (struct fxsave_state));
1171 		kfpu->kfpu_ctx.fpu_xsave_mask = 0;
1172 		break;
1173 	case FP_XSAVE:
1174 		xs = kfpu->kfpu_ctx.fpu_regs.kfpu_u.kfpu_xs;
1175 		bzero(xs, cpuid_get_xsave_size());
1176 		bcopy(&avx_initial, xs, sizeof (*xs));
1177 		xs->xs_header.xsh_xstate_bv = XFEATURE_LEGACY_FP | XFEATURE_SSE;
1178 		kfpu->kfpu_ctx.fpu_xsave_mask = XFEATURE_FP_ALL;
1179 		break;
1180 	default:
1181 		panic("invalid fp_save_mech");
1182 	}
1183 
1184 	/*
1185 	 * Set the corresponding flags that the system expects on the FPU state
1186 	 * to indicate that this is our state. The FPU_EN flag is required to
1187 	 * indicate that FPU usage is allowed. The FPU_KERN flag is explicitly
1188 	 * not set below as it represents that this state is being suppressed
1189 	 * by the kernel.
1190 	 */
1191 	kfpu->kfpu_ctx.fpu_flags = FPU_EN | FPU_VALID;
1192 	kfpu->kfpu_flags |= KFPU_F_INITIALIZED;
1193 }
1194 
1195 kfpu_state_t *
1196 kernel_fpu_alloc(int kmflags)
1197 {
1198 	kfpu_state_t *kfpu;
1199 
1200 	if ((kfpu = kmem_zalloc(sizeof (kfpu_state_t), kmflags)) == NULL) {
1201 		return (NULL);
1202 	}
1203 
1204 	kfpu->kfpu_ctx.fpu_regs.kfpu_u.kfpu_generic =
1205 	    kmem_cache_alloc(fpsave_cachep, kmflags);
1206 	if (kfpu->kfpu_ctx.fpu_regs.kfpu_u.kfpu_generic == NULL) {
1207 		kmem_free(kfpu, sizeof (kfpu_state_t));
1208 		return (NULL);
1209 	}
1210 
1211 	kernel_fpu_fpstate_init(kfpu);
1212 
1213 	return (kfpu);
1214 }
1215 
1216 void
1217 kernel_fpu_free(kfpu_state_t *kfpu)
1218 {
1219 	kmem_cache_free(fpsave_cachep,
1220 	    kfpu->kfpu_ctx.fpu_regs.kfpu_u.kfpu_generic);
1221 	kmem_free(kfpu, sizeof (kfpu_state_t));
1222 }
1223 
1224 static void
1225 kernel_fpu_ctx_save(void *arg)
1226 {
1227 	kfpu_state_t *kfpu = arg;
1228 	fpu_ctx_t *pf;
1229 
1230 	if (kfpu == NULL) {
1231 		/*
1232 		 * A NULL kfpu implies this is a kernel thread with an LWP and
1233 		 * no user-level FPU usage. Use the lwp fpu save area.
1234 		 */
1235 		pf = &curthread->t_lwp->lwp_pcb.pcb_fpu;
1236 
1237 		ASSERT(curthread->t_procp->p_flag & SSYS);
1238 		ASSERT3U(pf->fpu_flags & FPU_VALID, ==, 0);
1239 
1240 		fp_save(pf);
1241 	} else {
1242 		pf = &kfpu->kfpu_ctx;
1243 
1244 		ASSERT3P(kfpu->kfpu_curthread, ==, curthread);
1245 		ASSERT3U(pf->fpu_flags & FPU_VALID, ==, 0);
1246 
1247 		/*
1248 		 * Note, we can't use fp_save because it assumes that we're
1249 		 * saving to the thread's PCB and not somewhere else. Because
1250 		 * this is a different FPU context, we instead have to do this
1251 		 * ourselves.
1252 		 */
1253 		switch (fp_save_mech) {
1254 		case FP_FXSAVE:
1255 			fpxsave(pf->fpu_regs.kfpu_u.kfpu_fx);
1256 			break;
1257 		case FP_XSAVE:
1258 			xsavep(pf->fpu_regs.kfpu_u.kfpu_xs, pf->fpu_xsave_mask);
1259 			break;
1260 		default:
1261 			panic("Invalid fp_save_mech");
1262 		}
1263 
1264 		/*
1265 		 * Because we have saved context here, our save state is no
1266 		 * longer valid and therefore needs to be reinitialized.
1267 		 */
1268 		kfpu->kfpu_flags &= ~KFPU_F_INITIALIZED;
1269 	}
1270 
1271 	pf->fpu_flags |= FPU_VALID;
1272 
1273 	/*
1274 	 * Clear KFPU flag. This allows swtch to check for improper kernel
1275 	 * usage of the FPU (i.e. switching to a new thread while the old
1276 	 * thread was in the kernel and using the FPU, but did not perform a
1277 	 * context save).
1278 	 */
1279 	curthread->t_flag &= ~T_KFPU;
1280 }
1281 
1282 static void
1283 kernel_fpu_ctx_restore(void *arg)
1284 {
1285 	kfpu_state_t *kfpu = arg;
1286 	fpu_ctx_t *pf;
1287 
1288 	if (kfpu == NULL) {
1289 		/*
1290 		 * A NULL kfpu implies this is a kernel thread with an LWP and
1291 		 * no user-level FPU usage. Use the lwp fpu save area.
1292 		 */
1293 		pf = &curthread->t_lwp->lwp_pcb.pcb_fpu;
1294 
1295 		ASSERT(curthread->t_procp->p_flag & SSYS);
1296 		ASSERT3U(pf->fpu_flags & FPU_VALID, !=, 0);
1297 	} else {
1298 		pf = &kfpu->kfpu_ctx;
1299 
1300 		ASSERT3P(kfpu->kfpu_curthread, ==, curthread);
1301 		ASSERT3U(pf->fpu_flags & FPU_VALID, !=, 0);
1302 	}
1303 
1304 	fp_restore(pf);
1305 	curthread->t_flag |= T_KFPU;
1306 }
1307 
1308 /*
1309  * Validate that the thread is not switching off-cpu while actively using the
1310  * FPU within the kernel.
1311  */
1312 void
1313 kernel_fpu_no_swtch(void)
1314 {
1315 	if ((curthread->t_flag & T_KFPU) != 0) {
1316 		panic("curthread swtch-ing while the kernel is using the FPU");
1317 	}
1318 }
1319 
1320 static const struct ctxop_template kfpu_ctxop_tpl = {
1321 	.ct_rev		= CTXOP_TPL_REV,
1322 	.ct_save	= kernel_fpu_ctx_save,
1323 	.ct_restore	= kernel_fpu_ctx_restore,
1324 };
1325 
1326 void
1327 kernel_fpu_begin(kfpu_state_t *kfpu, uint_t flags)
1328 {
1329 	klwp_t *pl = curthread->t_lwp;
1330 	struct ctxop *ctx;
1331 
1332 	if ((curthread->t_flag & T_KFPU) != 0) {
1333 		panic("curthread attempting to nest kernel FPU states");
1334 	}
1335 
1336 	/* KFPU_USE_LWP and KFPU_NO_STATE are mutually exclusive. */
1337 	ASSERT((flags & (KFPU_USE_LWP | KFPU_NO_STATE)) !=
1338 	    (KFPU_USE_LWP | KFPU_NO_STATE));
1339 
1340 	if ((flags & KFPU_NO_STATE) == KFPU_NO_STATE) {
1341 		/*
1342 		 * Since we don't have a kfpu_state or usable lwp pcb_fpu to
1343 		 * hold our kernel FPU context, we depend on the caller doing
1344 		 * kpreempt_disable for the duration of our FPU usage. This
1345 		 * should only be done for very short periods of time.
1346 		 */
1347 		ASSERT(curthread->t_preempt > 0);
1348 		ASSERT(kfpu == NULL);
1349 
1350 		if (pl != NULL) {
1351 			/*
1352 			 * We might have already saved once so FPU_VALID could
1353 			 * be set. This is handled in fp_save.
1354 			 */
1355 			fp_save(&pl->lwp_pcb.pcb_fpu);
1356 			pl->lwp_pcb.pcb_fpu.fpu_flags |= FPU_KERNEL;
1357 		}
1358 
1359 		curthread->t_flag |= T_KFPU;
1360 
1361 		/* Always restore the fpu to the initial state. */
1362 		fpinit();
1363 
1364 		return;
1365 	}
1366 
1367 	/*
1368 	 * We either have a kfpu, or are using the LWP pcb_fpu for context ops.
1369 	 */
1370 
1371 	if ((flags & KFPU_USE_LWP) == 0) {
1372 		if (kfpu->kfpu_curthread != NULL)
1373 			panic("attempting to reuse kernel FPU state at %p when "
1374 			    "another thread already is using", kfpu);
1375 
1376 		if ((kfpu->kfpu_flags & KFPU_F_INITIALIZED) == 0)
1377 			kernel_fpu_fpstate_init(kfpu);
1378 
1379 		kfpu->kfpu_curthread = curthread;
1380 	}
1381 
1382 	/*
1383 	 * Not all threads may have an active LWP. If they do and we're not
1384 	 * going to re-use the LWP, then we should go ahead and save the state.
1385 	 * We must also note that the fpu is now being used by the kernel and
1386 	 * therefore we do not want to manage the fpu state via the user-level
1387 	 * thread's context handlers.
1388 	 *
1389 	 * We might have already saved once (due to a prior use of the kernel
1390 	 * FPU or another code path) so FPU_VALID could be set. This is handled
1391 	 * by fp_save, as is the FPU_EN check.
1392 	 */
1393 	ctx = ctxop_allocate(&kfpu_ctxop_tpl, kfpu);
1394 	kpreempt_disable();
1395 	if (pl != NULL) {
1396 		if ((flags & KFPU_USE_LWP) == 0)
1397 			fp_save(&pl->lwp_pcb.pcb_fpu);
1398 		pl->lwp_pcb.pcb_fpu.fpu_flags |= FPU_KERNEL;
1399 	}
1400 
1401 	/*
1402 	 * Set the context operations for kernel FPU usage.  Because kernel FPU
1403 	 * setup and ctxop attachment needs to happen under the protection of
1404 	 * kpreempt_disable(), we allocate the ctxop outside the guard so its
1405 	 * sleeping allocation will not cause a voluntary swtch().  This allows
1406 	 * the rest of the initialization to proceed, ensuring valid state for
1407 	 * the ctxop handlers.
1408 	 */
1409 	ctxop_attach(curthread, ctx);
1410 	curthread->t_flag |= T_KFPU;
1411 
1412 	if ((flags & KFPU_USE_LWP) == KFPU_USE_LWP) {
1413 		/*
1414 		 * For pure kernel threads with an LWP, we can use the LWP's
1415 		 * pcb_fpu to save/restore context.
1416 		 */
1417 		fpu_ctx_t *pf = &pl->lwp_pcb.pcb_fpu;
1418 
1419 		VERIFY(curthread->t_procp->p_flag & SSYS);
1420 		VERIFY(kfpu == NULL);
1421 		ASSERT((pf->fpu_flags & FPU_EN) == 0);
1422 
1423 		/* Always restore the fpu to the initial state. */
1424 		if (fp_save_mech == FP_XSAVE)
1425 			pf->fpu_xsave_mask = XFEATURE_FP_ALL;
1426 		fpinit();
1427 		pf->fpu_flags = FPU_EN | FPU_KERNEL;
1428 	} else {
1429 		/* initialize the kfpu state */
1430 		kernel_fpu_ctx_restore(kfpu);
1431 	}
1432 	kpreempt_enable();
1433 }
1434 
1435 void
1436 kernel_fpu_end(kfpu_state_t *kfpu, uint_t flags)
1437 {
1438 	if ((curthread->t_flag & T_KFPU) == 0) {
1439 		panic("curthread attempting to clear kernel FPU state "
1440 		    "without using it");
1441 	}
1442 
1443 	/*
1444 	 * General comments on why the rest of this function is structured the
1445 	 * way it is. Be aware that there is a lot of subtlety here.
1446 	 *
1447 	 * If a user-level thread ever uses the fpu while in the kernel, then
1448 	 * we cannot call fpdisable since that does STTS. That will set the
1449 	 * ts bit in %cr0 which will cause an exception if anything touches the
1450 	 * fpu. However, the user-level context switch handler (fpsave_ctxt)
1451 	 * needs to access the fpu to save the registers into the pcb.
1452 	 * fpsave_ctxt relies on CLTS having been done to clear the ts bit in
1453 	 * fprestore_ctxt when the thread context switched onto the CPU.
1454 	 *
1455 	 * Calling fpdisable only effects the current CPU's %cr0 register.
1456 	 *
1457 	 * During ctxop_remove and kpreempt_enable, we can voluntarily context
1458 	 * switch, so the CPU we were on when we entered this function might
1459 	 * not be the same one we're on when we return from ctxop_remove or end
1460 	 * the function. Note there can be user-level context switch handlers
1461 	 * still installed if this is a user-level thread.
1462 	 *
1463 	 * We also must be careful in the unlikely chance we're running in an
1464 	 * interrupt thread, since we can't leave the CPU's %cr0 TS state set
1465 	 * incorrectly for the "real" thread to resume on this CPU.
1466 	 */
1467 
1468 	if ((flags & KFPU_NO_STATE) == 0) {
1469 		kpreempt_disable();
1470 	} else {
1471 		ASSERT(curthread->t_preempt > 0);
1472 	}
1473 
1474 	curthread->t_flag &= ~T_KFPU;
1475 
1476 	/*
1477 	 * When we are ending things, we explicitly don't save the current
1478 	 * kernel FPU state back to the temporary state. The kfpu API is not
1479 	 * intended to be a permanent save location.
1480 	 *
1481 	 * If this is a user-level thread and we were to context switch
1482 	 * before returning to user-land, fpsave_ctxt will be a no-op since we
1483 	 * already saved the user-level FPU state the first time we run
1484 	 * kernel_fpu_begin (i.e. we won't save the bad kernel fpu state over
1485 	 * the user-level fpu state). The fpsave_ctxt functions only save if
1486 	 * FPU_VALID is not already set. fp_save also set PCB_SET_UPDATE_FPU so
1487 	 * fprestore_ctxt will be done in sys_rtt_common when the thread
1488 	 * finally returns to user-land.
1489 	 */
1490 
1491 	if ((curthread->t_procp->p_flag & SSYS) != 0 &&
1492 	    curthread->t_intr == NULL) {
1493 		/*
1494 		 * A kernel thread which is not an interrupt thread, so we
1495 		 * STTS now.
1496 		 */
1497 		fpdisable();
1498 	}
1499 
1500 	if ((flags & KFPU_NO_STATE) == 0) {
1501 		ctxop_remove(curthread, &kfpu_ctxop_tpl, kfpu);
1502 
1503 		if (kfpu != NULL) {
1504 			if (kfpu->kfpu_curthread != curthread) {
1505 				panic("attempting to end kernel FPU state "
1506 				    "for %p, but active thread is not "
1507 				    "curthread", kfpu);
1508 			} else {
1509 				kfpu->kfpu_curthread = NULL;
1510 			}
1511 		}
1512 
1513 		kpreempt_enable();
1514 	}
1515 
1516 	if (curthread->t_lwp != NULL) {
1517 		uint_t f;
1518 
1519 		if (flags & KFPU_USE_LWP) {
1520 			f = FPU_EN | FPU_KERNEL;
1521 		} else {
1522 			f = FPU_KERNEL;
1523 		}
1524 		curthread->t_lwp->lwp_pcb.pcb_fpu.fpu_flags &= ~f;
1525 	}
1526 }
1527