1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 1992, 2010, Oracle and/or its affiliates. All rights reserved. 23 */ 24 25 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */ 26 /* All Rights Reserved */ 27 /* 28 * Copyright (c) 2018, Joyent, Inc. 29 * Copyright 2012 Nexenta Systems, Inc. All rights reserved. 30 * Copyright 2023 Oxide Computer Company 31 */ 32 33 #include <sys/param.h> 34 #include <sys/types.h> 35 #include <sys/vmparam.h> 36 #include <sys/systm.h> 37 #include <sys/signal.h> 38 #include <sys/stack.h> 39 #include <sys/regset.h> 40 #include <sys/privregs.h> 41 #include <sys/frame.h> 42 #include <sys/proc.h> 43 #include <sys/psw.h> 44 #include <sys/siginfo.h> 45 #include <sys/cpuvar.h> 46 #include <sys/asm_linkage.h> 47 #include <sys/kmem.h> 48 #include <sys/errno.h> 49 #include <sys/bootconf.h> 50 #include <sys/archsystm.h> 51 #include <sys/debug.h> 52 #include <sys/elf.h> 53 #include <sys/spl.h> 54 #include <sys/time.h> 55 #include <sys/atomic.h> 56 #include <sys/sysmacros.h> 57 #include <sys/cmn_err.h> 58 #include <sys/modctl.h> 59 #include <sys/kobj.h> 60 #include <sys/panic.h> 61 #include <sys/reboot.h> 62 #include <sys/time.h> 63 #include <sys/fp.h> 64 #include <sys/x86_archext.h> 65 #include <sys/auxv.h> 66 #include <sys/auxv_386.h> 67 #include <sys/dtrace.h> 68 #include <sys/brand.h> 69 #include <sys/machbrand.h> 70 #include <sys/cmn_err.h> 71 72 /* 73 * Map an fnsave-formatted save area into an fxsave-formatted save area. 74 * 75 * Most fields are the same width, content and semantics. However 76 * the tag word is compressed. 77 */ 78 static void 79 fnsave_to_fxsave(const struct fnsave_state *fn, struct fxsave_state *fx) 80 { 81 uint_t i, tagbits; 82 83 fx->fx_fcw = fn->f_fcw; 84 fx->fx_fsw = fn->f_fsw; 85 86 /* 87 * copy element by element (because of holes) 88 */ 89 for (i = 0; i < 8; i++) 90 bcopy(&fn->f_st[i].fpr_16[0], &fx->fx_st[i].fpr_16[0], 91 sizeof (fn->f_st[0].fpr_16)); /* 80-bit x87-style floats */ 92 93 /* 94 * synthesize compressed tag bits 95 */ 96 fx->fx_fctw = 0; 97 for (tagbits = fn->f_ftw, i = 0; i < 8; i++, tagbits >>= 2) 98 if ((tagbits & 3) != 3) 99 fx->fx_fctw |= (1 << i); 100 101 fx->fx_fop = fn->f_fop; 102 103 fx->fx_rip = (uint64_t)fn->f_eip; 104 fx->fx_rdp = (uint64_t)fn->f_dp; 105 } 106 107 /* 108 * Map from an fxsave-format save area to an fnsave-format save area. 109 */ 110 static void 111 fxsave_to_fnsave(const struct fxsave_state *fx, struct fnsave_state *fn) 112 { 113 uint_t i, top, tagbits; 114 115 fn->f_fcw = fx->fx_fcw; 116 fn->__f_ign0 = 0; 117 fn->f_fsw = fx->fx_fsw; 118 fn->__f_ign1 = 0; 119 120 top = (fx->fx_fsw & FPS_TOP) >> 11; 121 122 /* 123 * copy element by element (because of holes) 124 */ 125 for (i = 0; i < 8; i++) 126 bcopy(&fx->fx_st[i].fpr_16[0], &fn->f_st[i].fpr_16[0], 127 sizeof (fn->f_st[0].fpr_16)); /* 80-bit x87-style floats */ 128 129 /* 130 * synthesize uncompressed tag bits 131 */ 132 fn->f_ftw = 0; 133 for (tagbits = fx->fx_fctw, i = 0; i < 8; i++, tagbits >>= 1) { 134 uint_t ibit, expo; 135 const uint16_t *fpp; 136 static const uint16_t zero[5] = { 0, 0, 0, 0, 0 }; 137 138 if ((tagbits & 1) == 0) { 139 fn->f_ftw |= 3 << (i << 1); /* empty */ 140 continue; 141 } 142 143 /* 144 * (tags refer to *physical* registers) 145 */ 146 fpp = &fx->fx_st[(i - top + 8) & 7].fpr_16[0]; 147 ibit = fpp[3] >> 15; 148 expo = fpp[4] & 0x7fff; 149 150 if (ibit && expo != 0 && expo != 0x7fff) 151 continue; /* valid fp number */ 152 153 if (bcmp(fpp, &zero, sizeof (zero))) 154 fn->f_ftw |= 2 << (i << 1); /* NaN */ 155 else 156 fn->f_ftw |= 1 << (i << 1); /* fp zero */ 157 } 158 159 fn->f_fop = fx->fx_fop; 160 161 fn->__f_ign2 = 0; 162 fn->f_eip = (uint32_t)fx->fx_rip; 163 fn->f_cs = U32CS_SEL; 164 fn->f_dp = (uint32_t)fx->fx_rdp; 165 fn->f_ds = UDS_SEL; 166 fn->__f_ign3 = 0; 167 } 168 169 /* 170 * Map from an fpregset_t into an fxsave-format save area 171 */ 172 static void 173 fpregset_to_fxsave(const fpregset_t *fp, struct fxsave_state *fx) 174 { 175 bcopy(fp, fx, sizeof (*fx)); 176 /* 177 * avoid useless #gp exceptions - mask reserved bits 178 */ 179 fx->fx_mxcsr &= sse_mxcsr_mask; 180 } 181 182 /* 183 * Map from an fxsave-format save area into a fpregset_t 184 */ 185 static void 186 fxsave_to_fpregset(const struct fxsave_state *fx, fpregset_t *fp) 187 { 188 bcopy(fx, fp, sizeof (*fx)); 189 } 190 191 #if defined(_SYSCALL32_IMPL) 192 static void 193 fpregset32_to_fxsave(const fpregset32_t *fp, struct fxsave_state *fx) 194 { 195 const struct fpchip32_state *fc = &fp->fp_reg_set.fpchip_state; 196 197 fnsave_to_fxsave((const struct fnsave_state *)fc, fx); 198 /* 199 * avoid useless #gp exceptions - mask reserved bits 200 */ 201 fx->fx_mxcsr = sse_mxcsr_mask & fc->mxcsr; 202 bcopy(&fc->xmm[0], &fx->fx_xmm[0], sizeof (fc->xmm)); 203 } 204 205 static void 206 fxsave_to_fpregset32(const struct fxsave_state *fx, fpregset32_t *fp) 207 { 208 struct fpchip32_state *fc = &fp->fp_reg_set.fpchip_state; 209 210 fxsave_to_fnsave(fx, (struct fnsave_state *)fc); 211 fc->mxcsr = fx->fx_mxcsr; 212 bcopy(&fx->fx_xmm[0], &fc->xmm[0], sizeof (fc->xmm)); 213 } 214 215 static void 216 fpregset_nto32(const fpregset_t *src, fpregset32_t *dst) 217 { 218 fxsave_to_fpregset32((struct fxsave_state *)src, dst); 219 dst->fp_reg_set.fpchip_state.status = 220 src->fp_reg_set.fpchip_state.status; 221 dst->fp_reg_set.fpchip_state.xstatus = 222 src->fp_reg_set.fpchip_state.xstatus; 223 } 224 225 static void 226 fpregset_32ton(const fpregset32_t *src, fpregset_t *dst) 227 { 228 fpregset32_to_fxsave(src, (struct fxsave_state *)dst); 229 dst->fp_reg_set.fpchip_state.status = 230 src->fp_reg_set.fpchip_state.status; 231 dst->fp_reg_set.fpchip_state.xstatus = 232 src->fp_reg_set.fpchip_state.xstatus; 233 } 234 #endif 235 236 /* 237 * Set floating-point registers from a native fpregset_t. 238 */ 239 void 240 setfpregs(klwp_t *lwp, fpregset_t *fp) 241 { 242 fpu_set_fpregset(lwp, fp); 243 } 244 245 /* 246 * Get floating-point registers into a native fpregset_t. 247 */ 248 void 249 getfpregs(klwp_t *lwp, fpregset_t *fp) 250 { 251 bzero(fp, sizeof (*fp)); 252 fpu_get_fpregset(lwp, fp); 253 } 254 255 #if defined(_SYSCALL32_IMPL) 256 257 /* 258 * Set floating-point registers from an fpregset32_t. 259 */ 260 void 261 setfpregs32(klwp_t *lwp, fpregset32_t *fp) 262 { 263 fpregset_t fpregs; 264 265 fpregset_32ton(fp, &fpregs); 266 setfpregs(lwp, &fpregs); 267 } 268 269 /* 270 * Get floating-point registers into an fpregset32_t. 271 */ 272 void 273 getfpregs32(klwp_t *lwp, fpregset32_t *fp) 274 { 275 fpregset_t fpregs; 276 277 getfpregs(lwp, &fpregs); 278 fpregset_nto32(&fpregs, fp); 279 } 280 281 #endif /* _SYSCALL32_IMPL */ 282 283 /* 284 * Return the general registers 285 */ 286 void 287 getgregs(klwp_t *lwp, gregset_t grp) 288 { 289 struct regs *rp = lwptoregs(lwp); 290 struct pcb *pcb = &lwp->lwp_pcb; 291 int thisthread = lwptot(lwp) == curthread; 292 293 grp[REG_RDI] = rp->r_rdi; 294 grp[REG_RSI] = rp->r_rsi; 295 grp[REG_RDX] = rp->r_rdx; 296 grp[REG_RCX] = rp->r_rcx; 297 grp[REG_R8] = rp->r_r8; 298 grp[REG_R9] = rp->r_r9; 299 grp[REG_RAX] = rp->r_rax; 300 grp[REG_RBX] = rp->r_rbx; 301 grp[REG_RBP] = rp->r_rbp; 302 grp[REG_R10] = rp->r_r10; 303 grp[REG_R11] = rp->r_r11; 304 grp[REG_R12] = rp->r_r12; 305 grp[REG_R13] = rp->r_r13; 306 grp[REG_R14] = rp->r_r14; 307 grp[REG_R15] = rp->r_r15; 308 grp[REG_FSBASE] = pcb->pcb_fsbase; 309 grp[REG_GSBASE] = pcb->pcb_gsbase; 310 if (thisthread) 311 kpreempt_disable(); 312 if (PCB_NEED_UPDATE_SEGS(pcb)) { 313 grp[REG_DS] = pcb->pcb_ds; 314 grp[REG_ES] = pcb->pcb_es; 315 grp[REG_FS] = pcb->pcb_fs; 316 grp[REG_GS] = pcb->pcb_gs; 317 } else { 318 grp[REG_DS] = rp->r_ds; 319 grp[REG_ES] = rp->r_es; 320 grp[REG_FS] = rp->r_fs; 321 grp[REG_GS] = rp->r_gs; 322 } 323 if (thisthread) 324 kpreempt_enable(); 325 grp[REG_TRAPNO] = rp->r_trapno; 326 grp[REG_ERR] = rp->r_err; 327 grp[REG_RIP] = rp->r_rip; 328 grp[REG_CS] = rp->r_cs; 329 grp[REG_SS] = rp->r_ss; 330 grp[REG_RFL] = rp->r_rfl; 331 grp[REG_RSP] = rp->r_rsp; 332 } 333 334 #if defined(_SYSCALL32_IMPL) 335 336 void 337 getgregs32(klwp_t *lwp, gregset32_t grp) 338 { 339 struct regs *rp = lwptoregs(lwp); 340 struct pcb *pcb = &lwp->lwp_pcb; 341 int thisthread = lwptot(lwp) == curthread; 342 343 if (thisthread) 344 kpreempt_disable(); 345 if (PCB_NEED_UPDATE_SEGS(pcb)) { 346 grp[GS] = (uint16_t)pcb->pcb_gs; 347 grp[FS] = (uint16_t)pcb->pcb_fs; 348 grp[DS] = (uint16_t)pcb->pcb_ds; 349 grp[ES] = (uint16_t)pcb->pcb_es; 350 } else { 351 grp[GS] = (uint16_t)rp->r_gs; 352 grp[FS] = (uint16_t)rp->r_fs; 353 grp[DS] = (uint16_t)rp->r_ds; 354 grp[ES] = (uint16_t)rp->r_es; 355 } 356 if (thisthread) 357 kpreempt_enable(); 358 grp[EDI] = (greg32_t)rp->r_rdi; 359 grp[ESI] = (greg32_t)rp->r_rsi; 360 grp[EBP] = (greg32_t)rp->r_rbp; 361 grp[ESP] = 0; 362 grp[EBX] = (greg32_t)rp->r_rbx; 363 grp[EDX] = (greg32_t)rp->r_rdx; 364 grp[ECX] = (greg32_t)rp->r_rcx; 365 grp[EAX] = (greg32_t)rp->r_rax; 366 grp[TRAPNO] = (greg32_t)rp->r_trapno; 367 grp[ERR] = (greg32_t)rp->r_err; 368 grp[EIP] = (greg32_t)rp->r_rip; 369 grp[CS] = (uint16_t)rp->r_cs; 370 grp[EFL] = (greg32_t)rp->r_rfl; 371 grp[UESP] = (greg32_t)rp->r_rsp; 372 grp[SS] = (uint16_t)rp->r_ss; 373 } 374 375 void 376 ucontext_32ton(const ucontext32_t *src, ucontext_t *dst) 377 { 378 mcontext_t *dmc = &dst->uc_mcontext; 379 const mcontext32_t *smc = &src->uc_mcontext; 380 381 bzero(dst, sizeof (*dst)); 382 dst->uc_flags = src->uc_flags; 383 dst->uc_link = (ucontext_t *)(uintptr_t)src->uc_link; 384 385 bcopy(&src->uc_sigmask, &dst->uc_sigmask, sizeof (dst->uc_sigmask)); 386 387 dst->uc_stack.ss_sp = (void *)(uintptr_t)src->uc_stack.ss_sp; 388 dst->uc_stack.ss_size = (size_t)src->uc_stack.ss_size; 389 dst->uc_stack.ss_flags = src->uc_stack.ss_flags; 390 391 dmc->gregs[REG_GS] = (greg_t)(uint32_t)smc->gregs[GS]; 392 dmc->gregs[REG_FS] = (greg_t)(uint32_t)smc->gregs[FS]; 393 dmc->gregs[REG_ES] = (greg_t)(uint32_t)smc->gregs[ES]; 394 dmc->gregs[REG_DS] = (greg_t)(uint32_t)smc->gregs[DS]; 395 dmc->gregs[REG_RDI] = (greg_t)(uint32_t)smc->gregs[EDI]; 396 dmc->gregs[REG_RSI] = (greg_t)(uint32_t)smc->gregs[ESI]; 397 dmc->gregs[REG_RBP] = (greg_t)(uint32_t)smc->gregs[EBP]; 398 dmc->gregs[REG_RBX] = (greg_t)(uint32_t)smc->gregs[EBX]; 399 dmc->gregs[REG_RDX] = (greg_t)(uint32_t)smc->gregs[EDX]; 400 dmc->gregs[REG_RCX] = (greg_t)(uint32_t)smc->gregs[ECX]; 401 dmc->gregs[REG_RAX] = (greg_t)(uint32_t)smc->gregs[EAX]; 402 dmc->gregs[REG_TRAPNO] = (greg_t)(uint32_t)smc->gregs[TRAPNO]; 403 dmc->gregs[REG_ERR] = (greg_t)(uint32_t)smc->gregs[ERR]; 404 dmc->gregs[REG_RIP] = (greg_t)(uint32_t)smc->gregs[EIP]; 405 dmc->gregs[REG_CS] = (greg_t)(uint32_t)smc->gregs[CS]; 406 dmc->gregs[REG_RFL] = (greg_t)(uint32_t)smc->gregs[EFL]; 407 dmc->gregs[REG_RSP] = (greg_t)(uint32_t)smc->gregs[UESP]; 408 dmc->gregs[REG_SS] = (greg_t)(uint32_t)smc->gregs[SS]; 409 410 /* 411 * A valid fpregs is only copied in if uc.uc_flags has UC_FPU set 412 * otherwise there is no guarantee that anything in fpregs is valid. 413 */ 414 if (src->uc_flags & UC_FPU) 415 fpregset_32ton(&src->uc_mcontext.fpregs, 416 &dst->uc_mcontext.fpregs); 417 418 if (src->uc_flags & UC_XSAVE) { 419 dst->uc_xsave = (long)(uint32_t)src->uc_xsave; 420 } else { 421 dst->uc_xsave = 0; 422 } 423 } 424 425 #endif /* _SYSCALL32_IMPL */ 426 427 /* 428 * Return the user-level PC. 429 * If in a system call, return the address of the syscall trap. 430 */ 431 greg_t 432 getuserpc(void) 433 { 434 greg_t upc = lwptoregs(ttolwp(curthread))->r_pc; 435 uint32_t insn; 436 437 if (curthread->t_sysnum == 0) 438 return (upc); 439 440 /* 441 * We might've gotten here from sysenter (0xf 0x34), 442 * syscall (0xf 0x5) or lcall (0x9a 0 0 0 0 0x27 0). 443 * 444 * Go peek at the binary to figure it out.. 445 */ 446 if (fuword32((void *)(upc - 2), &insn) != -1 && 447 (insn & 0xffff) == 0x340f || (insn & 0xffff) == 0x050f) 448 return (upc - 2); 449 return (upc - 7); 450 } 451 452 /* 453 * Protect segment registers from non-user privilege levels and GDT selectors 454 * other than USER_CS, USER_DS and lwp FS and GS values. If the segment 455 * selector is non-null and not USER_CS/USER_DS, we make sure that the 456 * TI bit is set to point into the LDT and that the RPL is set to 3. 457 * 458 * Since struct regs stores each 16-bit segment register as a 32-bit greg_t, we 459 * also explicitly zero the top 16 bits since they may be coming from the 460 * user's address space via setcontext(2) or /proc. 461 * 462 * Note about null selector. When running on the hypervisor if we allow a 463 * process to set its %cs to null selector with RPL of 0 the hypervisor will 464 * crash the domain. If running on bare metal we would get a #gp fault and 465 * be able to kill the process and continue on. Therefore we make sure to 466 * force RPL to SEL_UPL even for null selector when setting %cs. 467 */ 468 469 #if defined(IS_CS) || defined(IS_NOT_CS) 470 #error "IS_CS and IS_NOT_CS already defined" 471 #endif 472 473 #define IS_CS 1 474 #define IS_NOT_CS 0 475 476 /*ARGSUSED*/ 477 static greg_t 478 fix_segreg(greg_t sr, int iscs, model_t datamodel) 479 { 480 switch (sr &= 0xffff) { 481 482 case 0: 483 if (iscs == IS_CS) 484 return (0 | SEL_UPL); 485 else 486 return (0); 487 488 /* 489 * If lwp attempts to switch data model then force their 490 * code selector to be null selector. 491 */ 492 case U32CS_SEL: 493 if (datamodel == DATAMODEL_NATIVE) 494 return (0 | SEL_UPL); 495 else 496 return (sr); 497 498 case UCS_SEL: 499 if (datamodel == DATAMODEL_ILP32) 500 return (0 | SEL_UPL); 501 /*FALLTHROUGH*/ 502 case UDS_SEL: 503 case LWPFS_SEL: 504 case LWPGS_SEL: 505 case SEL_UPL: 506 return (sr); 507 default: 508 break; 509 } 510 511 /* 512 * Force it into the LDT in ring 3 for 32-bit processes, which by 513 * default do not have an LDT, so that any attempt to use an invalid 514 * selector will reference the (non-existant) LDT, and cause a #gp 515 * fault for the process. 516 * 517 * 64-bit processes get the null gdt selector since they 518 * are not allowed to have a private LDT. 519 */ 520 if (datamodel == DATAMODEL_ILP32) { 521 return (sr | SEL_TI_LDT | SEL_UPL); 522 } else { 523 if (iscs == IS_CS) 524 return (0 | SEL_UPL); 525 else 526 return (0); 527 } 528 529 } 530 531 /* 532 * Set general registers. 533 */ 534 void 535 setgregs(klwp_t *lwp, gregset_t grp) 536 { 537 struct regs *rp = lwptoregs(lwp); 538 model_t datamodel = lwp_getdatamodel(lwp); 539 540 struct pcb *pcb = &lwp->lwp_pcb; 541 int thisthread = lwptot(lwp) == curthread; 542 543 if (datamodel == DATAMODEL_NATIVE) { 544 if (thisthread) 545 (void) save_syscall_args(); /* copy the args */ 546 547 rp->r_rdi = grp[REG_RDI]; 548 rp->r_rsi = grp[REG_RSI]; 549 rp->r_rdx = grp[REG_RDX]; 550 rp->r_rcx = grp[REG_RCX]; 551 rp->r_r8 = grp[REG_R8]; 552 rp->r_r9 = grp[REG_R9]; 553 rp->r_rax = grp[REG_RAX]; 554 rp->r_rbx = grp[REG_RBX]; 555 rp->r_rbp = grp[REG_RBP]; 556 rp->r_r10 = grp[REG_R10]; 557 rp->r_r11 = grp[REG_R11]; 558 rp->r_r12 = grp[REG_R12]; 559 rp->r_r13 = grp[REG_R13]; 560 rp->r_r14 = grp[REG_R14]; 561 rp->r_r15 = grp[REG_R15]; 562 rp->r_trapno = grp[REG_TRAPNO]; 563 rp->r_err = grp[REG_ERR]; 564 rp->r_rip = grp[REG_RIP]; 565 /* 566 * Setting %cs or %ss to anything else is quietly but 567 * quite definitely forbidden! 568 */ 569 rp->r_cs = UCS_SEL; 570 rp->r_ss = UDS_SEL; 571 rp->r_rsp = grp[REG_RSP]; 572 573 if (thisthread) 574 kpreempt_disable(); 575 576 pcb->pcb_ds = UDS_SEL; 577 pcb->pcb_es = UDS_SEL; 578 579 /* 580 * 64-bit processes -are- allowed to set their fsbase/gsbase 581 * values directly, but only if they're using the segment 582 * selectors that allow that semantic. 583 * 584 * (32-bit processes must use lwp_set_private().) 585 */ 586 pcb->pcb_fsbase = grp[REG_FSBASE]; 587 pcb->pcb_gsbase = grp[REG_GSBASE]; 588 pcb->pcb_fs = fix_segreg(grp[REG_FS], IS_NOT_CS, datamodel); 589 pcb->pcb_gs = fix_segreg(grp[REG_GS], IS_NOT_CS, datamodel); 590 591 /* 592 * Ensure that we go out via update_sregs 593 */ 594 PCB_SET_UPDATE_SEGS(pcb); 595 lwptot(lwp)->t_post_sys = 1; 596 if (thisthread) 597 kpreempt_enable(); 598 #if defined(_SYSCALL32_IMPL) 599 } else { 600 rp->r_rdi = (uint32_t)grp[REG_RDI]; 601 rp->r_rsi = (uint32_t)grp[REG_RSI]; 602 rp->r_rdx = (uint32_t)grp[REG_RDX]; 603 rp->r_rcx = (uint32_t)grp[REG_RCX]; 604 rp->r_rax = (uint32_t)grp[REG_RAX]; 605 rp->r_rbx = (uint32_t)grp[REG_RBX]; 606 rp->r_rbp = (uint32_t)grp[REG_RBP]; 607 rp->r_trapno = (uint32_t)grp[REG_TRAPNO]; 608 rp->r_err = (uint32_t)grp[REG_ERR]; 609 rp->r_rip = (uint32_t)grp[REG_RIP]; 610 611 rp->r_cs = fix_segreg(grp[REG_CS], IS_CS, datamodel); 612 rp->r_ss = fix_segreg(grp[REG_DS], IS_NOT_CS, datamodel); 613 614 rp->r_rsp = (uint32_t)grp[REG_RSP]; 615 616 if (thisthread) 617 kpreempt_disable(); 618 619 pcb->pcb_ds = fix_segreg(grp[REG_DS], IS_NOT_CS, datamodel); 620 pcb->pcb_es = fix_segreg(grp[REG_ES], IS_NOT_CS, datamodel); 621 622 /* 623 * (See fsbase/gsbase commentary above) 624 */ 625 pcb->pcb_fs = fix_segreg(grp[REG_FS], IS_NOT_CS, datamodel); 626 pcb->pcb_gs = fix_segreg(grp[REG_GS], IS_NOT_CS, datamodel); 627 628 /* 629 * Ensure that we go out via update_sregs 630 */ 631 PCB_SET_UPDATE_SEGS(pcb); 632 lwptot(lwp)->t_post_sys = 1; 633 if (thisthread) 634 kpreempt_enable(); 635 #endif 636 } 637 638 /* 639 * Only certain bits of the flags register can be modified. 640 */ 641 rp->r_rfl = (rp->r_rfl & ~PSL_USERMASK) | 642 (grp[REG_RFL] & PSL_USERMASK); 643 } 644 645 /* 646 * Determine whether eip is likely to have an interrupt frame 647 * on the stack. We do this by comparing the address to the 648 * range of addresses spanned by several well-known routines. 649 */ 650 extern void _interrupt(); 651 extern void _allsyscalls(); 652 extern void _cmntrap(); 653 extern void fakesoftint(); 654 655 extern size_t _interrupt_size; 656 extern size_t _allsyscalls_size; 657 extern size_t _cmntrap_size; 658 extern size_t _fakesoftint_size; 659 660 /* 661 * Get a pc-only stacktrace. Used for kmem_alloc() buffer ownership tracking. 662 * Returns MIN(current stack depth, pcstack_limit). 663 */ 664 int 665 getpcstack(pc_t *pcstack, int pcstack_limit) 666 { 667 struct frame *fp = (struct frame *)getfp(); 668 struct frame *nextfp, *minfp, *stacktop; 669 int depth = 0; 670 int on_intr; 671 uintptr_t pc; 672 673 if ((on_intr = CPU_ON_INTR(CPU)) != 0) 674 stacktop = (struct frame *)(CPU->cpu_intr_stack + SA(MINFRAME)); 675 else 676 stacktop = (struct frame *)curthread->t_stk; 677 minfp = fp; 678 679 pc = ((struct regs *)fp)->r_pc; 680 681 while (depth < pcstack_limit) { 682 nextfp = (struct frame *)fp->fr_savfp; 683 pc = fp->fr_savpc; 684 if (nextfp <= minfp || nextfp >= stacktop) { 685 if (on_intr) { 686 /* 687 * Hop from interrupt stack to thread stack. 688 */ 689 stacktop = (struct frame *)curthread->t_stk; 690 minfp = (struct frame *)curthread->t_stkbase; 691 on_intr = 0; 692 continue; 693 } 694 break; 695 } 696 pcstack[depth++] = (pc_t)pc; 697 fp = nextfp; 698 minfp = fp; 699 } 700 return (depth); 701 } 702 703 /* 704 * The following ELF header fields are defined as processor-specific 705 * in the V8 ABI: 706 * 707 * e_ident[EI_DATA] encoding of the processor-specific 708 * data in the object file 709 * e_machine processor identification 710 * e_flags processor-specific flags associated 711 * with the file 712 */ 713 714 /* 715 * The value of at_flags reflects a platform's cpu module support. 716 * at_flags is used to check for allowing a binary to execute and 717 * is passed as the value of the AT_FLAGS auxiliary vector. 718 */ 719 int at_flags = 0; 720 721 /* 722 * Check the processor-specific fields of an ELF header. 723 * 724 * returns 1 if the fields are valid, 0 otherwise 725 */ 726 /*ARGSUSED2*/ 727 int 728 elfheadcheck( 729 unsigned char e_data, 730 Elf32_Half e_machine, 731 Elf32_Word e_flags) 732 { 733 if (e_data != ELFDATA2LSB) 734 return (0); 735 if (e_machine == EM_AMD64) 736 return (1); 737 return (e_machine == EM_386); 738 } 739 740 uint_t auxv_hwcap_include = 0; /* patch to enable unrecognized features */ 741 uint_t auxv_hwcap_include_2 = 0; /* second word */ 742 uint_t auxv_hwcap_exclude = 0; /* patch for broken cpus, debugging */ 743 uint_t auxv_hwcap_exclude_2 = 0; /* second word */ 744 #if defined(_SYSCALL32_IMPL) 745 uint_t auxv_hwcap32_include = 0; /* ditto for 32-bit apps */ 746 uint_t auxv_hwcap32_include_2 = 0; /* ditto for 32-bit apps */ 747 uint_t auxv_hwcap32_exclude = 0; /* ditto for 32-bit apps */ 748 uint_t auxv_hwcap32_exclude_2 = 0; /* ditto for 32-bit apps */ 749 #endif 750 751 /* 752 * Gather information about the processor and place it into auxv_hwcap 753 * so that it can be exported to the linker via the aux vector. 754 * 755 * We use this seemingly complicated mechanism so that we can ensure 756 * that /etc/system can be used to override what the system can or 757 * cannot discover for itself. Due to a lack of use, this has not 758 * been extended to the 3rd word. 759 */ 760 void 761 bind_hwcap(void) 762 { 763 uint_t cpu_hwcap_flags[3]; 764 cpuid_execpass(NULL, CPUID_PASS_RESOLVE, cpu_hwcap_flags); 765 766 auxv_hwcap = (auxv_hwcap_include | cpu_hwcap_flags[0]) & 767 ~auxv_hwcap_exclude; 768 auxv_hwcap_2 = (auxv_hwcap_include_2 | cpu_hwcap_flags[1]) & 769 ~auxv_hwcap_exclude_2; 770 auxv_hwcap_3 = cpu_hwcap_flags[2]; 771 772 /* 773 * On AMD processors, sysenter just doesn't work at all 774 * when the kernel is in long mode. On IA-32e processors 775 * it does, but there's no real point in all the alternate 776 * mechanism when syscall works on both. 777 * 778 * Besides, the kernel's sysenter handler is expecting a 779 * 32-bit lwp ... 780 */ 781 auxv_hwcap &= ~AV_386_SEP; 782 783 if (auxv_hwcap_include || auxv_hwcap_exclude || auxv_hwcap_include_2 || 784 auxv_hwcap_exclude_2) { 785 /* 786 * The below assignment is regrettably required to get lint 787 * to accept the validity of our format string. The format 788 * string is in fact valid, but whatever intelligence in lint 789 * understands the cmn_err()-specific %b appears to have an 790 * off-by-one error: it (mistakenly) complains about bit 791 * number 32 (even though this is explicitly permitted). 792 * Normally, one would will away such warnings with a "LINTED" 793 * directive, but for reasons unclear and unknown, lint 794 * refuses to be assuaged in this case. Fortunately, lint 795 * doesn't pretend to have solved the Halting Problem -- 796 * and as soon as the format string is programmatic, it 797 * knows enough to shut up. 798 */ 799 char *fmt = "?user ABI extensions: %b\n"; 800 cmn_err(CE_CONT, fmt, auxv_hwcap, FMT_AV_386); 801 fmt = "?user ABI extensions (word 2): %b\n"; 802 cmn_err(CE_CONT, fmt, auxv_hwcap_2, FMT_AV_386_2); 803 fmt = "?user ABI extensions (word 2): %b\n"; 804 cmn_err(CE_CONT, fmt, auxv_hwcap_3, FMT_AV_386_3); 805 } 806 807 #if defined(_SYSCALL32_IMPL) 808 auxv_hwcap32 = (auxv_hwcap32_include | cpu_hwcap_flags[0]) & 809 ~auxv_hwcap32_exclude; 810 auxv_hwcap32_2 = (auxv_hwcap32_include_2 | cpu_hwcap_flags[1]) & 811 ~auxv_hwcap32_exclude_2; 812 auxv_hwcap32_3 = auxv_hwcap_3; 813 814 /* 815 * If this is an amd64 architecture machine from Intel, then 816 * syscall -doesn't- work in compatibility mode, only sysenter does. 817 * 818 * Sigh. 819 */ 820 if (!cpuid_syscall32_insn(NULL)) 821 auxv_hwcap32 &= ~AV_386_AMD_SYSC; 822 823 /* 824 * 32-bit processes can -always- use the lahf/sahf instructions 825 */ 826 auxv_hwcap32 |= AV_386_AHF; 827 828 /* 829 * 32-bit processes can -never- use fsgsbase instructions. 830 */ 831 auxv_hwcap32_2 &= ~AV_386_2_FSGSBASE; 832 833 if (auxv_hwcap32_include || auxv_hwcap32_exclude || 834 auxv_hwcap32_include_2 || auxv_hwcap32_exclude_2) { 835 /* 836 * See the block comment in the cmn_err() of auxv_hwcap, above. 837 */ 838 char *fmt = "?32-bit user ABI extensions: %b\n"; 839 cmn_err(CE_CONT, fmt, auxv_hwcap32, FMT_AV_386); 840 fmt = "?32-bit user ABI extensions (word 2): %b\n"; 841 cmn_err(CE_CONT, fmt, auxv_hwcap32_2, FMT_AV_386_2); 842 fmt = "?32-bit user ABI extensions (word 3): %b\n"; 843 cmn_err(CE_CONT, fmt, auxv_hwcap32_3, FMT_AV_386_3); 844 } 845 #endif 846 } 847 848 /* 849 * sync_icache() - this is called 850 * in proc/fs/prusrio.c. x86 has an unified cache and therefore 851 * this is a nop. 852 */ 853 /* ARGSUSED */ 854 void 855 sync_icache(caddr_t addr, uint_t len) 856 { 857 /* Do nothing for now */ 858 } 859 860 /*ARGSUSED*/ 861 void 862 sync_data_memory(caddr_t va, size_t len) 863 { 864 /* Not implemented for this platform */ 865 } 866 867 int 868 __ipltospl(int ipl) 869 { 870 return (ipltospl(ipl)); 871 } 872 873 /* 874 * The panic code invokes panic_saveregs() to record the contents of a 875 * regs structure into the specified panic_data structure for debuggers. 876 */ 877 void 878 panic_saveregs(panic_data_t *pdp, struct regs *rp) 879 { 880 panic_nv_t *pnv = PANICNVGET(pdp); 881 882 struct cregs creg; 883 884 getcregs(&creg); 885 886 PANICNVADD(pnv, "rdi", rp->r_rdi); 887 PANICNVADD(pnv, "rsi", rp->r_rsi); 888 PANICNVADD(pnv, "rdx", rp->r_rdx); 889 PANICNVADD(pnv, "rcx", rp->r_rcx); 890 PANICNVADD(pnv, "r8", rp->r_r8); 891 PANICNVADD(pnv, "r9", rp->r_r9); 892 PANICNVADD(pnv, "rax", rp->r_rax); 893 PANICNVADD(pnv, "rbx", rp->r_rbx); 894 PANICNVADD(pnv, "rbp", rp->r_rbp); 895 PANICNVADD(pnv, "r10", rp->r_r10); 896 PANICNVADD(pnv, "r11", rp->r_r11); 897 PANICNVADD(pnv, "r12", rp->r_r12); 898 PANICNVADD(pnv, "r13", rp->r_r13); 899 PANICNVADD(pnv, "r14", rp->r_r14); 900 PANICNVADD(pnv, "r15", rp->r_r15); 901 PANICNVADD(pnv, "fsbase", rdmsr(MSR_AMD_FSBASE)); 902 PANICNVADD(pnv, "gsbase", rdmsr(MSR_AMD_GSBASE)); 903 PANICNVADD(pnv, "ds", rp->r_ds); 904 PANICNVADD(pnv, "es", rp->r_es); 905 PANICNVADD(pnv, "fs", rp->r_fs); 906 PANICNVADD(pnv, "gs", rp->r_gs); 907 PANICNVADD(pnv, "trapno", rp->r_trapno); 908 PANICNVADD(pnv, "err", rp->r_err); 909 PANICNVADD(pnv, "rip", rp->r_rip); 910 PANICNVADD(pnv, "cs", rp->r_cs); 911 PANICNVADD(pnv, "rflags", rp->r_rfl); 912 PANICNVADD(pnv, "rsp", rp->r_rsp); 913 PANICNVADD(pnv, "ss", rp->r_ss); 914 PANICNVADD(pnv, "gdt_hi", (uint64_t)(creg.cr_gdt._l[3])); 915 PANICNVADD(pnv, "gdt_lo", (uint64_t)(creg.cr_gdt._l[0])); 916 PANICNVADD(pnv, "idt_hi", (uint64_t)(creg.cr_idt._l[3])); 917 PANICNVADD(pnv, "idt_lo", (uint64_t)(creg.cr_idt._l[0])); 918 919 PANICNVADD(pnv, "ldt", creg.cr_ldt); 920 PANICNVADD(pnv, "task", creg.cr_task); 921 PANICNVADD(pnv, "cr0", creg.cr_cr0); 922 PANICNVADD(pnv, "cr2", creg.cr_cr2); 923 PANICNVADD(pnv, "cr3", creg.cr_cr3); 924 if (creg.cr_cr4) 925 PANICNVADD(pnv, "cr4", creg.cr_cr4); 926 927 PANICNVSET(pdp, pnv); 928 } 929 930 #define TR_ARG_MAX 6 /* Max args to print, same as SPARC */ 931 932 933 /* 934 * Print a stack backtrace using the specified frame pointer. We delay two 935 * seconds before continuing, unless this is the panic traceback. 936 * If we are in the process of panicking, we also attempt to write the 937 * stack backtrace to a staticly assigned buffer, to allow the panic 938 * code to find it and write it in to uncompressed pages within the 939 * system crash dump. 940 * Note that the frame for the starting stack pointer value is omitted because 941 * the corresponding %eip is not known. 942 */ 943 944 extern char *dump_stack_scratch; 945 946 947 void 948 traceback(caddr_t fpreg) 949 { 950 struct frame *fp = (struct frame *)fpreg; 951 struct frame *nextfp; 952 uintptr_t pc, nextpc; 953 ulong_t off; 954 char args[TR_ARG_MAX * 2 + 16], *sym; 955 uint_t offset = 0; 956 uint_t next_offset = 0; 957 char stack_buffer[1024]; 958 959 if (!panicstr) 960 printf("traceback: %%fp = %p\n", (void *)fp); 961 962 if (panicstr && !dump_stack_scratch) { 963 printf("Warning - stack not written to the dump buffer\n"); 964 } 965 966 fp = (struct frame *)plat_traceback(fpreg); 967 if ((uintptr_t)fp < KERNELBASE) 968 goto out; 969 970 pc = fp->fr_savpc; 971 fp = (struct frame *)fp->fr_savfp; 972 973 while ((uintptr_t)fp >= KERNELBASE) { 974 /* 975 * XX64 Until port is complete tolerate 8-byte aligned 976 * frame pointers but flag with a warning so they can 977 * be fixed. 978 */ 979 if (((uintptr_t)fp & (STACK_ALIGN - 1)) != 0) { 980 if (((uintptr_t)fp & (8 - 1)) == 0) { 981 printf(" >> warning! 8-byte" 982 " aligned %%fp = %p\n", (void *)fp); 983 } else { 984 printf( 985 " >> mis-aligned %%fp = %p\n", (void *)fp); 986 break; 987 } 988 } 989 990 args[0] = '\0'; 991 nextpc = (uintptr_t)fp->fr_savpc; 992 nextfp = (struct frame *)fp->fr_savfp; 993 if ((sym = kobj_getsymname(pc, &off)) != NULL) { 994 printf("%016lx %s:%s+%lx (%s)\n", (uintptr_t)fp, 995 mod_containing_pc((caddr_t)pc), sym, off, args); 996 (void) snprintf(stack_buffer, sizeof (stack_buffer), 997 "%s:%s+%lx (%s) | ", 998 mod_containing_pc((caddr_t)pc), sym, off, args); 999 } else { 1000 printf("%016lx %lx (%s)\n", 1001 (uintptr_t)fp, pc, args); 1002 (void) snprintf(stack_buffer, sizeof (stack_buffer), 1003 "%lx (%s) | ", pc, args); 1004 } 1005 1006 if (panicstr && dump_stack_scratch) { 1007 next_offset = offset + strlen(stack_buffer); 1008 if (next_offset < STACK_BUF_SIZE) { 1009 bcopy(stack_buffer, dump_stack_scratch + offset, 1010 strlen(stack_buffer)); 1011 offset = next_offset; 1012 } else { 1013 /* 1014 * In attempting to save the panic stack 1015 * to the dumpbuf we have overflowed that area. 1016 * Print a warning and continue to printf the 1017 * stack to the msgbuf 1018 */ 1019 printf("Warning: stack in the dump buffer" 1020 " may be incomplete\n"); 1021 offset = next_offset; 1022 } 1023 } 1024 1025 pc = nextpc; 1026 fp = nextfp; 1027 } 1028 out: 1029 if (!panicstr) { 1030 printf("end of traceback\n"); 1031 DELAY(2 * MICROSEC); 1032 } else if (dump_stack_scratch) { 1033 dump_stack_scratch[offset] = '\0'; 1034 } 1035 } 1036 1037 1038 /* 1039 * Generate a stack backtrace from a saved register set. 1040 */ 1041 void 1042 traceregs(struct regs *rp) 1043 { 1044 traceback((caddr_t)rp->r_fp); 1045 } 1046 1047 void 1048 exec_set_sp(size_t stksize) 1049 { 1050 klwp_t *lwp = ttolwp(curthread); 1051 1052 lwptoregs(lwp)->r_sp = (uintptr_t)curproc->p_usrstack - stksize; 1053 } 1054 1055 hrtime_t 1056 gethrtime_waitfree(void) 1057 { 1058 return (dtrace_gethrtime()); 1059 } 1060 1061 hrtime_t 1062 gethrtime(void) 1063 { 1064 return (gethrtimef()); 1065 } 1066 1067 hrtime_t 1068 gethrtime_unscaled(void) 1069 { 1070 return (gethrtimeunscaledf()); 1071 } 1072 1073 void 1074 scalehrtime(hrtime_t *hrt) 1075 { 1076 scalehrtimef(hrt); 1077 } 1078 1079 uint64_t 1080 unscalehrtime(hrtime_t nsecs) 1081 { 1082 return (unscalehrtimef(nsecs)); 1083 } 1084 1085 void 1086 gethrestime(timespec_t *tp) 1087 { 1088 gethrestimef(tp); 1089 } 1090 1091 /* 1092 * Part of the implementation of hres_tick(); this routine is 1093 * easier in C than assembler .. called with the hres_lock held. 1094 * 1095 * XX64 Many of these timekeeping variables need to be extern'ed in a header 1096 */ 1097 1098 #include <sys/time.h> 1099 #include <sys/machlock.h> 1100 1101 extern int one_sec; 1102 extern int max_hres_adj; 1103 1104 void 1105 __adj_hrestime(void) 1106 { 1107 long long adj; 1108 1109 if (hrestime_adj == 0) 1110 adj = 0; 1111 else if (hrestime_adj > 0) { 1112 if (hrestime_adj < max_hres_adj) 1113 adj = hrestime_adj; 1114 else 1115 adj = max_hres_adj; 1116 } else { 1117 if (hrestime_adj < -max_hres_adj) 1118 adj = -max_hres_adj; 1119 else 1120 adj = hrestime_adj; 1121 } 1122 1123 timedelta -= adj; 1124 hrestime_adj = timedelta; 1125 hrestime.tv_nsec += adj; 1126 1127 while (hrestime.tv_nsec >= NANOSEC) { 1128 one_sec++; 1129 hrestime.tv_sec++; 1130 hrestime.tv_nsec -= NANOSEC; 1131 } 1132 } 1133 1134 /* 1135 * Wrapper functions to maintain backwards compability 1136 */ 1137 int 1138 xcopyin(const void *uaddr, void *kaddr, size_t count) 1139 { 1140 return (xcopyin_nta(uaddr, kaddr, count, UIO_COPY_CACHED)); 1141 } 1142 1143 int 1144 xcopyout(const void *kaddr, void *uaddr, size_t count) 1145 { 1146 return (xcopyout_nta(kaddr, uaddr, count, UIO_COPY_CACHED)); 1147 } 1148