1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 1992, 2010, Oracle and/or its affiliates. All rights reserved. 23 */ 24 25 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */ 26 /* All Rights Reserved */ 27 /* 28 * Copyright (c) 2018, Joyent, Inc. 29 * Copyright 2012 Nexenta Systems, Inc. All rights reserved. 30 * Copyright 2022 Oxide Computer Company 31 */ 32 33 #include <sys/param.h> 34 #include <sys/types.h> 35 #include <sys/vmparam.h> 36 #include <sys/systm.h> 37 #include <sys/signal.h> 38 #include <sys/stack.h> 39 #include <sys/regset.h> 40 #include <sys/privregs.h> 41 #include <sys/frame.h> 42 #include <sys/proc.h> 43 #include <sys/psw.h> 44 #include <sys/siginfo.h> 45 #include <sys/cpuvar.h> 46 #include <sys/asm_linkage.h> 47 #include <sys/kmem.h> 48 #include <sys/errno.h> 49 #include <sys/bootconf.h> 50 #include <sys/archsystm.h> 51 #include <sys/debug.h> 52 #include <sys/elf.h> 53 #include <sys/spl.h> 54 #include <sys/time.h> 55 #include <sys/atomic.h> 56 #include <sys/sysmacros.h> 57 #include <sys/cmn_err.h> 58 #include <sys/modctl.h> 59 #include <sys/kobj.h> 60 #include <sys/panic.h> 61 #include <sys/reboot.h> 62 #include <sys/time.h> 63 #include <sys/fp.h> 64 #include <sys/x86_archext.h> 65 #include <sys/auxv.h> 66 #include <sys/auxv_386.h> 67 #include <sys/dtrace.h> 68 #include <sys/brand.h> 69 #include <sys/machbrand.h> 70 #include <sys/cmn_err.h> 71 72 /* 73 * Map an fnsave-formatted save area into an fxsave-formatted save area. 74 * 75 * Most fields are the same width, content and semantics. However 76 * the tag word is compressed. 77 */ 78 static void 79 fnsave_to_fxsave(const struct fnsave_state *fn, struct fxsave_state *fx) 80 { 81 uint_t i, tagbits; 82 83 fx->fx_fcw = fn->f_fcw; 84 fx->fx_fsw = fn->f_fsw; 85 86 /* 87 * copy element by element (because of holes) 88 */ 89 for (i = 0; i < 8; i++) 90 bcopy(&fn->f_st[i].fpr_16[0], &fx->fx_st[i].fpr_16[0], 91 sizeof (fn->f_st[0].fpr_16)); /* 80-bit x87-style floats */ 92 93 /* 94 * synthesize compressed tag bits 95 */ 96 fx->fx_fctw = 0; 97 for (tagbits = fn->f_ftw, i = 0; i < 8; i++, tagbits >>= 2) 98 if ((tagbits & 3) != 3) 99 fx->fx_fctw |= (1 << i); 100 101 fx->fx_fop = fn->f_fop; 102 103 fx->fx_rip = (uint64_t)fn->f_eip; 104 fx->fx_rdp = (uint64_t)fn->f_dp; 105 } 106 107 /* 108 * Map from an fxsave-format save area to an fnsave-format save area. 109 */ 110 static void 111 fxsave_to_fnsave(const struct fxsave_state *fx, struct fnsave_state *fn) 112 { 113 uint_t i, top, tagbits; 114 115 fn->f_fcw = fx->fx_fcw; 116 fn->__f_ign0 = 0; 117 fn->f_fsw = fx->fx_fsw; 118 fn->__f_ign1 = 0; 119 120 top = (fx->fx_fsw & FPS_TOP) >> 11; 121 122 /* 123 * copy element by element (because of holes) 124 */ 125 for (i = 0; i < 8; i++) 126 bcopy(&fx->fx_st[i].fpr_16[0], &fn->f_st[i].fpr_16[0], 127 sizeof (fn->f_st[0].fpr_16)); /* 80-bit x87-style floats */ 128 129 /* 130 * synthesize uncompressed tag bits 131 */ 132 fn->f_ftw = 0; 133 for (tagbits = fx->fx_fctw, i = 0; i < 8; i++, tagbits >>= 1) { 134 uint_t ibit, expo; 135 const uint16_t *fpp; 136 static const uint16_t zero[5] = { 0, 0, 0, 0, 0 }; 137 138 if ((tagbits & 1) == 0) { 139 fn->f_ftw |= 3 << (i << 1); /* empty */ 140 continue; 141 } 142 143 /* 144 * (tags refer to *physical* registers) 145 */ 146 fpp = &fx->fx_st[(i - top + 8) & 7].fpr_16[0]; 147 ibit = fpp[3] >> 15; 148 expo = fpp[4] & 0x7fff; 149 150 if (ibit && expo != 0 && expo != 0x7fff) 151 continue; /* valid fp number */ 152 153 if (bcmp(fpp, &zero, sizeof (zero))) 154 fn->f_ftw |= 2 << (i << 1); /* NaN */ 155 else 156 fn->f_ftw |= 1 << (i << 1); /* fp zero */ 157 } 158 159 fn->f_fop = fx->fx_fop; 160 161 fn->__f_ign2 = 0; 162 fn->f_eip = (uint32_t)fx->fx_rip; 163 fn->f_cs = U32CS_SEL; 164 fn->f_dp = (uint32_t)fx->fx_rdp; 165 fn->f_ds = UDS_SEL; 166 fn->__f_ign3 = 0; 167 } 168 169 /* 170 * Map from an fpregset_t into an fxsave-format save area 171 */ 172 static void 173 fpregset_to_fxsave(const fpregset_t *fp, struct fxsave_state *fx) 174 { 175 bcopy(fp, fx, sizeof (*fx)); 176 /* 177 * avoid useless #gp exceptions - mask reserved bits 178 */ 179 fx->fx_mxcsr &= sse_mxcsr_mask; 180 } 181 182 /* 183 * Map from an fxsave-format save area into a fpregset_t 184 */ 185 static void 186 fxsave_to_fpregset(const struct fxsave_state *fx, fpregset_t *fp) 187 { 188 bcopy(fx, fp, sizeof (*fx)); 189 } 190 191 #if defined(_SYSCALL32_IMPL) 192 static void 193 fpregset32_to_fxsave(const fpregset32_t *fp, struct fxsave_state *fx) 194 { 195 const struct fpchip32_state *fc = &fp->fp_reg_set.fpchip_state; 196 197 fnsave_to_fxsave((const struct fnsave_state *)fc, fx); 198 /* 199 * avoid useless #gp exceptions - mask reserved bits 200 */ 201 fx->fx_mxcsr = sse_mxcsr_mask & fc->mxcsr; 202 bcopy(&fc->xmm[0], &fx->fx_xmm[0], sizeof (fc->xmm)); 203 } 204 205 static void 206 fxsave_to_fpregset32(const struct fxsave_state *fx, fpregset32_t *fp) 207 { 208 struct fpchip32_state *fc = &fp->fp_reg_set.fpchip_state; 209 210 fxsave_to_fnsave(fx, (struct fnsave_state *)fc); 211 fc->mxcsr = fx->fx_mxcsr; 212 bcopy(&fx->fx_xmm[0], &fc->xmm[0], sizeof (fc->xmm)); 213 } 214 215 static void 216 fpregset_nto32(const fpregset_t *src, fpregset32_t *dst) 217 { 218 fxsave_to_fpregset32((struct fxsave_state *)src, dst); 219 dst->fp_reg_set.fpchip_state.status = 220 src->fp_reg_set.fpchip_state.status; 221 dst->fp_reg_set.fpchip_state.xstatus = 222 src->fp_reg_set.fpchip_state.xstatus; 223 } 224 225 static void 226 fpregset_32ton(const fpregset32_t *src, fpregset_t *dst) 227 { 228 fpregset32_to_fxsave(src, (struct fxsave_state *)dst); 229 dst->fp_reg_set.fpchip_state.status = 230 src->fp_reg_set.fpchip_state.status; 231 dst->fp_reg_set.fpchip_state.xstatus = 232 src->fp_reg_set.fpchip_state.xstatus; 233 } 234 #endif 235 236 /* 237 * Set floating-point registers from a native fpregset_t. 238 */ 239 void 240 setfpregs(klwp_t *lwp, fpregset_t *fp) 241 { 242 struct fpu_ctx *fpu = &lwp->lwp_pcb.pcb_fpu; 243 244 if (fpu->fpu_flags & FPU_EN) { 245 if (!(fpu->fpu_flags & FPU_VALID)) { 246 /* 247 * FPU context is still active, release the 248 * ownership. 249 */ 250 fp_free(fpu); 251 } 252 } 253 /* 254 * Else: if we are trying to change the FPU state of a thread which 255 * hasn't yet initialized floating point, store the state in 256 * the pcb and indicate that the state is valid. When the 257 * thread enables floating point, it will use this state instead 258 * of the default state. 259 */ 260 261 switch (fp_save_mech) { 262 case FP_FXSAVE: 263 fpregset_to_fxsave(fp, fpu->fpu_regs.kfpu_u.kfpu_fx); 264 fpu->fpu_regs.kfpu_xstatus = 265 fp->fp_reg_set.fpchip_state.xstatus; 266 break; 267 268 case FP_XSAVE: 269 fpregset_to_fxsave(fp, 270 &fpu->fpu_regs.kfpu_u.kfpu_xs->xs_fxsave); 271 fpu->fpu_regs.kfpu_xstatus = 272 fp->fp_reg_set.fpchip_state.xstatus; 273 fpu->fpu_regs.kfpu_u.kfpu_xs->xs_header.xsh_xstate_bv |= 274 (XFEATURE_LEGACY_FP | XFEATURE_SSE); 275 break; 276 default: 277 panic("Invalid fp_save_mech"); 278 /*NOTREACHED*/ 279 } 280 281 fpu->fpu_regs.kfpu_status = fp->fp_reg_set.fpchip_state.status; 282 fpu->fpu_flags |= FPU_VALID; 283 PCB_SET_UPDATE_FPU(&lwp->lwp_pcb); 284 } 285 286 /* 287 * Get floating-point registers into a native fpregset_t. 288 */ 289 void 290 getfpregs(klwp_t *lwp, fpregset_t *fp) 291 { 292 struct fpu_ctx *fpu = &lwp->lwp_pcb.pcb_fpu; 293 294 kpreempt_disable(); 295 if (fpu->fpu_flags & FPU_EN) { 296 /* 297 * If we have FPU hw and the thread's pcb doesn't have 298 * a valid FPU state then get the state from the hw. 299 */ 300 if (fpu_exists && ttolwp(curthread) == lwp && 301 !(fpu->fpu_flags & FPU_VALID)) 302 fp_save(fpu); /* get the current FPU state */ 303 } 304 305 /* 306 * There are 3 possible cases we have to be aware of here: 307 * 308 * 1. FPU is enabled. FPU state is stored in the current LWP. 309 * 310 * 2. FPU is not enabled, and there have been no intervening /proc 311 * modifications. Return initial FPU state. 312 * 313 * 3. FPU is not enabled, but a /proc consumer has modified FPU state. 314 * FPU state is stored in the current LWP. 315 */ 316 if ((fpu->fpu_flags & FPU_EN) || (fpu->fpu_flags & FPU_VALID)) { 317 /* 318 * Cases 1 and 3. 319 */ 320 switch (fp_save_mech) { 321 case FP_FXSAVE: 322 fxsave_to_fpregset(fpu->fpu_regs.kfpu_u.kfpu_fx, fp); 323 fp->fp_reg_set.fpchip_state.xstatus = 324 fpu->fpu_regs.kfpu_xstatus; 325 break; 326 case FP_XSAVE: 327 fxsave_to_fpregset( 328 &fpu->fpu_regs.kfpu_u.kfpu_xs->xs_fxsave, fp); 329 fp->fp_reg_set.fpchip_state.xstatus = 330 fpu->fpu_regs.kfpu_xstatus; 331 break; 332 default: 333 panic("Invalid fp_save_mech"); 334 /*NOTREACHED*/ 335 } 336 fp->fp_reg_set.fpchip_state.status = fpu->fpu_regs.kfpu_status; 337 } else { 338 /* 339 * Case 2. 340 */ 341 switch (fp_save_mech) { 342 case FP_FXSAVE: 343 case FP_XSAVE: 344 /* 345 * For now, we don't have any AVX specific field in ABI. 346 * If we add any in the future, we need to initial them 347 * as well. 348 */ 349 fxsave_to_fpregset(&sse_initial, fp); 350 fp->fp_reg_set.fpchip_state.xstatus = 351 fpu->fpu_regs.kfpu_xstatus; 352 break; 353 default: 354 panic("Invalid fp_save_mech"); 355 /*NOTREACHED*/ 356 } 357 fp->fp_reg_set.fpchip_state.status = fpu->fpu_regs.kfpu_status; 358 } 359 kpreempt_enable(); 360 } 361 362 #if defined(_SYSCALL32_IMPL) 363 364 /* 365 * Set floating-point registers from an fpregset32_t. 366 */ 367 void 368 setfpregs32(klwp_t *lwp, fpregset32_t *fp) 369 { 370 fpregset_t fpregs; 371 372 fpregset_32ton(fp, &fpregs); 373 setfpregs(lwp, &fpregs); 374 } 375 376 /* 377 * Get floating-point registers into an fpregset32_t. 378 */ 379 void 380 getfpregs32(klwp_t *lwp, fpregset32_t *fp) 381 { 382 fpregset_t fpregs; 383 384 getfpregs(lwp, &fpregs); 385 fpregset_nto32(&fpregs, fp); 386 } 387 388 #endif /* _SYSCALL32_IMPL */ 389 390 /* 391 * Return the general registers 392 */ 393 void 394 getgregs(klwp_t *lwp, gregset_t grp) 395 { 396 struct regs *rp = lwptoregs(lwp); 397 struct pcb *pcb = &lwp->lwp_pcb; 398 int thisthread = lwptot(lwp) == curthread; 399 400 grp[REG_RDI] = rp->r_rdi; 401 grp[REG_RSI] = rp->r_rsi; 402 grp[REG_RDX] = rp->r_rdx; 403 grp[REG_RCX] = rp->r_rcx; 404 grp[REG_R8] = rp->r_r8; 405 grp[REG_R9] = rp->r_r9; 406 grp[REG_RAX] = rp->r_rax; 407 grp[REG_RBX] = rp->r_rbx; 408 grp[REG_RBP] = rp->r_rbp; 409 grp[REG_R10] = rp->r_r10; 410 grp[REG_R11] = rp->r_r11; 411 grp[REG_R12] = rp->r_r12; 412 grp[REG_R13] = rp->r_r13; 413 grp[REG_R14] = rp->r_r14; 414 grp[REG_R15] = rp->r_r15; 415 grp[REG_FSBASE] = pcb->pcb_fsbase; 416 grp[REG_GSBASE] = pcb->pcb_gsbase; 417 if (thisthread) 418 kpreempt_disable(); 419 if (PCB_NEED_UPDATE_SEGS(pcb)) { 420 grp[REG_DS] = pcb->pcb_ds; 421 grp[REG_ES] = pcb->pcb_es; 422 grp[REG_FS] = pcb->pcb_fs; 423 grp[REG_GS] = pcb->pcb_gs; 424 } else { 425 grp[REG_DS] = rp->r_ds; 426 grp[REG_ES] = rp->r_es; 427 grp[REG_FS] = rp->r_fs; 428 grp[REG_GS] = rp->r_gs; 429 } 430 if (thisthread) 431 kpreempt_enable(); 432 grp[REG_TRAPNO] = rp->r_trapno; 433 grp[REG_ERR] = rp->r_err; 434 grp[REG_RIP] = rp->r_rip; 435 grp[REG_CS] = rp->r_cs; 436 grp[REG_SS] = rp->r_ss; 437 grp[REG_RFL] = rp->r_rfl; 438 grp[REG_RSP] = rp->r_rsp; 439 } 440 441 #if defined(_SYSCALL32_IMPL) 442 443 void 444 getgregs32(klwp_t *lwp, gregset32_t grp) 445 { 446 struct regs *rp = lwptoregs(lwp); 447 struct pcb *pcb = &lwp->lwp_pcb; 448 int thisthread = lwptot(lwp) == curthread; 449 450 if (thisthread) 451 kpreempt_disable(); 452 if (PCB_NEED_UPDATE_SEGS(pcb)) { 453 grp[GS] = (uint16_t)pcb->pcb_gs; 454 grp[FS] = (uint16_t)pcb->pcb_fs; 455 grp[DS] = (uint16_t)pcb->pcb_ds; 456 grp[ES] = (uint16_t)pcb->pcb_es; 457 } else { 458 grp[GS] = (uint16_t)rp->r_gs; 459 grp[FS] = (uint16_t)rp->r_fs; 460 grp[DS] = (uint16_t)rp->r_ds; 461 grp[ES] = (uint16_t)rp->r_es; 462 } 463 if (thisthread) 464 kpreempt_enable(); 465 grp[EDI] = (greg32_t)rp->r_rdi; 466 grp[ESI] = (greg32_t)rp->r_rsi; 467 grp[EBP] = (greg32_t)rp->r_rbp; 468 grp[ESP] = 0; 469 grp[EBX] = (greg32_t)rp->r_rbx; 470 grp[EDX] = (greg32_t)rp->r_rdx; 471 grp[ECX] = (greg32_t)rp->r_rcx; 472 grp[EAX] = (greg32_t)rp->r_rax; 473 grp[TRAPNO] = (greg32_t)rp->r_trapno; 474 grp[ERR] = (greg32_t)rp->r_err; 475 grp[EIP] = (greg32_t)rp->r_rip; 476 grp[CS] = (uint16_t)rp->r_cs; 477 grp[EFL] = (greg32_t)rp->r_rfl; 478 grp[UESP] = (greg32_t)rp->r_rsp; 479 grp[SS] = (uint16_t)rp->r_ss; 480 } 481 482 void 483 ucontext_32ton(const ucontext32_t *src, ucontext_t *dst) 484 { 485 mcontext_t *dmc = &dst->uc_mcontext; 486 const mcontext32_t *smc = &src->uc_mcontext; 487 488 bzero(dst, sizeof (*dst)); 489 dst->uc_flags = src->uc_flags; 490 dst->uc_link = (ucontext_t *)(uintptr_t)src->uc_link; 491 492 bcopy(&src->uc_sigmask, &dst->uc_sigmask, sizeof (dst->uc_sigmask)); 493 494 dst->uc_stack.ss_sp = (void *)(uintptr_t)src->uc_stack.ss_sp; 495 dst->uc_stack.ss_size = (size_t)src->uc_stack.ss_size; 496 dst->uc_stack.ss_flags = src->uc_stack.ss_flags; 497 498 dmc->gregs[REG_GS] = (greg_t)(uint32_t)smc->gregs[GS]; 499 dmc->gregs[REG_FS] = (greg_t)(uint32_t)smc->gregs[FS]; 500 dmc->gregs[REG_ES] = (greg_t)(uint32_t)smc->gregs[ES]; 501 dmc->gregs[REG_DS] = (greg_t)(uint32_t)smc->gregs[DS]; 502 dmc->gregs[REG_RDI] = (greg_t)(uint32_t)smc->gregs[EDI]; 503 dmc->gregs[REG_RSI] = (greg_t)(uint32_t)smc->gregs[ESI]; 504 dmc->gregs[REG_RBP] = (greg_t)(uint32_t)smc->gregs[EBP]; 505 dmc->gregs[REG_RBX] = (greg_t)(uint32_t)smc->gregs[EBX]; 506 dmc->gregs[REG_RDX] = (greg_t)(uint32_t)smc->gregs[EDX]; 507 dmc->gregs[REG_RCX] = (greg_t)(uint32_t)smc->gregs[ECX]; 508 dmc->gregs[REG_RAX] = (greg_t)(uint32_t)smc->gregs[EAX]; 509 dmc->gregs[REG_TRAPNO] = (greg_t)(uint32_t)smc->gregs[TRAPNO]; 510 dmc->gregs[REG_ERR] = (greg_t)(uint32_t)smc->gregs[ERR]; 511 dmc->gregs[REG_RIP] = (greg_t)(uint32_t)smc->gregs[EIP]; 512 dmc->gregs[REG_CS] = (greg_t)(uint32_t)smc->gregs[CS]; 513 dmc->gregs[REG_RFL] = (greg_t)(uint32_t)smc->gregs[EFL]; 514 dmc->gregs[REG_RSP] = (greg_t)(uint32_t)smc->gregs[UESP]; 515 dmc->gregs[REG_SS] = (greg_t)(uint32_t)smc->gregs[SS]; 516 517 /* 518 * A valid fpregs is only copied in if uc.uc_flags has UC_FPU set 519 * otherwise there is no guarantee that anything in fpregs is valid. 520 */ 521 if (src->uc_flags & UC_FPU) 522 fpregset_32ton(&src->uc_mcontext.fpregs, 523 &dst->uc_mcontext.fpregs); 524 } 525 526 #endif /* _SYSCALL32_IMPL */ 527 528 /* 529 * Return the user-level PC. 530 * If in a system call, return the address of the syscall trap. 531 */ 532 greg_t 533 getuserpc() 534 { 535 greg_t upc = lwptoregs(ttolwp(curthread))->r_pc; 536 uint32_t insn; 537 538 if (curthread->t_sysnum == 0) 539 return (upc); 540 541 /* 542 * We might've gotten here from sysenter (0xf 0x34), 543 * syscall (0xf 0x5) or lcall (0x9a 0 0 0 0 0x27 0). 544 * 545 * Go peek at the binary to figure it out.. 546 */ 547 if (fuword32((void *)(upc - 2), &insn) != -1 && 548 (insn & 0xffff) == 0x340f || (insn & 0xffff) == 0x050f) 549 return (upc - 2); 550 return (upc - 7); 551 } 552 553 /* 554 * Protect segment registers from non-user privilege levels and GDT selectors 555 * other than USER_CS, USER_DS and lwp FS and GS values. If the segment 556 * selector is non-null and not USER_CS/USER_DS, we make sure that the 557 * TI bit is set to point into the LDT and that the RPL is set to 3. 558 * 559 * Since struct regs stores each 16-bit segment register as a 32-bit greg_t, we 560 * also explicitly zero the top 16 bits since they may be coming from the 561 * user's address space via setcontext(2) or /proc. 562 * 563 * Note about null selector. When running on the hypervisor if we allow a 564 * process to set its %cs to null selector with RPL of 0 the hypervisor will 565 * crash the domain. If running on bare metal we would get a #gp fault and 566 * be able to kill the process and continue on. Therefore we make sure to 567 * force RPL to SEL_UPL even for null selector when setting %cs. 568 */ 569 570 #if defined(IS_CS) || defined(IS_NOT_CS) 571 #error "IS_CS and IS_NOT_CS already defined" 572 #endif 573 574 #define IS_CS 1 575 #define IS_NOT_CS 0 576 577 /*ARGSUSED*/ 578 static greg_t 579 fix_segreg(greg_t sr, int iscs, model_t datamodel) 580 { 581 switch (sr &= 0xffff) { 582 583 case 0: 584 if (iscs == IS_CS) 585 return (0 | SEL_UPL); 586 else 587 return (0); 588 589 /* 590 * If lwp attempts to switch data model then force their 591 * code selector to be null selector. 592 */ 593 case U32CS_SEL: 594 if (datamodel == DATAMODEL_NATIVE) 595 return (0 | SEL_UPL); 596 else 597 return (sr); 598 599 case UCS_SEL: 600 if (datamodel == DATAMODEL_ILP32) 601 return (0 | SEL_UPL); 602 /*FALLTHROUGH*/ 603 case UDS_SEL: 604 case LWPFS_SEL: 605 case LWPGS_SEL: 606 case SEL_UPL: 607 return (sr); 608 default: 609 break; 610 } 611 612 /* 613 * Force it into the LDT in ring 3 for 32-bit processes, which by 614 * default do not have an LDT, so that any attempt to use an invalid 615 * selector will reference the (non-existant) LDT, and cause a #gp 616 * fault for the process. 617 * 618 * 64-bit processes get the null gdt selector since they 619 * are not allowed to have a private LDT. 620 */ 621 if (datamodel == DATAMODEL_ILP32) { 622 return (sr | SEL_TI_LDT | SEL_UPL); 623 } else { 624 if (iscs == IS_CS) 625 return (0 | SEL_UPL); 626 else 627 return (0); 628 } 629 630 } 631 632 /* 633 * Set general registers. 634 */ 635 void 636 setgregs(klwp_t *lwp, gregset_t grp) 637 { 638 struct regs *rp = lwptoregs(lwp); 639 model_t datamodel = lwp_getdatamodel(lwp); 640 641 struct pcb *pcb = &lwp->lwp_pcb; 642 int thisthread = lwptot(lwp) == curthread; 643 644 if (datamodel == DATAMODEL_NATIVE) { 645 if (thisthread) 646 (void) save_syscall_args(); /* copy the args */ 647 648 rp->r_rdi = grp[REG_RDI]; 649 rp->r_rsi = grp[REG_RSI]; 650 rp->r_rdx = grp[REG_RDX]; 651 rp->r_rcx = grp[REG_RCX]; 652 rp->r_r8 = grp[REG_R8]; 653 rp->r_r9 = grp[REG_R9]; 654 rp->r_rax = grp[REG_RAX]; 655 rp->r_rbx = grp[REG_RBX]; 656 rp->r_rbp = grp[REG_RBP]; 657 rp->r_r10 = grp[REG_R10]; 658 rp->r_r11 = grp[REG_R11]; 659 rp->r_r12 = grp[REG_R12]; 660 rp->r_r13 = grp[REG_R13]; 661 rp->r_r14 = grp[REG_R14]; 662 rp->r_r15 = grp[REG_R15]; 663 rp->r_trapno = grp[REG_TRAPNO]; 664 rp->r_err = grp[REG_ERR]; 665 rp->r_rip = grp[REG_RIP]; 666 /* 667 * Setting %cs or %ss to anything else is quietly but 668 * quite definitely forbidden! 669 */ 670 rp->r_cs = UCS_SEL; 671 rp->r_ss = UDS_SEL; 672 rp->r_rsp = grp[REG_RSP]; 673 674 if (thisthread) 675 kpreempt_disable(); 676 677 pcb->pcb_ds = UDS_SEL; 678 pcb->pcb_es = UDS_SEL; 679 680 /* 681 * 64-bit processes -are- allowed to set their fsbase/gsbase 682 * values directly, but only if they're using the segment 683 * selectors that allow that semantic. 684 * 685 * (32-bit processes must use lwp_set_private().) 686 */ 687 pcb->pcb_fsbase = grp[REG_FSBASE]; 688 pcb->pcb_gsbase = grp[REG_GSBASE]; 689 pcb->pcb_fs = fix_segreg(grp[REG_FS], IS_NOT_CS, datamodel); 690 pcb->pcb_gs = fix_segreg(grp[REG_GS], IS_NOT_CS, datamodel); 691 692 /* 693 * Ensure that we go out via update_sregs 694 */ 695 PCB_SET_UPDATE_SEGS(pcb); 696 lwptot(lwp)->t_post_sys = 1; 697 if (thisthread) 698 kpreempt_enable(); 699 #if defined(_SYSCALL32_IMPL) 700 } else { 701 rp->r_rdi = (uint32_t)grp[REG_RDI]; 702 rp->r_rsi = (uint32_t)grp[REG_RSI]; 703 rp->r_rdx = (uint32_t)grp[REG_RDX]; 704 rp->r_rcx = (uint32_t)grp[REG_RCX]; 705 rp->r_rax = (uint32_t)grp[REG_RAX]; 706 rp->r_rbx = (uint32_t)grp[REG_RBX]; 707 rp->r_rbp = (uint32_t)grp[REG_RBP]; 708 rp->r_trapno = (uint32_t)grp[REG_TRAPNO]; 709 rp->r_err = (uint32_t)grp[REG_ERR]; 710 rp->r_rip = (uint32_t)grp[REG_RIP]; 711 712 rp->r_cs = fix_segreg(grp[REG_CS], IS_CS, datamodel); 713 rp->r_ss = fix_segreg(grp[REG_DS], IS_NOT_CS, datamodel); 714 715 rp->r_rsp = (uint32_t)grp[REG_RSP]; 716 717 if (thisthread) 718 kpreempt_disable(); 719 720 pcb->pcb_ds = fix_segreg(grp[REG_DS], IS_NOT_CS, datamodel); 721 pcb->pcb_es = fix_segreg(grp[REG_ES], IS_NOT_CS, datamodel); 722 723 /* 724 * (See fsbase/gsbase commentary above) 725 */ 726 pcb->pcb_fs = fix_segreg(grp[REG_FS], IS_NOT_CS, datamodel); 727 pcb->pcb_gs = fix_segreg(grp[REG_GS], IS_NOT_CS, datamodel); 728 729 /* 730 * Ensure that we go out via update_sregs 731 */ 732 PCB_SET_UPDATE_SEGS(pcb); 733 lwptot(lwp)->t_post_sys = 1; 734 if (thisthread) 735 kpreempt_enable(); 736 #endif 737 } 738 739 /* 740 * Only certain bits of the flags register can be modified. 741 */ 742 rp->r_rfl = (rp->r_rfl & ~PSL_USERMASK) | 743 (grp[REG_RFL] & PSL_USERMASK); 744 } 745 746 /* 747 * Determine whether eip is likely to have an interrupt frame 748 * on the stack. We do this by comparing the address to the 749 * range of addresses spanned by several well-known routines. 750 */ 751 extern void _interrupt(); 752 extern void _allsyscalls(); 753 extern void _cmntrap(); 754 extern void fakesoftint(); 755 756 extern size_t _interrupt_size; 757 extern size_t _allsyscalls_size; 758 extern size_t _cmntrap_size; 759 extern size_t _fakesoftint_size; 760 761 /* 762 * Get a pc-only stacktrace. Used for kmem_alloc() buffer ownership tracking. 763 * Returns MIN(current stack depth, pcstack_limit). 764 */ 765 int 766 getpcstack(pc_t *pcstack, int pcstack_limit) 767 { 768 struct frame *fp = (struct frame *)getfp(); 769 struct frame *nextfp, *minfp, *stacktop; 770 int depth = 0; 771 int on_intr; 772 uintptr_t pc; 773 774 if ((on_intr = CPU_ON_INTR(CPU)) != 0) 775 stacktop = (struct frame *)(CPU->cpu_intr_stack + SA(MINFRAME)); 776 else 777 stacktop = (struct frame *)curthread->t_stk; 778 minfp = fp; 779 780 pc = ((struct regs *)fp)->r_pc; 781 782 while (depth < pcstack_limit) { 783 nextfp = (struct frame *)fp->fr_savfp; 784 pc = fp->fr_savpc; 785 if (nextfp <= minfp || nextfp >= stacktop) { 786 if (on_intr) { 787 /* 788 * Hop from interrupt stack to thread stack. 789 */ 790 stacktop = (struct frame *)curthread->t_stk; 791 minfp = (struct frame *)curthread->t_stkbase; 792 on_intr = 0; 793 continue; 794 } 795 break; 796 } 797 pcstack[depth++] = (pc_t)pc; 798 fp = nextfp; 799 minfp = fp; 800 } 801 return (depth); 802 } 803 804 /* 805 * The following ELF header fields are defined as processor-specific 806 * in the V8 ABI: 807 * 808 * e_ident[EI_DATA] encoding of the processor-specific 809 * data in the object file 810 * e_machine processor identification 811 * e_flags processor-specific flags associated 812 * with the file 813 */ 814 815 /* 816 * The value of at_flags reflects a platform's cpu module support. 817 * at_flags is used to check for allowing a binary to execute and 818 * is passed as the value of the AT_FLAGS auxiliary vector. 819 */ 820 int at_flags = 0; 821 822 /* 823 * Check the processor-specific fields of an ELF header. 824 * 825 * returns 1 if the fields are valid, 0 otherwise 826 */ 827 /*ARGSUSED2*/ 828 int 829 elfheadcheck( 830 unsigned char e_data, 831 Elf32_Half e_machine, 832 Elf32_Word e_flags) 833 { 834 if (e_data != ELFDATA2LSB) 835 return (0); 836 if (e_machine == EM_AMD64) 837 return (1); 838 return (e_machine == EM_386); 839 } 840 841 uint_t auxv_hwcap_include = 0; /* patch to enable unrecognized features */ 842 uint_t auxv_hwcap_include_2 = 0; /* second word */ 843 uint_t auxv_hwcap_exclude = 0; /* patch for broken cpus, debugging */ 844 uint_t auxv_hwcap_exclude_2 = 0; /* second word */ 845 #if defined(_SYSCALL32_IMPL) 846 uint_t auxv_hwcap32_include = 0; /* ditto for 32-bit apps */ 847 uint_t auxv_hwcap32_include_2 = 0; /* ditto for 32-bit apps */ 848 uint_t auxv_hwcap32_exclude = 0; /* ditto for 32-bit apps */ 849 uint_t auxv_hwcap32_exclude_2 = 0; /* ditto for 32-bit apps */ 850 #endif 851 852 /* 853 * Gather information about the processor and place it into auxv_hwcap 854 * so that it can be exported to the linker via the aux vector. 855 * 856 * We use this seemingly complicated mechanism so that we can ensure 857 * that /etc/system can be used to override what the system can or 858 * cannot discover for itself. Due to a lack of use, this has not 859 * been extended to the 3rd word. 860 */ 861 void 862 bind_hwcap(void) 863 { 864 uint_t cpu_hwcap_flags[3]; 865 cpuid_execpass(NULL, CPUID_PASS_RESOLVE, cpu_hwcap_flags); 866 867 auxv_hwcap = (auxv_hwcap_include | cpu_hwcap_flags[0]) & 868 ~auxv_hwcap_exclude; 869 auxv_hwcap_2 = (auxv_hwcap_include_2 | cpu_hwcap_flags[1]) & 870 ~auxv_hwcap_exclude_2; 871 auxv_hwcap_3 = cpu_hwcap_flags[2]; 872 873 /* 874 * On AMD processors, sysenter just doesn't work at all 875 * when the kernel is in long mode. On IA-32e processors 876 * it does, but there's no real point in all the alternate 877 * mechanism when syscall works on both. 878 * 879 * Besides, the kernel's sysenter handler is expecting a 880 * 32-bit lwp ... 881 */ 882 auxv_hwcap &= ~AV_386_SEP; 883 884 if (auxv_hwcap_include || auxv_hwcap_exclude || auxv_hwcap_include_2 || 885 auxv_hwcap_exclude_2) { 886 /* 887 * The below assignment is regrettably required to get lint 888 * to accept the validity of our format string. The format 889 * string is in fact valid, but whatever intelligence in lint 890 * understands the cmn_err()-specific %b appears to have an 891 * off-by-one error: it (mistakenly) complains about bit 892 * number 32 (even though this is explicitly permitted). 893 * Normally, one would will away such warnings with a "LINTED" 894 * directive, but for reasons unclear and unknown, lint 895 * refuses to be assuaged in this case. Fortunately, lint 896 * doesn't pretend to have solved the Halting Problem -- 897 * and as soon as the format string is programmatic, it 898 * knows enough to shut up. 899 */ 900 char *fmt = "?user ABI extensions: %b\n"; 901 cmn_err(CE_CONT, fmt, auxv_hwcap, FMT_AV_386); 902 fmt = "?user ABI extensions (word 2): %b\n"; 903 cmn_err(CE_CONT, fmt, auxv_hwcap_2, FMT_AV_386_2); 904 fmt = "?user ABI extensions (word 2): %b\n"; 905 cmn_err(CE_CONT, fmt, auxv_hwcap_3, FMT_AV_386_3); 906 } 907 908 #if defined(_SYSCALL32_IMPL) 909 auxv_hwcap32 = (auxv_hwcap32_include | cpu_hwcap_flags[0]) & 910 ~auxv_hwcap32_exclude; 911 auxv_hwcap32_2 = (auxv_hwcap32_include_2 | cpu_hwcap_flags[1]) & 912 ~auxv_hwcap32_exclude_2; 913 auxv_hwcap32_3 = auxv_hwcap_3; 914 915 /* 916 * If this is an amd64 architecture machine from Intel, then 917 * syscall -doesn't- work in compatibility mode, only sysenter does. 918 * 919 * Sigh. 920 */ 921 if (!cpuid_syscall32_insn(NULL)) 922 auxv_hwcap32 &= ~AV_386_AMD_SYSC; 923 924 /* 925 * 32-bit processes can -always- use the lahf/sahf instructions 926 */ 927 auxv_hwcap32 |= AV_386_AHF; 928 929 /* 930 * 32-bit processes can -never- use fsgsbase instructions. 931 */ 932 auxv_hwcap32_2 &= ~AV_386_2_FSGSBASE; 933 934 if (auxv_hwcap32_include || auxv_hwcap32_exclude || 935 auxv_hwcap32_include_2 || auxv_hwcap32_exclude_2) { 936 /* 937 * See the block comment in the cmn_err() of auxv_hwcap, above. 938 */ 939 char *fmt = "?32-bit user ABI extensions: %b\n"; 940 cmn_err(CE_CONT, fmt, auxv_hwcap32, FMT_AV_386); 941 fmt = "?32-bit user ABI extensions (word 2): %b\n"; 942 cmn_err(CE_CONT, fmt, auxv_hwcap32_2, FMT_AV_386_2); 943 fmt = "?32-bit user ABI extensions (word 3): %b\n"; 944 cmn_err(CE_CONT, fmt, auxv_hwcap32_3, FMT_AV_386_3); 945 } 946 #endif 947 } 948 949 /* 950 * sync_icache() - this is called 951 * in proc/fs/prusrio.c. x86 has an unified cache and therefore 952 * this is a nop. 953 */ 954 /* ARGSUSED */ 955 void 956 sync_icache(caddr_t addr, uint_t len) 957 { 958 /* Do nothing for now */ 959 } 960 961 /*ARGSUSED*/ 962 void 963 sync_data_memory(caddr_t va, size_t len) 964 { 965 /* Not implemented for this platform */ 966 } 967 968 int 969 __ipltospl(int ipl) 970 { 971 return (ipltospl(ipl)); 972 } 973 974 /* 975 * The panic code invokes panic_saveregs() to record the contents of a 976 * regs structure into the specified panic_data structure for debuggers. 977 */ 978 void 979 panic_saveregs(panic_data_t *pdp, struct regs *rp) 980 { 981 panic_nv_t *pnv = PANICNVGET(pdp); 982 983 struct cregs creg; 984 985 getcregs(&creg); 986 987 PANICNVADD(pnv, "rdi", rp->r_rdi); 988 PANICNVADD(pnv, "rsi", rp->r_rsi); 989 PANICNVADD(pnv, "rdx", rp->r_rdx); 990 PANICNVADD(pnv, "rcx", rp->r_rcx); 991 PANICNVADD(pnv, "r8", rp->r_r8); 992 PANICNVADD(pnv, "r9", rp->r_r9); 993 PANICNVADD(pnv, "rax", rp->r_rax); 994 PANICNVADD(pnv, "rbx", rp->r_rbx); 995 PANICNVADD(pnv, "rbp", rp->r_rbp); 996 PANICNVADD(pnv, "r10", rp->r_r10); 997 PANICNVADD(pnv, "r11", rp->r_r11); 998 PANICNVADD(pnv, "r12", rp->r_r12); 999 PANICNVADD(pnv, "r13", rp->r_r13); 1000 PANICNVADD(pnv, "r14", rp->r_r14); 1001 PANICNVADD(pnv, "r15", rp->r_r15); 1002 PANICNVADD(pnv, "fsbase", rdmsr(MSR_AMD_FSBASE)); 1003 PANICNVADD(pnv, "gsbase", rdmsr(MSR_AMD_GSBASE)); 1004 PANICNVADD(pnv, "ds", rp->r_ds); 1005 PANICNVADD(pnv, "es", rp->r_es); 1006 PANICNVADD(pnv, "fs", rp->r_fs); 1007 PANICNVADD(pnv, "gs", rp->r_gs); 1008 PANICNVADD(pnv, "trapno", rp->r_trapno); 1009 PANICNVADD(pnv, "err", rp->r_err); 1010 PANICNVADD(pnv, "rip", rp->r_rip); 1011 PANICNVADD(pnv, "cs", rp->r_cs); 1012 PANICNVADD(pnv, "rflags", rp->r_rfl); 1013 PANICNVADD(pnv, "rsp", rp->r_rsp); 1014 PANICNVADD(pnv, "ss", rp->r_ss); 1015 PANICNVADD(pnv, "gdt_hi", (uint64_t)(creg.cr_gdt._l[3])); 1016 PANICNVADD(pnv, "gdt_lo", (uint64_t)(creg.cr_gdt._l[0])); 1017 PANICNVADD(pnv, "idt_hi", (uint64_t)(creg.cr_idt._l[3])); 1018 PANICNVADD(pnv, "idt_lo", (uint64_t)(creg.cr_idt._l[0])); 1019 1020 PANICNVADD(pnv, "ldt", creg.cr_ldt); 1021 PANICNVADD(pnv, "task", creg.cr_task); 1022 PANICNVADD(pnv, "cr0", creg.cr_cr0); 1023 PANICNVADD(pnv, "cr2", creg.cr_cr2); 1024 PANICNVADD(pnv, "cr3", creg.cr_cr3); 1025 if (creg.cr_cr4) 1026 PANICNVADD(pnv, "cr4", creg.cr_cr4); 1027 1028 PANICNVSET(pdp, pnv); 1029 } 1030 1031 #define TR_ARG_MAX 6 /* Max args to print, same as SPARC */ 1032 1033 1034 /* 1035 * Print a stack backtrace using the specified frame pointer. We delay two 1036 * seconds before continuing, unless this is the panic traceback. 1037 * If we are in the process of panicking, we also attempt to write the 1038 * stack backtrace to a staticly assigned buffer, to allow the panic 1039 * code to find it and write it in to uncompressed pages within the 1040 * system crash dump. 1041 * Note that the frame for the starting stack pointer value is omitted because 1042 * the corresponding %eip is not known. 1043 */ 1044 1045 extern char *dump_stack_scratch; 1046 1047 1048 void 1049 traceback(caddr_t fpreg) 1050 { 1051 struct frame *fp = (struct frame *)fpreg; 1052 struct frame *nextfp; 1053 uintptr_t pc, nextpc; 1054 ulong_t off; 1055 char args[TR_ARG_MAX * 2 + 16], *sym; 1056 uint_t offset = 0; 1057 uint_t next_offset = 0; 1058 char stack_buffer[1024]; 1059 1060 if (!panicstr) 1061 printf("traceback: %%fp = %p\n", (void *)fp); 1062 1063 if (panicstr && !dump_stack_scratch) { 1064 printf("Warning - stack not written to the dump buffer\n"); 1065 } 1066 1067 fp = (struct frame *)plat_traceback(fpreg); 1068 if ((uintptr_t)fp < KERNELBASE) 1069 goto out; 1070 1071 pc = fp->fr_savpc; 1072 fp = (struct frame *)fp->fr_savfp; 1073 1074 while ((uintptr_t)fp >= KERNELBASE) { 1075 /* 1076 * XX64 Until port is complete tolerate 8-byte aligned 1077 * frame pointers but flag with a warning so they can 1078 * be fixed. 1079 */ 1080 if (((uintptr_t)fp & (STACK_ALIGN - 1)) != 0) { 1081 if (((uintptr_t)fp & (8 - 1)) == 0) { 1082 printf(" >> warning! 8-byte" 1083 " aligned %%fp = %p\n", (void *)fp); 1084 } else { 1085 printf( 1086 " >> mis-aligned %%fp = %p\n", (void *)fp); 1087 break; 1088 } 1089 } 1090 1091 args[0] = '\0'; 1092 nextpc = (uintptr_t)fp->fr_savpc; 1093 nextfp = (struct frame *)fp->fr_savfp; 1094 if ((sym = kobj_getsymname(pc, &off)) != NULL) { 1095 printf("%016lx %s:%s+%lx (%s)\n", (uintptr_t)fp, 1096 mod_containing_pc((caddr_t)pc), sym, off, args); 1097 (void) snprintf(stack_buffer, sizeof (stack_buffer), 1098 "%s:%s+%lx (%s) | ", 1099 mod_containing_pc((caddr_t)pc), sym, off, args); 1100 } else { 1101 printf("%016lx %lx (%s)\n", 1102 (uintptr_t)fp, pc, args); 1103 (void) snprintf(stack_buffer, sizeof (stack_buffer), 1104 "%lx (%s) | ", pc, args); 1105 } 1106 1107 if (panicstr && dump_stack_scratch) { 1108 next_offset = offset + strlen(stack_buffer); 1109 if (next_offset < STACK_BUF_SIZE) { 1110 bcopy(stack_buffer, dump_stack_scratch + offset, 1111 strlen(stack_buffer)); 1112 offset = next_offset; 1113 } else { 1114 /* 1115 * In attempting to save the panic stack 1116 * to the dumpbuf we have overflowed that area. 1117 * Print a warning and continue to printf the 1118 * stack to the msgbuf 1119 */ 1120 printf("Warning: stack in the dump buffer" 1121 " may be incomplete\n"); 1122 offset = next_offset; 1123 } 1124 } 1125 1126 pc = nextpc; 1127 fp = nextfp; 1128 } 1129 out: 1130 if (!panicstr) { 1131 printf("end of traceback\n"); 1132 DELAY(2 * MICROSEC); 1133 } else if (dump_stack_scratch) { 1134 dump_stack_scratch[offset] = '\0'; 1135 } 1136 } 1137 1138 1139 /* 1140 * Generate a stack backtrace from a saved register set. 1141 */ 1142 void 1143 traceregs(struct regs *rp) 1144 { 1145 traceback((caddr_t)rp->r_fp); 1146 } 1147 1148 void 1149 exec_set_sp(size_t stksize) 1150 { 1151 klwp_t *lwp = ttolwp(curthread); 1152 1153 lwptoregs(lwp)->r_sp = (uintptr_t)curproc->p_usrstack - stksize; 1154 } 1155 1156 hrtime_t 1157 gethrtime_waitfree(void) 1158 { 1159 return (dtrace_gethrtime()); 1160 } 1161 1162 hrtime_t 1163 gethrtime(void) 1164 { 1165 return (gethrtimef()); 1166 } 1167 1168 hrtime_t 1169 gethrtime_unscaled(void) 1170 { 1171 return (gethrtimeunscaledf()); 1172 } 1173 1174 void 1175 scalehrtime(hrtime_t *hrt) 1176 { 1177 scalehrtimef(hrt); 1178 } 1179 1180 uint64_t 1181 unscalehrtime(hrtime_t nsecs) 1182 { 1183 return (unscalehrtimef(nsecs)); 1184 } 1185 1186 void 1187 gethrestime(timespec_t *tp) 1188 { 1189 gethrestimef(tp); 1190 } 1191 1192 /* 1193 * Part of the implementation of hres_tick(); this routine is 1194 * easier in C than assembler .. called with the hres_lock held. 1195 * 1196 * XX64 Many of these timekeeping variables need to be extern'ed in a header 1197 */ 1198 1199 #include <sys/time.h> 1200 #include <sys/machlock.h> 1201 1202 extern int one_sec; 1203 extern int max_hres_adj; 1204 1205 void 1206 __adj_hrestime(void) 1207 { 1208 long long adj; 1209 1210 if (hrestime_adj == 0) 1211 adj = 0; 1212 else if (hrestime_adj > 0) { 1213 if (hrestime_adj < max_hres_adj) 1214 adj = hrestime_adj; 1215 else 1216 adj = max_hres_adj; 1217 } else { 1218 if (hrestime_adj < -max_hres_adj) 1219 adj = -max_hres_adj; 1220 else 1221 adj = hrestime_adj; 1222 } 1223 1224 timedelta -= adj; 1225 hrestime_adj = timedelta; 1226 hrestime.tv_nsec += adj; 1227 1228 while (hrestime.tv_nsec >= NANOSEC) { 1229 one_sec++; 1230 hrestime.tv_sec++; 1231 hrestime.tv_nsec -= NANOSEC; 1232 } 1233 } 1234 1235 /* 1236 * Wrapper functions to maintain backwards compability 1237 */ 1238 int 1239 xcopyin(const void *uaddr, void *kaddr, size_t count) 1240 { 1241 return (xcopyin_nta(uaddr, kaddr, count, UIO_COPY_CACHED)); 1242 } 1243 1244 int 1245 xcopyout(const void *kaddr, void *uaddr, size_t count) 1246 { 1247 return (xcopyout_nta(kaddr, uaddr, count, UIO_COPY_CACHED)); 1248 } 1249