xref: /illumos-gate/usr/src/uts/intel/os/archdep.c (revision ddb365bfc9e868ad24ccdcb0dc91af18b10df082)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 1992, 2010, Oracle and/or its affiliates. All rights reserved.
23  */
24 
25 /*	Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T	*/
26 /*	  All Rights Reserved	*/
27 /*
28  * Copyright (c) 2018, Joyent, Inc.
29  * Copyright 2012 Nexenta Systems, Inc.  All rights reserved.
30  * Copyright 2023 Oxide Computer Company
31  */
32 
33 #include <sys/param.h>
34 #include <sys/types.h>
35 #include <sys/vmparam.h>
36 #include <sys/systm.h>
37 #include <sys/signal.h>
38 #include <sys/stack.h>
39 #include <sys/regset.h>
40 #include <sys/privregs.h>
41 #include <sys/frame.h>
42 #include <sys/proc.h>
43 #include <sys/psw.h>
44 #include <sys/siginfo.h>
45 #include <sys/cpuvar.h>
46 #include <sys/asm_linkage.h>
47 #include <sys/kmem.h>
48 #include <sys/errno.h>
49 #include <sys/bootconf.h>
50 #include <sys/archsystm.h>
51 #include <sys/debug.h>
52 #include <sys/elf.h>
53 #include <sys/spl.h>
54 #include <sys/time.h>
55 #include <sys/atomic.h>
56 #include <sys/sysmacros.h>
57 #include <sys/cmn_err.h>
58 #include <sys/modctl.h>
59 #include <sys/kobj.h>
60 #include <sys/panic.h>
61 #include <sys/reboot.h>
62 #include <sys/time.h>
63 #include <sys/fp.h>
64 #include <sys/x86_archext.h>
65 #include <sys/auxv.h>
66 #include <sys/auxv_386.h>
67 #include <sys/dtrace.h>
68 #include <sys/brand.h>
69 #include <sys/machbrand.h>
70 #include <sys/cmn_err.h>
71 
72 /*
73  * Map an fnsave-formatted save area into an fxsave-formatted save area.
74  *
75  * Most fields are the same width, content and semantics.  However
76  * the tag word is compressed.
77  */
78 static void
79 fnsave_to_fxsave(const struct fnsave_state *fn, struct fxsave_state *fx)
80 {
81 	uint_t i, tagbits;
82 
83 	fx->fx_fcw = fn->f_fcw;
84 	fx->fx_fsw = fn->f_fsw;
85 
86 	/*
87 	 * copy element by element (because of holes)
88 	 */
89 	for (i = 0; i < 8; i++)
90 		bcopy(&fn->f_st[i].fpr_16[0], &fx->fx_st[i].fpr_16[0],
91 		    sizeof (fn->f_st[0].fpr_16)); /* 80-bit x87-style floats */
92 
93 	/*
94 	 * synthesize compressed tag bits
95 	 */
96 	fx->fx_fctw = 0;
97 	for (tagbits = fn->f_ftw, i = 0; i < 8; i++, tagbits >>= 2)
98 		if ((tagbits & 3) != 3)
99 			fx->fx_fctw |= (1 << i);
100 
101 	fx->fx_fop = fn->f_fop;
102 
103 	fx->fx_rip = (uint64_t)fn->f_eip;
104 	fx->fx_rdp = (uint64_t)fn->f_dp;
105 }
106 
107 /*
108  * Map from an fxsave-format save area to an fnsave-format save area.
109  */
110 static void
111 fxsave_to_fnsave(const struct fxsave_state *fx, struct fnsave_state *fn)
112 {
113 	uint_t i, top, tagbits;
114 
115 	fn->f_fcw = fx->fx_fcw;
116 	fn->__f_ign0 = 0;
117 	fn->f_fsw = fx->fx_fsw;
118 	fn->__f_ign1 = 0;
119 
120 	top = (fx->fx_fsw & FPS_TOP) >> 11;
121 
122 	/*
123 	 * copy element by element (because of holes)
124 	 */
125 	for (i = 0; i < 8; i++)
126 		bcopy(&fx->fx_st[i].fpr_16[0], &fn->f_st[i].fpr_16[0],
127 		    sizeof (fn->f_st[0].fpr_16)); /* 80-bit x87-style floats */
128 
129 	/*
130 	 * synthesize uncompressed tag bits
131 	 */
132 	fn->f_ftw = 0;
133 	for (tagbits = fx->fx_fctw, i = 0; i < 8; i++, tagbits >>= 1) {
134 		uint_t ibit, expo;
135 		const uint16_t *fpp;
136 		static const uint16_t zero[5] = { 0, 0, 0, 0, 0 };
137 
138 		if ((tagbits & 1) == 0) {
139 			fn->f_ftw |= 3 << (i << 1);	/* empty */
140 			continue;
141 		}
142 
143 		/*
144 		 * (tags refer to *physical* registers)
145 		 */
146 		fpp = &fx->fx_st[(i - top + 8) & 7].fpr_16[0];
147 		ibit = fpp[3] >> 15;
148 		expo = fpp[4] & 0x7fff;
149 
150 		if (ibit && expo != 0 && expo != 0x7fff)
151 			continue;			/* valid fp number */
152 
153 		if (bcmp(fpp, &zero, sizeof (zero)))
154 			fn->f_ftw |= 2 << (i << 1);	/* NaN */
155 		else
156 			fn->f_ftw |= 1 << (i << 1);	/* fp zero */
157 	}
158 
159 	fn->f_fop = fx->fx_fop;
160 
161 	fn->__f_ign2 = 0;
162 	fn->f_eip = (uint32_t)fx->fx_rip;
163 	fn->f_cs = U32CS_SEL;
164 	fn->f_dp = (uint32_t)fx->fx_rdp;
165 	fn->f_ds = UDS_SEL;
166 	fn->__f_ign3 = 0;
167 }
168 
169 /*
170  * Map from an fpregset_t into an fxsave-format save area
171  */
172 static void
173 fpregset_to_fxsave(const fpregset_t *fp, struct fxsave_state *fx)
174 {
175 	bcopy(fp, fx, sizeof (*fx));
176 	/*
177 	 * avoid useless #gp exceptions - mask reserved bits
178 	 */
179 	fx->fx_mxcsr &= sse_mxcsr_mask;
180 }
181 
182 /*
183  * Map from an fxsave-format save area into a fpregset_t
184  */
185 static void
186 fxsave_to_fpregset(const struct fxsave_state *fx, fpregset_t *fp)
187 {
188 	bcopy(fx, fp, sizeof (*fx));
189 }
190 
191 #if defined(_SYSCALL32_IMPL)
192 static void
193 fpregset32_to_fxsave(const fpregset32_t *fp, struct fxsave_state *fx)
194 {
195 	const struct fpchip32_state *fc = &fp->fp_reg_set.fpchip_state;
196 
197 	fnsave_to_fxsave((const struct fnsave_state *)fc, fx);
198 	/*
199 	 * avoid useless #gp exceptions - mask reserved bits
200 	 */
201 	fx->fx_mxcsr = sse_mxcsr_mask & fc->mxcsr;
202 	bcopy(&fc->xmm[0], &fx->fx_xmm[0], sizeof (fc->xmm));
203 }
204 
205 static void
206 fxsave_to_fpregset32(const struct fxsave_state *fx, fpregset32_t *fp)
207 {
208 	struct fpchip32_state *fc = &fp->fp_reg_set.fpchip_state;
209 
210 	fxsave_to_fnsave(fx, (struct fnsave_state *)fc);
211 	fc->mxcsr = fx->fx_mxcsr;
212 	bcopy(&fx->fx_xmm[0], &fc->xmm[0], sizeof (fc->xmm));
213 }
214 
215 static void
216 fpregset_nto32(const fpregset_t *src, fpregset32_t *dst)
217 {
218 	fxsave_to_fpregset32((struct fxsave_state *)src, dst);
219 	dst->fp_reg_set.fpchip_state.status =
220 	    src->fp_reg_set.fpchip_state.status;
221 	dst->fp_reg_set.fpchip_state.xstatus =
222 	    src->fp_reg_set.fpchip_state.xstatus;
223 }
224 
225 static void
226 fpregset_32ton(const fpregset32_t *src, fpregset_t *dst)
227 {
228 	fpregset32_to_fxsave(src, (struct fxsave_state *)dst);
229 	dst->fp_reg_set.fpchip_state.status =
230 	    src->fp_reg_set.fpchip_state.status;
231 	dst->fp_reg_set.fpchip_state.xstatus =
232 	    src->fp_reg_set.fpchip_state.xstatus;
233 }
234 #endif
235 
236 /*
237  * Set floating-point registers from a native fpregset_t.
238  */
239 void
240 setfpregs(klwp_t *lwp, fpregset_t *fp)
241 {
242 	fpu_set_fpregset(lwp, fp);
243 }
244 
245 /*
246  * Get floating-point registers into a native fpregset_t.
247  */
248 void
249 getfpregs(klwp_t *lwp, fpregset_t *fp)
250 {
251 	bzero(fp, sizeof (*fp));
252 	fpu_get_fpregset(lwp, fp);
253 }
254 
255 #if defined(_SYSCALL32_IMPL)
256 
257 /*
258  * Set floating-point registers from an fpregset32_t.
259  */
260 void
261 setfpregs32(klwp_t *lwp, fpregset32_t *fp)
262 {
263 	fpregset_t fpregs;
264 
265 	fpregset_32ton(fp, &fpregs);
266 	setfpregs(lwp, &fpregs);
267 }
268 
269 /*
270  * Get floating-point registers into an fpregset32_t.
271  */
272 void
273 getfpregs32(klwp_t *lwp, fpregset32_t *fp)
274 {
275 	fpregset_t fpregs;
276 
277 	getfpregs(lwp, &fpregs);
278 	fpregset_nto32(&fpregs, fp);
279 }
280 
281 #endif	/* _SYSCALL32_IMPL */
282 
283 /*
284  * Return the general registers
285  */
286 void
287 getgregs(klwp_t *lwp, gregset_t grp)
288 {
289 	struct regs *rp = lwptoregs(lwp);
290 	struct pcb *pcb = &lwp->lwp_pcb;
291 	int thisthread = lwptot(lwp) == curthread;
292 
293 	grp[REG_RDI] = rp->r_rdi;
294 	grp[REG_RSI] = rp->r_rsi;
295 	grp[REG_RDX] = rp->r_rdx;
296 	grp[REG_RCX] = rp->r_rcx;
297 	grp[REG_R8] = rp->r_r8;
298 	grp[REG_R9] = rp->r_r9;
299 	grp[REG_RAX] = rp->r_rax;
300 	grp[REG_RBX] = rp->r_rbx;
301 	grp[REG_RBP] = rp->r_rbp;
302 	grp[REG_R10] = rp->r_r10;
303 	grp[REG_R11] = rp->r_r11;
304 	grp[REG_R12] = rp->r_r12;
305 	grp[REG_R13] = rp->r_r13;
306 	grp[REG_R14] = rp->r_r14;
307 	grp[REG_R15] = rp->r_r15;
308 	grp[REG_FSBASE] = pcb->pcb_fsbase;
309 	grp[REG_GSBASE] = pcb->pcb_gsbase;
310 	if (thisthread)
311 		kpreempt_disable();
312 	if (PCB_NEED_UPDATE_SEGS(pcb)) {
313 		grp[REG_DS] = pcb->pcb_ds;
314 		grp[REG_ES] = pcb->pcb_es;
315 		grp[REG_FS] = pcb->pcb_fs;
316 		grp[REG_GS] = pcb->pcb_gs;
317 	} else {
318 		grp[REG_DS] = rp->r_ds;
319 		grp[REG_ES] = rp->r_es;
320 		grp[REG_FS] = rp->r_fs;
321 		grp[REG_GS] = rp->r_gs;
322 	}
323 	if (thisthread)
324 		kpreempt_enable();
325 	grp[REG_TRAPNO] = rp->r_trapno;
326 	grp[REG_ERR] = rp->r_err;
327 	grp[REG_RIP] = rp->r_rip;
328 	grp[REG_CS] = rp->r_cs;
329 	grp[REG_SS] = rp->r_ss;
330 	grp[REG_RFL] = rp->r_rfl;
331 	grp[REG_RSP] = rp->r_rsp;
332 }
333 
334 #if defined(_SYSCALL32_IMPL)
335 
336 void
337 getgregs32(klwp_t *lwp, gregset32_t grp)
338 {
339 	struct regs *rp = lwptoregs(lwp);
340 	struct pcb *pcb = &lwp->lwp_pcb;
341 	int thisthread = lwptot(lwp) == curthread;
342 
343 	if (thisthread)
344 		kpreempt_disable();
345 	if (PCB_NEED_UPDATE_SEGS(pcb)) {
346 		grp[GS] = (uint16_t)pcb->pcb_gs;
347 		grp[FS] = (uint16_t)pcb->pcb_fs;
348 		grp[DS] = (uint16_t)pcb->pcb_ds;
349 		grp[ES] = (uint16_t)pcb->pcb_es;
350 	} else {
351 		grp[GS] = (uint16_t)rp->r_gs;
352 		grp[FS] = (uint16_t)rp->r_fs;
353 		grp[DS] = (uint16_t)rp->r_ds;
354 		grp[ES] = (uint16_t)rp->r_es;
355 	}
356 	if (thisthread)
357 		kpreempt_enable();
358 	grp[EDI] = (greg32_t)rp->r_rdi;
359 	grp[ESI] = (greg32_t)rp->r_rsi;
360 	grp[EBP] = (greg32_t)rp->r_rbp;
361 	grp[ESP] = 0;
362 	grp[EBX] = (greg32_t)rp->r_rbx;
363 	grp[EDX] = (greg32_t)rp->r_rdx;
364 	grp[ECX] = (greg32_t)rp->r_rcx;
365 	grp[EAX] = (greg32_t)rp->r_rax;
366 	grp[TRAPNO] = (greg32_t)rp->r_trapno;
367 	grp[ERR] = (greg32_t)rp->r_err;
368 	grp[EIP] = (greg32_t)rp->r_rip;
369 	grp[CS] = (uint16_t)rp->r_cs;
370 	grp[EFL] = (greg32_t)rp->r_rfl;
371 	grp[UESP] = (greg32_t)rp->r_rsp;
372 	grp[SS] = (uint16_t)rp->r_ss;
373 }
374 
375 void
376 ucontext_32ton(const ucontext32_t *src, ucontext_t *dst)
377 {
378 	mcontext_t *dmc = &dst->uc_mcontext;
379 	const mcontext32_t *smc = &src->uc_mcontext;
380 
381 	bzero(dst, sizeof (*dst));
382 	dst->uc_flags = src->uc_flags;
383 	dst->uc_link = (ucontext_t *)(uintptr_t)src->uc_link;
384 
385 	bcopy(&src->uc_sigmask, &dst->uc_sigmask, sizeof (dst->uc_sigmask));
386 
387 	dst->uc_stack.ss_sp = (void *)(uintptr_t)src->uc_stack.ss_sp;
388 	dst->uc_stack.ss_size = (size_t)src->uc_stack.ss_size;
389 	dst->uc_stack.ss_flags = src->uc_stack.ss_flags;
390 
391 	dmc->gregs[REG_GS] = (greg_t)(uint32_t)smc->gregs[GS];
392 	dmc->gregs[REG_FS] = (greg_t)(uint32_t)smc->gregs[FS];
393 	dmc->gregs[REG_ES] = (greg_t)(uint32_t)smc->gregs[ES];
394 	dmc->gregs[REG_DS] = (greg_t)(uint32_t)smc->gregs[DS];
395 	dmc->gregs[REG_RDI] = (greg_t)(uint32_t)smc->gregs[EDI];
396 	dmc->gregs[REG_RSI] = (greg_t)(uint32_t)smc->gregs[ESI];
397 	dmc->gregs[REG_RBP] = (greg_t)(uint32_t)smc->gregs[EBP];
398 	dmc->gregs[REG_RBX] = (greg_t)(uint32_t)smc->gregs[EBX];
399 	dmc->gregs[REG_RDX] = (greg_t)(uint32_t)smc->gregs[EDX];
400 	dmc->gregs[REG_RCX] = (greg_t)(uint32_t)smc->gregs[ECX];
401 	dmc->gregs[REG_RAX] = (greg_t)(uint32_t)smc->gregs[EAX];
402 	dmc->gregs[REG_TRAPNO] = (greg_t)(uint32_t)smc->gregs[TRAPNO];
403 	dmc->gregs[REG_ERR] = (greg_t)(uint32_t)smc->gregs[ERR];
404 	dmc->gregs[REG_RIP] = (greg_t)(uint32_t)smc->gregs[EIP];
405 	dmc->gregs[REG_CS] = (greg_t)(uint32_t)smc->gregs[CS];
406 	dmc->gregs[REG_RFL] = (greg_t)(uint32_t)smc->gregs[EFL];
407 	dmc->gregs[REG_RSP] = (greg_t)(uint32_t)smc->gregs[UESP];
408 	dmc->gregs[REG_SS] = (greg_t)(uint32_t)smc->gregs[SS];
409 
410 	/*
411 	 * A valid fpregs is only copied in if uc.uc_flags has UC_FPU set
412 	 * otherwise there is no guarantee that anything in fpregs is valid.
413 	 */
414 	if (src->uc_flags & UC_FPU)
415 		fpregset_32ton(&src->uc_mcontext.fpregs,
416 		    &dst->uc_mcontext.fpregs);
417 
418 	if (src->uc_flags & UC_XSAVE) {
419 		dst->uc_xsave = (long)(uint32_t)src->uc_xsave;
420 	} else {
421 		dst->uc_xsave = 0;
422 	}
423 }
424 
425 #endif	/* _SYSCALL32_IMPL */
426 
427 /*
428  * Return the user-level PC.
429  * If in a system call, return the address of the syscall trap.
430  */
431 greg_t
432 getuserpc(void)
433 {
434 	greg_t upc = lwptoregs(ttolwp(curthread))->r_pc;
435 	uint32_t insn;
436 
437 	if (curthread->t_sysnum == 0)
438 		return (upc);
439 
440 	/*
441 	 * We might've gotten here from sysenter (0xf 0x34),
442 	 * syscall (0xf 0x5) or lcall (0x9a 0 0 0 0 0x27 0).
443 	 *
444 	 * Go peek at the binary to figure it out..
445 	 */
446 	if (fuword32((void *)(upc - 2), &insn) != -1 &&
447 	    (insn & 0xffff) == 0x340f || (insn & 0xffff) == 0x050f)
448 		return (upc - 2);
449 	return (upc - 7);
450 }
451 
452 /*
453  * Protect segment registers from non-user privilege levels and GDT selectors
454  * other than USER_CS, USER_DS and lwp FS and GS values.  If the segment
455  * selector is non-null and not USER_CS/USER_DS, we make sure that the
456  * TI bit is set to point into the LDT and that the RPL is set to 3.
457  *
458  * Since struct regs stores each 16-bit segment register as a 32-bit greg_t, we
459  * also explicitly zero the top 16 bits since they may be coming from the
460  * user's address space via setcontext(2) or /proc.
461  *
462  * Note about null selector. When running on the hypervisor if we allow a
463  * process to set its %cs to null selector with RPL of 0 the hypervisor will
464  * crash the domain. If running on bare metal we would get a #gp fault and
465  * be able to kill the process and continue on. Therefore we make sure to
466  * force RPL to SEL_UPL even for null selector when setting %cs.
467  */
468 
469 #if defined(IS_CS) || defined(IS_NOT_CS)
470 #error	"IS_CS and IS_NOT_CS already defined"
471 #endif
472 
473 #define	IS_CS		1
474 #define	IS_NOT_CS	0
475 
476 /*ARGSUSED*/
477 static greg_t
478 fix_segreg(greg_t sr, int iscs, model_t datamodel)
479 {
480 	switch (sr &= 0xffff) {
481 
482 	case 0:
483 		if (iscs == IS_CS)
484 			return (0 | SEL_UPL);
485 		else
486 			return (0);
487 
488 	/*
489 	 * If lwp attempts to switch data model then force their
490 	 * code selector to be null selector.
491 	 */
492 	case U32CS_SEL:
493 		if (datamodel == DATAMODEL_NATIVE)
494 			return (0 | SEL_UPL);
495 		else
496 			return (sr);
497 
498 	case UCS_SEL:
499 		if (datamodel == DATAMODEL_ILP32)
500 			return (0 | SEL_UPL);
501 	/*FALLTHROUGH*/
502 	case UDS_SEL:
503 	case LWPFS_SEL:
504 	case LWPGS_SEL:
505 	case SEL_UPL:
506 		return (sr);
507 	default:
508 		break;
509 	}
510 
511 	/*
512 	 * Force it into the LDT in ring 3 for 32-bit processes, which by
513 	 * default do not have an LDT, so that any attempt to use an invalid
514 	 * selector will reference the (non-existant) LDT, and cause a #gp
515 	 * fault for the process.
516 	 *
517 	 * 64-bit processes get the null gdt selector since they
518 	 * are not allowed to have a private LDT.
519 	 */
520 	if (datamodel == DATAMODEL_ILP32) {
521 		return (sr | SEL_TI_LDT | SEL_UPL);
522 	} else {
523 		if (iscs == IS_CS)
524 			return (0 | SEL_UPL);
525 		else
526 			return (0);
527 	}
528 
529 }
530 
531 /*
532  * Set general registers.
533  */
534 void
535 setgregs(klwp_t *lwp, gregset_t grp)
536 {
537 	struct regs *rp = lwptoregs(lwp);
538 	model_t	datamodel = lwp_getdatamodel(lwp);
539 
540 	struct pcb *pcb = &lwp->lwp_pcb;
541 	int thisthread = lwptot(lwp) == curthread;
542 
543 	if (datamodel == DATAMODEL_NATIVE) {
544 		if (thisthread)
545 			(void) save_syscall_args();	/* copy the args */
546 
547 		rp->r_rdi = grp[REG_RDI];
548 		rp->r_rsi = grp[REG_RSI];
549 		rp->r_rdx = grp[REG_RDX];
550 		rp->r_rcx = grp[REG_RCX];
551 		rp->r_r8 = grp[REG_R8];
552 		rp->r_r9 = grp[REG_R9];
553 		rp->r_rax = grp[REG_RAX];
554 		rp->r_rbx = grp[REG_RBX];
555 		rp->r_rbp = grp[REG_RBP];
556 		rp->r_r10 = grp[REG_R10];
557 		rp->r_r11 = grp[REG_R11];
558 		rp->r_r12 = grp[REG_R12];
559 		rp->r_r13 = grp[REG_R13];
560 		rp->r_r14 = grp[REG_R14];
561 		rp->r_r15 = grp[REG_R15];
562 		rp->r_trapno = grp[REG_TRAPNO];
563 		rp->r_err = grp[REG_ERR];
564 		rp->r_rip = grp[REG_RIP];
565 		/*
566 		 * Setting %cs or %ss to anything else is quietly but
567 		 * quite definitely forbidden!
568 		 */
569 		rp->r_cs = UCS_SEL;
570 		rp->r_ss = UDS_SEL;
571 		rp->r_rsp = grp[REG_RSP];
572 
573 		if (thisthread)
574 			kpreempt_disable();
575 
576 		pcb->pcb_ds = UDS_SEL;
577 		pcb->pcb_es = UDS_SEL;
578 
579 		/*
580 		 * 64-bit processes -are- allowed to set their fsbase/gsbase
581 		 * values directly, but only if they're using the segment
582 		 * selectors that allow that semantic.
583 		 *
584 		 * (32-bit processes must use lwp_set_private().)
585 		 */
586 		pcb->pcb_fsbase = grp[REG_FSBASE];
587 		pcb->pcb_gsbase = grp[REG_GSBASE];
588 		pcb->pcb_fs = fix_segreg(grp[REG_FS], IS_NOT_CS, datamodel);
589 		pcb->pcb_gs = fix_segreg(grp[REG_GS], IS_NOT_CS, datamodel);
590 
591 		/*
592 		 * Ensure that we go out via update_sregs
593 		 */
594 		PCB_SET_UPDATE_SEGS(pcb);
595 		lwptot(lwp)->t_post_sys = 1;
596 		if (thisthread)
597 			kpreempt_enable();
598 #if defined(_SYSCALL32_IMPL)
599 	} else {
600 		rp->r_rdi = (uint32_t)grp[REG_RDI];
601 		rp->r_rsi = (uint32_t)grp[REG_RSI];
602 		rp->r_rdx = (uint32_t)grp[REG_RDX];
603 		rp->r_rcx = (uint32_t)grp[REG_RCX];
604 		rp->r_rax = (uint32_t)grp[REG_RAX];
605 		rp->r_rbx = (uint32_t)grp[REG_RBX];
606 		rp->r_rbp = (uint32_t)grp[REG_RBP];
607 		rp->r_trapno = (uint32_t)grp[REG_TRAPNO];
608 		rp->r_err = (uint32_t)grp[REG_ERR];
609 		rp->r_rip = (uint32_t)grp[REG_RIP];
610 
611 		rp->r_cs = fix_segreg(grp[REG_CS], IS_CS, datamodel);
612 		rp->r_ss = fix_segreg(grp[REG_DS], IS_NOT_CS, datamodel);
613 
614 		rp->r_rsp = (uint32_t)grp[REG_RSP];
615 
616 		if (thisthread)
617 			kpreempt_disable();
618 
619 		pcb->pcb_ds = fix_segreg(grp[REG_DS], IS_NOT_CS, datamodel);
620 		pcb->pcb_es = fix_segreg(grp[REG_ES], IS_NOT_CS, datamodel);
621 
622 		/*
623 		 * (See fsbase/gsbase commentary above)
624 		 */
625 		pcb->pcb_fs = fix_segreg(grp[REG_FS], IS_NOT_CS, datamodel);
626 		pcb->pcb_gs = fix_segreg(grp[REG_GS], IS_NOT_CS, datamodel);
627 
628 		/*
629 		 * Ensure that we go out via update_sregs
630 		 */
631 		PCB_SET_UPDATE_SEGS(pcb);
632 		lwptot(lwp)->t_post_sys = 1;
633 		if (thisthread)
634 			kpreempt_enable();
635 #endif
636 	}
637 
638 	/*
639 	 * Only certain bits of the flags register can be modified.
640 	 */
641 	rp->r_rfl = (rp->r_rfl & ~PSL_USERMASK) |
642 	    (grp[REG_RFL] & PSL_USERMASK);
643 }
644 
645 /*
646  * Determine whether eip is likely to have an interrupt frame
647  * on the stack.  We do this by comparing the address to the
648  * range of addresses spanned by several well-known routines.
649  */
650 extern void _interrupt();
651 extern void _allsyscalls();
652 extern void _cmntrap();
653 extern void fakesoftint();
654 
655 extern size_t _interrupt_size;
656 extern size_t _allsyscalls_size;
657 extern size_t _cmntrap_size;
658 extern size_t _fakesoftint_size;
659 
660 /*
661  * Get a pc-only stacktrace.  Used for kmem_alloc() buffer ownership tracking.
662  * Returns MIN(current stack depth, pcstack_limit).
663  */
664 int
665 getpcstack(pc_t *pcstack, int pcstack_limit)
666 {
667 	struct frame *fp = (struct frame *)getfp();
668 	struct frame *nextfp, *minfp, *stacktop;
669 	int depth = 0;
670 	int on_intr;
671 	uintptr_t pc;
672 
673 	if ((on_intr = CPU_ON_INTR(CPU)) != 0)
674 		stacktop = (struct frame *)(CPU->cpu_intr_stack + SA(MINFRAME));
675 	else
676 		stacktop = (struct frame *)curthread->t_stk;
677 	minfp = fp;
678 
679 	pc = ((struct regs *)fp)->r_pc;
680 
681 	while (depth < pcstack_limit) {
682 		nextfp = (struct frame *)fp->fr_savfp;
683 		pc = fp->fr_savpc;
684 		if (nextfp <= minfp || nextfp >= stacktop) {
685 			if (on_intr) {
686 				/*
687 				 * Hop from interrupt stack to thread stack.
688 				 */
689 				stacktop = (struct frame *)curthread->t_stk;
690 				minfp = (struct frame *)curthread->t_stkbase;
691 				on_intr = 0;
692 				continue;
693 			}
694 			break;
695 		}
696 		pcstack[depth++] = (pc_t)pc;
697 		fp = nextfp;
698 		minfp = fp;
699 	}
700 	return (depth);
701 }
702 
703 /*
704  * The following ELF header fields are defined as processor-specific
705  * in the V8 ABI:
706  *
707  *	e_ident[EI_DATA]	encoding of the processor-specific
708  *				data in the object file
709  *	e_machine		processor identification
710  *	e_flags			processor-specific flags associated
711  *				with the file
712  */
713 
714 /*
715  * The value of at_flags reflects a platform's cpu module support.
716  * at_flags is used to check for allowing a binary to execute and
717  * is passed as the value of the AT_FLAGS auxiliary vector.
718  */
719 int at_flags = 0;
720 
721 /*
722  * Check the processor-specific fields of an ELF header.
723  *
724  * returns 1 if the fields are valid, 0 otherwise
725  */
726 /*ARGSUSED2*/
727 int
728 elfheadcheck(
729 	unsigned char e_data,
730 	Elf32_Half e_machine,
731 	Elf32_Word e_flags)
732 {
733 	if (e_data != ELFDATA2LSB)
734 		return (0);
735 	if (e_machine == EM_AMD64)
736 		return (1);
737 	return (e_machine == EM_386);
738 }
739 
740 uint_t auxv_hwcap_include = 0;	/* patch to enable unrecognized features */
741 uint_t auxv_hwcap_include_2 = 0;	/* second word */
742 uint_t auxv_hwcap_exclude = 0;	/* patch for broken cpus, debugging */
743 uint_t auxv_hwcap_exclude_2 = 0;	/* second word */
744 #if defined(_SYSCALL32_IMPL)
745 uint_t auxv_hwcap32_include = 0;	/* ditto for 32-bit apps */
746 uint_t auxv_hwcap32_include_2 = 0;	/* ditto for 32-bit apps */
747 uint_t auxv_hwcap32_exclude = 0;	/* ditto for 32-bit apps */
748 uint_t auxv_hwcap32_exclude_2 = 0;	/* ditto for 32-bit apps */
749 #endif
750 
751 /*
752  * Gather information about the processor and place it into auxv_hwcap
753  * so that it can be exported to the linker via the aux vector.
754  *
755  * We use this seemingly complicated mechanism so that we can ensure
756  * that /etc/system can be used to override what the system can or
757  * cannot discover for itself. Due to a lack of use, this has not
758  * been extended to the 3rd word.
759  */
760 void
761 bind_hwcap(void)
762 {
763 	uint_t cpu_hwcap_flags[3];
764 	cpuid_execpass(NULL, CPUID_PASS_RESOLVE, cpu_hwcap_flags);
765 
766 	auxv_hwcap = (auxv_hwcap_include | cpu_hwcap_flags[0]) &
767 	    ~auxv_hwcap_exclude;
768 	auxv_hwcap_2 = (auxv_hwcap_include_2 | cpu_hwcap_flags[1]) &
769 	    ~auxv_hwcap_exclude_2;
770 	auxv_hwcap_3 = cpu_hwcap_flags[2];
771 
772 	/*
773 	 * On AMD processors, sysenter just doesn't work at all
774 	 * when the kernel is in long mode.  On IA-32e processors
775 	 * it does, but there's no real point in all the alternate
776 	 * mechanism when syscall works on both.
777 	 *
778 	 * Besides, the kernel's sysenter handler is expecting a
779 	 * 32-bit lwp ...
780 	 */
781 	auxv_hwcap &= ~AV_386_SEP;
782 
783 	if (auxv_hwcap_include || auxv_hwcap_exclude || auxv_hwcap_include_2 ||
784 	    auxv_hwcap_exclude_2) {
785 		/*
786 		 * The below assignment is regrettably required to get lint
787 		 * to accept the validity of our format string.  The format
788 		 * string is in fact valid, but whatever intelligence in lint
789 		 * understands the cmn_err()-specific %b appears to have an
790 		 * off-by-one error:  it (mistakenly) complains about bit
791 		 * number 32 (even though this is explicitly permitted).
792 		 * Normally, one would will away such warnings with a "LINTED"
793 		 * directive, but for reasons unclear and unknown, lint
794 		 * refuses to be assuaged in this case.  Fortunately, lint
795 		 * doesn't pretend to have solved the Halting Problem --
796 		 * and as soon as the format string is programmatic, it
797 		 * knows enough to shut up.
798 		 */
799 		char *fmt = "?user ABI extensions: %b\n";
800 		cmn_err(CE_CONT, fmt, auxv_hwcap, FMT_AV_386);
801 		fmt = "?user ABI extensions (word 2): %b\n";
802 		cmn_err(CE_CONT, fmt, auxv_hwcap_2, FMT_AV_386_2);
803 		fmt = "?user ABI extensions (word 2): %b\n";
804 		cmn_err(CE_CONT, fmt, auxv_hwcap_3, FMT_AV_386_3);
805 	}
806 
807 #if defined(_SYSCALL32_IMPL)
808 	auxv_hwcap32 = (auxv_hwcap32_include | cpu_hwcap_flags[0]) &
809 	    ~auxv_hwcap32_exclude;
810 	auxv_hwcap32_2 = (auxv_hwcap32_include_2 | cpu_hwcap_flags[1]) &
811 	    ~auxv_hwcap32_exclude_2;
812 	auxv_hwcap32_3 = auxv_hwcap_3;
813 
814 	/*
815 	 * If this is an amd64 architecture machine from Intel, then
816 	 * syscall -doesn't- work in compatibility mode, only sysenter does.
817 	 *
818 	 * Sigh.
819 	 */
820 	if (!cpuid_syscall32_insn(NULL))
821 		auxv_hwcap32 &= ~AV_386_AMD_SYSC;
822 
823 	/*
824 	 * 32-bit processes can -always- use the lahf/sahf instructions
825 	 */
826 	auxv_hwcap32 |= AV_386_AHF;
827 
828 	/*
829 	 * 32-bit processes can -never- use fsgsbase instructions.
830 	 */
831 	auxv_hwcap32_2 &= ~AV_386_2_FSGSBASE;
832 
833 	if (auxv_hwcap32_include || auxv_hwcap32_exclude ||
834 	    auxv_hwcap32_include_2 || auxv_hwcap32_exclude_2) {
835 		/*
836 		 * See the block comment in the cmn_err() of auxv_hwcap, above.
837 		 */
838 		char *fmt = "?32-bit user ABI extensions: %b\n";
839 		cmn_err(CE_CONT, fmt, auxv_hwcap32, FMT_AV_386);
840 		fmt = "?32-bit user ABI extensions (word 2): %b\n";
841 		cmn_err(CE_CONT, fmt, auxv_hwcap32_2, FMT_AV_386_2);
842 		fmt = "?32-bit user ABI extensions (word 3): %b\n";
843 		cmn_err(CE_CONT, fmt, auxv_hwcap32_3, FMT_AV_386_3);
844 	}
845 #endif
846 }
847 
848 /*
849  *	sync_icache() - this is called
850  *	in proc/fs/prusrio.c. x86 has an unified cache and therefore
851  *	this is a nop.
852  */
853 /* ARGSUSED */
854 void
855 sync_icache(caddr_t addr, uint_t len)
856 {
857 	/* Do nothing for now */
858 }
859 
860 /*ARGSUSED*/
861 void
862 sync_data_memory(caddr_t va, size_t len)
863 {
864 	/* Not implemented for this platform */
865 }
866 
867 int
868 __ipltospl(int ipl)
869 {
870 	return (ipltospl(ipl));
871 }
872 
873 /*
874  * The panic code invokes panic_saveregs() to record the contents of a
875  * regs structure into the specified panic_data structure for debuggers.
876  */
877 void
878 panic_saveregs(panic_data_t *pdp, struct regs *rp)
879 {
880 	panic_nv_t *pnv = PANICNVGET(pdp);
881 
882 	struct cregs	creg;
883 
884 	getcregs(&creg);
885 
886 	PANICNVADD(pnv, "rdi", rp->r_rdi);
887 	PANICNVADD(pnv, "rsi", rp->r_rsi);
888 	PANICNVADD(pnv, "rdx", rp->r_rdx);
889 	PANICNVADD(pnv, "rcx", rp->r_rcx);
890 	PANICNVADD(pnv, "r8", rp->r_r8);
891 	PANICNVADD(pnv, "r9", rp->r_r9);
892 	PANICNVADD(pnv, "rax", rp->r_rax);
893 	PANICNVADD(pnv, "rbx", rp->r_rbx);
894 	PANICNVADD(pnv, "rbp", rp->r_rbp);
895 	PANICNVADD(pnv, "r10", rp->r_r10);
896 	PANICNVADD(pnv, "r11", rp->r_r11);
897 	PANICNVADD(pnv, "r12", rp->r_r12);
898 	PANICNVADD(pnv, "r13", rp->r_r13);
899 	PANICNVADD(pnv, "r14", rp->r_r14);
900 	PANICNVADD(pnv, "r15", rp->r_r15);
901 	PANICNVADD(pnv, "fsbase", rdmsr(MSR_AMD_FSBASE));
902 	PANICNVADD(pnv, "gsbase", rdmsr(MSR_AMD_GSBASE));
903 	PANICNVADD(pnv, "ds", rp->r_ds);
904 	PANICNVADD(pnv, "es", rp->r_es);
905 	PANICNVADD(pnv, "fs", rp->r_fs);
906 	PANICNVADD(pnv, "gs", rp->r_gs);
907 	PANICNVADD(pnv, "trapno", rp->r_trapno);
908 	PANICNVADD(pnv, "err", rp->r_err);
909 	PANICNVADD(pnv, "rip", rp->r_rip);
910 	PANICNVADD(pnv, "cs", rp->r_cs);
911 	PANICNVADD(pnv, "rflags", rp->r_rfl);
912 	PANICNVADD(pnv, "rsp", rp->r_rsp);
913 	PANICNVADD(pnv, "ss", rp->r_ss);
914 	PANICNVADD(pnv, "gdt_hi", (uint64_t)(creg.cr_gdt._l[3]));
915 	PANICNVADD(pnv, "gdt_lo", (uint64_t)(creg.cr_gdt._l[0]));
916 	PANICNVADD(pnv, "idt_hi", (uint64_t)(creg.cr_idt._l[3]));
917 	PANICNVADD(pnv, "idt_lo", (uint64_t)(creg.cr_idt._l[0]));
918 
919 	PANICNVADD(pnv, "ldt", creg.cr_ldt);
920 	PANICNVADD(pnv, "task", creg.cr_task);
921 	PANICNVADD(pnv, "cr0", creg.cr_cr0);
922 	PANICNVADD(pnv, "cr2", creg.cr_cr2);
923 	PANICNVADD(pnv, "cr3", creg.cr_cr3);
924 	if (creg.cr_cr4)
925 		PANICNVADD(pnv, "cr4", creg.cr_cr4);
926 
927 	PANICNVSET(pdp, pnv);
928 }
929 
930 #define	TR_ARG_MAX 6	/* Max args to print, same as SPARC */
931 
932 
933 /*
934  * Print a stack backtrace using the specified frame pointer.  We delay two
935  * seconds before continuing, unless this is the panic traceback.
936  * If we are in the process of panicking, we also attempt to write the
937  * stack backtrace to a staticly assigned buffer, to allow the panic
938  * code to find it and write it in to uncompressed pages within the
939  * system crash dump.
940  * Note that the frame for the starting stack pointer value is omitted because
941  * the corresponding %eip is not known.
942  */
943 
944 extern char *dump_stack_scratch;
945 
946 
947 void
948 traceback(caddr_t fpreg)
949 {
950 	struct frame	*fp = (struct frame *)fpreg;
951 	struct frame	*nextfp;
952 	uintptr_t	pc, nextpc;
953 	ulong_t		off;
954 	char		args[TR_ARG_MAX * 2 + 16], *sym;
955 	uint_t	  offset = 0;
956 	uint_t	  next_offset = 0;
957 	char	    stack_buffer[1024];
958 
959 	if (!panicstr)
960 		printf("traceback: %%fp = %p\n", (void *)fp);
961 
962 	if (panicstr && !dump_stack_scratch) {
963 		printf("Warning - stack not written to the dump buffer\n");
964 	}
965 
966 	fp = (struct frame *)plat_traceback(fpreg);
967 	if ((uintptr_t)fp < KERNELBASE)
968 		goto out;
969 
970 	pc = fp->fr_savpc;
971 	fp = (struct frame *)fp->fr_savfp;
972 
973 	while ((uintptr_t)fp >= KERNELBASE) {
974 		/*
975 		 * XX64 Until port is complete tolerate 8-byte aligned
976 		 * frame pointers but flag with a warning so they can
977 		 * be fixed.
978 		 */
979 		if (((uintptr_t)fp & (STACK_ALIGN - 1)) != 0) {
980 			if (((uintptr_t)fp & (8 - 1)) == 0) {
981 				printf("  >> warning! 8-byte"
982 				    " aligned %%fp = %p\n", (void *)fp);
983 			} else {
984 				printf(
985 				    "  >> mis-aligned %%fp = %p\n", (void *)fp);
986 				break;
987 			}
988 		}
989 
990 		args[0] = '\0';
991 		nextpc = (uintptr_t)fp->fr_savpc;
992 		nextfp = (struct frame *)fp->fr_savfp;
993 		if ((sym = kobj_getsymname(pc, &off)) != NULL) {
994 			printf("%016lx %s:%s+%lx (%s)\n", (uintptr_t)fp,
995 			    mod_containing_pc((caddr_t)pc), sym, off, args);
996 			(void) snprintf(stack_buffer, sizeof (stack_buffer),
997 			    "%s:%s+%lx (%s) | ",
998 			    mod_containing_pc((caddr_t)pc), sym, off, args);
999 		} else {
1000 			printf("%016lx %lx (%s)\n",
1001 			    (uintptr_t)fp, pc, args);
1002 			(void) snprintf(stack_buffer, sizeof (stack_buffer),
1003 			    "%lx (%s) | ", pc, args);
1004 		}
1005 
1006 		if (panicstr && dump_stack_scratch) {
1007 			next_offset = offset + strlen(stack_buffer);
1008 			if (next_offset < STACK_BUF_SIZE) {
1009 				bcopy(stack_buffer, dump_stack_scratch + offset,
1010 				    strlen(stack_buffer));
1011 				offset = next_offset;
1012 			} else {
1013 				/*
1014 				 * In attempting to save the panic stack
1015 				 * to the dumpbuf we have overflowed that area.
1016 				 * Print a warning and continue to printf the
1017 				 * stack to the msgbuf
1018 				 */
1019 				printf("Warning: stack in the dump buffer"
1020 				    " may be incomplete\n");
1021 				offset = next_offset;
1022 			}
1023 		}
1024 
1025 		pc = nextpc;
1026 		fp = nextfp;
1027 	}
1028 out:
1029 	if (!panicstr) {
1030 		printf("end of traceback\n");
1031 		DELAY(2 * MICROSEC);
1032 	} else if (dump_stack_scratch) {
1033 		dump_stack_scratch[offset] = '\0';
1034 	}
1035 }
1036 
1037 
1038 /*
1039  * Generate a stack backtrace from a saved register set.
1040  */
1041 void
1042 traceregs(struct regs *rp)
1043 {
1044 	traceback((caddr_t)rp->r_fp);
1045 }
1046 
1047 void
1048 exec_set_sp(size_t stksize)
1049 {
1050 	klwp_t *lwp = ttolwp(curthread);
1051 
1052 	lwptoregs(lwp)->r_sp = (uintptr_t)curproc->p_usrstack - stksize;
1053 }
1054 
1055 hrtime_t
1056 gethrtime_waitfree(void)
1057 {
1058 	return (dtrace_gethrtime());
1059 }
1060 
1061 hrtime_t
1062 gethrtime(void)
1063 {
1064 	return (gethrtimef());
1065 }
1066 
1067 hrtime_t
1068 gethrtime_unscaled(void)
1069 {
1070 	return (gethrtimeunscaledf());
1071 }
1072 
1073 void
1074 scalehrtime(hrtime_t *hrt)
1075 {
1076 	scalehrtimef(hrt);
1077 }
1078 
1079 uint64_t
1080 unscalehrtime(hrtime_t nsecs)
1081 {
1082 	return (unscalehrtimef(nsecs));
1083 }
1084 
1085 void
1086 gethrestime(timespec_t *tp)
1087 {
1088 	gethrestimef(tp);
1089 }
1090 
1091 /*
1092  * Part of the implementation of hres_tick(); this routine is
1093  * easier in C than assembler .. called with the hres_lock held.
1094  *
1095  * XX64	Many of these timekeeping variables need to be extern'ed in a header
1096  */
1097 
1098 #include <sys/time.h>
1099 #include <sys/machlock.h>
1100 
1101 extern int one_sec;
1102 extern int max_hres_adj;
1103 
1104 void
1105 __adj_hrestime(void)
1106 {
1107 	long long adj;
1108 
1109 	if (hrestime_adj == 0)
1110 		adj = 0;
1111 	else if (hrestime_adj > 0) {
1112 		if (hrestime_adj < max_hres_adj)
1113 			adj = hrestime_adj;
1114 		else
1115 			adj = max_hres_adj;
1116 	} else {
1117 		if (hrestime_adj < -max_hres_adj)
1118 			adj = -max_hres_adj;
1119 		else
1120 			adj = hrestime_adj;
1121 	}
1122 
1123 	timedelta -= adj;
1124 	hrestime_adj = timedelta;
1125 	hrestime.tv_nsec += adj;
1126 
1127 	while (hrestime.tv_nsec >= NANOSEC) {
1128 		one_sec++;
1129 		hrestime.tv_sec++;
1130 		hrestime.tv_nsec -= NANOSEC;
1131 	}
1132 }
1133 
1134 /*
1135  * Wrapper functions to maintain backwards compability
1136  */
1137 int
1138 xcopyin(const void *uaddr, void *kaddr, size_t count)
1139 {
1140 	return (xcopyin_nta(uaddr, kaddr, count, UIO_COPY_CACHED));
1141 }
1142 
1143 int
1144 xcopyout(const void *kaddr, void *uaddr, size_t count)
1145 {
1146 	return (xcopyout_nta(kaddr, uaddr, count, UIO_COPY_CACHED));
1147 }
1148