xref: /illumos-gate/usr/src/uts/intel/kdi/kdi_idt.c (revision 094e47e980b0796b94b1b8f51f462a64d246e516)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  *
25  * Copyright 2018 Joyent, Inc.
26  */
27 
28 /*
29  * Management of KMDB's IDT, which is installed upon KMDB activation.
30  *
31  * Debugger activation has two flavors, which cover the cases where KMDB is
32  * loaded at boot, and when it is loaded after boot.  In brief, in both cases,
33  * the KDI needs to interpose upon several handlers in the IDT.  When
34  * mod-loaded KMDB is deactivated, we undo the IDT interposition, restoring the
35  * handlers to what they were before we started.
36  *
37  * We also take over the entirety of IDT (except the double-fault handler) on
38  * the active CPU when we're in kmdb so we can handle things like page faults
39  * sensibly.
40  *
41  * Boot-loaded KMDB
42  *
43  * When we're first activated, we're running on boot's IDT.  We need to be able
44  * to function in this world, so we'll install our handlers into boot's IDT.
45  * This is a little complicated: we're using the fake cpu_t set up by
46  * boot_kdi_tmpinit(), so we can't access cpu_idt directly.  Instead,
47  * kdi_idt_write() notices that cpu_idt is NULL, and works around this problem.
48  *
49  * Later, when we're about to switch to the kernel's IDT, it'll call us via
50  * kdi_idt_sync(), allowing us to add our handlers to the new IDT.  While
51  * boot-loaded KMDB can't be unloaded, we still need to save the descriptors we
52  * replace so we can pass traps back to the kernel as necessary.
53  *
54  * The last phase of boot-loaded KMDB activation occurs at non-boot CPU
55  * startup.  We will be called on each non-boot CPU, thus allowing us to set up
56  * any watchpoints that may have been configured on the boot CPU and interpose
57  * on the given CPU's IDT.  We don't save the interposed descriptors in this
58  * case -- see kdi_cpu_init() for details.
59  *
60  * Mod-loaded KMDB
61  *
62  * This style of activation is much simpler, as the CPUs are already running,
63  * and are using their own copy of the kernel's IDT.  We simply interpose upon
64  * each CPU's IDT.  We save the handlers we replace, both for deactivation and
65  * for passing traps back to the kernel.  Note that for the hypervisors'
66  * benefit, we need to xcall to the other CPUs to do this, since we need to
67  * actively set the trap entries in its virtual IDT from that vcpu's context
68  * rather than just modifying the IDT table from the CPU running kdi_activate().
69  */
70 
71 #include <sys/types.h>
72 #include <sys/segments.h>
73 #include <sys/trap.h>
74 #include <sys/cpuvar.h>
75 #include <sys/reboot.h>
76 #include <sys/sunddi.h>
77 #include <sys/archsystm.h>
78 #include <sys/kdi_impl.h>
79 #include <sys/x_call.h>
80 #include <ia32/sys/psw.h>
81 #include <vm/hat_i86.h>
82 
83 #define	KDI_GATE_NVECS	3
84 
85 #define	KDI_IDT_NOSAVE	0
86 #define	KDI_IDT_SAVE	1
87 
88 #define	KDI_IDT_DTYPE_KERNEL	0
89 #define	KDI_IDT_DTYPE_BOOT	1
90 
91 kdi_cpusave_t *kdi_cpusave;
92 int kdi_ncpusave;
93 
94 static kdi_main_t kdi_kmdb_main;
95 
96 kdi_drreg_t kdi_drreg;
97 
98 #ifndef __amd64
99 /* Used to track the current set of valid kernel selectors. */
100 uint32_t	kdi_cs;
101 uint32_t	kdi_ds;
102 uint32_t	kdi_fs;
103 uint32_t	kdi_gs;
104 #endif
105 
106 uintptr_t	kdi_kernel_handler;
107 
108 int		kdi_trap_switch;
109 
110 #define	KDI_MEMRANGES_MAX	2
111 
112 kdi_memrange_t	kdi_memranges[KDI_MEMRANGES_MAX];
113 int		kdi_nmemranges;
114 
115 typedef void idt_hdlr_f(void);
116 
117 extern idt_hdlr_f kdi_trap0, kdi_trap1, kdi_int2, kdi_trap3, kdi_trap4;
118 extern idt_hdlr_f kdi_trap5, kdi_trap6, kdi_trap7, kdi_trap9;
119 extern idt_hdlr_f kdi_traperr10, kdi_traperr11, kdi_traperr12;
120 extern idt_hdlr_f kdi_traperr13, kdi_traperr14, kdi_trap16, kdi_traperr17;
121 extern idt_hdlr_f kdi_trap18, kdi_trap19, kdi_trap20, kdi_ivct32;
122 extern idt_hdlr_f kdi_invaltrap;
123 extern size_t kdi_ivct_size;
124 
125 typedef struct kdi_gate_spec {
126 	uint_t kgs_vec;
127 	uint_t kgs_dpl;
128 } kdi_gate_spec_t;
129 
130 /*
131  * Beware: kdi_pass_to_kernel() has unpleasant knowledge of this list.
132  */
133 static const kdi_gate_spec_t kdi_gate_specs[KDI_GATE_NVECS] = {
134 	{ T_SGLSTP, TRP_KPL },
135 	{ T_BPTFLT, TRP_UPL },
136 	{ T_DBGENTR, TRP_KPL }
137 };
138 
139 static gate_desc_t kdi_kgates[KDI_GATE_NVECS];
140 
141 extern gate_desc_t kdi_idt[NIDT];
142 
143 struct idt_description {
144 	uint_t id_low;
145 	uint_t id_high;
146 	idt_hdlr_f *id_basehdlr;
147 	size_t *id_incrp;
148 } idt_description[] = {
149 	{ T_ZERODIV, 0,		kdi_trap0, NULL },
150 	{ T_SGLSTP, 0,		kdi_trap1, NULL },
151 	{ T_NMIFLT, 0,		kdi_int2, NULL },
152 	{ T_BPTFLT, 0,		kdi_trap3, NULL },
153 	{ T_OVFLW, 0,		kdi_trap4, NULL },
154 	{ T_BOUNDFLT, 0,	kdi_trap5, NULL },
155 	{ T_ILLINST, 0,		kdi_trap6, NULL },
156 	{ T_NOEXTFLT, 0,	kdi_trap7, NULL },
157 #if !defined(__xpv)
158 	{ T_DBLFLT, 0,		syserrtrap, NULL },
159 #endif
160 	{ T_EXTOVRFLT, 0,	kdi_trap9, NULL },
161 	{ T_TSSFLT, 0,		kdi_traperr10, NULL },
162 	{ T_SEGFLT, 0,		kdi_traperr11, NULL },
163 	{ T_STKFLT, 0,		kdi_traperr12, NULL },
164 	{ T_GPFLT, 0,		kdi_traperr13, NULL },
165 	{ T_PGFLT, 0,		kdi_traperr14, NULL },
166 	{ 15, 0,		kdi_invaltrap, NULL },
167 	{ T_EXTERRFLT, 0, 	kdi_trap16, NULL },
168 	{ T_ALIGNMENT, 0, 	kdi_traperr17, NULL },
169 	{ T_MCE, 0,		kdi_trap18, NULL },
170 	{ T_SIMDFPE, 0,		kdi_trap19, NULL },
171 	{ T_DBGENTR, 0,		kdi_trap20, NULL },
172 	{ 21, 31,		kdi_invaltrap, NULL },
173 	{ 32, 255,		kdi_ivct32, &kdi_ivct_size },
174 	{ 0, 0, NULL },
175 };
176 
177 void
178 kdi_idt_init(selector_t sel)
179 {
180 	struct idt_description *id;
181 	int i;
182 
183 	for (id = idt_description; id->id_basehdlr != NULL; id++) {
184 		uint_t high = id->id_high != 0 ? id->id_high : id->id_low;
185 		size_t incr = id->id_incrp != NULL ? *id->id_incrp : 0;
186 
187 #if !defined(__xpv)
188 		if (kpti_enable && sel == KCS_SEL && id->id_low == T_DBLFLT)
189 			id->id_basehdlr = tr_syserrtrap;
190 #endif
191 
192 		for (i = id->id_low; i <= high; i++) {
193 			caddr_t hdlr = (caddr_t)id->id_basehdlr +
194 			    incr * (i - id->id_low);
195 			set_gatesegd(&kdi_idt[i], (void (*)())hdlr, sel,
196 			    SDT_SYSIGT, TRP_KPL, IST_DBG);
197 		}
198 	}
199 }
200 
201 static void
202 kdi_idt_gates_install(selector_t sel, int saveold)
203 {
204 	gate_desc_t gates[KDI_GATE_NVECS];
205 	int i;
206 
207 	bzero(gates, sizeof (*gates));
208 
209 	for (i = 0; i < KDI_GATE_NVECS; i++) {
210 		const kdi_gate_spec_t *gs = &kdi_gate_specs[i];
211 		uintptr_t func = GATESEG_GETOFFSET(&kdi_idt[gs->kgs_vec]);
212 		set_gatesegd(&gates[i], (void (*)())func, sel, SDT_SYSIGT,
213 		    gs->kgs_dpl, IST_DBG);
214 	}
215 
216 	for (i = 0; i < KDI_GATE_NVECS; i++) {
217 		uint_t vec = kdi_gate_specs[i].kgs_vec;
218 
219 		if (saveold)
220 			kdi_kgates[i] = CPU->cpu_m.mcpu_idt[vec];
221 
222 		kdi_idt_write(&gates[i], vec);
223 	}
224 }
225 
226 static void
227 kdi_idt_gates_restore(void)
228 {
229 	int i;
230 
231 	for (i = 0; i < KDI_GATE_NVECS; i++)
232 		kdi_idt_write(&kdi_kgates[i], kdi_gate_specs[i].kgs_vec);
233 }
234 
235 /*
236  * Called when we switch to the kernel's IDT.  We need to interpose on the
237  * kernel's IDT entries and stop using KMDBCODE_SEL.
238  */
239 void
240 kdi_idt_sync(void)
241 {
242 	kdi_idt_init(KCS_SEL);
243 	kdi_idt_gates_install(KCS_SEL, KDI_IDT_SAVE);
244 }
245 
246 void
247 kdi_update_drreg(kdi_drreg_t *drreg)
248 {
249 	kdi_drreg = *drreg;
250 }
251 
252 void
253 kdi_memrange_add(caddr_t base, size_t len)
254 {
255 	kdi_memrange_t *mr = &kdi_memranges[kdi_nmemranges];
256 
257 	ASSERT(kdi_nmemranges != KDI_MEMRANGES_MAX);
258 
259 	mr->mr_base = base;
260 	mr->mr_lim = base + len - 1;
261 	kdi_nmemranges++;
262 }
263 
264 void
265 kdi_idt_switch(kdi_cpusave_t *cpusave)
266 {
267 	if (cpusave == NULL)
268 		kdi_idtr_set(kdi_idt, sizeof (kdi_idt) - 1);
269 	else
270 		kdi_idtr_set(cpusave->krs_idt, (sizeof (*idt0) * NIDT) - 1);
271 }
272 
273 /*
274  * Activation for CPUs other than the boot CPU, called from that CPU's
275  * mp_startup().  We saved the kernel's descriptors when we initialized the
276  * boot CPU, so we don't want to do it again.  Saving the handlers from this
277  * CPU's IDT would actually be dangerous with the CPU initialization method in
278  * use at the time of this writing.  With that method, the startup code creates
279  * the IDTs for slave CPUs by copying the one used by the boot CPU, which has
280  * already been interposed upon by KMDB.  Were we to interpose again, we'd
281  * replace the kernel's descriptors with our own in the save area.  By not
282  * saving, but still overwriting, we'll work in the current world, and in any
283  * future world where the IDT is generated from scratch.
284  */
285 void
286 kdi_cpu_init(void)
287 {
288 	kdi_idt_gates_install(KCS_SEL, KDI_IDT_NOSAVE);
289 	/* Load the debug registers. */
290 	kdi_cpu_debug_init(&kdi_cpusave[CPU->cpu_id]);
291 }
292 
293 /*
294  * Activation for all CPUs for mod-loaded kmdb, i.e. a kmdb that wasn't
295  * loaded at boot.
296  */
297 static int
298 kdi_cpu_activate(void)
299 {
300 	kdi_idt_gates_install(KCS_SEL, KDI_IDT_SAVE);
301 	return (0);
302 }
303 
304 void
305 kdi_activate(kdi_main_t main, kdi_cpusave_t *cpusave, uint_t ncpusave)
306 {
307 	int i;
308 	cpuset_t cpuset;
309 
310 	CPUSET_ALL(cpuset);
311 
312 	kdi_cpusave = cpusave;
313 	kdi_ncpusave = ncpusave;
314 
315 	kdi_kmdb_main = main;
316 
317 	for (i = 0; i < kdi_ncpusave; i++) {
318 		kdi_cpusave[i].krs_cpu_id = i;
319 
320 		kdi_cpusave[i].krs_curcrumb =
321 		    &kdi_cpusave[i].krs_crumbs[KDI_NCRUMBS - 1];
322 		kdi_cpusave[i].krs_curcrumbidx = KDI_NCRUMBS - 1;
323 	}
324 
325 	if (boothowto & RB_KMDB)
326 		kdi_idt_init(KMDBCODE_SEL);
327 	else
328 		kdi_idt_init(KCS_SEL);
329 
330 	/* The initial selector set.  Updated by the debugger-entry code */
331 #ifndef __amd64
332 	kdi_cs = B32CODE_SEL;
333 	kdi_ds = kdi_fs = kdi_gs = B32DATA_SEL;
334 #endif
335 
336 	kdi_memranges[0].mr_base = kdi_segdebugbase;
337 	kdi_memranges[0].mr_lim = kdi_segdebugbase + kdi_segdebugsize - 1;
338 	kdi_nmemranges = 1;
339 
340 	kdi_drreg.dr_ctl = KDIREG_DRCTL_RESERVED;
341 	kdi_drreg.dr_stat = KDIREG_DRSTAT_RESERVED;
342 
343 	if (boothowto & RB_KMDB) {
344 		kdi_idt_gates_install(KMDBCODE_SEL, KDI_IDT_NOSAVE);
345 	} else {
346 		xc_call(0, 0, 0, CPUSET2BV(cpuset),
347 		    (xc_func_t)kdi_cpu_activate);
348 	}
349 }
350 
351 static int
352 kdi_cpu_deactivate(void)
353 {
354 	kdi_idt_gates_restore();
355 	return (0);
356 }
357 
358 void
359 kdi_deactivate(void)
360 {
361 	cpuset_t cpuset;
362 	CPUSET_ALL(cpuset);
363 
364 	xc_call(0, 0, 0, CPUSET2BV(cpuset), (xc_func_t)kdi_cpu_deactivate);
365 	kdi_nmemranges = 0;
366 }
367 
368 /*
369  * We receive all breakpoints and single step traps.  Some of them,
370  * including those from userland and those induced by DTrace providers,
371  * are intended for the kernel, and must be processed there.  We adopt
372  * this ours-until-proven-otherwise position due to the painful
373  * consequences of sending the kernel an unexpected breakpoint or
374  * single step.  Unless someone can prove to us that the kernel is
375  * prepared to handle the trap, we'll assume there's a problem and will
376  * give the user a chance to debug it.
377  */
378 int
379 kdi_trap_pass(kdi_cpusave_t *cpusave)
380 {
381 	greg_t tt = cpusave->krs_gregs[KDIREG_TRAPNO];
382 	greg_t pc = cpusave->krs_gregs[KDIREG_PC];
383 	greg_t cs = cpusave->krs_gregs[KDIREG_CS];
384 
385 	if (USERMODE(cs))
386 		return (1);
387 
388 	if (tt != T_BPTFLT && tt != T_SGLSTP)
389 		return (0);
390 
391 	if (tt == T_BPTFLT && kdi_dtrace_get_state() ==
392 	    KDI_DTSTATE_DTRACE_ACTIVE)
393 		return (1);
394 
395 	/*
396 	 * See the comments in the kernel's T_SGLSTP handler for why we need to
397 	 * do this.
398 	 */
399 #if !defined(__xpv)
400 	if (tt == T_SGLSTP &&
401 	    (pc == (greg_t)sys_sysenter || pc == (greg_t)brand_sys_sysenter ||
402 	    pc == (greg_t)tr_sys_sysenter ||
403 	    pc == (greg_t)tr_brand_sys_sysenter)) {
404 #else
405 	if (tt == T_SGLSTP &&
406 	    (pc == (greg_t)sys_sysenter || pc == (greg_t)brand_sys_sysenter)) {
407 #endif
408 		return (1);
409 	}
410 
411 	return (0);
412 }
413 
414 /*
415  * State has been saved, and all CPUs are on the CPU-specific stacks.  All
416  * CPUs enter here, and head off into the debugger proper.
417  */
418 void
419 kdi_debugger_entry(kdi_cpusave_t *cpusave)
420 {
421 	/*
422 	 * BPTFLT gives us control with %eip set to the instruction *after*
423 	 * the int 3.  Back it off, so we're looking at the instruction that
424 	 * triggered the fault.
425 	 */
426 	if (cpusave->krs_gregs[KDIREG_TRAPNO] == T_BPTFLT)
427 		cpusave->krs_gregs[KDIREG_PC]--;
428 
429 	kdi_kmdb_main(cpusave);
430 }
431