xref: /illumos-gate/usr/src/uts/intel/io/vmm/vmm_sol_dev.c (revision 784279176e68a516c9e391eb98dda7bd543fa6dd)
1 /*
2  * This file and its contents are supplied under the terms of the
3  * Common Development and Distribution License ("CDDL"), version 1.0.
4  * You may only use this file in accordance with the terms of version
5  * 1.0 of the CDDL.
6  *
7  * A full copy of the text of the CDDL should have accompanied this
8  * source.  A copy of the CDDL is also available via the Internet at
9  * http://www.illumos.org/license/CDDL.
10  */
11 /* This file is dual-licensed; see usr/src/contrib/bhyve/LICENSE */
12 
13 /*
14  * Copyright 2015 Pluribus Networks Inc.
15  * Copyright 2019 Joyent, Inc.
16  * Copyright 2020 OmniOS Community Edition (OmniOSce) Association.
17  * Copyright 2023 Oxide Computer Company
18  */
19 
20 #include <sys/types.h>
21 #include <sys/conf.h>
22 #include <sys/cpuvar.h>
23 #include <sys/ioccom.h>
24 #include <sys/stat.h>
25 #include <sys/vmsystm.h>
26 #include <sys/ddi.h>
27 #include <sys/mkdev.h>
28 #include <sys/sunddi.h>
29 #include <sys/fs/dv_node.h>
30 #include <sys/cpuset.h>
31 #include <sys/id_space.h>
32 #include <sys/fs/sdev_plugin.h>
33 #include <sys/smt.h>
34 #include <sys/kstat.h>
35 
36 #include <sys/kernel.h>
37 #include <sys/hma.h>
38 #include <sys/x86_archext.h>
39 #include <x86/apicreg.h>
40 
41 #include <sys/vmm.h>
42 #include <sys/vmm_kernel.h>
43 #include <sys/vmm_instruction_emul.h>
44 #include <sys/vmm_dev.h>
45 #include <sys/vmm_impl.h>
46 #include <sys/vmm_drv.h>
47 #include <sys/vmm_vm.h>
48 #include <sys/vmm_reservoir.h>
49 
50 #include <vm/seg_dev.h>
51 
52 #include "io/ppt.h"
53 #include "io/vatpic.h"
54 #include "io/vioapic.h"
55 #include "io/vrtc.h"
56 #include "io/vhpet.h"
57 #include "io/vpmtmr.h"
58 #include "vmm_lapic.h"
59 #include "vmm_stat.h"
60 #include "vmm_util.h"
61 
62 /*
63  * Locking details:
64  *
65  * Driver-wide data (vmmdev_*) , including HMA and sdev registration, is
66  * protected by vmmdev_mtx.  The list of vmm_softc_t instances and related data
67  * (vmm_*) are protected by vmm_mtx.  Actions requiring both locks must acquire
68  * vmmdev_mtx before vmm_mtx.  The sdev plugin functions must not attempt to
69  * acquire vmmdev_mtx, as they could deadlock with plugin unregistration.
70  */
71 
72 static kmutex_t		vmmdev_mtx;
73 static dev_info_t	*vmmdev_dip;
74 static hma_reg_t	*vmmdev_hma_reg;
75 static uint_t		vmmdev_hma_ref;
76 static sdev_plugin_hdl_t vmmdev_sdev_hdl;
77 
78 static kmutex_t		vmm_mtx;
79 static list_t		vmm_list;
80 static id_space_t	*vmm_minors;
81 static void		*vmm_statep;
82 
83 /* temporary safety switch */
84 int		vmm_allow_state_writes;
85 
86 static const char *vmmdev_hvm_name = "bhyve";
87 
88 /* For sdev plugin (/dev) */
89 #define	VMM_SDEV_ROOT "/dev/vmm"
90 
91 /* From uts/intel/io/vmm/intel/vmx.c */
92 extern int vmx_x86_supported(const char **);
93 
94 /* Holds and hooks from drivers external to vmm */
95 struct vmm_hold {
96 	list_node_t	vmh_node;
97 	vmm_softc_t	*vmh_sc;
98 	boolean_t	vmh_release_req;
99 	uint_t		vmh_ioport_hook_cnt;
100 };
101 
102 struct vmm_lease {
103 	list_node_t		vml_node;
104 	struct vm		*vml_vm;
105 	vm_client_t		*vml_vmclient;
106 	boolean_t		vml_expired;
107 	boolean_t		vml_break_deferred;
108 	boolean_t		(*vml_expire_func)(void *);
109 	void			*vml_expire_arg;
110 	struct vmm_hold		*vml_hold;
111 };
112 
113 /* Options for vmm_destroy_locked */
114 typedef enum vmm_destroy_opts {
115 	VDO_DEFAULT		= 0,
116 	/*
117 	 * Indicate that zone-specific-data associated with this VM not be
118 	 * cleaned up as part of the destroy.  Skipping ZSD clean-up is
119 	 * necessary when VM is being destroyed as part of zone destruction,
120 	 * when said ZSD is already being cleaned up.
121 	 */
122 	VDO_NO_CLEAN_ZSD	= (1 << 0),
123 	/*
124 	 * Attempt to wait for VM destruction to complete.  This is opt-in,
125 	 * since there are many normal conditions which could lead to
126 	 * destruction being stalled pending other clean-up.
127 	 */
128 	VDO_ATTEMPT_WAIT	= (1 << 1),
129 } vmm_destroy_opts_t;
130 
131 static void vmm_hma_release(void);
132 static int vmm_destroy_locked(vmm_softc_t *, vmm_destroy_opts_t, bool *);
133 static int vmm_drv_block_hook(vmm_softc_t *, boolean_t);
134 static void vmm_lease_block(vmm_softc_t *);
135 static void vmm_lease_unblock(vmm_softc_t *);
136 static int vmm_kstat_alloc(vmm_softc_t *, minor_t, const cred_t *);
137 static void vmm_kstat_init(vmm_softc_t *);
138 static void vmm_kstat_fini(vmm_softc_t *);
139 
140 /*
141  * The 'devmem' hack:
142  *
143  * On native FreeBSD, bhyve consumers are allowed to create 'devmem' segments
144  * in the vm which appear with their own name related to the vm under /dev.
145  * Since this would be a hassle from an sdev perspective and would require a
146  * new cdev interface (or complicate the existing one), we choose to implement
147  * this in a different manner.  Direct access to the underlying vm memory
148  * segments is exposed by placing them in a range of offsets beyond the normal
149  * guest memory space.  Userspace can query the appropriate offset to mmap()
150  * for a given segment-id with the VM_DEVMEM_GETOFFSET ioctl.
151  */
152 
153 static vmm_devmem_entry_t *
154 vmmdev_devmem_find(vmm_softc_t *sc, int segid)
155 {
156 	vmm_devmem_entry_t *ent = NULL;
157 	list_t *dl = &sc->vmm_devmem_list;
158 
159 	for (ent = list_head(dl); ent != NULL; ent = list_next(dl, ent)) {
160 		if (ent->vde_segid == segid) {
161 			return (ent);
162 		}
163 	}
164 	return (NULL);
165 }
166 
167 static int
168 vmmdev_get_memseg(vmm_softc_t *sc, struct vm_memseg *mseg)
169 {
170 	int error;
171 	bool sysmem;
172 
173 	error = vm_get_memseg(sc->vmm_vm, mseg->segid, &mseg->len, &sysmem,
174 	    NULL);
175 	if (error || mseg->len == 0)
176 		return (error);
177 
178 	if (!sysmem) {
179 		vmm_devmem_entry_t *de;
180 
181 		de = vmmdev_devmem_find(sc, mseg->segid);
182 		if (de != NULL) {
183 			(void) strlcpy(mseg->name, de->vde_name,
184 			    sizeof (mseg->name));
185 		}
186 	} else {
187 		bzero(mseg->name, sizeof (mseg->name));
188 	}
189 
190 	return (error);
191 }
192 
193 static int
194 vmmdev_devmem_create(vmm_softc_t *sc, struct vm_memseg *mseg, const char *name)
195 {
196 	off_t map_offset;
197 	vmm_devmem_entry_t *entry;
198 
199 	if (list_is_empty(&sc->vmm_devmem_list)) {
200 		map_offset = VM_DEVMEM_START;
201 	} else {
202 		entry = list_tail(&sc->vmm_devmem_list);
203 		map_offset = entry->vde_off + entry->vde_len;
204 		if (map_offset < entry->vde_off) {
205 			/* Do not tolerate overflow */
206 			return (ERANGE);
207 		}
208 		/*
209 		 * XXXJOY: We could choose to search the list for duplicate
210 		 * names and toss an error.  Since we're using the offset
211 		 * method for now, it does not make much of a difference.
212 		 */
213 	}
214 
215 	entry = kmem_zalloc(sizeof (*entry), KM_SLEEP);
216 	entry->vde_segid = mseg->segid;
217 	entry->vde_len = mseg->len;
218 	entry->vde_off = map_offset;
219 	(void) strlcpy(entry->vde_name, name, sizeof (entry->vde_name));
220 	list_insert_tail(&sc->vmm_devmem_list, entry);
221 
222 	return (0);
223 }
224 
225 static boolean_t
226 vmmdev_devmem_segid(vmm_softc_t *sc, off_t off, off_t len, int *segidp,
227     off_t *map_offp)
228 {
229 	list_t *dl = &sc->vmm_devmem_list;
230 	vmm_devmem_entry_t *de = NULL;
231 	const off_t map_end = off + len;
232 
233 	VERIFY(off >= VM_DEVMEM_START);
234 
235 	if (map_end < off) {
236 		/* No match on overflow */
237 		return (B_FALSE);
238 	}
239 
240 	for (de = list_head(dl); de != NULL; de = list_next(dl, de)) {
241 		const off_t item_end = de->vde_off + de->vde_len;
242 
243 		if (de->vde_off <= off && item_end >= map_end) {
244 			*segidp = de->vde_segid;
245 			*map_offp = off - de->vde_off;
246 			return (B_TRUE);
247 		}
248 	}
249 	return (B_FALSE);
250 }
251 
252 /*
253  * When an instance is being destroyed, the devmem list of named memory objects
254  * can be torn down, as no new mappings are allowed.
255  */
256 static void
257 vmmdev_devmem_purge(vmm_softc_t *sc)
258 {
259 	vmm_devmem_entry_t *entry;
260 
261 	while ((entry = list_remove_head(&sc->vmm_devmem_list)) != NULL) {
262 		kmem_free(entry, sizeof (*entry));
263 	}
264 }
265 
266 static int
267 vmmdev_alloc_memseg(vmm_softc_t *sc, struct vm_memseg *mseg)
268 {
269 	int error;
270 	bool sysmem = true;
271 
272 	if (VM_MEMSEG_NAME(mseg)) {
273 		sysmem = false;
274 	}
275 	error = vm_alloc_memseg(sc->vmm_vm, mseg->segid, mseg->len, sysmem);
276 
277 	if (error == 0) {
278 		/*
279 		 * Rather than create a whole fresh device from which userspace
280 		 * can mmap this segment, instead make it available at an
281 		 * offset above where the main guest memory resides.
282 		 */
283 		error = vmmdev_devmem_create(sc, mseg, mseg->name);
284 		if (error != 0) {
285 			vm_free_memseg(sc->vmm_vm, mseg->segid);
286 		}
287 	}
288 	return (error);
289 }
290 
291 /*
292  * Resource Locking and Exclusion
293  *
294  * Much of bhyve depends on key portions of VM state, such as the guest memory
295  * map, to remain unchanged while the guest is running.  As ported from
296  * FreeBSD, the initial strategy for this resource exclusion hinged on gating
297  * access to the instance vCPUs.  Threads acting on a single vCPU, like those
298  * performing the work of actually running the guest in VMX/SVM, would lock
299  * only that vCPU during ioctl() entry.  For ioctls which would change VM-wide
300  * state, all of the vCPUs would be first locked, ensuring that the
301  * operation(s) could complete without any other threads stumbling into
302  * intermediate states.
303  *
304  * This approach is largely effective for bhyve.  Common operations, such as
305  * running the vCPUs, steer clear of lock contention.  The model begins to
306  * break down for operations which do not occur in the context of a specific
307  * vCPU.  LAPIC MSI delivery, for example, may be initiated from a worker
308  * thread in the bhyve process.  In order to properly protect those vCPU-less
309  * operations from encountering invalid states, additional locking is required.
310  * This was solved by forcing those operations to lock the VM_MAXCPU-1 vCPU.
311  * It does mean that class of operations will be serialized on locking the
312  * specific vCPU and that instances sized at VM_MAXCPU will potentially see
313  * undue contention on the VM_MAXCPU-1 vCPU.
314  *
315  * In order to address the shortcomings of this model, the concept of a
316  * read/write lock has been added to bhyve.  Operations which change
317  * fundamental aspects of a VM (such as the memory map) must acquire the write
318  * lock, which also implies locking all of the vCPUs and waiting for all read
319  * lock holders to release.  While it increases the cost and waiting time for
320  * those few operations, it allows most hot-path operations on the VM (which
321  * depend on its configuration remaining stable) to occur with minimal locking.
322  *
323  * Consumers of the Driver API (see below) are a special case when it comes to
324  * this locking, since they may hold a read lock via the drv_lease mechanism
325  * for an extended period of time.  Rather than forcing those consumers to
326  * continuously poll for a write lock attempt, the lease system forces them to
327  * provide a release callback to trigger their clean-up (and potential later
328  * reacquisition) of the read lock.
329  */
330 
331 static void
332 vcpu_lock_one(vmm_softc_t *sc, int vcpu)
333 {
334 	ASSERT(vcpu >= 0 && vcpu < VM_MAXCPU);
335 
336 	/*
337 	 * Since this state transition is utilizing from_idle=true, it should
338 	 * not fail, but rather block until it can be successful.
339 	 */
340 	VERIFY0(vcpu_set_state(sc->vmm_vm, vcpu, VCPU_FROZEN, true));
341 }
342 
343 static void
344 vcpu_unlock_one(vmm_softc_t *sc, int vcpu)
345 {
346 	ASSERT(vcpu >= 0 && vcpu < VM_MAXCPU);
347 
348 	VERIFY3U(vcpu_get_state(sc->vmm_vm, vcpu, NULL), ==, VCPU_FROZEN);
349 	VERIFY0(vcpu_set_state(sc->vmm_vm, vcpu, VCPU_IDLE, false));
350 }
351 
352 static void
353 vmm_read_lock(vmm_softc_t *sc)
354 {
355 	rw_enter(&sc->vmm_rwlock, RW_READER);
356 }
357 
358 static void
359 vmm_read_unlock(vmm_softc_t *sc)
360 {
361 	rw_exit(&sc->vmm_rwlock);
362 }
363 
364 static void
365 vmm_write_lock(vmm_softc_t *sc)
366 {
367 	int maxcpus;
368 
369 	/* First lock all the vCPUs */
370 	maxcpus = vm_get_maxcpus(sc->vmm_vm);
371 	for (int vcpu = 0; vcpu < maxcpus; vcpu++) {
372 		vcpu_lock_one(sc, vcpu);
373 	}
374 
375 	/*
376 	 * Block vmm_drv leases from being acquired or held while the VM write
377 	 * lock is held.
378 	 */
379 	vmm_lease_block(sc);
380 
381 	rw_enter(&sc->vmm_rwlock, RW_WRITER);
382 	/*
383 	 * For now, the 'maxcpus' value for an instance is fixed at the
384 	 * compile-time constant of VM_MAXCPU at creation.  If this changes in
385 	 * the future, allowing for dynamic vCPU resource sizing, acquisition
386 	 * of the write lock will need to be wary of such changes.
387 	 */
388 	VERIFY(maxcpus == vm_get_maxcpus(sc->vmm_vm));
389 }
390 
391 static void
392 vmm_write_unlock(vmm_softc_t *sc)
393 {
394 	int maxcpus;
395 
396 	/* Allow vmm_drv leases to be acquired once write lock is dropped */
397 	vmm_lease_unblock(sc);
398 
399 	/*
400 	 * The VM write lock _must_ be released from the same thread it was
401 	 * acquired in, unlike the read lock.
402 	 */
403 	VERIFY(rw_write_held(&sc->vmm_rwlock));
404 	rw_exit(&sc->vmm_rwlock);
405 
406 	/* Unlock all the vCPUs */
407 	maxcpus = vm_get_maxcpus(sc->vmm_vm);
408 	for (int vcpu = 0; vcpu < maxcpus; vcpu++) {
409 		vcpu_unlock_one(sc, vcpu);
410 	}
411 }
412 
413 static int
414 vmmdev_do_ioctl(vmm_softc_t *sc, int cmd, intptr_t arg, int md,
415     cred_t *credp, int *rvalp)
416 {
417 	int error = 0, vcpu = -1;
418 	void *datap = (void *)arg;
419 	enum vm_lock_type {
420 		LOCK_NONE = 0,
421 		LOCK_VCPU,
422 		LOCK_READ_HOLD,
423 		LOCK_WRITE_HOLD
424 	} lock_type = LOCK_NONE;
425 
426 	/* Acquire any exclusion resources needed for the operation. */
427 	switch (cmd) {
428 	case VM_RUN:
429 	case VM_GET_REGISTER:
430 	case VM_SET_REGISTER:
431 	case VM_GET_SEGMENT_DESCRIPTOR:
432 	case VM_SET_SEGMENT_DESCRIPTOR:
433 	case VM_GET_REGISTER_SET:
434 	case VM_SET_REGISTER_SET:
435 	case VM_INJECT_EXCEPTION:
436 	case VM_GET_CAPABILITY:
437 	case VM_SET_CAPABILITY:
438 	case VM_PPTDEV_MSI:
439 	case VM_PPTDEV_MSIX:
440 	case VM_SET_X2APIC_STATE:
441 	case VM_GLA2GPA:
442 	case VM_GLA2GPA_NOFAULT:
443 	case VM_ACTIVATE_CPU:
444 	case VM_SET_INTINFO:
445 	case VM_GET_INTINFO:
446 	case VM_RESTART_INSTRUCTION:
447 	case VM_SET_KERNEMU_DEV:
448 	case VM_GET_KERNEMU_DEV:
449 	case VM_RESET_CPU:
450 	case VM_GET_RUN_STATE:
451 	case VM_SET_RUN_STATE:
452 	case VM_GET_FPU:
453 	case VM_SET_FPU:
454 	case VM_GET_CPUID:
455 	case VM_SET_CPUID:
456 	case VM_LEGACY_CPUID:
457 		/*
458 		 * Copy in the ID of the vCPU chosen for this operation.
459 		 * Since a nefarious caller could update their struct between
460 		 * this locking and when the rest of the ioctl data is copied
461 		 * in, it is _critical_ that this local 'vcpu' variable be used
462 		 * rather than the in-struct one when performing the ioctl.
463 		 */
464 		if (ddi_copyin(datap, &vcpu, sizeof (vcpu), md)) {
465 			return (EFAULT);
466 		}
467 		if (vcpu < 0 || vcpu > vm_get_maxcpus(sc->vmm_vm)) {
468 			return (EINVAL);
469 		}
470 		vcpu_lock_one(sc, vcpu);
471 		lock_type = LOCK_VCPU;
472 		break;
473 
474 	case VM_REINIT:
475 	case VM_BIND_PPTDEV:
476 	case VM_UNBIND_PPTDEV:
477 	case VM_MAP_PPTDEV_MMIO:
478 	case VM_UNMAP_PPTDEV_MMIO:
479 	case VM_ALLOC_MEMSEG:
480 	case VM_MMAP_MEMSEG:
481 	case VM_MUNMAP_MEMSEG:
482 	case VM_WRLOCK_CYCLE:
483 	case VM_PMTMR_LOCATE:
484 	case VM_PAUSE:
485 	case VM_RESUME:
486 		vmm_write_lock(sc);
487 		lock_type = LOCK_WRITE_HOLD;
488 		break;
489 
490 	case VM_GET_MEMSEG:
491 	case VM_MMAP_GETNEXT:
492 	case VM_LAPIC_IRQ:
493 	case VM_INJECT_NMI:
494 	case VM_IOAPIC_ASSERT_IRQ:
495 	case VM_IOAPIC_DEASSERT_IRQ:
496 	case VM_IOAPIC_PULSE_IRQ:
497 	case VM_LAPIC_MSI:
498 	case VM_LAPIC_LOCAL_IRQ:
499 	case VM_GET_X2APIC_STATE:
500 	case VM_RTC_READ:
501 	case VM_RTC_WRITE:
502 	case VM_RTC_SETTIME:
503 	case VM_RTC_GETTIME:
504 	case VM_PPTDEV_DISABLE_MSIX:
505 	case VM_DEVMEM_GETOFFSET:
506 	case VM_TRACK_DIRTY_PAGES:
507 		vmm_read_lock(sc);
508 		lock_type = LOCK_READ_HOLD;
509 		break;
510 
511 	case VM_DATA_READ:
512 	case VM_DATA_WRITE:
513 		if (ddi_copyin(datap, &vcpu, sizeof (vcpu), md)) {
514 			return (EFAULT);
515 		}
516 		if (vcpu == -1) {
517 			/* Access data for VM-wide devices */
518 			vmm_write_lock(sc);
519 			lock_type = LOCK_WRITE_HOLD;
520 		} else if (vcpu >= 0 && vcpu < vm_get_maxcpus(sc->vmm_vm)) {
521 			/* Access data associated with a specific vCPU */
522 			vcpu_lock_one(sc, vcpu);
523 			lock_type = LOCK_VCPU;
524 		} else {
525 			return (EINVAL);
526 		}
527 		break;
528 
529 	case VM_GET_GPA_PMAP:
530 	case VM_IOAPIC_PINCOUNT:
531 	case VM_SUSPEND:
532 	case VM_DESC_FPU_AREA:
533 	case VM_SET_AUTODESTRUCT:
534 	case VM_DESTROY_SELF:
535 	case VM_DESTROY_PENDING:
536 	default:
537 		break;
538 	}
539 
540 	/* Execute the primary logic for the ioctl. */
541 	switch (cmd) {
542 	case VM_RUN: {
543 		struct vm_entry entry;
544 
545 		if (ddi_copyin(datap, &entry, sizeof (entry), md)) {
546 			error = EFAULT;
547 			break;
548 		}
549 
550 		if (!(curthread->t_schedflag & TS_VCPU))
551 			smt_mark_as_vcpu();
552 
553 		error = vm_run(sc->vmm_vm, vcpu, &entry);
554 
555 		/*
556 		 * Unexpected states in vm_run() are expressed through positive
557 		 * errno-oriented return values.  VM states which expect further
558 		 * processing in userspace (necessary context via exitinfo) are
559 		 * expressed through negative return values.  For the time being
560 		 * a return value of 0 is not expected from vm_run().
561 		 */
562 		ASSERT(error != 0);
563 		if (error < 0) {
564 			const struct vm_exit *vme;
565 			void *outp = entry.exit_data;
566 
567 			error = 0;
568 			vme = vm_exitinfo(sc->vmm_vm, vcpu);
569 			if (ddi_copyout(vme, outp, sizeof (*vme), md)) {
570 				error = EFAULT;
571 			}
572 		}
573 		break;
574 	}
575 	case VM_SUSPEND: {
576 		struct vm_suspend vmsuspend;
577 
578 		if (ddi_copyin(datap, &vmsuspend, sizeof (vmsuspend), md)) {
579 			error = EFAULT;
580 			break;
581 		}
582 		error = vm_suspend(sc->vmm_vm, vmsuspend.how);
583 		break;
584 	}
585 	case VM_REINIT: {
586 		struct vm_reinit reinit;
587 
588 		if (ddi_copyin(datap, &reinit, sizeof (reinit), md)) {
589 			error = EFAULT;
590 			break;
591 		}
592 		if ((error = vmm_drv_block_hook(sc, B_TRUE)) != 0) {
593 			/*
594 			 * The VM instance should be free of driver-attached
595 			 * hooks during the reinitialization process.
596 			 */
597 			break;
598 		}
599 		error = vm_reinit(sc->vmm_vm, reinit.flags);
600 		(void) vmm_drv_block_hook(sc, B_FALSE);
601 		break;
602 	}
603 	case VM_STAT_DESC: {
604 		struct vm_stat_desc statdesc;
605 
606 		if (ddi_copyin(datap, &statdesc, sizeof (statdesc), md)) {
607 			error = EFAULT;
608 			break;
609 		}
610 		error = vmm_stat_desc_copy(statdesc.index, statdesc.desc,
611 		    sizeof (statdesc.desc));
612 		if (error == 0 &&
613 		    ddi_copyout(&statdesc, datap, sizeof (statdesc), md)) {
614 			error = EFAULT;
615 			break;
616 		}
617 		break;
618 	}
619 	case VM_STATS_IOC: {
620 		struct vm_stats vmstats;
621 
622 		if (ddi_copyin(datap, &vmstats, sizeof (vmstats), md)) {
623 			error = EFAULT;
624 			break;
625 		}
626 		hrt2tv(gethrtime(), &vmstats.tv);
627 		error = vmm_stat_copy(sc->vmm_vm, vmstats.cpuid, vmstats.index,
628 		    nitems(vmstats.statbuf),
629 		    &vmstats.num_entries, vmstats.statbuf);
630 		if (error == 0 &&
631 		    ddi_copyout(&vmstats, datap, sizeof (vmstats), md)) {
632 			error = EFAULT;
633 			break;
634 		}
635 		break;
636 	}
637 
638 	case VM_PPTDEV_MSI: {
639 		struct vm_pptdev_msi pptmsi;
640 
641 		if (ddi_copyin(datap, &pptmsi, sizeof (pptmsi), md)) {
642 			error = EFAULT;
643 			break;
644 		}
645 		error = ppt_setup_msi(sc->vmm_vm, pptmsi.vcpu, pptmsi.pptfd,
646 		    pptmsi.addr, pptmsi.msg, pptmsi.numvec);
647 		break;
648 	}
649 	case VM_PPTDEV_MSIX: {
650 		struct vm_pptdev_msix pptmsix;
651 
652 		if (ddi_copyin(datap, &pptmsix, sizeof (pptmsix), md)) {
653 			error = EFAULT;
654 			break;
655 		}
656 		error = ppt_setup_msix(sc->vmm_vm, pptmsix.vcpu, pptmsix.pptfd,
657 		    pptmsix.idx, pptmsix.addr, pptmsix.msg,
658 		    pptmsix.vector_control);
659 		break;
660 	}
661 	case VM_PPTDEV_DISABLE_MSIX: {
662 		struct vm_pptdev pptdev;
663 
664 		if (ddi_copyin(datap, &pptdev, sizeof (pptdev), md)) {
665 			error = EFAULT;
666 			break;
667 		}
668 		error = ppt_disable_msix(sc->vmm_vm, pptdev.pptfd);
669 		break;
670 	}
671 	case VM_MAP_PPTDEV_MMIO: {
672 		struct vm_pptdev_mmio pptmmio;
673 
674 		if (ddi_copyin(datap, &pptmmio, sizeof (pptmmio), md)) {
675 			error = EFAULT;
676 			break;
677 		}
678 		error = ppt_map_mmio(sc->vmm_vm, pptmmio.pptfd, pptmmio.gpa,
679 		    pptmmio.len, pptmmio.hpa);
680 		break;
681 	}
682 	case VM_UNMAP_PPTDEV_MMIO: {
683 		struct vm_pptdev_mmio pptmmio;
684 
685 		if (ddi_copyin(datap, &pptmmio, sizeof (pptmmio), md)) {
686 			error = EFAULT;
687 			break;
688 		}
689 		error = ppt_unmap_mmio(sc->vmm_vm, pptmmio.pptfd, pptmmio.gpa,
690 		    pptmmio.len);
691 		break;
692 	}
693 	case VM_BIND_PPTDEV: {
694 		struct vm_pptdev pptdev;
695 
696 		if (ddi_copyin(datap, &pptdev, sizeof (pptdev), md)) {
697 			error = EFAULT;
698 			break;
699 		}
700 		error = vm_assign_pptdev(sc->vmm_vm, pptdev.pptfd);
701 		break;
702 	}
703 	case VM_UNBIND_PPTDEV: {
704 		struct vm_pptdev pptdev;
705 
706 		if (ddi_copyin(datap, &pptdev, sizeof (pptdev), md)) {
707 			error = EFAULT;
708 			break;
709 		}
710 		error = vm_unassign_pptdev(sc->vmm_vm, pptdev.pptfd);
711 		break;
712 	}
713 	case VM_GET_PPTDEV_LIMITS: {
714 		struct vm_pptdev_limits pptlimits;
715 
716 		if (ddi_copyin(datap, &pptlimits, sizeof (pptlimits), md)) {
717 			error = EFAULT;
718 			break;
719 		}
720 		error = ppt_get_limits(sc->vmm_vm, pptlimits.pptfd,
721 		    &pptlimits.msi_limit, &pptlimits.msix_limit);
722 		if (error == 0 &&
723 		    ddi_copyout(&pptlimits, datap, sizeof (pptlimits), md)) {
724 			error = EFAULT;
725 			break;
726 		}
727 		break;
728 	}
729 	case VM_INJECT_EXCEPTION: {
730 		struct vm_exception vmexc;
731 		if (ddi_copyin(datap, &vmexc, sizeof (vmexc), md)) {
732 			error = EFAULT;
733 			break;
734 		}
735 		error = vm_inject_exception(sc->vmm_vm, vcpu, vmexc.vector,
736 		    vmexc.error_code_valid != 0, vmexc.error_code,
737 		    vmexc.restart_instruction != 0);
738 		break;
739 	}
740 	case VM_INJECT_NMI: {
741 		struct vm_nmi vmnmi;
742 
743 		if (ddi_copyin(datap, &vmnmi, sizeof (vmnmi), md)) {
744 			error = EFAULT;
745 			break;
746 		}
747 		error = vm_inject_nmi(sc->vmm_vm, vmnmi.cpuid);
748 		break;
749 	}
750 	case VM_LAPIC_IRQ: {
751 		struct vm_lapic_irq vmirq;
752 
753 		if (ddi_copyin(datap, &vmirq, sizeof (vmirq), md)) {
754 			error = EFAULT;
755 			break;
756 		}
757 		error = lapic_intr_edge(sc->vmm_vm, vmirq.cpuid, vmirq.vector);
758 		break;
759 	}
760 	case VM_LAPIC_LOCAL_IRQ: {
761 		struct vm_lapic_irq vmirq;
762 
763 		if (ddi_copyin(datap, &vmirq, sizeof (vmirq), md)) {
764 			error = EFAULT;
765 			break;
766 		}
767 		error = lapic_set_local_intr(sc->vmm_vm, vmirq.cpuid,
768 		    vmirq.vector);
769 		break;
770 	}
771 	case VM_LAPIC_MSI: {
772 		struct vm_lapic_msi vmmsi;
773 
774 		if (ddi_copyin(datap, &vmmsi, sizeof (vmmsi), md)) {
775 			error = EFAULT;
776 			break;
777 		}
778 		error = lapic_intr_msi(sc->vmm_vm, vmmsi.addr, vmmsi.msg);
779 		break;
780 	}
781 
782 	case VM_IOAPIC_ASSERT_IRQ: {
783 		struct vm_ioapic_irq ioapic_irq;
784 
785 		if (ddi_copyin(datap, &ioapic_irq, sizeof (ioapic_irq), md)) {
786 			error = EFAULT;
787 			break;
788 		}
789 		error = vioapic_assert_irq(sc->vmm_vm, ioapic_irq.irq);
790 		break;
791 	}
792 	case VM_IOAPIC_DEASSERT_IRQ: {
793 		struct vm_ioapic_irq ioapic_irq;
794 
795 		if (ddi_copyin(datap, &ioapic_irq, sizeof (ioapic_irq), md)) {
796 			error = EFAULT;
797 			break;
798 		}
799 		error = vioapic_deassert_irq(sc->vmm_vm, ioapic_irq.irq);
800 		break;
801 	}
802 	case VM_IOAPIC_PULSE_IRQ: {
803 		struct vm_ioapic_irq ioapic_irq;
804 
805 		if (ddi_copyin(datap, &ioapic_irq, sizeof (ioapic_irq), md)) {
806 			error = EFAULT;
807 			break;
808 		}
809 		error = vioapic_pulse_irq(sc->vmm_vm, ioapic_irq.irq);
810 		break;
811 	}
812 	case VM_IOAPIC_PINCOUNT: {
813 		int pincount;
814 
815 		pincount = vioapic_pincount(sc->vmm_vm);
816 		if (ddi_copyout(&pincount, datap, sizeof (int), md)) {
817 			error = EFAULT;
818 			break;
819 		}
820 		break;
821 	}
822 	case VM_DESC_FPU_AREA: {
823 		struct vm_fpu_desc desc;
824 		void *buf = NULL;
825 
826 		if (ddi_copyin(datap, &desc, sizeof (desc), md)) {
827 			error = EFAULT;
828 			break;
829 		}
830 		if (desc.vfd_num_entries > 64) {
831 			error = EINVAL;
832 			break;
833 		}
834 		const size_t buf_sz = sizeof (struct vm_fpu_desc_entry) *
835 		    desc.vfd_num_entries;
836 		if (buf_sz != 0) {
837 			buf = kmem_zalloc(buf_sz, KM_SLEEP);
838 		}
839 
840 		/*
841 		 * For now, we are depending on vm_fpu_desc_entry and
842 		 * hma_xsave_state_desc_t having the same format.
843 		 */
844 		CTASSERT(sizeof (struct vm_fpu_desc_entry) ==
845 		    sizeof (hma_xsave_state_desc_t));
846 
847 		size_t req_size;
848 		const uint_t max_entries = hma_fpu_describe_xsave_state(
849 		    (hma_xsave_state_desc_t *)buf,
850 		    desc.vfd_num_entries,
851 		    &req_size);
852 
853 		desc.vfd_req_size = req_size;
854 		desc.vfd_num_entries = max_entries;
855 		if (buf_sz != 0) {
856 			if (ddi_copyout(buf, desc.vfd_entry_data, buf_sz, md)) {
857 				error = EFAULT;
858 			}
859 			kmem_free(buf, buf_sz);
860 		}
861 
862 		if (error == 0) {
863 			if (ddi_copyout(&desc, datap, sizeof (desc), md)) {
864 				error = EFAULT;
865 			}
866 		}
867 		break;
868 	}
869 	case VM_SET_AUTODESTRUCT: {
870 		/*
871 		 * Since this has to do with controlling the lifetime of the
872 		 * greater vmm_softc_t, the flag is protected by vmm_mtx, rather
873 		 * than the vcpu-centric or rwlock exclusion mechanisms.
874 		 */
875 		mutex_enter(&vmm_mtx);
876 		if (arg != 0) {
877 			sc->vmm_flags |= VMM_AUTODESTROY;
878 		} else {
879 			sc->vmm_flags &= ~VMM_AUTODESTROY;
880 		}
881 		mutex_exit(&vmm_mtx);
882 		break;
883 	}
884 	case VM_DESTROY_SELF: {
885 		bool hma_release = false;
886 
887 		/*
888 		 * Just like VMM_DESTROY_VM, but on the instance file descriptor
889 		 * itself, rather than having to perform a racy name lookup as
890 		 * part of the destroy process.
891 		 *
892 		 * Since vmm_destroy_locked() performs vCPU lock acquisition in
893 		 * order to kick the vCPUs out of guest context as part of any
894 		 * destruction, we do not need to worry about it ourself using
895 		 * the `lock_type` logic here.
896 		 */
897 		mutex_enter(&vmm_mtx);
898 		VERIFY0(vmm_destroy_locked(sc, VDO_DEFAULT, &hma_release));
899 		mutex_exit(&vmm_mtx);
900 		if (hma_release) {
901 			vmm_hma_release();
902 		}
903 		break;
904 	}
905 	case VM_DESTROY_PENDING: {
906 		/*
907 		 * If we have made it this far, then destruction of the instance
908 		 * has not been initiated.
909 		 */
910 		*rvalp = 0;
911 		break;
912 	}
913 
914 	case VM_ISA_ASSERT_IRQ: {
915 		struct vm_isa_irq isa_irq;
916 
917 		if (ddi_copyin(datap, &isa_irq, sizeof (isa_irq), md)) {
918 			error = EFAULT;
919 			break;
920 		}
921 		error = vatpic_assert_irq(sc->vmm_vm, isa_irq.atpic_irq);
922 		if (error == 0 && isa_irq.ioapic_irq != -1) {
923 			error = vioapic_assert_irq(sc->vmm_vm,
924 			    isa_irq.ioapic_irq);
925 		}
926 		break;
927 	}
928 	case VM_ISA_DEASSERT_IRQ: {
929 		struct vm_isa_irq isa_irq;
930 
931 		if (ddi_copyin(datap, &isa_irq, sizeof (isa_irq), md)) {
932 			error = EFAULT;
933 			break;
934 		}
935 		error = vatpic_deassert_irq(sc->vmm_vm, isa_irq.atpic_irq);
936 		if (error == 0 && isa_irq.ioapic_irq != -1) {
937 			error = vioapic_deassert_irq(sc->vmm_vm,
938 			    isa_irq.ioapic_irq);
939 		}
940 		break;
941 	}
942 	case VM_ISA_PULSE_IRQ: {
943 		struct vm_isa_irq isa_irq;
944 
945 		if (ddi_copyin(datap, &isa_irq, sizeof (isa_irq), md)) {
946 			error = EFAULT;
947 			break;
948 		}
949 		error = vatpic_pulse_irq(sc->vmm_vm, isa_irq.atpic_irq);
950 		if (error == 0 && isa_irq.ioapic_irq != -1) {
951 			error = vioapic_pulse_irq(sc->vmm_vm,
952 			    isa_irq.ioapic_irq);
953 		}
954 		break;
955 	}
956 	case VM_ISA_SET_IRQ_TRIGGER: {
957 		struct vm_isa_irq_trigger isa_irq_trigger;
958 
959 		if (ddi_copyin(datap, &isa_irq_trigger,
960 		    sizeof (isa_irq_trigger), md)) {
961 			error = EFAULT;
962 			break;
963 		}
964 		error = vatpic_set_irq_trigger(sc->vmm_vm,
965 		    isa_irq_trigger.atpic_irq, isa_irq_trigger.trigger);
966 		break;
967 	}
968 
969 	case VM_MMAP_GETNEXT: {
970 		struct vm_memmap mm;
971 
972 		if (ddi_copyin(datap, &mm, sizeof (mm), md)) {
973 			error = EFAULT;
974 			break;
975 		}
976 		error = vm_mmap_getnext(sc->vmm_vm, &mm.gpa, &mm.segid,
977 		    &mm.segoff, &mm.len, &mm.prot, &mm.flags);
978 		if (error == 0 && ddi_copyout(&mm, datap, sizeof (mm), md)) {
979 			error = EFAULT;
980 			break;
981 		}
982 		break;
983 	}
984 	case VM_MMAP_MEMSEG: {
985 		struct vm_memmap mm;
986 
987 		if (ddi_copyin(datap, &mm, sizeof (mm), md)) {
988 			error = EFAULT;
989 			break;
990 		}
991 		error = vm_mmap_memseg(sc->vmm_vm, mm.gpa, mm.segid, mm.segoff,
992 		    mm.len, mm.prot, mm.flags);
993 		break;
994 	}
995 	case VM_MUNMAP_MEMSEG: {
996 		struct vm_munmap mu;
997 
998 		if (ddi_copyin(datap, &mu, sizeof (mu), md)) {
999 			error = EFAULT;
1000 			break;
1001 		}
1002 		error = vm_munmap_memseg(sc->vmm_vm, mu.gpa, mu.len);
1003 		break;
1004 	}
1005 	case VM_ALLOC_MEMSEG: {
1006 		struct vm_memseg vmseg;
1007 
1008 		if (ddi_copyin(datap, &vmseg, sizeof (vmseg), md)) {
1009 			error = EFAULT;
1010 			break;
1011 		}
1012 		error = vmmdev_alloc_memseg(sc, &vmseg);
1013 		break;
1014 	}
1015 	case VM_GET_MEMSEG: {
1016 		struct vm_memseg vmseg;
1017 
1018 		if (ddi_copyin(datap, &vmseg, sizeof (vmseg), md)) {
1019 			error = EFAULT;
1020 			break;
1021 		}
1022 		error = vmmdev_get_memseg(sc, &vmseg);
1023 		if (error == 0 &&
1024 		    ddi_copyout(&vmseg, datap, sizeof (vmseg), md)) {
1025 			error = EFAULT;
1026 			break;
1027 		}
1028 		break;
1029 	}
1030 	case VM_GET_REGISTER: {
1031 		struct vm_register vmreg;
1032 
1033 		if (ddi_copyin(datap, &vmreg, sizeof (vmreg), md)) {
1034 			error = EFAULT;
1035 			break;
1036 		}
1037 		error = vm_get_register(sc->vmm_vm, vcpu, vmreg.regnum,
1038 		    &vmreg.regval);
1039 		if (error == 0 &&
1040 		    ddi_copyout(&vmreg, datap, sizeof (vmreg), md)) {
1041 			error = EFAULT;
1042 			break;
1043 		}
1044 		break;
1045 	}
1046 	case VM_SET_REGISTER: {
1047 		struct vm_register vmreg;
1048 
1049 		if (ddi_copyin(datap, &vmreg, sizeof (vmreg), md)) {
1050 			error = EFAULT;
1051 			break;
1052 		}
1053 		error = vm_set_register(sc->vmm_vm, vcpu, vmreg.regnum,
1054 		    vmreg.regval);
1055 		break;
1056 	}
1057 	case VM_SET_SEGMENT_DESCRIPTOR: {
1058 		struct vm_seg_desc vmsegd;
1059 
1060 		if (ddi_copyin(datap, &vmsegd, sizeof (vmsegd), md)) {
1061 			error = EFAULT;
1062 			break;
1063 		}
1064 		error = vm_set_seg_desc(sc->vmm_vm, vcpu, vmsegd.regnum,
1065 		    &vmsegd.desc);
1066 		break;
1067 	}
1068 	case VM_GET_SEGMENT_DESCRIPTOR: {
1069 		struct vm_seg_desc vmsegd;
1070 
1071 		if (ddi_copyin(datap, &vmsegd, sizeof (vmsegd), md)) {
1072 			error = EFAULT;
1073 			break;
1074 		}
1075 		error = vm_get_seg_desc(sc->vmm_vm, vcpu, vmsegd.regnum,
1076 		    &vmsegd.desc);
1077 		if (error == 0 &&
1078 		    ddi_copyout(&vmsegd, datap, sizeof (vmsegd), md)) {
1079 			error = EFAULT;
1080 			break;
1081 		}
1082 		break;
1083 	}
1084 	case VM_GET_REGISTER_SET: {
1085 		struct vm_register_set vrs;
1086 		int regnums[VM_REG_LAST];
1087 		uint64_t regvals[VM_REG_LAST];
1088 
1089 		if (ddi_copyin(datap, &vrs, sizeof (vrs), md)) {
1090 			error = EFAULT;
1091 			break;
1092 		}
1093 		if (vrs.count > VM_REG_LAST || vrs.count == 0) {
1094 			error = EINVAL;
1095 			break;
1096 		}
1097 		if (ddi_copyin(vrs.regnums, regnums,
1098 		    sizeof (int) * vrs.count, md)) {
1099 			error = EFAULT;
1100 			break;
1101 		}
1102 
1103 		error = 0;
1104 		for (uint_t i = 0; i < vrs.count && error == 0; i++) {
1105 			if (regnums[i] < 0) {
1106 				error = EINVAL;
1107 				break;
1108 			}
1109 			error = vm_get_register(sc->vmm_vm, vcpu, regnums[i],
1110 			    &regvals[i]);
1111 		}
1112 		if (error == 0 && ddi_copyout(regvals, vrs.regvals,
1113 		    sizeof (uint64_t) * vrs.count, md)) {
1114 			error = EFAULT;
1115 		}
1116 		break;
1117 	}
1118 	case VM_SET_REGISTER_SET: {
1119 		struct vm_register_set vrs;
1120 		int regnums[VM_REG_LAST];
1121 		uint64_t regvals[VM_REG_LAST];
1122 
1123 		if (ddi_copyin(datap, &vrs, sizeof (vrs), md)) {
1124 			error = EFAULT;
1125 			break;
1126 		}
1127 		if (vrs.count > VM_REG_LAST || vrs.count == 0) {
1128 			error = EINVAL;
1129 			break;
1130 		}
1131 		if (ddi_copyin(vrs.regnums, regnums,
1132 		    sizeof (int) * vrs.count, md)) {
1133 			error = EFAULT;
1134 			break;
1135 		}
1136 		if (ddi_copyin(vrs.regvals, regvals,
1137 		    sizeof (uint64_t) * vrs.count, md)) {
1138 			error = EFAULT;
1139 			break;
1140 		}
1141 
1142 		error = 0;
1143 		for (uint_t i = 0; i < vrs.count && error == 0; i++) {
1144 			/*
1145 			 * Setting registers in a set is not atomic, since a
1146 			 * failure in the middle of the set will cause a
1147 			 * bail-out and inconsistent register state.  Callers
1148 			 * should be wary of this.
1149 			 */
1150 			if (regnums[i] < 0) {
1151 				error = EINVAL;
1152 				break;
1153 			}
1154 			error = vm_set_register(sc->vmm_vm, vcpu, regnums[i],
1155 			    regvals[i]);
1156 		}
1157 		break;
1158 	}
1159 	case VM_RESET_CPU: {
1160 		struct vm_vcpu_reset vvr;
1161 
1162 		if (ddi_copyin(datap, &vvr, sizeof (vvr), md)) {
1163 			error = EFAULT;
1164 			break;
1165 		}
1166 		if (vvr.kind != VRK_RESET && vvr.kind != VRK_INIT) {
1167 			error = EINVAL;
1168 		}
1169 
1170 		error = vcpu_arch_reset(sc->vmm_vm, vcpu, vvr.kind == VRK_INIT);
1171 		break;
1172 	}
1173 	case VM_GET_RUN_STATE: {
1174 		struct vm_run_state vrs;
1175 
1176 		bzero(&vrs, sizeof (vrs));
1177 		error = vm_get_run_state(sc->vmm_vm, vcpu, &vrs.state,
1178 		    &vrs.sipi_vector);
1179 		if (error == 0) {
1180 			if (ddi_copyout(&vrs, datap, sizeof (vrs), md)) {
1181 				error = EFAULT;
1182 				break;
1183 			}
1184 		}
1185 		break;
1186 	}
1187 	case VM_SET_RUN_STATE: {
1188 		struct vm_run_state vrs;
1189 
1190 		if (ddi_copyin(datap, &vrs, sizeof (vrs), md)) {
1191 			error = EFAULT;
1192 			break;
1193 		}
1194 		error = vm_set_run_state(sc->vmm_vm, vcpu, vrs.state,
1195 		    vrs.sipi_vector);
1196 		break;
1197 	}
1198 	case VM_GET_FPU: {
1199 		struct vm_fpu_state req;
1200 		const size_t max_len = (PAGESIZE * 2);
1201 		void *kbuf;
1202 
1203 		if (ddi_copyin(datap, &req, sizeof (req), md)) {
1204 			error = EFAULT;
1205 			break;
1206 		}
1207 		if (req.len > max_len || req.len == 0) {
1208 			error = EINVAL;
1209 			break;
1210 		}
1211 		kbuf = kmem_zalloc(req.len, KM_SLEEP);
1212 		error = vm_get_fpu(sc->vmm_vm, vcpu, kbuf, req.len);
1213 		if (error == 0) {
1214 			if (ddi_copyout(kbuf, req.buf, req.len, md)) {
1215 				error = EFAULT;
1216 			}
1217 		}
1218 		kmem_free(kbuf, req.len);
1219 		break;
1220 	}
1221 	case VM_SET_FPU: {
1222 		struct vm_fpu_state req;
1223 		const size_t max_len = (PAGESIZE * 2);
1224 		void *kbuf;
1225 
1226 		if (ddi_copyin(datap, &req, sizeof (req), md)) {
1227 			error = EFAULT;
1228 			break;
1229 		}
1230 		if (req.len > max_len || req.len == 0) {
1231 			error = EINVAL;
1232 			break;
1233 		}
1234 		kbuf = kmem_alloc(req.len, KM_SLEEP);
1235 		if (ddi_copyin(req.buf, kbuf, req.len, md)) {
1236 			error = EFAULT;
1237 		} else {
1238 			error = vm_set_fpu(sc->vmm_vm, vcpu, kbuf, req.len);
1239 		}
1240 		kmem_free(kbuf, req.len);
1241 		break;
1242 	}
1243 	case VM_GET_CPUID: {
1244 		struct vm_vcpu_cpuid_config cfg;
1245 		struct vcpu_cpuid_entry *entries = NULL;
1246 
1247 		if (ddi_copyin(datap, &cfg, sizeof (cfg), md)) {
1248 			error = EFAULT;
1249 			break;
1250 		}
1251 		if (cfg.vvcc_nent > VMM_MAX_CPUID_ENTRIES) {
1252 			error = EINVAL;
1253 			break;
1254 		}
1255 
1256 		const size_t entries_size =
1257 		    cfg.vvcc_nent * sizeof (struct vcpu_cpuid_entry);
1258 		if (entries_size != 0) {
1259 			entries = kmem_zalloc(entries_size, KM_SLEEP);
1260 		}
1261 
1262 		vcpu_cpuid_config_t vm_cfg = {
1263 			.vcc_nent = cfg.vvcc_nent,
1264 			.vcc_entries = entries,
1265 		};
1266 		error = vm_get_cpuid(sc->vmm_vm, vcpu, &vm_cfg);
1267 
1268 		/*
1269 		 * Only attempt to copy out the resultant entries if we were
1270 		 * able to query them from the instance.  The flags and number
1271 		 * of entries are emitted regardless.
1272 		 */
1273 		cfg.vvcc_flags = vm_cfg.vcc_flags;
1274 		cfg.vvcc_nent = vm_cfg.vcc_nent;
1275 		if (entries != NULL) {
1276 			if (error == 0 && ddi_copyout(entries, cfg.vvcc_entries,
1277 			    entries_size, md) != 0) {
1278 				error = EFAULT;
1279 			}
1280 
1281 			kmem_free(entries, entries_size);
1282 		}
1283 
1284 		if (ddi_copyout(&cfg, datap, sizeof (cfg), md) != 0) {
1285 			error = EFAULT;
1286 		}
1287 		break;
1288 	}
1289 	case VM_SET_CPUID: {
1290 		struct vm_vcpu_cpuid_config cfg;
1291 		struct vcpu_cpuid_entry *entries = NULL;
1292 		size_t entries_size = 0;
1293 
1294 		if (ddi_copyin(datap, &cfg, sizeof (cfg), md)) {
1295 			error = EFAULT;
1296 			break;
1297 		}
1298 		if (cfg.vvcc_nent > VMM_MAX_CPUID_ENTRIES) {
1299 			error = EFBIG;
1300 			break;
1301 		}
1302 		if ((cfg.vvcc_flags & VCC_FLAG_LEGACY_HANDLING) != 0) {
1303 			/*
1304 			 * If we are being instructed to use "legacy" handling,
1305 			 * then no entries should be provided, since the static
1306 			 * in-kernel masking will be used.
1307 			 */
1308 			if (cfg.vvcc_nent != 0) {
1309 				error = EINVAL;
1310 				break;
1311 			}
1312 		} else if (cfg.vvcc_nent != 0) {
1313 			entries_size =
1314 			    cfg.vvcc_nent * sizeof (struct vcpu_cpuid_entry);
1315 			entries = kmem_alloc(entries_size, KM_SLEEP);
1316 
1317 			if (ddi_copyin(cfg.vvcc_entries, entries, entries_size,
1318 			    md) != 0) {
1319 				error = EFAULT;
1320 				kmem_free(entries, entries_size);
1321 				break;
1322 			}
1323 		}
1324 
1325 		vcpu_cpuid_config_t vm_cfg = {
1326 			.vcc_flags = cfg.vvcc_flags,
1327 			.vcc_nent = cfg.vvcc_nent,
1328 			.vcc_entries = entries,
1329 		};
1330 		error = vm_set_cpuid(sc->vmm_vm, vcpu, &vm_cfg);
1331 
1332 		if (entries != NULL) {
1333 			kmem_free(entries, entries_size);
1334 		}
1335 		break;
1336 	}
1337 	case VM_LEGACY_CPUID: {
1338 		struct vm_legacy_cpuid vlc;
1339 		if (ddi_copyin(datap, &vlc, sizeof (vlc), md)) {
1340 			error = EFAULT;
1341 			break;
1342 		}
1343 		vlc.vlc_vcpuid = vcpu;
1344 
1345 		legacy_emulate_cpuid(sc->vmm_vm, vcpu, &vlc.vlc_eax,
1346 		    &vlc.vlc_ebx, &vlc.vlc_ecx, &vlc.vlc_edx);
1347 
1348 		if (ddi_copyout(&vlc, datap, sizeof (vlc), md)) {
1349 			error = EFAULT;
1350 			break;
1351 		}
1352 		break;
1353 	}
1354 
1355 	case VM_SET_KERNEMU_DEV:
1356 	case VM_GET_KERNEMU_DEV: {
1357 		struct vm_readwrite_kernemu_device kemu;
1358 		size_t size = 0;
1359 
1360 		if (ddi_copyin(datap, &kemu, sizeof (kemu), md)) {
1361 			error = EFAULT;
1362 			break;
1363 		}
1364 
1365 		if (kemu.access_width > 3) {
1366 			error = EINVAL;
1367 			break;
1368 		}
1369 		size = (1 << kemu.access_width);
1370 		ASSERT(size >= 1 && size <= 8);
1371 
1372 		if (cmd == VM_SET_KERNEMU_DEV) {
1373 			error = vm_service_mmio_write(sc->vmm_vm, vcpu,
1374 			    kemu.gpa, kemu.value, size);
1375 		} else {
1376 			error = vm_service_mmio_read(sc->vmm_vm, vcpu,
1377 			    kemu.gpa, &kemu.value, size);
1378 		}
1379 
1380 		if (error == 0) {
1381 			if (ddi_copyout(&kemu, datap, sizeof (kemu), md)) {
1382 				error = EFAULT;
1383 				break;
1384 			}
1385 		}
1386 		break;
1387 	}
1388 
1389 	case VM_GET_CAPABILITY: {
1390 		struct vm_capability vmcap;
1391 
1392 		if (ddi_copyin(datap, &vmcap, sizeof (vmcap), md)) {
1393 			error = EFAULT;
1394 			break;
1395 		}
1396 		error = vm_get_capability(sc->vmm_vm, vcpu, vmcap.captype,
1397 		    &vmcap.capval);
1398 		if (error == 0 &&
1399 		    ddi_copyout(&vmcap, datap, sizeof (vmcap), md)) {
1400 			error = EFAULT;
1401 			break;
1402 		}
1403 		break;
1404 	}
1405 	case VM_SET_CAPABILITY: {
1406 		struct vm_capability vmcap;
1407 
1408 		if (ddi_copyin(datap, &vmcap, sizeof (vmcap), md)) {
1409 			error = EFAULT;
1410 			break;
1411 		}
1412 		error = vm_set_capability(sc->vmm_vm, vcpu, vmcap.captype,
1413 		    vmcap.capval);
1414 		break;
1415 	}
1416 	case VM_SET_X2APIC_STATE: {
1417 		struct vm_x2apic x2apic;
1418 
1419 		if (ddi_copyin(datap, &x2apic, sizeof (x2apic), md)) {
1420 			error = EFAULT;
1421 			break;
1422 		}
1423 		error = vm_set_x2apic_state(sc->vmm_vm, vcpu, x2apic.state);
1424 		break;
1425 	}
1426 	case VM_GET_X2APIC_STATE: {
1427 		struct vm_x2apic x2apic;
1428 
1429 		if (ddi_copyin(datap, &x2apic, sizeof (x2apic), md)) {
1430 			error = EFAULT;
1431 			break;
1432 		}
1433 		error = vm_get_x2apic_state(sc->vmm_vm, x2apic.cpuid,
1434 		    &x2apic.state);
1435 		if (error == 0 &&
1436 		    ddi_copyout(&x2apic, datap, sizeof (x2apic), md)) {
1437 			error = EFAULT;
1438 			break;
1439 		}
1440 		break;
1441 	}
1442 	case VM_GET_GPA_PMAP: {
1443 		/*
1444 		 * Until there is a necessity to leak EPT/RVI PTE values to
1445 		 * userspace, this will remain unimplemented
1446 		 */
1447 		error = EINVAL;
1448 		break;
1449 	}
1450 	case VM_GET_HPET_CAPABILITIES: {
1451 		struct vm_hpet_cap hpetcap;
1452 
1453 		error = vhpet_getcap(&hpetcap);
1454 		if (error == 0 &&
1455 		    ddi_copyout(&hpetcap, datap, sizeof (hpetcap), md)) {
1456 			error = EFAULT;
1457 			break;
1458 		}
1459 		break;
1460 	}
1461 	case VM_GLA2GPA: {
1462 		struct vm_gla2gpa gg;
1463 
1464 		if (ddi_copyin(datap, &gg, sizeof (gg), md)) {
1465 			error = EFAULT;
1466 			break;
1467 		}
1468 		gg.vcpuid = vcpu;
1469 		error = vm_gla2gpa(sc->vmm_vm, vcpu, &gg.paging, gg.gla,
1470 		    gg.prot, &gg.gpa, &gg.fault);
1471 		if (error == 0 && ddi_copyout(&gg, datap, sizeof (gg), md)) {
1472 			error = EFAULT;
1473 			break;
1474 		}
1475 		break;
1476 	}
1477 	case VM_GLA2GPA_NOFAULT: {
1478 		struct vm_gla2gpa gg;
1479 
1480 		if (ddi_copyin(datap, &gg, sizeof (gg), md)) {
1481 			error = EFAULT;
1482 			break;
1483 		}
1484 		gg.vcpuid = vcpu;
1485 		error = vm_gla2gpa_nofault(sc->vmm_vm, vcpu, &gg.paging,
1486 		    gg.gla, gg.prot, &gg.gpa, &gg.fault);
1487 		if (error == 0 && ddi_copyout(&gg, datap, sizeof (gg), md)) {
1488 			error = EFAULT;
1489 			break;
1490 		}
1491 		break;
1492 	}
1493 
1494 	case VM_ACTIVATE_CPU:
1495 		error = vm_activate_cpu(sc->vmm_vm, vcpu);
1496 		break;
1497 
1498 	case VM_SUSPEND_CPU:
1499 		if (ddi_copyin(datap, &vcpu, sizeof (vcpu), md)) {
1500 			error = EFAULT;
1501 		} else {
1502 			error = vm_suspend_cpu(sc->vmm_vm, vcpu);
1503 		}
1504 		break;
1505 
1506 	case VM_RESUME_CPU:
1507 		if (ddi_copyin(datap, &vcpu, sizeof (vcpu), md)) {
1508 			error = EFAULT;
1509 		} else {
1510 			error = vm_resume_cpu(sc->vmm_vm, vcpu);
1511 		}
1512 		break;
1513 
1514 	case VM_GET_CPUS: {
1515 		struct vm_cpuset vm_cpuset;
1516 		cpuset_t tempset;
1517 		void *srcp = &tempset;
1518 		int size;
1519 
1520 		if (ddi_copyin(datap, &vm_cpuset, sizeof (vm_cpuset), md)) {
1521 			error = EFAULT;
1522 			break;
1523 		}
1524 
1525 		/* Be more generous about sizing since our cpuset_t is large. */
1526 		size = vm_cpuset.cpusetsize;
1527 		if (size <= 0 || size > sizeof (cpuset_t)) {
1528 			error = ERANGE;
1529 		}
1530 		/*
1531 		 * If they want a ulong_t or less, make sure they receive the
1532 		 * low bits with all the useful information.
1533 		 */
1534 		if (size <= sizeof (tempset.cpub[0])) {
1535 			srcp = &tempset.cpub[0];
1536 		}
1537 
1538 		if (vm_cpuset.which == VM_ACTIVE_CPUS) {
1539 			tempset = vm_active_cpus(sc->vmm_vm);
1540 		} else if (vm_cpuset.which == VM_SUSPENDED_CPUS) {
1541 			tempset = vm_suspended_cpus(sc->vmm_vm);
1542 		} else if (vm_cpuset.which == VM_DEBUG_CPUS) {
1543 			tempset = vm_debug_cpus(sc->vmm_vm);
1544 		} else {
1545 			error = EINVAL;
1546 		}
1547 
1548 		ASSERT(size > 0 && size <= sizeof (tempset));
1549 		if (error == 0 &&
1550 		    ddi_copyout(srcp, vm_cpuset.cpus, size, md)) {
1551 			error = EFAULT;
1552 			break;
1553 		}
1554 		break;
1555 	}
1556 	case VM_SET_INTINFO: {
1557 		struct vm_intinfo vmii;
1558 
1559 		if (ddi_copyin(datap, &vmii, sizeof (vmii), md)) {
1560 			error = EFAULT;
1561 			break;
1562 		}
1563 		error = vm_exit_intinfo(sc->vmm_vm, vcpu, vmii.info1);
1564 		break;
1565 	}
1566 	case VM_GET_INTINFO: {
1567 		struct vm_intinfo vmii;
1568 
1569 		vmii.vcpuid = vcpu;
1570 		error = vm_get_intinfo(sc->vmm_vm, vcpu, &vmii.info1,
1571 		    &vmii.info2);
1572 		if (error == 0 &&
1573 		    ddi_copyout(&vmii, datap, sizeof (vmii), md)) {
1574 			error = EFAULT;
1575 			break;
1576 		}
1577 		break;
1578 	}
1579 	case VM_RTC_WRITE: {
1580 		struct vm_rtc_data rtcdata;
1581 
1582 		if (ddi_copyin(datap, &rtcdata, sizeof (rtcdata), md)) {
1583 			error = EFAULT;
1584 			break;
1585 		}
1586 		error = vrtc_nvram_write(sc->vmm_vm, rtcdata.offset,
1587 		    rtcdata.value);
1588 		break;
1589 	}
1590 	case VM_RTC_READ: {
1591 		struct vm_rtc_data rtcdata;
1592 
1593 		if (ddi_copyin(datap, &rtcdata, sizeof (rtcdata), md)) {
1594 			error = EFAULT;
1595 			break;
1596 		}
1597 		error = vrtc_nvram_read(sc->vmm_vm, rtcdata.offset,
1598 		    &rtcdata.value);
1599 		if (error == 0 &&
1600 		    ddi_copyout(&rtcdata, datap, sizeof (rtcdata), md)) {
1601 			error = EFAULT;
1602 			break;
1603 		}
1604 		break;
1605 	}
1606 	case VM_RTC_SETTIME: {
1607 		struct vm_rtc_time rtctime;
1608 
1609 		if (ddi_copyin(datap, &rtctime, sizeof (rtctime), md)) {
1610 			error = EFAULT;
1611 			break;
1612 		}
1613 		error = vrtc_set_time(sc->vmm_vm, rtctime.secs);
1614 		break;
1615 	}
1616 	case VM_RTC_GETTIME: {
1617 		struct vm_rtc_time rtctime;
1618 
1619 		rtctime.secs = vrtc_get_time(sc->vmm_vm);
1620 		if (ddi_copyout(&rtctime, datap, sizeof (rtctime), md)) {
1621 			error = EFAULT;
1622 			break;
1623 		}
1624 		break;
1625 	}
1626 
1627 	case VM_PMTMR_LOCATE: {
1628 		uint16_t port = arg;
1629 		error = vpmtmr_set_location(sc->vmm_vm, port);
1630 		break;
1631 	}
1632 
1633 	case VM_RESTART_INSTRUCTION:
1634 		error = vm_restart_instruction(sc->vmm_vm, vcpu);
1635 		break;
1636 
1637 	case VM_SET_TOPOLOGY: {
1638 		struct vm_cpu_topology topo;
1639 
1640 		if (ddi_copyin(datap, &topo, sizeof (topo), md) != 0) {
1641 			error = EFAULT;
1642 			break;
1643 		}
1644 		error = vm_set_topology(sc->vmm_vm, topo.sockets, topo.cores,
1645 		    topo.threads, topo.maxcpus);
1646 		break;
1647 	}
1648 	case VM_GET_TOPOLOGY: {
1649 		struct vm_cpu_topology topo;
1650 
1651 		vm_get_topology(sc->vmm_vm, &topo.sockets, &topo.cores,
1652 		    &topo.threads, &topo.maxcpus);
1653 		if (ddi_copyout(&topo, datap, sizeof (topo), md) != 0) {
1654 			error = EFAULT;
1655 			break;
1656 		}
1657 		break;
1658 	}
1659 	case VM_DEVMEM_GETOFFSET: {
1660 		struct vm_devmem_offset vdo;
1661 		vmm_devmem_entry_t *de;
1662 
1663 		if (ddi_copyin(datap, &vdo, sizeof (vdo), md) != 0) {
1664 			error = EFAULT;
1665 			break;
1666 		}
1667 
1668 		de = vmmdev_devmem_find(sc, vdo.segid);
1669 		if (de != NULL) {
1670 			vdo.offset = de->vde_off;
1671 			if (ddi_copyout(&vdo, datap, sizeof (vdo), md) != 0) {
1672 				error = EFAULT;
1673 			}
1674 		} else {
1675 			error = ENOENT;
1676 		}
1677 		break;
1678 	}
1679 	case VM_TRACK_DIRTY_PAGES: {
1680 		const size_t max_track_region_len = 8 * PAGESIZE * 8 * PAGESIZE;
1681 		struct vmm_dirty_tracker tracker;
1682 		uint8_t *bitmap;
1683 		size_t len;
1684 
1685 		if (ddi_copyin(datap, &tracker, sizeof (tracker), md) != 0) {
1686 			error = EFAULT;
1687 			break;
1688 		}
1689 		if ((tracker.vdt_start_gpa & PAGEOFFSET) != 0) {
1690 			error = EINVAL;
1691 			break;
1692 		}
1693 		if (tracker.vdt_len == 0) {
1694 			break;
1695 		}
1696 		if ((tracker.vdt_len & PAGEOFFSET) != 0) {
1697 			error = EINVAL;
1698 			break;
1699 		}
1700 		if (tracker.vdt_len > max_track_region_len) {
1701 			error = EINVAL;
1702 			break;
1703 		}
1704 		len = roundup(tracker.vdt_len / PAGESIZE, 8) / 8;
1705 		bitmap = kmem_zalloc(len, KM_SLEEP);
1706 		error = vm_track_dirty_pages(sc->vmm_vm, tracker.vdt_start_gpa,
1707 		    tracker.vdt_len, bitmap);
1708 		if (error == 0 &&
1709 		    ddi_copyout(bitmap, tracker.vdt_pfns, len, md) != 0) {
1710 			error = EFAULT;
1711 		}
1712 		kmem_free(bitmap, len);
1713 
1714 		break;
1715 	}
1716 	case VM_WRLOCK_CYCLE: {
1717 		/*
1718 		 * Present a test mechanism to acquire/release the write lock
1719 		 * on the VM without any other effects.
1720 		 */
1721 		break;
1722 	}
1723 	case VM_DATA_READ: {
1724 		struct vm_data_xfer vdx;
1725 
1726 		if (ddi_copyin(datap, &vdx, sizeof (vdx), md) != 0) {
1727 			error = EFAULT;
1728 			break;
1729 		}
1730 		if ((vdx.vdx_flags & ~VDX_FLAGS_VALID) != 0) {
1731 			error = EINVAL;
1732 			break;
1733 		}
1734 		if (vdx.vdx_len > VM_DATA_XFER_LIMIT) {
1735 			error = EFBIG;
1736 			break;
1737 		}
1738 
1739 		const size_t len = vdx.vdx_len;
1740 		void *buf = NULL;
1741 		if (len != 0) {
1742 			buf = kmem_alloc(len, KM_SLEEP);
1743 			if ((vdx.vdx_flags & VDX_FLAG_READ_COPYIN) != 0 &&
1744 			    ddi_copyin(vdx.vdx_data, buf, len, md) != 0) {
1745 				kmem_free(buf, len);
1746 				error = EFAULT;
1747 				break;
1748 			} else {
1749 				bzero(buf, len);
1750 			}
1751 		}
1752 
1753 		vdx.vdx_result_len = 0;
1754 		vmm_data_req_t req = {
1755 			.vdr_class = vdx.vdx_class,
1756 			.vdr_version = vdx.vdx_version,
1757 			.vdr_flags = vdx.vdx_flags,
1758 			.vdr_len = len,
1759 			.vdr_data = buf,
1760 			.vdr_result_len = &vdx.vdx_result_len,
1761 		};
1762 		error = vmm_data_read(sc->vmm_vm, vdx.vdx_vcpuid, &req);
1763 
1764 		if (error == 0 && buf != NULL) {
1765 			if (ddi_copyout(buf, vdx.vdx_data, len, md) != 0) {
1766 				error = EFAULT;
1767 			}
1768 		}
1769 
1770 		/*
1771 		 * Copy out the transfer request so that the value of
1772 		 * vdx_result_len can be made available, regardless of any
1773 		 * error(s) which may have occurred.
1774 		 */
1775 		if (ddi_copyout(&vdx, datap, sizeof (vdx), md) != 0) {
1776 			error = (error != 0) ? error : EFAULT;
1777 		}
1778 
1779 		if (buf != NULL) {
1780 			kmem_free(buf, len);
1781 		}
1782 		break;
1783 	}
1784 	case VM_DATA_WRITE: {
1785 		struct vm_data_xfer vdx;
1786 
1787 		if (ddi_copyin(datap, &vdx, sizeof (vdx), md) != 0) {
1788 			error = EFAULT;
1789 			break;
1790 		}
1791 		if ((vdx.vdx_flags & ~VDX_FLAGS_VALID) != 0) {
1792 			error = EINVAL;
1793 			break;
1794 		}
1795 		if (vdx.vdx_len > VM_DATA_XFER_LIMIT) {
1796 			error = EFBIG;
1797 			break;
1798 		}
1799 
1800 		const size_t len = vdx.vdx_len;
1801 		void *buf = NULL;
1802 		if (len != 0) {
1803 			buf = kmem_alloc(len, KM_SLEEP);
1804 			if (ddi_copyin(vdx.vdx_data, buf, len, md) != 0) {
1805 				kmem_free(buf, len);
1806 				error = EFAULT;
1807 				break;
1808 			}
1809 		}
1810 
1811 		vdx.vdx_result_len = 0;
1812 		vmm_data_req_t req = {
1813 			.vdr_class = vdx.vdx_class,
1814 			.vdr_version = vdx.vdx_version,
1815 			.vdr_flags = vdx.vdx_flags,
1816 			.vdr_len = len,
1817 			.vdr_data = buf,
1818 			.vdr_result_len = &vdx.vdx_result_len,
1819 		};
1820 		if (vmm_allow_state_writes == 0) {
1821 			/* XXX: Play it safe for now */
1822 			error = EPERM;
1823 		} else {
1824 			error = vmm_data_write(sc->vmm_vm, vdx.vdx_vcpuid,
1825 			    &req);
1826 		}
1827 
1828 		if (error == 0 && buf != NULL &&
1829 		    (vdx.vdx_flags & VDX_FLAG_WRITE_COPYOUT) != 0) {
1830 			if (ddi_copyout(buf, vdx.vdx_data, len, md) != 0) {
1831 				error = EFAULT;
1832 			}
1833 		}
1834 
1835 		/*
1836 		 * Copy out the transfer request so that the value of
1837 		 * vdx_result_len can be made available, regardless of any
1838 		 * error(s) which may have occurred.
1839 		 */
1840 		if (ddi_copyout(&vdx, datap, sizeof (vdx), md) != 0) {
1841 			error = (error != 0) ? error : EFAULT;
1842 		}
1843 
1844 		if (buf != NULL) {
1845 			kmem_free(buf, len);
1846 		}
1847 		break;
1848 	}
1849 
1850 	case VM_PAUSE: {
1851 		error = vm_pause_instance(sc->vmm_vm);
1852 		break;
1853 	}
1854 	case VM_RESUME: {
1855 		error = vm_resume_instance(sc->vmm_vm);
1856 		break;
1857 	}
1858 
1859 	default:
1860 		error = ENOTTY;
1861 		break;
1862 	}
1863 
1864 	/* Release exclusion resources */
1865 	switch (lock_type) {
1866 	case LOCK_NONE:
1867 		break;
1868 	case LOCK_VCPU:
1869 		vcpu_unlock_one(sc, vcpu);
1870 		break;
1871 	case LOCK_READ_HOLD:
1872 		vmm_read_unlock(sc);
1873 		break;
1874 	case LOCK_WRITE_HOLD:
1875 		vmm_write_unlock(sc);
1876 		break;
1877 	default:
1878 		panic("unexpected lock type");
1879 		break;
1880 	}
1881 
1882 	return (error);
1883 }
1884 
1885 static vmm_softc_t *
1886 vmm_lookup(const char *name)
1887 {
1888 	list_t *vml = &vmm_list;
1889 	vmm_softc_t *sc;
1890 
1891 	ASSERT(MUTEX_HELD(&vmm_mtx));
1892 
1893 	for (sc = list_head(vml); sc != NULL; sc = list_next(vml, sc)) {
1894 		if (strcmp(sc->vmm_name, name) == 0) {
1895 			break;
1896 		}
1897 	}
1898 
1899 	return (sc);
1900 }
1901 
1902 /*
1903  * Acquire an HMA registration if not already held.
1904  */
1905 static boolean_t
1906 vmm_hma_acquire(void)
1907 {
1908 	ASSERT(MUTEX_NOT_HELD(&vmm_mtx));
1909 
1910 	mutex_enter(&vmmdev_mtx);
1911 
1912 	if (vmmdev_hma_reg == NULL) {
1913 		VERIFY3U(vmmdev_hma_ref, ==, 0);
1914 		vmmdev_hma_reg = hma_register(vmmdev_hvm_name);
1915 		if (vmmdev_hma_reg == NULL) {
1916 			cmn_err(CE_WARN, "%s HMA registration failed.",
1917 			    vmmdev_hvm_name);
1918 			mutex_exit(&vmmdev_mtx);
1919 			return (B_FALSE);
1920 		}
1921 	}
1922 
1923 	vmmdev_hma_ref++;
1924 
1925 	mutex_exit(&vmmdev_mtx);
1926 
1927 	return (B_TRUE);
1928 }
1929 
1930 /*
1931  * Release the HMA registration if held and there are no remaining VMs.
1932  */
1933 static void
1934 vmm_hma_release(void)
1935 {
1936 	ASSERT(MUTEX_NOT_HELD(&vmm_mtx));
1937 
1938 	mutex_enter(&vmmdev_mtx);
1939 
1940 	VERIFY3U(vmmdev_hma_ref, !=, 0);
1941 
1942 	vmmdev_hma_ref--;
1943 
1944 	if (vmmdev_hma_ref == 0) {
1945 		VERIFY(vmmdev_hma_reg != NULL);
1946 		hma_unregister(vmmdev_hma_reg);
1947 		vmmdev_hma_reg = NULL;
1948 	}
1949 	mutex_exit(&vmmdev_mtx);
1950 }
1951 
1952 static int
1953 vmmdev_do_vm_create(const struct vm_create_req *req, cred_t *cr)
1954 {
1955 	vmm_softc_t	*sc = NULL;
1956 	minor_t		minor;
1957 	int		error = ENOMEM;
1958 	size_t		len;
1959 	const char	*name = req->name;
1960 
1961 	len = strnlen(name, VM_MAX_NAMELEN);
1962 	if (len == 0) {
1963 		return (EINVAL);
1964 	}
1965 	if (len >= VM_MAX_NAMELEN) {
1966 		return (ENAMETOOLONG);
1967 	}
1968 	if (strchr(name, '/') != NULL) {
1969 		return (EINVAL);
1970 	}
1971 
1972 	if (!vmm_hma_acquire())
1973 		return (ENXIO);
1974 
1975 	mutex_enter(&vmm_mtx);
1976 
1977 	/* Look for duplicate names */
1978 	if (vmm_lookup(name) != NULL) {
1979 		mutex_exit(&vmm_mtx);
1980 		vmm_hma_release();
1981 		return (EEXIST);
1982 	}
1983 
1984 	/* Allow only one instance per non-global zone. */
1985 	if (!INGLOBALZONE(curproc)) {
1986 		for (sc = list_head(&vmm_list); sc != NULL;
1987 		    sc = list_next(&vmm_list, sc)) {
1988 			if (sc->vmm_zone == curzone) {
1989 				mutex_exit(&vmm_mtx);
1990 				vmm_hma_release();
1991 				return (EINVAL);
1992 			}
1993 		}
1994 	}
1995 
1996 	minor = id_alloc(vmm_minors);
1997 	if (ddi_soft_state_zalloc(vmm_statep, minor) != DDI_SUCCESS) {
1998 		goto fail;
1999 	} else if ((sc = ddi_get_soft_state(vmm_statep, minor)) == NULL) {
2000 		ddi_soft_state_free(vmm_statep, minor);
2001 		goto fail;
2002 	} else if (ddi_create_minor_node(vmmdev_dip, name, S_IFCHR, minor,
2003 	    DDI_PSEUDO, 0) != DDI_SUCCESS) {
2004 		goto fail;
2005 	}
2006 
2007 	if (vmm_kstat_alloc(sc, minor, cr) != 0) {
2008 		goto fail;
2009 	}
2010 
2011 	error = vm_create(req->flags, &sc->vmm_vm);
2012 	if (error == 0) {
2013 		/* Complete VM intialization and report success. */
2014 		(void) strlcpy(sc->vmm_name, name, sizeof (sc->vmm_name));
2015 		sc->vmm_minor = minor;
2016 		list_create(&sc->vmm_devmem_list, sizeof (vmm_devmem_entry_t),
2017 		    offsetof(vmm_devmem_entry_t, vde_node));
2018 
2019 		list_create(&sc->vmm_holds, sizeof (vmm_hold_t),
2020 		    offsetof(vmm_hold_t, vmh_node));
2021 		cv_init(&sc->vmm_cv, NULL, CV_DEFAULT, NULL);
2022 
2023 		mutex_init(&sc->vmm_lease_lock, NULL, MUTEX_DEFAULT, NULL);
2024 		list_create(&sc->vmm_lease_list, sizeof (vmm_lease_t),
2025 		    offsetof(vmm_lease_t, vml_node));
2026 		cv_init(&sc->vmm_lease_cv, NULL, CV_DEFAULT, NULL);
2027 		rw_init(&sc->vmm_rwlock, NULL, RW_DEFAULT, NULL);
2028 
2029 		sc->vmm_zone = crgetzone(cr);
2030 		zone_hold(sc->vmm_zone);
2031 		vmm_zsd_add_vm(sc);
2032 		vmm_kstat_init(sc);
2033 
2034 		list_insert_tail(&vmm_list, sc);
2035 		mutex_exit(&vmm_mtx);
2036 		return (0);
2037 	}
2038 
2039 	vmm_kstat_fini(sc);
2040 	ddi_remove_minor_node(vmmdev_dip, name);
2041 fail:
2042 	id_free(vmm_minors, minor);
2043 	if (sc != NULL) {
2044 		ddi_soft_state_free(vmm_statep, minor);
2045 	}
2046 	mutex_exit(&vmm_mtx);
2047 	vmm_hma_release();
2048 
2049 	return (error);
2050 }
2051 
2052 /*
2053  * Bhyve 'Driver' Interface
2054  *
2055  * While many devices are emulated in the bhyve userspace process, there are
2056  * others with performance constraints which require that they run mostly or
2057  * entirely in-kernel.  For those not integrated directly into bhyve, an API is
2058  * needed so they can query/manipulate the portions of VM state needed to
2059  * fulfill their purpose.
2060  *
2061  * This includes:
2062  * - Translating guest-physical addresses to host-virtual pointers
2063  * - Injecting MSIs
2064  * - Hooking IO port addresses
2065  *
2066  * The vmm_drv interface exists to provide that functionality to its consumers.
2067  * (At this time, 'viona' is the only user)
2068  */
2069 int
2070 vmm_drv_hold(file_t *fp, cred_t *cr, vmm_hold_t **holdp)
2071 {
2072 	vnode_t *vp = fp->f_vnode;
2073 	const dev_t dev = vp->v_rdev;
2074 	vmm_softc_t *sc;
2075 	vmm_hold_t *hold;
2076 	int err = 0;
2077 
2078 	if (vp->v_type != VCHR) {
2079 		return (ENXIO);
2080 	}
2081 	const major_t major = getmajor(dev);
2082 	const minor_t minor = getminor(dev);
2083 
2084 	mutex_enter(&vmmdev_mtx);
2085 	if (vmmdev_dip == NULL || major != ddi_driver_major(vmmdev_dip)) {
2086 		mutex_exit(&vmmdev_mtx);
2087 		return (ENOENT);
2088 	}
2089 	mutex_enter(&vmm_mtx);
2090 	mutex_exit(&vmmdev_mtx);
2091 
2092 	if ((sc = ddi_get_soft_state(vmm_statep, minor)) == NULL) {
2093 		err = ENOENT;
2094 		goto out;
2095 	}
2096 	/* XXXJOY: check cred permissions against instance */
2097 
2098 	if ((sc->vmm_flags & VMM_DESTROY) != 0) {
2099 		err = EBUSY;
2100 		goto out;
2101 	}
2102 
2103 	hold = kmem_zalloc(sizeof (*hold), KM_SLEEP);
2104 	hold->vmh_sc = sc;
2105 	hold->vmh_release_req = B_FALSE;
2106 
2107 	list_insert_tail(&sc->vmm_holds, hold);
2108 	sc->vmm_flags |= VMM_HELD;
2109 	*holdp = hold;
2110 
2111 out:
2112 	mutex_exit(&vmm_mtx);
2113 	return (err);
2114 }
2115 
2116 void
2117 vmm_drv_rele(vmm_hold_t *hold)
2118 {
2119 	vmm_softc_t *sc;
2120 	bool hma_release = false;
2121 
2122 	ASSERT(hold != NULL);
2123 	ASSERT(hold->vmh_sc != NULL);
2124 	VERIFY(hold->vmh_ioport_hook_cnt == 0);
2125 
2126 	mutex_enter(&vmm_mtx);
2127 	sc = hold->vmh_sc;
2128 	list_remove(&sc->vmm_holds, hold);
2129 	kmem_free(hold, sizeof (*hold));
2130 
2131 	if (list_is_empty(&sc->vmm_holds)) {
2132 		sc->vmm_flags &= ~VMM_HELD;
2133 
2134 		/*
2135 		 * Since outstanding holds would prevent instance destruction
2136 		 * from completing, attempt to finish it now if it was already
2137 		 * set in motion.
2138 		 */
2139 		if ((sc->vmm_flags & VMM_DESTROY) != 0) {
2140 			VERIFY0(vmm_destroy_locked(sc, VDO_DEFAULT,
2141 			    &hma_release));
2142 		}
2143 	}
2144 	mutex_exit(&vmm_mtx);
2145 
2146 	if (hma_release) {
2147 		vmm_hma_release();
2148 	}
2149 }
2150 
2151 boolean_t
2152 vmm_drv_release_reqd(vmm_hold_t *hold)
2153 {
2154 	ASSERT(hold != NULL);
2155 
2156 	return (hold->vmh_release_req);
2157 }
2158 
2159 vmm_lease_t *
2160 vmm_drv_lease_sign(vmm_hold_t *hold, boolean_t (*expiref)(void *), void *arg)
2161 {
2162 	vmm_softc_t *sc = hold->vmh_sc;
2163 	vmm_lease_t *lease;
2164 
2165 	ASSERT3P(expiref, !=, NULL);
2166 
2167 	if (hold->vmh_release_req) {
2168 		return (NULL);
2169 	}
2170 
2171 	lease = kmem_alloc(sizeof (*lease), KM_SLEEP);
2172 	list_link_init(&lease->vml_node);
2173 	lease->vml_expire_func = expiref;
2174 	lease->vml_expire_arg = arg;
2175 	lease->vml_expired = B_FALSE;
2176 	lease->vml_break_deferred = B_FALSE;
2177 	lease->vml_hold = hold;
2178 	/* cache the VM pointer for one less pointer chase */
2179 	lease->vml_vm = sc->vmm_vm;
2180 	lease->vml_vmclient = vmspace_client_alloc(vm_get_vmspace(sc->vmm_vm));
2181 
2182 	mutex_enter(&sc->vmm_lease_lock);
2183 	while (sc->vmm_lease_blocker != 0) {
2184 		cv_wait(&sc->vmm_lease_cv, &sc->vmm_lease_lock);
2185 	}
2186 	list_insert_tail(&sc->vmm_lease_list, lease);
2187 	vmm_read_lock(sc);
2188 	mutex_exit(&sc->vmm_lease_lock);
2189 
2190 	return (lease);
2191 }
2192 
2193 static void
2194 vmm_lease_break_locked(vmm_softc_t *sc, vmm_lease_t *lease)
2195 {
2196 	ASSERT(MUTEX_HELD(&sc->vmm_lease_lock));
2197 
2198 	list_remove(&sc->vmm_lease_list, lease);
2199 	vmm_read_unlock(sc);
2200 	vmc_destroy(lease->vml_vmclient);
2201 	kmem_free(lease, sizeof (*lease));
2202 }
2203 
2204 static void
2205 vmm_lease_block(vmm_softc_t *sc)
2206 {
2207 	mutex_enter(&sc->vmm_lease_lock);
2208 	VERIFY3U(sc->vmm_lease_blocker, !=, UINT_MAX);
2209 	sc->vmm_lease_blocker++;
2210 	if (sc->vmm_lease_blocker == 1) {
2211 		list_t *list = &sc->vmm_lease_list;
2212 		vmm_lease_t *lease = list_head(list);
2213 
2214 		while (lease != NULL) {
2215 			void *arg = lease->vml_expire_arg;
2216 			boolean_t (*expiref)(void *) = lease->vml_expire_func;
2217 			boolean_t sync_break = B_FALSE;
2218 
2219 			/*
2220 			 * Since the lease expiration notification may
2221 			 * need to take locks which would deadlock with
2222 			 * vmm_lease_lock, drop it across the call.
2223 			 *
2224 			 * We are the only one allowed to manipulate
2225 			 * vmm_lease_list right now, so it is safe to
2226 			 * continue iterating through it after
2227 			 * reacquiring the lock.
2228 			 */
2229 			lease->vml_expired = B_TRUE;
2230 			mutex_exit(&sc->vmm_lease_lock);
2231 			sync_break = expiref(arg);
2232 			mutex_enter(&sc->vmm_lease_lock);
2233 
2234 			if (sync_break) {
2235 				vmm_lease_t *next;
2236 
2237 				/*
2238 				 * These leases which are synchronously broken
2239 				 * result in vmm_read_unlock() calls from a
2240 				 * different thread than the corresponding
2241 				 * vmm_read_lock().  This is acceptable, given
2242 				 * that the rwlock underpinning the whole
2243 				 * mechanism tolerates the behavior.  This
2244 				 * flexibility is _only_ afforded to VM read
2245 				 * lock (RW_READER) holders.
2246 				 */
2247 				next = list_next(list, lease);
2248 				vmm_lease_break_locked(sc, lease);
2249 				lease = next;
2250 			} else {
2251 				lease = list_next(list, lease);
2252 			}
2253 		}
2254 
2255 		/* Process leases which were not broken synchronously. */
2256 		while (!list_is_empty(list)) {
2257 			/*
2258 			 * Although the nested loops are quadratic, the number
2259 			 * of leases is small.
2260 			 */
2261 			lease = list_head(list);
2262 			while (lease != NULL) {
2263 				vmm_lease_t *next = list_next(list, lease);
2264 				if (lease->vml_break_deferred) {
2265 					vmm_lease_break_locked(sc, lease);
2266 				}
2267 				lease = next;
2268 			}
2269 			if (list_is_empty(list)) {
2270 				break;
2271 			}
2272 			cv_wait(&sc->vmm_lease_cv, &sc->vmm_lease_lock);
2273 		}
2274 		/* Wake anyone else waiting for the lease list to be empty  */
2275 		cv_broadcast(&sc->vmm_lease_cv);
2276 	} else {
2277 		list_t *list = &sc->vmm_lease_list;
2278 
2279 		/*
2280 		 * Some other thread beat us to the duty of lease cleanup.
2281 		 * Wait until that is complete.
2282 		 */
2283 		while (!list_is_empty(list)) {
2284 			cv_wait(&sc->vmm_lease_cv, &sc->vmm_lease_lock);
2285 		}
2286 	}
2287 	mutex_exit(&sc->vmm_lease_lock);
2288 }
2289 
2290 static void
2291 vmm_lease_unblock(vmm_softc_t *sc)
2292 {
2293 	mutex_enter(&sc->vmm_lease_lock);
2294 	VERIFY3U(sc->vmm_lease_blocker, !=, 0);
2295 	sc->vmm_lease_blocker--;
2296 	if (sc->vmm_lease_blocker == 0) {
2297 		cv_broadcast(&sc->vmm_lease_cv);
2298 	}
2299 	mutex_exit(&sc->vmm_lease_lock);
2300 }
2301 
2302 void
2303 vmm_drv_lease_break(vmm_hold_t *hold, vmm_lease_t *lease)
2304 {
2305 	vmm_softc_t *sc = hold->vmh_sc;
2306 
2307 	VERIFY3P(hold, ==, lease->vml_hold);
2308 	VERIFY(!lease->vml_break_deferred);
2309 
2310 	mutex_enter(&sc->vmm_lease_lock);
2311 	if (sc->vmm_lease_blocker == 0) {
2312 		vmm_lease_break_locked(sc, lease);
2313 	} else {
2314 		/*
2315 		 * Defer the lease-breaking to whichever thread is currently
2316 		 * cleaning up all leases as part of a vmm_lease_block() call.
2317 		 */
2318 		lease->vml_break_deferred = B_TRUE;
2319 		cv_broadcast(&sc->vmm_lease_cv);
2320 	}
2321 	mutex_exit(&sc->vmm_lease_lock);
2322 }
2323 
2324 boolean_t
2325 vmm_drv_lease_expired(vmm_lease_t *lease)
2326 {
2327 	return (lease->vml_expired);
2328 }
2329 
2330 vmm_page_t *
2331 vmm_drv_page_hold(vmm_lease_t *lease, uintptr_t gpa, int prot)
2332 {
2333 	ASSERT(lease != NULL);
2334 	ASSERT0(gpa & PAGEOFFSET);
2335 
2336 	return ((vmm_page_t *)vmc_hold(lease->vml_vmclient, gpa, prot));
2337 }
2338 
2339 
2340 /* Ensure that flags mirrored by vmm_drv interface properly match up */
2341 CTASSERT(VMPF_DEFER_DIRTY == VPF_DEFER_DIRTY);
2342 
2343 vmm_page_t *
2344 vmm_drv_page_hold_ext(vmm_lease_t *lease, uintptr_t gpa, int prot, int flags)
2345 {
2346 	ASSERT(lease != NULL);
2347 	ASSERT0(gpa & PAGEOFFSET);
2348 
2349 	vmm_page_t *page =
2350 	    (vmm_page_t *)vmc_hold_ext(lease->vml_vmclient, gpa, prot, flags);
2351 	return (page);
2352 }
2353 
2354 void
2355 vmm_drv_page_release(vmm_page_t *vmmp)
2356 {
2357 	(void) vmp_release((vm_page_t *)vmmp);
2358 }
2359 
2360 void
2361 vmm_drv_page_release_chain(vmm_page_t *vmmp)
2362 {
2363 	(void) vmp_release_chain((vm_page_t *)vmmp);
2364 }
2365 
2366 const void *
2367 vmm_drv_page_readable(const vmm_page_t *vmmp)
2368 {
2369 	return (vmp_get_readable((const vm_page_t *)vmmp));
2370 }
2371 
2372 void *
2373 vmm_drv_page_writable(const vmm_page_t *vmmp)
2374 {
2375 	return (vmp_get_writable((const vm_page_t *)vmmp));
2376 }
2377 
2378 void
2379 vmm_drv_page_mark_dirty(vmm_page_t *vmmp)
2380 {
2381 	return (vmp_mark_dirty((vm_page_t *)vmmp));
2382 }
2383 
2384 void
2385 vmm_drv_page_chain(vmm_page_t *vmmp, vmm_page_t *to_chain)
2386 {
2387 	vmp_chain((vm_page_t *)vmmp, (vm_page_t *)to_chain);
2388 }
2389 
2390 vmm_page_t *
2391 vmm_drv_page_next(const vmm_page_t *vmmp)
2392 {
2393 	return ((vmm_page_t *)vmp_next((vm_page_t *)vmmp));
2394 }
2395 
2396 int
2397 vmm_drv_msi(vmm_lease_t *lease, uint64_t addr, uint64_t msg)
2398 {
2399 	ASSERT(lease != NULL);
2400 
2401 	return (lapic_intr_msi(lease->vml_vm, addr, msg));
2402 }
2403 
2404 int
2405 vmm_drv_ioport_hook(vmm_hold_t *hold, uint16_t ioport, vmm_drv_iop_cb_t func,
2406     void *arg, void **cookie)
2407 {
2408 	vmm_softc_t *sc;
2409 	int err;
2410 
2411 	ASSERT(hold != NULL);
2412 	ASSERT(cookie != NULL);
2413 
2414 	sc = hold->vmh_sc;
2415 	mutex_enter(&vmm_mtx);
2416 	/* Confirm that hook installation is not blocked */
2417 	if ((sc->vmm_flags & VMM_BLOCK_HOOK) != 0) {
2418 		mutex_exit(&vmm_mtx);
2419 		return (EBUSY);
2420 	}
2421 	/*
2422 	 * Optimistically record an installed hook which will prevent a block
2423 	 * from being asserted while the mutex is dropped.
2424 	 */
2425 	hold->vmh_ioport_hook_cnt++;
2426 	mutex_exit(&vmm_mtx);
2427 
2428 	vmm_write_lock(sc);
2429 	err = vm_ioport_hook(sc->vmm_vm, ioport, (ioport_handler_t)func,
2430 	    arg, cookie);
2431 	vmm_write_unlock(sc);
2432 
2433 	if (err != 0) {
2434 		mutex_enter(&vmm_mtx);
2435 		/* Walk back optimism about the hook installation */
2436 		hold->vmh_ioport_hook_cnt--;
2437 		mutex_exit(&vmm_mtx);
2438 	}
2439 	return (err);
2440 }
2441 
2442 void
2443 vmm_drv_ioport_unhook(vmm_hold_t *hold, void **cookie)
2444 {
2445 	vmm_softc_t *sc;
2446 
2447 	ASSERT(hold != NULL);
2448 	ASSERT(cookie != NULL);
2449 	ASSERT(hold->vmh_ioport_hook_cnt != 0);
2450 
2451 	sc = hold->vmh_sc;
2452 	vmm_write_lock(sc);
2453 	vm_ioport_unhook(sc->vmm_vm, cookie);
2454 	vmm_write_unlock(sc);
2455 
2456 	mutex_enter(&vmm_mtx);
2457 	hold->vmh_ioport_hook_cnt--;
2458 	mutex_exit(&vmm_mtx);
2459 }
2460 
2461 static void
2462 vmm_drv_purge(vmm_softc_t *sc)
2463 {
2464 	ASSERT(MUTEX_HELD(&vmm_mtx));
2465 
2466 	if ((sc->vmm_flags & VMM_HELD) != 0) {
2467 		vmm_hold_t *hold;
2468 
2469 		for (hold = list_head(&sc->vmm_holds); hold != NULL;
2470 		    hold = list_next(&sc->vmm_holds, hold)) {
2471 			hold->vmh_release_req = B_TRUE;
2472 		}
2473 
2474 		/*
2475 		 * Require that all leases on the instance be broken, now that
2476 		 * all associated holds have been marked as needing release.
2477 		 *
2478 		 * Dropping vmm_mtx is not strictly necessary, but if any of the
2479 		 * lessees are slow to respond, it would be nice to leave it
2480 		 * available for other parties.
2481 		 */
2482 		mutex_exit(&vmm_mtx);
2483 		vmm_lease_block(sc);
2484 		vmm_lease_unblock(sc);
2485 		mutex_enter(&vmm_mtx);
2486 	}
2487 }
2488 
2489 static int
2490 vmm_drv_block_hook(vmm_softc_t *sc, boolean_t enable_block)
2491 {
2492 	int err = 0;
2493 
2494 	mutex_enter(&vmm_mtx);
2495 	if (!enable_block) {
2496 		VERIFY((sc->vmm_flags & VMM_BLOCK_HOOK) != 0);
2497 
2498 		sc->vmm_flags &= ~VMM_BLOCK_HOOK;
2499 		goto done;
2500 	}
2501 
2502 	/* If any holds have hooks installed, the block is a failure */
2503 	if (!list_is_empty(&sc->vmm_holds)) {
2504 		vmm_hold_t *hold;
2505 
2506 		for (hold = list_head(&sc->vmm_holds); hold != NULL;
2507 		    hold = list_next(&sc->vmm_holds, hold)) {
2508 			if (hold->vmh_ioport_hook_cnt != 0) {
2509 				err = EBUSY;
2510 				goto done;
2511 			}
2512 		}
2513 	}
2514 	sc->vmm_flags |= VMM_BLOCK_HOOK;
2515 
2516 done:
2517 	mutex_exit(&vmm_mtx);
2518 	return (err);
2519 }
2520 
2521 
2522 static void
2523 vmm_destroy_begin(vmm_softc_t *sc, vmm_destroy_opts_t opts)
2524 {
2525 	ASSERT(MUTEX_HELD(&vmm_mtx));
2526 	ASSERT0(sc->vmm_flags & VMM_DESTROY);
2527 
2528 	sc->vmm_flags |= VMM_DESTROY;
2529 
2530 	/*
2531 	 * Lock and unlock all of the vCPUs to ensure that they are kicked out
2532 	 * of guest context, being unable to return now that the instance is
2533 	 * marked for destruction.
2534 	 */
2535 	const int maxcpus = vm_get_maxcpus(sc->vmm_vm);
2536 	for (int vcpu = 0; vcpu < maxcpus; vcpu++) {
2537 		vcpu_lock_one(sc, vcpu);
2538 		vcpu_unlock_one(sc, vcpu);
2539 	}
2540 
2541 	vmmdev_devmem_purge(sc);
2542 	if ((opts & VDO_NO_CLEAN_ZSD) == 0) {
2543 		/*
2544 		 * The ZSD should be cleaned up now, unless destruction of the
2545 		 * instance was initated by destruction of the containing zone,
2546 		 * in which case the ZSD has already been removed.
2547 		 */
2548 		vmm_zsd_rem_vm(sc);
2549 	}
2550 	zone_rele(sc->vmm_zone);
2551 
2552 	vmm_drv_purge(sc);
2553 }
2554 
2555 static bool
2556 vmm_destroy_ready(vmm_softc_t *sc)
2557 {
2558 	ASSERT(MUTEX_HELD(&vmm_mtx));
2559 
2560 	if ((sc->vmm_flags & (VMM_HELD | VMM_IS_OPEN)) == 0) {
2561 		VERIFY(list_is_empty(&sc->vmm_holds));
2562 		return (true);
2563 	}
2564 
2565 	return (false);
2566 }
2567 
2568 static void
2569 vmm_destroy_finish(vmm_softc_t *sc)
2570 {
2571 	ASSERT(MUTEX_HELD(&vmm_mtx));
2572 	ASSERT(vmm_destroy_ready(sc));
2573 
2574 	list_remove(&vmm_list, sc);
2575 	vmm_kstat_fini(sc);
2576 	vm_destroy(sc->vmm_vm);
2577 	ddi_remove_minor_node(vmmdev_dip, sc->vmm_name);
2578 	(void) devfs_clean(ddi_get_parent(vmmdev_dip), NULL, DV_CLEAN_FORCE);
2579 
2580 	const minor_t minor = sc->vmm_minor;
2581 	ddi_soft_state_free(vmm_statep, minor);
2582 	id_free(vmm_minors, minor);
2583 }
2584 
2585 /*
2586  * Initiate or attempt to finish destruction of a VMM instance.
2587  *
2588  * This is called from several contexts:
2589  * - An explicit destroy ioctl is made
2590  * - A vmm_drv consumer releases its hold (being the last on the instance)
2591  * - The vmm device is closed, and auto-destruct is enabled
2592  */
2593 static int
2594 vmm_destroy_locked(vmm_softc_t *sc, vmm_destroy_opts_t opts,
2595     bool *hma_release)
2596 {
2597 	ASSERT(MUTEX_HELD(&vmm_mtx));
2598 
2599 	*hma_release = false;
2600 
2601 	/*
2602 	 * When instance destruction begins, it is so marked such that any
2603 	 * further requests to operate the instance will fail.
2604 	 */
2605 	if ((sc->vmm_flags & VMM_DESTROY) == 0) {
2606 		vmm_destroy_begin(sc, opts);
2607 	}
2608 
2609 	if (vmm_destroy_ready(sc)) {
2610 
2611 		/*
2612 		 * Notify anyone waiting for the destruction to finish.  They
2613 		 * must be clear before we can safely tear down the softc.
2614 		 */
2615 		if (sc->vmm_destroy_waiters != 0) {
2616 			cv_broadcast(&sc->vmm_cv);
2617 			while (sc->vmm_destroy_waiters != 0) {
2618 				cv_wait(&sc->vmm_cv, &vmm_mtx);
2619 			}
2620 		}
2621 
2622 		/*
2623 		 * Finish destruction of instance.  After this point, the softc
2624 		 * is freed and cannot be accessed again.
2625 		 *
2626 		 * With destruction complete, the HMA hold can be released
2627 		 */
2628 		vmm_destroy_finish(sc);
2629 		*hma_release = true;
2630 		return (0);
2631 	} else if ((opts & VDO_ATTEMPT_WAIT) != 0) {
2632 		int err = 0;
2633 
2634 		sc->vmm_destroy_waiters++;
2635 		while (!vmm_destroy_ready(sc) && err == 0) {
2636 			if (cv_wait_sig(&sc->vmm_cv, &vmm_mtx) <= 0) {
2637 				err = EINTR;
2638 			}
2639 		}
2640 		sc->vmm_destroy_waiters--;
2641 
2642 		if (sc->vmm_destroy_waiters == 0) {
2643 			/*
2644 			 * If we were the last waiter, it could be that VM
2645 			 * destruction is waiting on _us_ to proceed with the
2646 			 * final clean-up.
2647 			 */
2648 			cv_signal(&sc->vmm_cv);
2649 		}
2650 		return (err);
2651 	} else {
2652 		/*
2653 		 * Since the instance is not ready for destruction, and the
2654 		 * caller did not ask to wait, consider it a success for now.
2655 		 */
2656 		return (0);
2657 	}
2658 }
2659 
2660 void
2661 vmm_zone_vm_destroy(vmm_softc_t *sc)
2662 {
2663 	bool hma_release = false;
2664 	int err;
2665 
2666 	mutex_enter(&vmm_mtx);
2667 	err = vmm_destroy_locked(sc, VDO_NO_CLEAN_ZSD, &hma_release);
2668 	mutex_exit(&vmm_mtx);
2669 
2670 	VERIFY0(err);
2671 
2672 	if (hma_release) {
2673 		vmm_hma_release();
2674 	}
2675 }
2676 
2677 static int
2678 vmmdev_do_vm_destroy(const struct vm_destroy_req *req, cred_t *cr)
2679 {
2680 	vmm_softc_t *sc;
2681 	bool hma_release = false;
2682 	int err;
2683 
2684 	if (crgetuid(cr) != 0) {
2685 		return (EPERM);
2686 	}
2687 
2688 	mutex_enter(&vmm_mtx);
2689 	sc = vmm_lookup(req->name);
2690 	if (sc == NULL) {
2691 		mutex_exit(&vmm_mtx);
2692 		return (ENOENT);
2693 	}
2694 	/*
2695 	 * We don't check this in vmm_lookup() since that function is also used
2696 	 * for validation during create and currently vmm names must be unique.
2697 	 */
2698 	if (!INGLOBALZONE(curproc) && sc->vmm_zone != curzone) {
2699 		mutex_exit(&vmm_mtx);
2700 		return (EPERM);
2701 	}
2702 
2703 	err = vmm_destroy_locked(sc, VDO_ATTEMPT_WAIT, &hma_release);
2704 	mutex_exit(&vmm_mtx);
2705 
2706 	if (hma_release) {
2707 		vmm_hma_release();
2708 	}
2709 
2710 	return (err);
2711 }
2712 
2713 #define	VCPU_NAME_BUFLEN	32
2714 
2715 static int
2716 vmm_kstat_alloc(vmm_softc_t *sc, minor_t minor, const cred_t *cr)
2717 {
2718 	zoneid_t zid = crgetzoneid(cr);
2719 	int instance = minor;
2720 	kstat_t *ksp;
2721 
2722 	ASSERT3P(sc->vmm_kstat_vm, ==, NULL);
2723 
2724 	ksp = kstat_create_zone(VMM_MODULE_NAME, instance, "vm",
2725 	    VMM_KSTAT_CLASS, KSTAT_TYPE_NAMED,
2726 	    sizeof (vmm_kstats_t) / sizeof (kstat_named_t), 0, zid);
2727 
2728 	if (ksp == NULL) {
2729 		return (-1);
2730 	}
2731 	sc->vmm_kstat_vm = ksp;
2732 
2733 	for (uint_t i = 0; i < VM_MAXCPU; i++) {
2734 		char namebuf[VCPU_NAME_BUFLEN];
2735 
2736 		ASSERT3P(sc->vmm_kstat_vcpu[i], ==, NULL);
2737 
2738 		(void) snprintf(namebuf, VCPU_NAME_BUFLEN, "vcpu%u", i);
2739 		ksp = kstat_create_zone(VMM_MODULE_NAME, instance, namebuf,
2740 		    VMM_KSTAT_CLASS, KSTAT_TYPE_NAMED,
2741 		    sizeof (vmm_vcpu_kstats_t) / sizeof (kstat_named_t),
2742 		    0, zid);
2743 		if (ksp == NULL) {
2744 			goto fail;
2745 		}
2746 
2747 		sc->vmm_kstat_vcpu[i] = ksp;
2748 	}
2749 
2750 	/*
2751 	 * If this instance is associated with a non-global zone, make its
2752 	 * kstats visible from the GZ.
2753 	 */
2754 	if (zid != GLOBAL_ZONEID) {
2755 		kstat_zone_add(sc->vmm_kstat_vm, GLOBAL_ZONEID);
2756 		for (uint_t i = 0; i < VM_MAXCPU; i++) {
2757 			kstat_zone_add(sc->vmm_kstat_vcpu[i], GLOBAL_ZONEID);
2758 		}
2759 	}
2760 
2761 	return (0);
2762 
2763 fail:
2764 	for (uint_t i = 0; i < VM_MAXCPU; i++) {
2765 		if (sc->vmm_kstat_vcpu[i] != NULL) {
2766 			kstat_delete(sc->vmm_kstat_vcpu[i]);
2767 			sc->vmm_kstat_vcpu[i] = NULL;
2768 		} else {
2769 			break;
2770 		}
2771 	}
2772 	kstat_delete(sc->vmm_kstat_vm);
2773 	sc->vmm_kstat_vm = NULL;
2774 	return (-1);
2775 }
2776 
2777 static void
2778 vmm_kstat_init(vmm_softc_t *sc)
2779 {
2780 	kstat_t *ksp;
2781 
2782 	ASSERT3P(sc->vmm_vm, !=, NULL);
2783 	ASSERT3P(sc->vmm_kstat_vm, !=, NULL);
2784 
2785 	ksp = sc->vmm_kstat_vm;
2786 	vmm_kstats_t *vk = ksp->ks_data;
2787 	ksp->ks_private = sc->vmm_vm;
2788 	kstat_named_init(&vk->vk_name, "vm_name", KSTAT_DATA_STRING);
2789 	kstat_named_setstr(&vk->vk_name, sc->vmm_name);
2790 
2791 	for (uint_t i = 0; i < VM_MAXCPU; i++) {
2792 		ASSERT3P(sc->vmm_kstat_vcpu[i], !=, NULL);
2793 
2794 		ksp = sc->vmm_kstat_vcpu[i];
2795 		vmm_vcpu_kstats_t *vvk = ksp->ks_data;
2796 
2797 		kstat_named_init(&vvk->vvk_vcpu, "vcpu", KSTAT_DATA_UINT32);
2798 		vvk->vvk_vcpu.value.ui32 = i;
2799 		kstat_named_init(&vvk->vvk_time_init, "time_init",
2800 		    KSTAT_DATA_UINT64);
2801 		kstat_named_init(&vvk->vvk_time_run, "time_run",
2802 		    KSTAT_DATA_UINT64);
2803 		kstat_named_init(&vvk->vvk_time_idle, "time_idle",
2804 		    KSTAT_DATA_UINT64);
2805 		kstat_named_init(&vvk->vvk_time_emu_kern, "time_emu_kern",
2806 		    KSTAT_DATA_UINT64);
2807 		kstat_named_init(&vvk->vvk_time_emu_user, "time_emu_user",
2808 		    KSTAT_DATA_UINT64);
2809 		kstat_named_init(&vvk->vvk_time_sched, "time_sched",
2810 		    KSTAT_DATA_UINT64);
2811 		ksp->ks_private = sc->vmm_vm;
2812 		ksp->ks_update = vmm_kstat_update_vcpu;
2813 	}
2814 
2815 	kstat_install(sc->vmm_kstat_vm);
2816 	for (uint_t i = 0; i < VM_MAXCPU; i++) {
2817 		kstat_install(sc->vmm_kstat_vcpu[i]);
2818 	}
2819 }
2820 
2821 static void
2822 vmm_kstat_fini(vmm_softc_t *sc)
2823 {
2824 	ASSERT(sc->vmm_kstat_vm != NULL);
2825 
2826 	kstat_delete(sc->vmm_kstat_vm);
2827 	sc->vmm_kstat_vm = NULL;
2828 
2829 	for (uint_t i = 0; i < VM_MAXCPU; i++) {
2830 		ASSERT3P(sc->vmm_kstat_vcpu[i], !=, NULL);
2831 
2832 		kstat_delete(sc->vmm_kstat_vcpu[i]);
2833 		sc->vmm_kstat_vcpu[i] = NULL;
2834 	}
2835 }
2836 
2837 static int
2838 vmm_open(dev_t *devp, int flag, int otyp, cred_t *credp)
2839 {
2840 	minor_t		minor;
2841 	vmm_softc_t	*sc;
2842 
2843 	/*
2844 	 * Forbid running bhyve in a 32-bit process until it has been tested and
2845 	 * verified to be safe.
2846 	 */
2847 	if (curproc->p_model != DATAMODEL_LP64) {
2848 		return (EFBIG);
2849 	}
2850 
2851 	minor = getminor(*devp);
2852 	if (minor == VMM_CTL_MINOR) {
2853 		/*
2854 		 * Master control device must be opened exclusively.
2855 		 */
2856 		if ((flag & FEXCL) != FEXCL || otyp != OTYP_CHR) {
2857 			return (EINVAL);
2858 		}
2859 
2860 		return (0);
2861 	}
2862 
2863 	mutex_enter(&vmm_mtx);
2864 	sc = ddi_get_soft_state(vmm_statep, minor);
2865 	if (sc == NULL) {
2866 		mutex_exit(&vmm_mtx);
2867 		return (ENXIO);
2868 	}
2869 
2870 	sc->vmm_flags |= VMM_IS_OPEN;
2871 	mutex_exit(&vmm_mtx);
2872 
2873 	return (0);
2874 }
2875 
2876 static int
2877 vmm_close(dev_t dev, int flag, int otyp, cred_t *credp)
2878 {
2879 	const minor_t minor = getminor(dev);
2880 	vmm_softc_t *sc;
2881 	bool hma_release = false;
2882 
2883 	if (minor == VMM_CTL_MINOR) {
2884 		return (0);
2885 	}
2886 
2887 	mutex_enter(&vmm_mtx);
2888 	sc = ddi_get_soft_state(vmm_statep, minor);
2889 	if (sc == NULL) {
2890 		mutex_exit(&vmm_mtx);
2891 		return (ENXIO);
2892 	}
2893 
2894 	VERIFY3U(sc->vmm_flags & VMM_IS_OPEN, !=, 0);
2895 	sc->vmm_flags &= ~VMM_IS_OPEN;
2896 
2897 	/*
2898 	 * If instance was marked for auto-destruction begin that now.  Instance
2899 	 * destruction may have been initated already, so try to make progress
2900 	 * in that case, since closure of the device is one of its requirements.
2901 	 */
2902 	if ((sc->vmm_flags & VMM_DESTROY) != 0 ||
2903 	    (sc->vmm_flags & VMM_AUTODESTROY) != 0) {
2904 		VERIFY0(vmm_destroy_locked(sc, VDO_DEFAULT, &hma_release));
2905 	}
2906 	mutex_exit(&vmm_mtx);
2907 
2908 	if (hma_release) {
2909 		vmm_hma_release();
2910 	}
2911 
2912 	return (0);
2913 }
2914 
2915 static int
2916 vmm_is_supported(intptr_t arg)
2917 {
2918 	int r;
2919 	const char *msg;
2920 
2921 	if (vmm_is_intel()) {
2922 		r = vmx_x86_supported(&msg);
2923 	} else if (vmm_is_svm()) {
2924 		/*
2925 		 * HMA already ensured that the features necessary for SVM
2926 		 * operation were present and online during vmm_attach().
2927 		 */
2928 		r = 0;
2929 	} else {
2930 		r = ENXIO;
2931 		msg = "Unsupported CPU vendor";
2932 	}
2933 
2934 	if (r != 0 && arg != (intptr_t)NULL) {
2935 		if (copyoutstr(msg, (char *)arg, strlen(msg) + 1, NULL) != 0)
2936 			return (EFAULT);
2937 	}
2938 	return (r);
2939 }
2940 
2941 static int
2942 vmm_ctl_ioctl(int cmd, intptr_t arg, int md, cred_t *cr, int *rvalp)
2943 {
2944 	void *argp = (void *)arg;
2945 
2946 	switch (cmd) {
2947 	case VMM_CREATE_VM: {
2948 		struct vm_create_req req;
2949 
2950 		if ((md & FWRITE) == 0) {
2951 			return (EPERM);
2952 		}
2953 		if (ddi_copyin(argp, &req, sizeof (req), md) != 0) {
2954 			return (EFAULT);
2955 		}
2956 		return (vmmdev_do_vm_create(&req, cr));
2957 	}
2958 	case VMM_DESTROY_VM: {
2959 		struct vm_destroy_req req;
2960 
2961 		if ((md & FWRITE) == 0) {
2962 			return (EPERM);
2963 		}
2964 		if (ddi_copyin(argp, &req, sizeof (req), md) != 0) {
2965 			return (EFAULT);
2966 		}
2967 		return (vmmdev_do_vm_destroy(&req, cr));
2968 	}
2969 	case VMM_VM_SUPPORTED:
2970 		return (vmm_is_supported(arg));
2971 	case VMM_CHECK_IOMMU:
2972 		if (!vmm_check_iommu()) {
2973 			return (ENXIO);
2974 		}
2975 		return (0);
2976 	case VMM_RESV_QUERY:
2977 	case VMM_RESV_SET_TARGET:
2978 		return (vmmr_ioctl(cmd, arg, md, cr, rvalp));
2979 	default:
2980 		break;
2981 	}
2982 	/* No other actions are legal on ctl device */
2983 	return (ENOTTY);
2984 }
2985 
2986 static int
2987 vmm_ioctl(dev_t dev, int cmd, intptr_t arg, int mode, cred_t *credp,
2988     int *rvalp)
2989 {
2990 	vmm_softc_t	*sc;
2991 	minor_t		minor;
2992 
2993 	/*
2994 	 * Forbid running bhyve in a 32-bit process until it has been tested and
2995 	 * verified to be safe.
2996 	 */
2997 	if (curproc->p_model != DATAMODEL_LP64) {
2998 		return (EFBIG);
2999 	}
3000 
3001 	/* The structs in bhyve ioctls assume a 64-bit datamodel */
3002 	if (ddi_model_convert_from(mode & FMODELS) != DDI_MODEL_NONE) {
3003 		return (ENOTSUP);
3004 	}
3005 
3006 	/*
3007 	 * Regardless of minor (vmmctl or instance), we respond to queries of
3008 	 * the interface version.
3009 	 */
3010 	if (cmd == VMM_INTERFACE_VERSION) {
3011 		*rvalp = VMM_CURRENT_INTERFACE_VERSION;
3012 		return (0);
3013 	}
3014 
3015 	minor = getminor(dev);
3016 
3017 	if (minor == VMM_CTL_MINOR) {
3018 		return (vmm_ctl_ioctl(cmd, arg, mode, credp, rvalp));
3019 	}
3020 
3021 	sc = ddi_get_soft_state(vmm_statep, minor);
3022 	ASSERT(sc != NULL);
3023 
3024 	/*
3025 	 * Turn away any ioctls against an instance when it is being destroyed.
3026 	 * (Except for the ioctl inquiring about that destroy-in-progress.)
3027 	 */
3028 	if ((sc->vmm_flags & VMM_DESTROY) != 0) {
3029 		if (cmd == VM_DESTROY_PENDING) {
3030 			*rvalp = 1;
3031 			return (0);
3032 		}
3033 		return (ENXIO);
3034 	}
3035 
3036 	return (vmmdev_do_ioctl(sc, cmd, arg, mode, credp, rvalp));
3037 }
3038 
3039 static int
3040 vmm_segmap(dev_t dev, off_t off, struct as *as, caddr_t *addrp, off_t len,
3041     unsigned int prot, unsigned int maxprot, unsigned int flags, cred_t *credp)
3042 {
3043 	vmm_softc_t *sc;
3044 	const minor_t minor = getminor(dev);
3045 	int err;
3046 
3047 	if (minor == VMM_CTL_MINOR) {
3048 		return (ENODEV);
3049 	}
3050 	if (off < 0 || (off + len) <= 0) {
3051 		return (EINVAL);
3052 	}
3053 	if ((prot & PROT_USER) == 0) {
3054 		return (EACCES);
3055 	}
3056 
3057 	sc = ddi_get_soft_state(vmm_statep, minor);
3058 	ASSERT(sc);
3059 
3060 	if (sc->vmm_flags & VMM_DESTROY)
3061 		return (ENXIO);
3062 
3063 	/* Grab read lock on the VM to prevent any changes to the memory map */
3064 	vmm_read_lock(sc);
3065 
3066 	if (off >= VM_DEVMEM_START) {
3067 		int segid;
3068 		off_t segoff;
3069 
3070 		/* Mapping a devmem "device" */
3071 		if (!vmmdev_devmem_segid(sc, off, len, &segid, &segoff)) {
3072 			err = ENODEV;
3073 		} else {
3074 			err = vm_segmap_obj(sc->vmm_vm, segid, segoff, len, as,
3075 			    addrp, prot, maxprot, flags);
3076 		}
3077 	} else {
3078 		/* Mapping a part of the guest physical space */
3079 		err = vm_segmap_space(sc->vmm_vm, off, as, addrp, len, prot,
3080 		    maxprot, flags);
3081 	}
3082 
3083 	vmm_read_unlock(sc);
3084 	return (err);
3085 }
3086 
3087 static sdev_plugin_validate_t
3088 vmm_sdev_validate(sdev_ctx_t ctx)
3089 {
3090 	const char *name = sdev_ctx_name(ctx);
3091 	vmm_softc_t *sc;
3092 	sdev_plugin_validate_t ret;
3093 	minor_t minor;
3094 
3095 	if (sdev_ctx_vtype(ctx) != VCHR)
3096 		return (SDEV_VTOR_INVALID);
3097 
3098 	VERIFY3S(sdev_ctx_minor(ctx, &minor), ==, 0);
3099 
3100 	mutex_enter(&vmm_mtx);
3101 	if ((sc = vmm_lookup(name)) == NULL)
3102 		ret = SDEV_VTOR_INVALID;
3103 	else if (sc->vmm_minor != minor)
3104 		ret = SDEV_VTOR_STALE;
3105 	else
3106 		ret = SDEV_VTOR_VALID;
3107 	mutex_exit(&vmm_mtx);
3108 
3109 	return (ret);
3110 }
3111 
3112 static int
3113 vmm_sdev_filldir(sdev_ctx_t ctx)
3114 {
3115 	vmm_softc_t *sc;
3116 	int ret;
3117 
3118 	if (strcmp(sdev_ctx_path(ctx), VMM_SDEV_ROOT) != 0) {
3119 		cmn_err(CE_WARN, "%s: bad path '%s' != '%s'\n", __func__,
3120 		    sdev_ctx_path(ctx), VMM_SDEV_ROOT);
3121 		return (EINVAL);
3122 	}
3123 
3124 	mutex_enter(&vmm_mtx);
3125 	ASSERT(vmmdev_dip != NULL);
3126 	for (sc = list_head(&vmm_list); sc != NULL;
3127 	    sc = list_next(&vmm_list, sc)) {
3128 		if (INGLOBALZONE(curproc) || sc->vmm_zone == curzone) {
3129 			ret = sdev_plugin_mknod(ctx, sc->vmm_name,
3130 			    S_IFCHR | 0600,
3131 			    makedevice(ddi_driver_major(vmmdev_dip),
3132 			    sc->vmm_minor));
3133 		} else {
3134 			continue;
3135 		}
3136 		if (ret != 0 && ret != EEXIST)
3137 			goto out;
3138 	}
3139 
3140 	ret = 0;
3141 
3142 out:
3143 	mutex_exit(&vmm_mtx);
3144 	return (ret);
3145 }
3146 
3147 /* ARGSUSED */
3148 static void
3149 vmm_sdev_inactive(sdev_ctx_t ctx)
3150 {
3151 }
3152 
3153 static sdev_plugin_ops_t vmm_sdev_ops = {
3154 	.spo_version = SDEV_PLUGIN_VERSION,
3155 	.spo_flags = SDEV_PLUGIN_SUBDIR,
3156 	.spo_validate = vmm_sdev_validate,
3157 	.spo_filldir = vmm_sdev_filldir,
3158 	.spo_inactive = vmm_sdev_inactive
3159 };
3160 
3161 /* ARGSUSED */
3162 static int
3163 vmm_info(dev_info_t *dip, ddi_info_cmd_t cmd, void *arg, void **result)
3164 {
3165 	int error;
3166 
3167 	switch (cmd) {
3168 	case DDI_INFO_DEVT2DEVINFO:
3169 		*result = (void *)vmmdev_dip;
3170 		error = DDI_SUCCESS;
3171 		break;
3172 	case DDI_INFO_DEVT2INSTANCE:
3173 		*result = (void *)0;
3174 		error = DDI_SUCCESS;
3175 		break;
3176 	default:
3177 		error = DDI_FAILURE;
3178 		break;
3179 	}
3180 	return (error);
3181 }
3182 
3183 static int
3184 vmm_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
3185 {
3186 	sdev_plugin_hdl_t sph;
3187 	hma_reg_t *reg = NULL;
3188 	boolean_t vmm_loaded = B_FALSE;
3189 
3190 	if (cmd != DDI_ATTACH) {
3191 		return (DDI_FAILURE);
3192 	}
3193 
3194 	mutex_enter(&vmmdev_mtx);
3195 	/* Ensure we are not already attached. */
3196 	if (vmmdev_dip != NULL) {
3197 		mutex_exit(&vmmdev_mtx);
3198 		return (DDI_FAILURE);
3199 	}
3200 
3201 	vmm_sol_glue_init();
3202 
3203 	/*
3204 	 * Perform temporary HMA registration to determine if the system
3205 	 * is capable.
3206 	 */
3207 	if ((reg = hma_register(vmmdev_hvm_name)) == NULL) {
3208 		goto fail;
3209 	} else if (vmm_mod_load() != 0) {
3210 		goto fail;
3211 	}
3212 	vmm_loaded = B_TRUE;
3213 	hma_unregister(reg);
3214 	reg = NULL;
3215 
3216 	/* Create control node.  Other nodes will be created on demand. */
3217 	if (ddi_create_minor_node(dip, "ctl", S_IFCHR,
3218 	    VMM_CTL_MINOR, DDI_PSEUDO, 0) != 0) {
3219 		goto fail;
3220 	}
3221 
3222 	sph = sdev_plugin_register(VMM_MODULE_NAME, &vmm_sdev_ops, NULL);
3223 	if (sph == (sdev_plugin_hdl_t)NULL) {
3224 		ddi_remove_minor_node(dip, NULL);
3225 		goto fail;
3226 	}
3227 
3228 	ddi_report_dev(dip);
3229 	vmmdev_sdev_hdl = sph;
3230 	vmmdev_dip = dip;
3231 	mutex_exit(&vmmdev_mtx);
3232 	return (DDI_SUCCESS);
3233 
3234 fail:
3235 	if (vmm_loaded) {
3236 		VERIFY0(vmm_mod_unload());
3237 	}
3238 	if (reg != NULL) {
3239 		hma_unregister(reg);
3240 	}
3241 	vmm_sol_glue_cleanup();
3242 	mutex_exit(&vmmdev_mtx);
3243 	return (DDI_FAILURE);
3244 }
3245 
3246 static int
3247 vmm_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
3248 {
3249 	if (cmd != DDI_DETACH) {
3250 		return (DDI_FAILURE);
3251 	}
3252 
3253 	/*
3254 	 * Ensure that all resources have been cleaned up.
3255 	 *
3256 	 * To prevent a deadlock with iommu_cleanup() we'll fail the detach if
3257 	 * vmmdev_mtx is already held. We can't wait for vmmdev_mtx with our
3258 	 * devinfo locked as iommu_cleanup() tries to recursively lock each
3259 	 * devinfo, including our own, while holding vmmdev_mtx.
3260 	 */
3261 	if (mutex_tryenter(&vmmdev_mtx) == 0)
3262 		return (DDI_FAILURE);
3263 
3264 	mutex_enter(&vmm_mtx);
3265 	if (!list_is_empty(&vmm_list)) {
3266 		mutex_exit(&vmm_mtx);
3267 		mutex_exit(&vmmdev_mtx);
3268 		return (DDI_FAILURE);
3269 	}
3270 	mutex_exit(&vmm_mtx);
3271 
3272 	if (!vmmr_is_empty()) {
3273 		mutex_exit(&vmmdev_mtx);
3274 		return (DDI_FAILURE);
3275 	}
3276 
3277 	VERIFY(vmmdev_sdev_hdl != (sdev_plugin_hdl_t)NULL);
3278 	if (sdev_plugin_unregister(vmmdev_sdev_hdl) != 0) {
3279 		mutex_exit(&vmmdev_mtx);
3280 		return (DDI_FAILURE);
3281 	}
3282 	vmmdev_sdev_hdl = (sdev_plugin_hdl_t)NULL;
3283 
3284 	/* Remove the control node. */
3285 	ddi_remove_minor_node(dip, "ctl");
3286 	vmmdev_dip = NULL;
3287 
3288 	VERIFY0(vmm_mod_unload());
3289 	VERIFY3U(vmmdev_hma_reg, ==, NULL);
3290 	vmm_sol_glue_cleanup();
3291 
3292 	mutex_exit(&vmmdev_mtx);
3293 
3294 	return (DDI_SUCCESS);
3295 }
3296 
3297 static struct cb_ops vmm_cb_ops = {
3298 	vmm_open,
3299 	vmm_close,
3300 	nodev,		/* strategy */
3301 	nodev,		/* print */
3302 	nodev,		/* dump */
3303 	nodev,		/* read */
3304 	nodev,		/* write */
3305 	vmm_ioctl,
3306 	nodev,		/* devmap */
3307 	nodev,		/* mmap */
3308 	vmm_segmap,
3309 	nochpoll,	/* poll */
3310 	ddi_prop_op,
3311 	NULL,
3312 	D_NEW | D_MP | D_DEVMAP
3313 };
3314 
3315 static struct dev_ops vmm_ops = {
3316 	DEVO_REV,
3317 	0,
3318 	vmm_info,
3319 	nulldev,	/* identify */
3320 	nulldev,	/* probe */
3321 	vmm_attach,
3322 	vmm_detach,
3323 	nodev,		/* reset */
3324 	&vmm_cb_ops,
3325 	(struct bus_ops *)NULL
3326 };
3327 
3328 static struct modldrv modldrv = {
3329 	&mod_driverops,
3330 	"bhyve vmm",
3331 	&vmm_ops
3332 };
3333 
3334 static struct modlinkage modlinkage = {
3335 	MODREV_1,
3336 	&modldrv,
3337 	NULL
3338 };
3339 
3340 int
3341 _init(void)
3342 {
3343 	int	error;
3344 
3345 	sysinit();
3346 
3347 	mutex_init(&vmmdev_mtx, NULL, MUTEX_DRIVER, NULL);
3348 	mutex_init(&vmm_mtx, NULL, MUTEX_DRIVER, NULL);
3349 	list_create(&vmm_list, sizeof (vmm_softc_t),
3350 	    offsetof(vmm_softc_t, vmm_node));
3351 	vmm_minors = id_space_create("vmm_minors", VMM_CTL_MINOR + 1, MAXMIN32);
3352 
3353 	error = ddi_soft_state_init(&vmm_statep, sizeof (vmm_softc_t), 0);
3354 	if (error) {
3355 		return (error);
3356 	}
3357 
3358 	error = vmmr_init();
3359 	if (error) {
3360 		ddi_soft_state_fini(&vmm_statep);
3361 		return (error);
3362 	}
3363 
3364 	vmm_zsd_init();
3365 
3366 	error = mod_install(&modlinkage);
3367 	if (error) {
3368 		ddi_soft_state_fini(&vmm_statep);
3369 		vmm_zsd_fini();
3370 		vmmr_fini();
3371 	}
3372 
3373 	return (error);
3374 }
3375 
3376 int
3377 _fini(void)
3378 {
3379 	int	error;
3380 
3381 	error = mod_remove(&modlinkage);
3382 	if (error) {
3383 		return (error);
3384 	}
3385 
3386 	vmm_zsd_fini();
3387 	vmmr_fini();
3388 
3389 	ddi_soft_state_fini(&vmm_statep);
3390 
3391 	return (0);
3392 }
3393 
3394 int
3395 _info(struct modinfo *modinfop)
3396 {
3397 	return (mod_info(&modlinkage, modinfop));
3398 }
3399