1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 * 25 * Copyright 2018 Joyent, Inc. 26 */ 27 28 /* 29 * Management of KMDB's IDT, which is installed upon KMDB activation. 30 * 31 * Debugger activation has two flavors, which cover the cases where KMDB is 32 * loaded at boot, and when it is loaded after boot. In brief, in both cases, 33 * the KDI needs to interpose upon several handlers in the IDT. When 34 * mod-loaded KMDB is deactivated, we undo the IDT interposition, restoring the 35 * handlers to what they were before we started. 36 * 37 * We also take over the entirety of IDT (except the double-fault handler) on 38 * the active CPU when we're in kmdb so we can handle things like page faults 39 * sensibly. 40 * 41 * Boot-loaded KMDB 42 * 43 * When we're first activated, we're running on boot's IDT. We need to be able 44 * to function in this world, so we'll install our handlers into boot's IDT. 45 * This is a little complicated: we're using the fake cpu_t set up by 46 * boot_kdi_tmpinit(), so we can't access cpu_idt directly. Instead, 47 * kdi_idt_write() notices that cpu_idt is NULL, and works around this problem. 48 * 49 * Later, when we're about to switch to the kernel's IDT, it'll call us via 50 * kdi_idt_sync(), allowing us to add our handlers to the new IDT. While 51 * boot-loaded KMDB can't be unloaded, we still need to save the descriptors we 52 * replace so we can pass traps back to the kernel as necessary. 53 * 54 * The last phase of boot-loaded KMDB activation occurs at non-boot CPU 55 * startup. We will be called on each non-boot CPU, thus allowing us to set up 56 * any watchpoints that may have been configured on the boot CPU and interpose 57 * on the given CPU's IDT. We don't save the interposed descriptors in this 58 * case -- see kdi_cpu_init() for details. 59 * 60 * Mod-loaded KMDB 61 * 62 * This style of activation is much simpler, as the CPUs are already running, 63 * and are using their own copy of the kernel's IDT. We simply interpose upon 64 * each CPU's IDT. We save the handlers we replace, both for deactivation and 65 * for passing traps back to the kernel. Note that for the hypervisors' 66 * benefit, we need to xcall to the other CPUs to do this, since we need to 67 * actively set the trap entries in its virtual IDT from that vcpu's context 68 * rather than just modifying the IDT table from the CPU running kdi_activate(). 69 */ 70 71 #include <sys/types.h> 72 #include <sys/segments.h> 73 #include <sys/trap.h> 74 #include <sys/cpuvar.h> 75 #include <sys/reboot.h> 76 #include <sys/sunddi.h> 77 #include <sys/archsystm.h> 78 #include <sys/kdi_impl.h> 79 #include <sys/x_call.h> 80 #include <ia32/sys/psw.h> 81 82 #define KDI_GATE_NVECS 3 83 84 #define KDI_IDT_NOSAVE 0 85 #define KDI_IDT_SAVE 1 86 87 #define KDI_IDT_DTYPE_KERNEL 0 88 #define KDI_IDT_DTYPE_BOOT 1 89 90 kdi_cpusave_t *kdi_cpusave; 91 int kdi_ncpusave; 92 93 static kdi_main_t kdi_kmdb_main; 94 95 kdi_drreg_t kdi_drreg; 96 97 #ifndef __amd64 98 /* Used to track the current set of valid kernel selectors. */ 99 uint32_t kdi_cs; 100 uint32_t kdi_ds; 101 uint32_t kdi_fs; 102 uint32_t kdi_gs; 103 #endif 104 105 uintptr_t kdi_kernel_handler; 106 107 int kdi_trap_switch; 108 109 #define KDI_MEMRANGES_MAX 2 110 111 kdi_memrange_t kdi_memranges[KDI_MEMRANGES_MAX]; 112 int kdi_nmemranges; 113 114 typedef void idt_hdlr_f(void); 115 116 extern idt_hdlr_f kdi_trap0, kdi_trap1, kdi_int2, kdi_trap3, kdi_trap4; 117 extern idt_hdlr_f kdi_trap5, kdi_trap6, kdi_trap7, kdi_trap9; 118 extern idt_hdlr_f kdi_traperr10, kdi_traperr11, kdi_traperr12; 119 extern idt_hdlr_f kdi_traperr13, kdi_traperr14, kdi_trap16, kdi_trap17; 120 extern idt_hdlr_f kdi_trap18, kdi_trap19, kdi_trap20, kdi_ivct32; 121 extern idt_hdlr_f kdi_invaltrap; 122 extern size_t kdi_ivct_size; 123 124 typedef struct kdi_gate_spec { 125 uint_t kgs_vec; 126 uint_t kgs_dpl; 127 } kdi_gate_spec_t; 128 129 /* 130 * Beware: kdi_pass_to_kernel() has unpleasant knowledge of this list. 131 */ 132 static const kdi_gate_spec_t kdi_gate_specs[KDI_GATE_NVECS] = { 133 { T_SGLSTP, TRP_KPL }, 134 { T_BPTFLT, TRP_UPL }, 135 { T_DBGENTR, TRP_KPL } 136 }; 137 138 static gate_desc_t kdi_kgates[KDI_GATE_NVECS]; 139 140 gate_desc_t kdi_idt[NIDT]; 141 142 struct idt_description { 143 uint_t id_low; 144 uint_t id_high; 145 idt_hdlr_f *id_basehdlr; 146 size_t *id_incrp; 147 } idt_description[] = { 148 { T_ZERODIV, 0, kdi_trap0, NULL }, 149 { T_SGLSTP, 0, kdi_trap1, NULL }, 150 { T_NMIFLT, 0, kdi_int2, NULL }, 151 { T_BPTFLT, 0, kdi_trap3, NULL }, 152 { T_OVFLW, 0, kdi_trap4, NULL }, 153 { T_BOUNDFLT, 0, kdi_trap5, NULL }, 154 { T_ILLINST, 0, kdi_trap6, NULL }, 155 { T_NOEXTFLT, 0, kdi_trap7, NULL }, 156 #if !defined(__xpv) 157 { T_DBLFLT, 0, syserrtrap, NULL }, 158 #endif 159 { T_EXTOVRFLT, 0, kdi_trap9, NULL }, 160 { T_TSSFLT, 0, kdi_traperr10, NULL }, 161 { T_SEGFLT, 0, kdi_traperr11, NULL }, 162 { T_STKFLT, 0, kdi_traperr12, NULL }, 163 { T_GPFLT, 0, kdi_traperr13, NULL }, 164 { T_PGFLT, 0, kdi_traperr14, NULL }, 165 { 15, 0, kdi_invaltrap, NULL }, 166 { T_EXTERRFLT, 0, kdi_trap16, NULL }, 167 { T_ALIGNMENT, 0, kdi_trap17, NULL }, 168 { T_MCE, 0, kdi_trap18, NULL }, 169 { T_SIMDFPE, 0, kdi_trap19, NULL }, 170 { T_DBGENTR, 0, kdi_trap20, NULL }, 171 { 21, 31, kdi_invaltrap, NULL }, 172 { 32, 255, kdi_ivct32, &kdi_ivct_size }, 173 { 0, 0, NULL }, 174 }; 175 176 void 177 kdi_idt_init(selector_t sel) 178 { 179 struct idt_description *id; 180 int i; 181 182 for (id = idt_description; id->id_basehdlr != NULL; id++) { 183 uint_t high = id->id_high != 0 ? id->id_high : id->id_low; 184 size_t incr = id->id_incrp != NULL ? *id->id_incrp : 0; 185 186 for (i = id->id_low; i <= high; i++) { 187 caddr_t hdlr = (caddr_t)id->id_basehdlr + 188 incr * (i - id->id_low); 189 set_gatesegd(&kdi_idt[i], (void (*)())hdlr, sel, 190 SDT_SYSIGT, TRP_KPL, i); 191 } 192 } 193 } 194 195 static void 196 kdi_idt_gates_install(selector_t sel, int saveold) 197 { 198 gate_desc_t gates[KDI_GATE_NVECS]; 199 int i; 200 201 bzero(gates, sizeof (*gates)); 202 203 for (i = 0; i < KDI_GATE_NVECS; i++) { 204 const kdi_gate_spec_t *gs = &kdi_gate_specs[i]; 205 uintptr_t func = GATESEG_GETOFFSET(&kdi_idt[gs->kgs_vec]); 206 set_gatesegd(&gates[i], (void (*)())func, sel, SDT_SYSIGT, 207 gs->kgs_dpl, gs->kgs_vec); 208 } 209 210 for (i = 0; i < KDI_GATE_NVECS; i++) { 211 uint_t vec = kdi_gate_specs[i].kgs_vec; 212 213 if (saveold) 214 kdi_kgates[i] = CPU->cpu_m.mcpu_idt[vec]; 215 216 kdi_idt_write(&gates[i], vec); 217 } 218 } 219 220 static void 221 kdi_idt_gates_restore(void) 222 { 223 int i; 224 225 for (i = 0; i < KDI_GATE_NVECS; i++) 226 kdi_idt_write(&kdi_kgates[i], kdi_gate_specs[i].kgs_vec); 227 } 228 229 /* 230 * Called when we switch to the kernel's IDT. We need to interpose on the 231 * kernel's IDT entries and stop using KMDBCODE_SEL. 232 */ 233 void 234 kdi_idt_sync(void) 235 { 236 kdi_idt_init(KCS_SEL); 237 kdi_idt_gates_install(KCS_SEL, KDI_IDT_SAVE); 238 } 239 240 void 241 kdi_update_drreg(kdi_drreg_t *drreg) 242 { 243 kdi_drreg = *drreg; 244 } 245 246 void 247 kdi_memrange_add(caddr_t base, size_t len) 248 { 249 kdi_memrange_t *mr = &kdi_memranges[kdi_nmemranges]; 250 251 ASSERT(kdi_nmemranges != KDI_MEMRANGES_MAX); 252 253 mr->mr_base = base; 254 mr->mr_lim = base + len - 1; 255 kdi_nmemranges++; 256 } 257 258 void 259 kdi_idt_switch(kdi_cpusave_t *cpusave) 260 { 261 if (cpusave == NULL) 262 kdi_idtr_set(kdi_idt, sizeof (kdi_idt) - 1); 263 else 264 kdi_idtr_set(cpusave->krs_idt, (sizeof (*idt0) * NIDT) - 1); 265 } 266 267 /* 268 * Activation for CPUs other than the boot CPU, called from that CPU's 269 * mp_startup(). We saved the kernel's descriptors when we initialized the 270 * boot CPU, so we don't want to do it again. Saving the handlers from this 271 * CPU's IDT would actually be dangerous with the CPU initialization method in 272 * use at the time of this writing. With that method, the startup code creates 273 * the IDTs for slave CPUs by copying the one used by the boot CPU, which has 274 * already been interposed upon by KMDB. Were we to interpose again, we'd 275 * replace the kernel's descriptors with our own in the save area. By not 276 * saving, but still overwriting, we'll work in the current world, and in any 277 * future world where the IDT is generated from scratch. 278 */ 279 void 280 kdi_cpu_init(void) 281 { 282 kdi_idt_gates_install(KCS_SEL, KDI_IDT_NOSAVE); 283 /* Load the debug registers. */ 284 kdi_cpu_debug_init(&kdi_cpusave[CPU->cpu_id]); 285 } 286 287 /* 288 * Activation for all CPUs for mod-loaded kmdb, i.e. a kmdb that wasn't 289 * loaded at boot. 290 */ 291 static int 292 kdi_cpu_activate(void) 293 { 294 kdi_idt_gates_install(KCS_SEL, KDI_IDT_SAVE); 295 return (0); 296 } 297 298 void 299 kdi_activate(kdi_main_t main, kdi_cpusave_t *cpusave, uint_t ncpusave) 300 { 301 int i; 302 cpuset_t cpuset; 303 304 CPUSET_ALL(cpuset); 305 306 kdi_cpusave = cpusave; 307 kdi_ncpusave = ncpusave; 308 309 kdi_kmdb_main = main; 310 311 for (i = 0; i < kdi_ncpusave; i++) { 312 kdi_cpusave[i].krs_cpu_id = i; 313 314 kdi_cpusave[i].krs_curcrumb = 315 &kdi_cpusave[i].krs_crumbs[KDI_NCRUMBS - 1]; 316 kdi_cpusave[i].krs_curcrumbidx = KDI_NCRUMBS - 1; 317 } 318 319 if (boothowto & RB_KMDB) 320 kdi_idt_init(KMDBCODE_SEL); 321 else 322 kdi_idt_init(KCS_SEL); 323 324 /* The initial selector set. Updated by the debugger-entry code */ 325 #ifndef __amd64 326 kdi_cs = B32CODE_SEL; 327 kdi_ds = kdi_fs = kdi_gs = B32DATA_SEL; 328 #endif 329 330 kdi_memranges[0].mr_base = kdi_segdebugbase; 331 kdi_memranges[0].mr_lim = kdi_segdebugbase + kdi_segdebugsize - 1; 332 kdi_nmemranges = 1; 333 334 kdi_drreg.dr_ctl = KDIREG_DRCTL_RESERVED; 335 kdi_drreg.dr_stat = KDIREG_DRSTAT_RESERVED; 336 337 if (boothowto & RB_KMDB) { 338 kdi_idt_gates_install(KMDBCODE_SEL, KDI_IDT_NOSAVE); 339 } else { 340 xc_call(0, 0, 0, CPUSET2BV(cpuset), 341 (xc_func_t)kdi_cpu_activate); 342 } 343 } 344 345 static int 346 kdi_cpu_deactivate(void) 347 { 348 kdi_idt_gates_restore(); 349 return (0); 350 } 351 352 void 353 kdi_deactivate(void) 354 { 355 cpuset_t cpuset; 356 CPUSET_ALL(cpuset); 357 358 xc_call(0, 0, 0, CPUSET2BV(cpuset), (xc_func_t)kdi_cpu_deactivate); 359 kdi_nmemranges = 0; 360 } 361 362 /* 363 * We receive all breakpoints and single step traps. Some of them, 364 * including those from userland and those induced by DTrace providers, 365 * are intended for the kernel, and must be processed there. We adopt 366 * this ours-until-proven-otherwise position due to the painful 367 * consequences of sending the kernel an unexpected breakpoint or 368 * single step. Unless someone can prove to us that the kernel is 369 * prepared to handle the trap, we'll assume there's a problem and will 370 * give the user a chance to debug it. 371 */ 372 int 373 kdi_trap_pass(kdi_cpusave_t *cpusave) 374 { 375 greg_t tt = cpusave->krs_gregs[KDIREG_TRAPNO]; 376 greg_t pc = cpusave->krs_gregs[KDIREG_PC]; 377 greg_t cs = cpusave->krs_gregs[KDIREG_CS]; 378 379 if (USERMODE(cs)) 380 return (1); 381 382 if (tt != T_BPTFLT && tt != T_SGLSTP) 383 return (0); 384 385 if (tt == T_BPTFLT && kdi_dtrace_get_state() == 386 KDI_DTSTATE_DTRACE_ACTIVE) 387 return (1); 388 389 /* 390 * See the comments in the kernel's T_SGLSTP handler for why we need to 391 * do this. 392 */ 393 if (tt == T_SGLSTP && 394 (pc == (greg_t)sys_sysenter || pc == (greg_t)brand_sys_sysenter)) 395 return (1); 396 397 return (0); 398 } 399 400 /* 401 * State has been saved, and all CPUs are on the CPU-specific stacks. All 402 * CPUs enter here, and head off into the debugger proper. 403 */ 404 void 405 kdi_debugger_entry(kdi_cpusave_t *cpusave) 406 { 407 /* 408 * BPTFLT gives us control with %eip set to the instruction *after* 409 * the int 3. Back it off, so we're looking at the instruction that 410 * triggered the fault. 411 */ 412 if (cpusave->krs_gregs[KDIREG_TRAPNO] == T_BPTFLT) 413 cpusave->krs_gregs[KDIREG_PC]--; 414 415 kdi_kmdb_main(cpusave); 416 } 417