xref: /illumos-gate/usr/src/uts/intel/io/vmm/vmm_sol_dev.c (revision 549ab26f262a63e8892b99d530a98fea6423ad63)
1 /*
2  * This file and its contents are supplied under the terms of the
3  * Common Development and Distribution License ("CDDL"), version 1.0.
4  * You may only use this file in accordance with the terms of version
5  * 1.0 of the CDDL.
6  *
7  * A full copy of the text of the CDDL should have accompanied this
8  * source.  A copy of the CDDL is also available via the Internet at
9  * http://www.illumos.org/license/CDDL.
10  */
11 /* This file is dual-licensed; see usr/src/contrib/bhyve/LICENSE */
12 
13 /*
14  * Copyright 2015 Pluribus Networks Inc.
15  * Copyright 2019 Joyent, Inc.
16  * Copyright 2020 OmniOS Community Edition (OmniOSce) Association.
17  * Copyright 2022 Oxide Computer Company
18  */
19 
20 #include <sys/types.h>
21 #include <sys/conf.h>
22 #include <sys/cpuvar.h>
23 #include <sys/ioccom.h>
24 #include <sys/stat.h>
25 #include <sys/vmsystm.h>
26 #include <sys/ddi.h>
27 #include <sys/mkdev.h>
28 #include <sys/sunddi.h>
29 #include <sys/fs/dv_node.h>
30 #include <sys/cpuset.h>
31 #include <sys/id_space.h>
32 #include <sys/fs/sdev_plugin.h>
33 #include <sys/smt.h>
34 #include <sys/kstat.h>
35 
36 #include <sys/kernel.h>
37 #include <sys/hma.h>
38 #include <sys/x86_archext.h>
39 #include <x86/apicreg.h>
40 
41 #include <sys/vmm.h>
42 #include <sys/vmm_kernel.h>
43 #include <sys/vmm_instruction_emul.h>
44 #include <sys/vmm_dev.h>
45 #include <sys/vmm_impl.h>
46 #include <sys/vmm_drv.h>
47 #include <sys/vmm_vm.h>
48 #include <sys/vmm_reservoir.h>
49 
50 #include <vm/seg_dev.h>
51 
52 #include "io/ppt.h"
53 #include "io/vatpic.h"
54 #include "io/vioapic.h"
55 #include "io/vrtc.h"
56 #include "io/vhpet.h"
57 #include "io/vpmtmr.h"
58 #include "vmm_lapic.h"
59 #include "vmm_stat.h"
60 #include "vmm_util.h"
61 
62 /*
63  * Locking details:
64  *
65  * Driver-wide data (vmmdev_*) , including HMA and sdev registration, is
66  * protected by vmmdev_mtx.  The list of vmm_softc_t instances and related data
67  * (vmm_*) are protected by vmm_mtx.  Actions requiring both locks must acquire
68  * vmmdev_mtx before vmm_mtx.  The sdev plugin functions must not attempt to
69  * acquire vmmdev_mtx, as they could deadlock with plugin unregistration.
70  */
71 
72 static kmutex_t		vmmdev_mtx;
73 static dev_info_t	*vmmdev_dip;
74 static hma_reg_t	*vmmdev_hma_reg;
75 static uint_t		vmmdev_hma_ref;
76 static sdev_plugin_hdl_t vmmdev_sdev_hdl;
77 
78 static kmutex_t		vmm_mtx;
79 static list_t		vmm_list;
80 static id_space_t	*vmm_minors;
81 static void		*vmm_statep;
82 
83 /* temporary safety switch */
84 int		vmm_allow_state_writes;
85 
86 static const char *vmmdev_hvm_name = "bhyve";
87 
88 /* For sdev plugin (/dev) */
89 #define	VMM_SDEV_ROOT "/dev/vmm"
90 
91 /* From uts/intel/io/vmm/intel/vmx.c */
92 extern int vmx_x86_supported(const char **);
93 
94 /* Holds and hooks from drivers external to vmm */
95 struct vmm_hold {
96 	list_node_t	vmh_node;
97 	vmm_softc_t	*vmh_sc;
98 	boolean_t	vmh_release_req;
99 	uint_t		vmh_ioport_hook_cnt;
100 };
101 
102 struct vmm_lease {
103 	list_node_t		vml_node;
104 	struct vm		*vml_vm;
105 	vm_client_t		*vml_vmclient;
106 	boolean_t		vml_expired;
107 	boolean_t		vml_break_deferred;
108 	boolean_t		(*vml_expire_func)(void *);
109 	void			*vml_expire_arg;
110 	struct vmm_hold		*vml_hold;
111 };
112 
113 /* Options for vmm_destroy_locked */
114 typedef enum vmm_destroy_opts {
115 	VDO_DEFAULT		= 0,
116 	/*
117 	 * Indicate that zone-specific-data associated with this VM not be
118 	 * cleaned up as part of the destroy.  Skipping ZSD clean-up is
119 	 * necessary when VM is being destroyed as part of zone destruction,
120 	 * when said ZSD is already being cleaned up.
121 	 */
122 	VDO_NO_CLEAN_ZSD	= (1 << 0),
123 	/*
124 	 * Attempt to wait for VM destruction to complete.  This is opt-in,
125 	 * since there are many normal conditions which could lead to
126 	 * destruction being stalled pending other clean-up.
127 	 */
128 	VDO_ATTEMPT_WAIT	= (1 << 1),
129 } vmm_destroy_opts_t;
130 
131 static void vmm_hma_release(void);
132 static int vmm_destroy_locked(vmm_softc_t *, vmm_destroy_opts_t, bool *);
133 static int vmm_drv_block_hook(vmm_softc_t *, boolean_t);
134 static void vmm_lease_block(vmm_softc_t *);
135 static void vmm_lease_unblock(vmm_softc_t *);
136 static int vmm_kstat_alloc(vmm_softc_t *, minor_t, const cred_t *);
137 static void vmm_kstat_init(vmm_softc_t *);
138 static void vmm_kstat_fini(vmm_softc_t *);
139 
140 /*
141  * The 'devmem' hack:
142  *
143  * On native FreeBSD, bhyve consumers are allowed to create 'devmem' segments
144  * in the vm which appear with their own name related to the vm under /dev.
145  * Since this would be a hassle from an sdev perspective and would require a
146  * new cdev interface (or complicate the existing one), we choose to implement
147  * this in a different manner.  Direct access to the underlying vm memory
148  * segments is exposed by placing them in a range of offsets beyond the normal
149  * guest memory space.  Userspace can query the appropriate offset to mmap()
150  * for a given segment-id with the VM_DEVMEM_GETOFFSET ioctl.
151  */
152 
153 static vmm_devmem_entry_t *
154 vmmdev_devmem_find(vmm_softc_t *sc, int segid)
155 {
156 	vmm_devmem_entry_t *ent = NULL;
157 	list_t *dl = &sc->vmm_devmem_list;
158 
159 	for (ent = list_head(dl); ent != NULL; ent = list_next(dl, ent)) {
160 		if (ent->vde_segid == segid) {
161 			return (ent);
162 		}
163 	}
164 	return (NULL);
165 }
166 
167 static int
168 vmmdev_get_memseg(vmm_softc_t *sc, struct vm_memseg *mseg)
169 {
170 	int error;
171 	bool sysmem;
172 
173 	error = vm_get_memseg(sc->vmm_vm, mseg->segid, &mseg->len, &sysmem,
174 	    NULL);
175 	if (error || mseg->len == 0)
176 		return (error);
177 
178 	if (!sysmem) {
179 		vmm_devmem_entry_t *de;
180 
181 		de = vmmdev_devmem_find(sc, mseg->segid);
182 		if (de != NULL) {
183 			(void) strlcpy(mseg->name, de->vde_name,
184 			    sizeof (mseg->name));
185 		}
186 	} else {
187 		bzero(mseg->name, sizeof (mseg->name));
188 	}
189 
190 	return (error);
191 }
192 
193 static int
194 vmmdev_devmem_create(vmm_softc_t *sc, struct vm_memseg *mseg, const char *name)
195 {
196 	off_t map_offset;
197 	vmm_devmem_entry_t *entry;
198 
199 	if (list_is_empty(&sc->vmm_devmem_list)) {
200 		map_offset = VM_DEVMEM_START;
201 	} else {
202 		entry = list_tail(&sc->vmm_devmem_list);
203 		map_offset = entry->vde_off + entry->vde_len;
204 		if (map_offset < entry->vde_off) {
205 			/* Do not tolerate overflow */
206 			return (ERANGE);
207 		}
208 		/*
209 		 * XXXJOY: We could choose to search the list for duplicate
210 		 * names and toss an error.  Since we're using the offset
211 		 * method for now, it does not make much of a difference.
212 		 */
213 	}
214 
215 	entry = kmem_zalloc(sizeof (*entry), KM_SLEEP);
216 	entry->vde_segid = mseg->segid;
217 	entry->vde_len = mseg->len;
218 	entry->vde_off = map_offset;
219 	(void) strlcpy(entry->vde_name, name, sizeof (entry->vde_name));
220 	list_insert_tail(&sc->vmm_devmem_list, entry);
221 
222 	return (0);
223 }
224 
225 static boolean_t
226 vmmdev_devmem_segid(vmm_softc_t *sc, off_t off, off_t len, int *segidp,
227     off_t *map_offp)
228 {
229 	list_t *dl = &sc->vmm_devmem_list;
230 	vmm_devmem_entry_t *de = NULL;
231 	const off_t map_end = off + len;
232 
233 	VERIFY(off >= VM_DEVMEM_START);
234 
235 	if (map_end < off) {
236 		/* No match on overflow */
237 		return (B_FALSE);
238 	}
239 
240 	for (de = list_head(dl); de != NULL; de = list_next(dl, de)) {
241 		const off_t item_end = de->vde_off + de->vde_len;
242 
243 		if (de->vde_off <= off && item_end >= map_end) {
244 			*segidp = de->vde_segid;
245 			*map_offp = off - de->vde_off;
246 			return (B_TRUE);
247 		}
248 	}
249 	return (B_FALSE);
250 }
251 
252 /*
253  * When an instance is being destroyed, the devmem list of named memory objects
254  * can be torn down, as no new mappings are allowed.
255  */
256 static void
257 vmmdev_devmem_purge(vmm_softc_t *sc)
258 {
259 	vmm_devmem_entry_t *entry;
260 
261 	while ((entry = list_remove_head(&sc->vmm_devmem_list)) != NULL) {
262 		kmem_free(entry, sizeof (*entry));
263 	}
264 }
265 
266 static int
267 vmmdev_alloc_memseg(vmm_softc_t *sc, struct vm_memseg *mseg)
268 {
269 	int error;
270 	bool sysmem = true;
271 
272 	if (VM_MEMSEG_NAME(mseg)) {
273 		sysmem = false;
274 	}
275 	error = vm_alloc_memseg(sc->vmm_vm, mseg->segid, mseg->len, sysmem);
276 
277 	if (error == 0) {
278 		/*
279 		 * Rather than create a whole fresh device from which userspace
280 		 * can mmap this segment, instead make it available at an
281 		 * offset above where the main guest memory resides.
282 		 */
283 		error = vmmdev_devmem_create(sc, mseg, mseg->name);
284 		if (error != 0) {
285 			vm_free_memseg(sc->vmm_vm, mseg->segid);
286 		}
287 	}
288 	return (error);
289 }
290 
291 /*
292  * Resource Locking and Exclusion
293  *
294  * Much of bhyve depends on key portions of VM state, such as the guest memory
295  * map, to remain unchanged while the guest is running.  As ported from
296  * FreeBSD, the initial strategy for this resource exclusion hinged on gating
297  * access to the instance vCPUs.  Threads acting on a single vCPU, like those
298  * performing the work of actually running the guest in VMX/SVM, would lock
299  * only that vCPU during ioctl() entry.  For ioctls which would change VM-wide
300  * state, all of the vCPUs would be first locked, ensuring that the
301  * operation(s) could complete without any other threads stumbling into
302  * intermediate states.
303  *
304  * This approach is largely effective for bhyve.  Common operations, such as
305  * running the vCPUs, steer clear of lock contention.  The model begins to
306  * break down for operations which do not occur in the context of a specific
307  * vCPU.  LAPIC MSI delivery, for example, may be initiated from a worker
308  * thread in the bhyve process.  In order to properly protect those vCPU-less
309  * operations from encountering invalid states, additional locking is required.
310  * This was solved by forcing those operations to lock the VM_MAXCPU-1 vCPU.
311  * It does mean that class of operations will be serialized on locking the
312  * specific vCPU and that instances sized at VM_MAXCPU will potentially see
313  * undue contention on the VM_MAXCPU-1 vCPU.
314  *
315  * In order to address the shortcomings of this model, the concept of a
316  * read/write lock has been added to bhyve.  Operations which change
317  * fundamental aspects of a VM (such as the memory map) must acquire the write
318  * lock, which also implies locking all of the vCPUs and waiting for all read
319  * lock holders to release.  While it increases the cost and waiting time for
320  * those few operations, it allows most hot-path operations on the VM (which
321  * depend on its configuration remaining stable) to occur with minimal locking.
322  *
323  * Consumers of the Driver API (see below) are a special case when it comes to
324  * this locking, since they may hold a read lock via the drv_lease mechanism
325  * for an extended period of time.  Rather than forcing those consumers to
326  * continuously poll for a write lock attempt, the lease system forces them to
327  * provide a release callback to trigger their clean-up (and potential later
328  * reacquisition) of the read lock.
329  */
330 
331 static void
332 vcpu_lock_one(vmm_softc_t *sc, int vcpu)
333 {
334 	ASSERT(vcpu >= 0 && vcpu < VM_MAXCPU);
335 
336 	/*
337 	 * Since this state transition is utilizing from_idle=true, it should
338 	 * not fail, but rather block until it can be successful.
339 	 */
340 	VERIFY0(vcpu_set_state(sc->vmm_vm, vcpu, VCPU_FROZEN, true));
341 }
342 
343 static void
344 vcpu_unlock_one(vmm_softc_t *sc, int vcpu)
345 {
346 	ASSERT(vcpu >= 0 && vcpu < VM_MAXCPU);
347 
348 	VERIFY3U(vcpu_get_state(sc->vmm_vm, vcpu, NULL), ==, VCPU_FROZEN);
349 	VERIFY0(vcpu_set_state(sc->vmm_vm, vcpu, VCPU_IDLE, false));
350 }
351 
352 static void
353 vmm_read_lock(vmm_softc_t *sc)
354 {
355 	rw_enter(&sc->vmm_rwlock, RW_READER);
356 }
357 
358 static void
359 vmm_read_unlock(vmm_softc_t *sc)
360 {
361 	rw_exit(&sc->vmm_rwlock);
362 }
363 
364 static void
365 vmm_write_lock(vmm_softc_t *sc)
366 {
367 	int maxcpus;
368 
369 	/* First lock all the vCPUs */
370 	maxcpus = vm_get_maxcpus(sc->vmm_vm);
371 	for (int vcpu = 0; vcpu < maxcpus; vcpu++) {
372 		vcpu_lock_one(sc, vcpu);
373 	}
374 
375 	/*
376 	 * Block vmm_drv leases from being acquired or held while the VM write
377 	 * lock is held.
378 	 */
379 	vmm_lease_block(sc);
380 
381 	rw_enter(&sc->vmm_rwlock, RW_WRITER);
382 	/*
383 	 * For now, the 'maxcpus' value for an instance is fixed at the
384 	 * compile-time constant of VM_MAXCPU at creation.  If this changes in
385 	 * the future, allowing for dynamic vCPU resource sizing, acquisition
386 	 * of the write lock will need to be wary of such changes.
387 	 */
388 	VERIFY(maxcpus == vm_get_maxcpus(sc->vmm_vm));
389 }
390 
391 static void
392 vmm_write_unlock(vmm_softc_t *sc)
393 {
394 	int maxcpus;
395 
396 	/* Allow vmm_drv leases to be acquired once write lock is dropped */
397 	vmm_lease_unblock(sc);
398 
399 	/*
400 	 * The VM write lock _must_ be released from the same thread it was
401 	 * acquired in, unlike the read lock.
402 	 */
403 	VERIFY(rw_write_held(&sc->vmm_rwlock));
404 	rw_exit(&sc->vmm_rwlock);
405 
406 	/* Unlock all the vCPUs */
407 	maxcpus = vm_get_maxcpus(sc->vmm_vm);
408 	for (int vcpu = 0; vcpu < maxcpus; vcpu++) {
409 		vcpu_unlock_one(sc, vcpu);
410 	}
411 }
412 
413 static int
414 vmmdev_do_ioctl(vmm_softc_t *sc, int cmd, intptr_t arg, int md,
415     cred_t *credp, int *rvalp)
416 {
417 	int error = 0, vcpu = -1;
418 	void *datap = (void *)arg;
419 	enum vm_lock_type {
420 		LOCK_NONE = 0,
421 		LOCK_VCPU,
422 		LOCK_READ_HOLD,
423 		LOCK_WRITE_HOLD
424 	} lock_type = LOCK_NONE;
425 
426 	/* Acquire any exclusion resources needed for the operation. */
427 	switch (cmd) {
428 	case VM_RUN:
429 	case VM_GET_REGISTER:
430 	case VM_SET_REGISTER:
431 	case VM_GET_SEGMENT_DESCRIPTOR:
432 	case VM_SET_SEGMENT_DESCRIPTOR:
433 	case VM_GET_REGISTER_SET:
434 	case VM_SET_REGISTER_SET:
435 	case VM_INJECT_EXCEPTION:
436 	case VM_GET_CAPABILITY:
437 	case VM_SET_CAPABILITY:
438 	case VM_PPTDEV_MSI:
439 	case VM_PPTDEV_MSIX:
440 	case VM_SET_X2APIC_STATE:
441 	case VM_GLA2GPA:
442 	case VM_GLA2GPA_NOFAULT:
443 	case VM_ACTIVATE_CPU:
444 	case VM_SET_INTINFO:
445 	case VM_GET_INTINFO:
446 	case VM_RESTART_INSTRUCTION:
447 	case VM_SET_KERNEMU_DEV:
448 	case VM_GET_KERNEMU_DEV:
449 	case VM_RESET_CPU:
450 	case VM_GET_RUN_STATE:
451 	case VM_SET_RUN_STATE:
452 	case VM_GET_FPU:
453 	case VM_SET_FPU:
454 	case VM_GET_CPUID:
455 	case VM_SET_CPUID:
456 	case VM_LEGACY_CPUID:
457 		/*
458 		 * Copy in the ID of the vCPU chosen for this operation.
459 		 * Since a nefarious caller could update their struct between
460 		 * this locking and when the rest of the ioctl data is copied
461 		 * in, it is _critical_ that this local 'vcpu' variable be used
462 		 * rather than the in-struct one when performing the ioctl.
463 		 */
464 		if (ddi_copyin(datap, &vcpu, sizeof (vcpu), md)) {
465 			return (EFAULT);
466 		}
467 		if (vcpu < 0 || vcpu > vm_get_maxcpus(sc->vmm_vm)) {
468 			return (EINVAL);
469 		}
470 		vcpu_lock_one(sc, vcpu);
471 		lock_type = LOCK_VCPU;
472 		break;
473 
474 	case VM_REINIT:
475 	case VM_BIND_PPTDEV:
476 	case VM_UNBIND_PPTDEV:
477 	case VM_MAP_PPTDEV_MMIO:
478 	case VM_UNMAP_PPTDEV_MMIO:
479 	case VM_ALLOC_MEMSEG:
480 	case VM_MMAP_MEMSEG:
481 	case VM_MUNMAP_MEMSEG:
482 	case VM_WRLOCK_CYCLE:
483 	case VM_PMTMR_LOCATE:
484 	case VM_PAUSE:
485 	case VM_RESUME:
486 		vmm_write_lock(sc);
487 		lock_type = LOCK_WRITE_HOLD;
488 		break;
489 
490 	case VM_GET_MEMSEG:
491 	case VM_MMAP_GETNEXT:
492 	case VM_LAPIC_IRQ:
493 	case VM_INJECT_NMI:
494 	case VM_IOAPIC_ASSERT_IRQ:
495 	case VM_IOAPIC_DEASSERT_IRQ:
496 	case VM_IOAPIC_PULSE_IRQ:
497 	case VM_LAPIC_MSI:
498 	case VM_LAPIC_LOCAL_IRQ:
499 	case VM_GET_X2APIC_STATE:
500 	case VM_RTC_READ:
501 	case VM_RTC_WRITE:
502 	case VM_RTC_SETTIME:
503 	case VM_RTC_GETTIME:
504 	case VM_PPTDEV_DISABLE_MSIX:
505 	case VM_DEVMEM_GETOFFSET:
506 	case VM_TRACK_DIRTY_PAGES:
507 		vmm_read_lock(sc);
508 		lock_type = LOCK_READ_HOLD;
509 		break;
510 
511 	case VM_DATA_READ:
512 	case VM_DATA_WRITE:
513 		if (ddi_copyin(datap, &vcpu, sizeof (vcpu), md)) {
514 			return (EFAULT);
515 		}
516 		if (vcpu == -1) {
517 			/* Access data for VM-wide devices */
518 			vmm_write_lock(sc);
519 			lock_type = LOCK_WRITE_HOLD;
520 		} else if (vcpu >= 0 && vcpu < vm_get_maxcpus(sc->vmm_vm)) {
521 			/* Access data associated with a specific vCPU */
522 			vcpu_lock_one(sc, vcpu);
523 			lock_type = LOCK_VCPU;
524 		} else {
525 			return (EINVAL);
526 		}
527 		break;
528 
529 	case VM_GET_GPA_PMAP:
530 	case VM_IOAPIC_PINCOUNT:
531 	case VM_SUSPEND:
532 	case VM_DESC_FPU_AREA:
533 	case VM_SET_AUTODESTRUCT:
534 	case VM_DESTROY_SELF:
535 	case VM_DESTROY_PENDING:
536 	default:
537 		break;
538 	}
539 
540 	/* Execute the primary logic for the ioctl. */
541 	switch (cmd) {
542 	case VM_RUN: {
543 		struct vm_entry entry;
544 
545 		if (ddi_copyin(datap, &entry, sizeof (entry), md)) {
546 			error = EFAULT;
547 			break;
548 		}
549 
550 		if (!(curthread->t_schedflag & TS_VCPU))
551 			smt_mark_as_vcpu();
552 
553 		error = vm_run(sc->vmm_vm, vcpu, &entry);
554 
555 		/*
556 		 * Unexpected states in vm_run() are expressed through positive
557 		 * errno-oriented return values.  VM states which expect further
558 		 * processing in userspace (necessary context via exitinfo) are
559 		 * expressed through negative return values.  For the time being
560 		 * a return value of 0 is not expected from vm_run().
561 		 */
562 		ASSERT(error != 0);
563 		if (error < 0) {
564 			const struct vm_exit *vme;
565 			void *outp = entry.exit_data;
566 
567 			error = 0;
568 			vme = vm_exitinfo(sc->vmm_vm, vcpu);
569 			if (ddi_copyout(vme, outp, sizeof (*vme), md)) {
570 				error = EFAULT;
571 			}
572 		}
573 		break;
574 	}
575 	case VM_SUSPEND: {
576 		struct vm_suspend vmsuspend;
577 
578 		if (ddi_copyin(datap, &vmsuspend, sizeof (vmsuspend), md)) {
579 			error = EFAULT;
580 			break;
581 		}
582 		error = vm_suspend(sc->vmm_vm, vmsuspend.how);
583 		break;
584 	}
585 	case VM_REINIT: {
586 		struct vm_reinit reinit;
587 
588 		if (ddi_copyin(datap, &reinit, sizeof (reinit), md)) {
589 			error = EFAULT;
590 			break;
591 		}
592 		if ((error = vmm_drv_block_hook(sc, B_TRUE)) != 0) {
593 			/*
594 			 * The VM instance should be free of driver-attached
595 			 * hooks during the reinitialization process.
596 			 */
597 			break;
598 		}
599 		error = vm_reinit(sc->vmm_vm, reinit.flags);
600 		(void) vmm_drv_block_hook(sc, B_FALSE);
601 		break;
602 	}
603 	case VM_STAT_DESC: {
604 		struct vm_stat_desc statdesc;
605 
606 		if (ddi_copyin(datap, &statdesc, sizeof (statdesc), md)) {
607 			error = EFAULT;
608 			break;
609 		}
610 		error = vmm_stat_desc_copy(statdesc.index, statdesc.desc,
611 		    sizeof (statdesc.desc));
612 		if (error == 0 &&
613 		    ddi_copyout(&statdesc, datap, sizeof (statdesc), md)) {
614 			error = EFAULT;
615 			break;
616 		}
617 		break;
618 	}
619 	case VM_STATS_IOC: {
620 		struct vm_stats vmstats;
621 
622 		if (ddi_copyin(datap, &vmstats, sizeof (vmstats), md)) {
623 			error = EFAULT;
624 			break;
625 		}
626 		hrt2tv(gethrtime(), &vmstats.tv);
627 		error = vmm_stat_copy(sc->vmm_vm, vmstats.cpuid, vmstats.index,
628 		    nitems(vmstats.statbuf),
629 		    &vmstats.num_entries, vmstats.statbuf);
630 		if (error == 0 &&
631 		    ddi_copyout(&vmstats, datap, sizeof (vmstats), md)) {
632 			error = EFAULT;
633 			break;
634 		}
635 		break;
636 	}
637 
638 	case VM_PPTDEV_MSI: {
639 		struct vm_pptdev_msi pptmsi;
640 
641 		if (ddi_copyin(datap, &pptmsi, sizeof (pptmsi), md)) {
642 			error = EFAULT;
643 			break;
644 		}
645 		error = ppt_setup_msi(sc->vmm_vm, pptmsi.vcpu, pptmsi.pptfd,
646 		    pptmsi.addr, pptmsi.msg, pptmsi.numvec);
647 		break;
648 	}
649 	case VM_PPTDEV_MSIX: {
650 		struct vm_pptdev_msix pptmsix;
651 
652 		if (ddi_copyin(datap, &pptmsix, sizeof (pptmsix), md)) {
653 			error = EFAULT;
654 			break;
655 		}
656 		error = ppt_setup_msix(sc->vmm_vm, pptmsix.vcpu, pptmsix.pptfd,
657 		    pptmsix.idx, pptmsix.addr, pptmsix.msg,
658 		    pptmsix.vector_control);
659 		break;
660 	}
661 	case VM_PPTDEV_DISABLE_MSIX: {
662 		struct vm_pptdev pptdev;
663 
664 		if (ddi_copyin(datap, &pptdev, sizeof (pptdev), md)) {
665 			error = EFAULT;
666 			break;
667 		}
668 		error = ppt_disable_msix(sc->vmm_vm, pptdev.pptfd);
669 		break;
670 	}
671 	case VM_MAP_PPTDEV_MMIO: {
672 		struct vm_pptdev_mmio pptmmio;
673 
674 		if (ddi_copyin(datap, &pptmmio, sizeof (pptmmio), md)) {
675 			error = EFAULT;
676 			break;
677 		}
678 		error = ppt_map_mmio(sc->vmm_vm, pptmmio.pptfd, pptmmio.gpa,
679 		    pptmmio.len, pptmmio.hpa);
680 		break;
681 	}
682 	case VM_UNMAP_PPTDEV_MMIO: {
683 		struct vm_pptdev_mmio pptmmio;
684 
685 		if (ddi_copyin(datap, &pptmmio, sizeof (pptmmio), md)) {
686 			error = EFAULT;
687 			break;
688 		}
689 		error = ppt_unmap_mmio(sc->vmm_vm, pptmmio.pptfd, pptmmio.gpa,
690 		    pptmmio.len);
691 		break;
692 	}
693 	case VM_BIND_PPTDEV: {
694 		struct vm_pptdev pptdev;
695 
696 		if (ddi_copyin(datap, &pptdev, sizeof (pptdev), md)) {
697 			error = EFAULT;
698 			break;
699 		}
700 		error = vm_assign_pptdev(sc->vmm_vm, pptdev.pptfd);
701 		break;
702 	}
703 	case VM_UNBIND_PPTDEV: {
704 		struct vm_pptdev pptdev;
705 
706 		if (ddi_copyin(datap, &pptdev, sizeof (pptdev), md)) {
707 			error = EFAULT;
708 			break;
709 		}
710 		error = vm_unassign_pptdev(sc->vmm_vm, pptdev.pptfd);
711 		break;
712 	}
713 	case VM_GET_PPTDEV_LIMITS: {
714 		struct vm_pptdev_limits pptlimits;
715 
716 		if (ddi_copyin(datap, &pptlimits, sizeof (pptlimits), md)) {
717 			error = EFAULT;
718 			break;
719 		}
720 		error = ppt_get_limits(sc->vmm_vm, pptlimits.pptfd,
721 		    &pptlimits.msi_limit, &pptlimits.msix_limit);
722 		if (error == 0 &&
723 		    ddi_copyout(&pptlimits, datap, sizeof (pptlimits), md)) {
724 			error = EFAULT;
725 			break;
726 		}
727 		break;
728 	}
729 	case VM_INJECT_EXCEPTION: {
730 		struct vm_exception vmexc;
731 		if (ddi_copyin(datap, &vmexc, sizeof (vmexc), md)) {
732 			error = EFAULT;
733 			break;
734 		}
735 		error = vm_inject_exception(sc->vmm_vm, vcpu, vmexc.vector,
736 		    vmexc.error_code_valid != 0, vmexc.error_code,
737 		    vmexc.restart_instruction != 0);
738 		break;
739 	}
740 	case VM_INJECT_NMI: {
741 		struct vm_nmi vmnmi;
742 
743 		if (ddi_copyin(datap, &vmnmi, sizeof (vmnmi), md)) {
744 			error = EFAULT;
745 			break;
746 		}
747 		error = vm_inject_nmi(sc->vmm_vm, vmnmi.cpuid);
748 		break;
749 	}
750 	case VM_LAPIC_IRQ: {
751 		struct vm_lapic_irq vmirq;
752 
753 		if (ddi_copyin(datap, &vmirq, sizeof (vmirq), md)) {
754 			error = EFAULT;
755 			break;
756 		}
757 		error = lapic_intr_edge(sc->vmm_vm, vmirq.cpuid, vmirq.vector);
758 		break;
759 	}
760 	case VM_LAPIC_LOCAL_IRQ: {
761 		struct vm_lapic_irq vmirq;
762 
763 		if (ddi_copyin(datap, &vmirq, sizeof (vmirq), md)) {
764 			error = EFAULT;
765 			break;
766 		}
767 		error = lapic_set_local_intr(sc->vmm_vm, vmirq.cpuid,
768 		    vmirq.vector);
769 		break;
770 	}
771 	case VM_LAPIC_MSI: {
772 		struct vm_lapic_msi vmmsi;
773 
774 		if (ddi_copyin(datap, &vmmsi, sizeof (vmmsi), md)) {
775 			error = EFAULT;
776 			break;
777 		}
778 		error = lapic_intr_msi(sc->vmm_vm, vmmsi.addr, vmmsi.msg);
779 		break;
780 	}
781 
782 	case VM_IOAPIC_ASSERT_IRQ: {
783 		struct vm_ioapic_irq ioapic_irq;
784 
785 		if (ddi_copyin(datap, &ioapic_irq, sizeof (ioapic_irq), md)) {
786 			error = EFAULT;
787 			break;
788 		}
789 		error = vioapic_assert_irq(sc->vmm_vm, ioapic_irq.irq);
790 		break;
791 	}
792 	case VM_IOAPIC_DEASSERT_IRQ: {
793 		struct vm_ioapic_irq ioapic_irq;
794 
795 		if (ddi_copyin(datap, &ioapic_irq, sizeof (ioapic_irq), md)) {
796 			error = EFAULT;
797 			break;
798 		}
799 		error = vioapic_deassert_irq(sc->vmm_vm, ioapic_irq.irq);
800 		break;
801 	}
802 	case VM_IOAPIC_PULSE_IRQ: {
803 		struct vm_ioapic_irq ioapic_irq;
804 
805 		if (ddi_copyin(datap, &ioapic_irq, sizeof (ioapic_irq), md)) {
806 			error = EFAULT;
807 			break;
808 		}
809 		error = vioapic_pulse_irq(sc->vmm_vm, ioapic_irq.irq);
810 		break;
811 	}
812 	case VM_IOAPIC_PINCOUNT: {
813 		int pincount;
814 
815 		pincount = vioapic_pincount(sc->vmm_vm);
816 		if (ddi_copyout(&pincount, datap, sizeof (int), md)) {
817 			error = EFAULT;
818 			break;
819 		}
820 		break;
821 	}
822 	case VM_DESC_FPU_AREA: {
823 		struct vm_fpu_desc desc;
824 		void *buf = NULL;
825 
826 		if (ddi_copyin(datap, &desc, sizeof (desc), md)) {
827 			error = EFAULT;
828 			break;
829 		}
830 		if (desc.vfd_num_entries > 64) {
831 			error = EINVAL;
832 			break;
833 		}
834 		const size_t buf_sz = sizeof (struct vm_fpu_desc_entry) *
835 		    desc.vfd_num_entries;
836 		if (buf_sz != 0) {
837 			buf = kmem_zalloc(buf_sz, KM_SLEEP);
838 		}
839 
840 		/*
841 		 * For now, we are depending on vm_fpu_desc_entry and
842 		 * hma_xsave_state_desc_t having the same format.
843 		 */
844 		CTASSERT(sizeof (struct vm_fpu_desc_entry) ==
845 		    sizeof (hma_xsave_state_desc_t));
846 
847 		size_t req_size;
848 		const uint_t max_entries = hma_fpu_describe_xsave_state(
849 		    (hma_xsave_state_desc_t *)buf,
850 		    desc.vfd_num_entries,
851 		    &req_size);
852 
853 		desc.vfd_req_size = req_size;
854 		desc.vfd_num_entries = max_entries;
855 		if (buf_sz != 0) {
856 			if (ddi_copyout(buf, desc.vfd_entry_data, buf_sz, md)) {
857 				error = EFAULT;
858 			}
859 			kmem_free(buf, buf_sz);
860 		}
861 
862 		if (error == 0) {
863 			if (ddi_copyout(&desc, datap, sizeof (desc), md)) {
864 				error = EFAULT;
865 			}
866 		}
867 		break;
868 	}
869 	case VM_SET_AUTODESTRUCT: {
870 		/*
871 		 * Since this has to do with controlling the lifetime of the
872 		 * greater vmm_softc_t, the flag is protected by vmm_mtx, rather
873 		 * than the vcpu-centric or rwlock exclusion mechanisms.
874 		 */
875 		mutex_enter(&vmm_mtx);
876 		if (arg != 0) {
877 			sc->vmm_flags |= VMM_AUTODESTROY;
878 		} else {
879 			sc->vmm_flags &= ~VMM_AUTODESTROY;
880 		}
881 		mutex_exit(&vmm_mtx);
882 		break;
883 	}
884 	case VM_DESTROY_SELF: {
885 		bool hma_release = false;
886 
887 		/*
888 		 * Just like VMM_DESTROY_VM, but on the instance file descriptor
889 		 * itself, rather than having to perform a racy name lookup as
890 		 * part of the destroy process.
891 		 *
892 		 * Since vmm_destroy_locked() performs vCPU lock acquisition in
893 		 * order to kick the vCPUs out of guest context as part of any
894 		 * destruction, we do not need to worry about it ourself using
895 		 * the `lock_type` logic here.
896 		 */
897 		mutex_enter(&vmm_mtx);
898 		VERIFY0(vmm_destroy_locked(sc, VDO_DEFAULT, &hma_release));
899 		mutex_exit(&vmm_mtx);
900 		if (hma_release) {
901 			vmm_hma_release();
902 		}
903 		break;
904 	}
905 	case VM_DESTROY_PENDING: {
906 		/*
907 		 * If we have made it this far, then destruction of the instance
908 		 * has not been initiated.
909 		 */
910 		*rvalp = 0;
911 		break;
912 	}
913 
914 	case VM_ISA_ASSERT_IRQ: {
915 		struct vm_isa_irq isa_irq;
916 
917 		if (ddi_copyin(datap, &isa_irq, sizeof (isa_irq), md)) {
918 			error = EFAULT;
919 			break;
920 		}
921 		error = vatpic_assert_irq(sc->vmm_vm, isa_irq.atpic_irq);
922 		if (error == 0 && isa_irq.ioapic_irq != -1) {
923 			error = vioapic_assert_irq(sc->vmm_vm,
924 			    isa_irq.ioapic_irq);
925 		}
926 		break;
927 	}
928 	case VM_ISA_DEASSERT_IRQ: {
929 		struct vm_isa_irq isa_irq;
930 
931 		if (ddi_copyin(datap, &isa_irq, sizeof (isa_irq), md)) {
932 			error = EFAULT;
933 			break;
934 		}
935 		error = vatpic_deassert_irq(sc->vmm_vm, isa_irq.atpic_irq);
936 		if (error == 0 && isa_irq.ioapic_irq != -1) {
937 			error = vioapic_deassert_irq(sc->vmm_vm,
938 			    isa_irq.ioapic_irq);
939 		}
940 		break;
941 	}
942 	case VM_ISA_PULSE_IRQ: {
943 		struct vm_isa_irq isa_irq;
944 
945 		if (ddi_copyin(datap, &isa_irq, sizeof (isa_irq), md)) {
946 			error = EFAULT;
947 			break;
948 		}
949 		error = vatpic_pulse_irq(sc->vmm_vm, isa_irq.atpic_irq);
950 		if (error == 0 && isa_irq.ioapic_irq != -1) {
951 			error = vioapic_pulse_irq(sc->vmm_vm,
952 			    isa_irq.ioapic_irq);
953 		}
954 		break;
955 	}
956 	case VM_ISA_SET_IRQ_TRIGGER: {
957 		struct vm_isa_irq_trigger isa_irq_trigger;
958 
959 		if (ddi_copyin(datap, &isa_irq_trigger,
960 		    sizeof (isa_irq_trigger), md)) {
961 			error = EFAULT;
962 			break;
963 		}
964 		error = vatpic_set_irq_trigger(sc->vmm_vm,
965 		    isa_irq_trigger.atpic_irq, isa_irq_trigger.trigger);
966 		break;
967 	}
968 
969 	case VM_MMAP_GETNEXT: {
970 		struct vm_memmap mm;
971 
972 		if (ddi_copyin(datap, &mm, sizeof (mm), md)) {
973 			error = EFAULT;
974 			break;
975 		}
976 		error = vm_mmap_getnext(sc->vmm_vm, &mm.gpa, &mm.segid,
977 		    &mm.segoff, &mm.len, &mm.prot, &mm.flags);
978 		if (error == 0 && ddi_copyout(&mm, datap, sizeof (mm), md)) {
979 			error = EFAULT;
980 			break;
981 		}
982 		break;
983 	}
984 	case VM_MMAP_MEMSEG: {
985 		struct vm_memmap mm;
986 
987 		if (ddi_copyin(datap, &mm, sizeof (mm), md)) {
988 			error = EFAULT;
989 			break;
990 		}
991 		error = vm_mmap_memseg(sc->vmm_vm, mm.gpa, mm.segid, mm.segoff,
992 		    mm.len, mm.prot, mm.flags);
993 		break;
994 	}
995 	case VM_MUNMAP_MEMSEG: {
996 		struct vm_munmap mu;
997 
998 		if (ddi_copyin(datap, &mu, sizeof (mu), md)) {
999 			error = EFAULT;
1000 			break;
1001 		}
1002 		error = vm_munmap_memseg(sc->vmm_vm, mu.gpa, mu.len);
1003 		break;
1004 	}
1005 	case VM_ALLOC_MEMSEG: {
1006 		struct vm_memseg vmseg;
1007 
1008 		if (ddi_copyin(datap, &vmseg, sizeof (vmseg), md)) {
1009 			error = EFAULT;
1010 			break;
1011 		}
1012 		error = vmmdev_alloc_memseg(sc, &vmseg);
1013 		break;
1014 	}
1015 	case VM_GET_MEMSEG: {
1016 		struct vm_memseg vmseg;
1017 
1018 		if (ddi_copyin(datap, &vmseg, sizeof (vmseg), md)) {
1019 			error = EFAULT;
1020 			break;
1021 		}
1022 		error = vmmdev_get_memseg(sc, &vmseg);
1023 		if (error == 0 &&
1024 		    ddi_copyout(&vmseg, datap, sizeof (vmseg), md)) {
1025 			error = EFAULT;
1026 			break;
1027 		}
1028 		break;
1029 	}
1030 	case VM_GET_REGISTER: {
1031 		struct vm_register vmreg;
1032 
1033 		if (ddi_copyin(datap, &vmreg, sizeof (vmreg), md)) {
1034 			error = EFAULT;
1035 			break;
1036 		}
1037 		error = vm_get_register(sc->vmm_vm, vcpu, vmreg.regnum,
1038 		    &vmreg.regval);
1039 		if (error == 0 &&
1040 		    ddi_copyout(&vmreg, datap, sizeof (vmreg), md)) {
1041 			error = EFAULT;
1042 			break;
1043 		}
1044 		break;
1045 	}
1046 	case VM_SET_REGISTER: {
1047 		struct vm_register vmreg;
1048 
1049 		if (ddi_copyin(datap, &vmreg, sizeof (vmreg), md)) {
1050 			error = EFAULT;
1051 			break;
1052 		}
1053 		error = vm_set_register(sc->vmm_vm, vcpu, vmreg.regnum,
1054 		    vmreg.regval);
1055 		break;
1056 	}
1057 	case VM_SET_SEGMENT_DESCRIPTOR: {
1058 		struct vm_seg_desc vmsegd;
1059 
1060 		if (ddi_copyin(datap, &vmsegd, sizeof (vmsegd), md)) {
1061 			error = EFAULT;
1062 			break;
1063 		}
1064 		error = vm_set_seg_desc(sc->vmm_vm, vcpu, vmsegd.regnum,
1065 		    &vmsegd.desc);
1066 		break;
1067 	}
1068 	case VM_GET_SEGMENT_DESCRIPTOR: {
1069 		struct vm_seg_desc vmsegd;
1070 
1071 		if (ddi_copyin(datap, &vmsegd, sizeof (vmsegd), md)) {
1072 			error = EFAULT;
1073 			break;
1074 		}
1075 		error = vm_get_seg_desc(sc->vmm_vm, vcpu, vmsegd.regnum,
1076 		    &vmsegd.desc);
1077 		if (error == 0 &&
1078 		    ddi_copyout(&vmsegd, datap, sizeof (vmsegd), md)) {
1079 			error = EFAULT;
1080 			break;
1081 		}
1082 		break;
1083 	}
1084 	case VM_GET_REGISTER_SET: {
1085 		struct vm_register_set vrs;
1086 		int regnums[VM_REG_LAST];
1087 		uint64_t regvals[VM_REG_LAST];
1088 
1089 		if (ddi_copyin(datap, &vrs, sizeof (vrs), md)) {
1090 			error = EFAULT;
1091 			break;
1092 		}
1093 		if (vrs.count > VM_REG_LAST || vrs.count == 0) {
1094 			error = EINVAL;
1095 			break;
1096 		}
1097 		if (ddi_copyin(vrs.regnums, regnums,
1098 		    sizeof (int) * vrs.count, md)) {
1099 			error = EFAULT;
1100 			break;
1101 		}
1102 
1103 		error = 0;
1104 		for (uint_t i = 0; i < vrs.count && error == 0; i++) {
1105 			if (regnums[i] < 0) {
1106 				error = EINVAL;
1107 				break;
1108 			}
1109 			error = vm_get_register(sc->vmm_vm, vcpu, regnums[i],
1110 			    &regvals[i]);
1111 		}
1112 		if (error == 0 && ddi_copyout(regvals, vrs.regvals,
1113 		    sizeof (uint64_t) * vrs.count, md)) {
1114 			error = EFAULT;
1115 		}
1116 		break;
1117 	}
1118 	case VM_SET_REGISTER_SET: {
1119 		struct vm_register_set vrs;
1120 		int regnums[VM_REG_LAST];
1121 		uint64_t regvals[VM_REG_LAST];
1122 
1123 		if (ddi_copyin(datap, &vrs, sizeof (vrs), md)) {
1124 			error = EFAULT;
1125 			break;
1126 		}
1127 		if (vrs.count > VM_REG_LAST || vrs.count == 0) {
1128 			error = EINVAL;
1129 			break;
1130 		}
1131 		if (ddi_copyin(vrs.regnums, regnums,
1132 		    sizeof (int) * vrs.count, md)) {
1133 			error = EFAULT;
1134 			break;
1135 		}
1136 		if (ddi_copyin(vrs.regvals, regvals,
1137 		    sizeof (uint64_t) * vrs.count, md)) {
1138 			error = EFAULT;
1139 			break;
1140 		}
1141 
1142 		error = 0;
1143 		for (uint_t i = 0; i < vrs.count && error == 0; i++) {
1144 			/*
1145 			 * Setting registers in a set is not atomic, since a
1146 			 * failure in the middle of the set will cause a
1147 			 * bail-out and inconsistent register state.  Callers
1148 			 * should be wary of this.
1149 			 */
1150 			if (regnums[i] < 0) {
1151 				error = EINVAL;
1152 				break;
1153 			}
1154 			error = vm_set_register(sc->vmm_vm, vcpu, regnums[i],
1155 			    regvals[i]);
1156 		}
1157 		break;
1158 	}
1159 	case VM_RESET_CPU: {
1160 		struct vm_vcpu_reset vvr;
1161 
1162 		if (ddi_copyin(datap, &vvr, sizeof (vvr), md)) {
1163 			error = EFAULT;
1164 			break;
1165 		}
1166 		if (vvr.kind != VRK_RESET && vvr.kind != VRK_INIT) {
1167 			error = EINVAL;
1168 		}
1169 
1170 		error = vcpu_arch_reset(sc->vmm_vm, vcpu, vvr.kind == VRK_INIT);
1171 		break;
1172 	}
1173 	case VM_GET_RUN_STATE: {
1174 		struct vm_run_state vrs;
1175 
1176 		bzero(&vrs, sizeof (vrs));
1177 		error = vm_get_run_state(sc->vmm_vm, vcpu, &vrs.state,
1178 		    &vrs.sipi_vector);
1179 		if (error == 0) {
1180 			if (ddi_copyout(&vrs, datap, sizeof (vrs), md)) {
1181 				error = EFAULT;
1182 				break;
1183 			}
1184 		}
1185 		break;
1186 	}
1187 	case VM_SET_RUN_STATE: {
1188 		struct vm_run_state vrs;
1189 
1190 		if (ddi_copyin(datap, &vrs, sizeof (vrs), md)) {
1191 			error = EFAULT;
1192 			break;
1193 		}
1194 		error = vm_set_run_state(sc->vmm_vm, vcpu, vrs.state,
1195 		    vrs.sipi_vector);
1196 		break;
1197 	}
1198 	case VM_GET_FPU: {
1199 		struct vm_fpu_state req;
1200 		const size_t max_len = (PAGESIZE * 2);
1201 		void *kbuf;
1202 
1203 		if (ddi_copyin(datap, &req, sizeof (req), md)) {
1204 			error = EFAULT;
1205 			break;
1206 		}
1207 		if (req.len > max_len || req.len == 0) {
1208 			error = EINVAL;
1209 			break;
1210 		}
1211 		kbuf = kmem_zalloc(req.len, KM_SLEEP);
1212 		error = vm_get_fpu(sc->vmm_vm, vcpu, kbuf, req.len);
1213 		if (error == 0) {
1214 			if (ddi_copyout(kbuf, req.buf, req.len, md)) {
1215 				error = EFAULT;
1216 			}
1217 		}
1218 		kmem_free(kbuf, req.len);
1219 		break;
1220 	}
1221 	case VM_SET_FPU: {
1222 		struct vm_fpu_state req;
1223 		const size_t max_len = (PAGESIZE * 2);
1224 		void *kbuf;
1225 
1226 		if (ddi_copyin(datap, &req, sizeof (req), md)) {
1227 			error = EFAULT;
1228 			break;
1229 		}
1230 		if (req.len > max_len || req.len == 0) {
1231 			error = EINVAL;
1232 			break;
1233 		}
1234 		kbuf = kmem_alloc(req.len, KM_SLEEP);
1235 		if (ddi_copyin(req.buf, kbuf, req.len, md)) {
1236 			error = EFAULT;
1237 		} else {
1238 			error = vm_set_fpu(sc->vmm_vm, vcpu, kbuf, req.len);
1239 		}
1240 		kmem_free(kbuf, req.len);
1241 		break;
1242 	}
1243 	case VM_GET_CPUID: {
1244 		struct vm_vcpu_cpuid_config cfg;
1245 		struct vcpu_cpuid_entry *entries = NULL;
1246 
1247 		if (ddi_copyin(datap, &cfg, sizeof (cfg), md)) {
1248 			error = EFAULT;
1249 			break;
1250 		}
1251 		if (cfg.vvcc_nent > VMM_MAX_CPUID_ENTRIES) {
1252 			error = EINVAL;
1253 			break;
1254 		}
1255 
1256 		const size_t entries_size =
1257 		    cfg.vvcc_nent * sizeof (struct vcpu_cpuid_entry);
1258 		if (entries_size != 0) {
1259 			entries = kmem_zalloc(entries_size, KM_SLEEP);
1260 		}
1261 
1262 		vcpu_cpuid_config_t vm_cfg = {
1263 			.vcc_nent = cfg.vvcc_nent,
1264 			.vcc_entries = entries,
1265 		};
1266 		error = vm_get_cpuid(sc->vmm_vm, vcpu, &vm_cfg);
1267 
1268 		/*
1269 		 * Only attempt to copy out the resultant entries if we were
1270 		 * able to query them from the instance.  The flags and number
1271 		 * of entries are emitted regardless.
1272 		 */
1273 		cfg.vvcc_flags = vm_cfg.vcc_flags;
1274 		cfg.vvcc_nent = vm_cfg.vcc_nent;
1275 		if (entries != NULL) {
1276 			if (error == 0 && ddi_copyout(entries, cfg.vvcc_entries,
1277 			    entries_size, md) != 0) {
1278 				error = EFAULT;
1279 			}
1280 
1281 			kmem_free(entries, entries_size);
1282 		}
1283 
1284 		if (ddi_copyout(&cfg, datap, sizeof (cfg), md) != 0) {
1285 			error = EFAULT;
1286 		}
1287 		break;
1288 	}
1289 	case VM_SET_CPUID: {
1290 		struct vm_vcpu_cpuid_config cfg;
1291 		struct vcpu_cpuid_entry *entries = NULL;
1292 		size_t entries_size = 0;
1293 
1294 		if (ddi_copyin(datap, &cfg, sizeof (cfg), md)) {
1295 			error = EFAULT;
1296 			break;
1297 		}
1298 		if (cfg.vvcc_nent > VMM_MAX_CPUID_ENTRIES) {
1299 			error = EFBIG;
1300 			break;
1301 		}
1302 		if ((cfg.vvcc_flags & VCC_FLAG_LEGACY_HANDLING) != 0) {
1303 			/*
1304 			 * If we are being instructed to use "legacy" handling,
1305 			 * then no entries should be provided, since the static
1306 			 * in-kernel masking will be used.
1307 			 */
1308 			if (cfg.vvcc_nent != 0) {
1309 				error = EINVAL;
1310 				break;
1311 			}
1312 		} else if (cfg.vvcc_nent != 0) {
1313 			entries_size =
1314 			    cfg.vvcc_nent * sizeof (struct vcpu_cpuid_entry);
1315 			entries = kmem_alloc(entries_size, KM_SLEEP);
1316 
1317 			if (ddi_copyin(cfg.vvcc_entries, entries, entries_size,
1318 			    md) != 0) {
1319 				error = EFAULT;
1320 				kmem_free(entries, entries_size);
1321 				break;
1322 			}
1323 		}
1324 
1325 		vcpu_cpuid_config_t vm_cfg = {
1326 			.vcc_flags = cfg.vvcc_flags,
1327 			.vcc_nent = cfg.vvcc_nent,
1328 			.vcc_entries = entries,
1329 		};
1330 		error = vm_set_cpuid(sc->vmm_vm, vcpu, &vm_cfg);
1331 
1332 		if (entries != NULL) {
1333 			kmem_free(entries, entries_size);
1334 		}
1335 		break;
1336 	}
1337 	case VM_LEGACY_CPUID: {
1338 		struct vm_legacy_cpuid vlc;
1339 		if (ddi_copyin(datap, &vlc, sizeof (vlc), md)) {
1340 			error = EFAULT;
1341 			break;
1342 		}
1343 		vlc.vlc_vcpuid = vcpu;
1344 
1345 		legacy_emulate_cpuid(sc->vmm_vm, vcpu, &vlc.vlc_eax,
1346 		    &vlc.vlc_ebx, &vlc.vlc_ecx, &vlc.vlc_edx);
1347 
1348 		if (ddi_copyout(&vlc, datap, sizeof (vlc), md)) {
1349 			error = EFAULT;
1350 			break;
1351 		}
1352 		break;
1353 	}
1354 
1355 	case VM_SET_KERNEMU_DEV:
1356 	case VM_GET_KERNEMU_DEV: {
1357 		struct vm_readwrite_kernemu_device kemu;
1358 		size_t size = 0;
1359 
1360 		if (ddi_copyin(datap, &kemu, sizeof (kemu), md)) {
1361 			error = EFAULT;
1362 			break;
1363 		}
1364 
1365 		if (kemu.access_width > 3) {
1366 			error = EINVAL;
1367 			break;
1368 		}
1369 		size = (1 << kemu.access_width);
1370 		ASSERT(size >= 1 && size <= 8);
1371 
1372 		if (cmd == VM_SET_KERNEMU_DEV) {
1373 			error = vm_service_mmio_write(sc->vmm_vm, vcpu,
1374 			    kemu.gpa, kemu.value, size);
1375 		} else {
1376 			error = vm_service_mmio_read(sc->vmm_vm, vcpu,
1377 			    kemu.gpa, &kemu.value, size);
1378 		}
1379 
1380 		if (error == 0) {
1381 			if (ddi_copyout(&kemu, datap, sizeof (kemu), md)) {
1382 				error = EFAULT;
1383 				break;
1384 			}
1385 		}
1386 		break;
1387 	}
1388 
1389 	case VM_GET_CAPABILITY: {
1390 		struct vm_capability vmcap;
1391 
1392 		if (ddi_copyin(datap, &vmcap, sizeof (vmcap), md)) {
1393 			error = EFAULT;
1394 			break;
1395 		}
1396 		error = vm_get_capability(sc->vmm_vm, vcpu, vmcap.captype,
1397 		    &vmcap.capval);
1398 		if (error == 0 &&
1399 		    ddi_copyout(&vmcap, datap, sizeof (vmcap), md)) {
1400 			error = EFAULT;
1401 			break;
1402 		}
1403 		break;
1404 	}
1405 	case VM_SET_CAPABILITY: {
1406 		struct vm_capability vmcap;
1407 
1408 		if (ddi_copyin(datap, &vmcap, sizeof (vmcap), md)) {
1409 			error = EFAULT;
1410 			break;
1411 		}
1412 		error = vm_set_capability(sc->vmm_vm, vcpu, vmcap.captype,
1413 		    vmcap.capval);
1414 		break;
1415 	}
1416 	case VM_SET_X2APIC_STATE: {
1417 		struct vm_x2apic x2apic;
1418 
1419 		if (ddi_copyin(datap, &x2apic, sizeof (x2apic), md)) {
1420 			error = EFAULT;
1421 			break;
1422 		}
1423 		error = vm_set_x2apic_state(sc->vmm_vm, vcpu, x2apic.state);
1424 		break;
1425 	}
1426 	case VM_GET_X2APIC_STATE: {
1427 		struct vm_x2apic x2apic;
1428 
1429 		if (ddi_copyin(datap, &x2apic, sizeof (x2apic), md)) {
1430 			error = EFAULT;
1431 			break;
1432 		}
1433 		error = vm_get_x2apic_state(sc->vmm_vm, x2apic.cpuid,
1434 		    &x2apic.state);
1435 		if (error == 0 &&
1436 		    ddi_copyout(&x2apic, datap, sizeof (x2apic), md)) {
1437 			error = EFAULT;
1438 			break;
1439 		}
1440 		break;
1441 	}
1442 	case VM_GET_GPA_PMAP: {
1443 		/*
1444 		 * Until there is a necessity to leak EPT/RVI PTE values to
1445 		 * userspace, this will remain unimplemented
1446 		 */
1447 		error = EINVAL;
1448 		break;
1449 	}
1450 	case VM_GET_HPET_CAPABILITIES: {
1451 		struct vm_hpet_cap hpetcap;
1452 
1453 		error = vhpet_getcap(&hpetcap);
1454 		if (error == 0 &&
1455 		    ddi_copyout(&hpetcap, datap, sizeof (hpetcap), md)) {
1456 			error = EFAULT;
1457 			break;
1458 		}
1459 		break;
1460 	}
1461 	case VM_GLA2GPA: {
1462 		struct vm_gla2gpa gg;
1463 
1464 		if (ddi_copyin(datap, &gg, sizeof (gg), md)) {
1465 			error = EFAULT;
1466 			break;
1467 		}
1468 		gg.vcpuid = vcpu;
1469 		error = vm_gla2gpa(sc->vmm_vm, vcpu, &gg.paging, gg.gla,
1470 		    gg.prot, &gg.gpa, &gg.fault);
1471 		if (error == 0 && ddi_copyout(&gg, datap, sizeof (gg), md)) {
1472 			error = EFAULT;
1473 			break;
1474 		}
1475 		break;
1476 	}
1477 	case VM_GLA2GPA_NOFAULT: {
1478 		struct vm_gla2gpa gg;
1479 
1480 		if (ddi_copyin(datap, &gg, sizeof (gg), md)) {
1481 			error = EFAULT;
1482 			break;
1483 		}
1484 		gg.vcpuid = vcpu;
1485 		error = vm_gla2gpa_nofault(sc->vmm_vm, vcpu, &gg.paging,
1486 		    gg.gla, gg.prot, &gg.gpa, &gg.fault);
1487 		if (error == 0 && ddi_copyout(&gg, datap, sizeof (gg), md)) {
1488 			error = EFAULT;
1489 			break;
1490 		}
1491 		break;
1492 	}
1493 
1494 	case VM_ACTIVATE_CPU:
1495 		error = vm_activate_cpu(sc->vmm_vm, vcpu);
1496 		break;
1497 
1498 	case VM_SUSPEND_CPU:
1499 		if (ddi_copyin(datap, &vcpu, sizeof (vcpu), md)) {
1500 			error = EFAULT;
1501 		} else {
1502 			error = vm_suspend_cpu(sc->vmm_vm, vcpu);
1503 		}
1504 		break;
1505 
1506 	case VM_RESUME_CPU:
1507 		if (ddi_copyin(datap, &vcpu, sizeof (vcpu), md)) {
1508 			error = EFAULT;
1509 		} else {
1510 			error = vm_resume_cpu(sc->vmm_vm, vcpu);
1511 		}
1512 		break;
1513 
1514 	case VM_GET_CPUS: {
1515 		struct vm_cpuset vm_cpuset;
1516 		cpuset_t tempset;
1517 		void *srcp = &tempset;
1518 		int size;
1519 
1520 		if (ddi_copyin(datap, &vm_cpuset, sizeof (vm_cpuset), md)) {
1521 			error = EFAULT;
1522 			break;
1523 		}
1524 
1525 		/* Be more generous about sizing since our cpuset_t is large. */
1526 		size = vm_cpuset.cpusetsize;
1527 		if (size <= 0 || size > sizeof (cpuset_t)) {
1528 			error = ERANGE;
1529 		}
1530 		/*
1531 		 * If they want a ulong_t or less, make sure they receive the
1532 		 * low bits with all the useful information.
1533 		 */
1534 		if (size <= sizeof (tempset.cpub[0])) {
1535 			srcp = &tempset.cpub[0];
1536 		}
1537 
1538 		if (vm_cpuset.which == VM_ACTIVE_CPUS) {
1539 			tempset = vm_active_cpus(sc->vmm_vm);
1540 		} else if (vm_cpuset.which == VM_SUSPENDED_CPUS) {
1541 			tempset = vm_suspended_cpus(sc->vmm_vm);
1542 		} else if (vm_cpuset.which == VM_DEBUG_CPUS) {
1543 			tempset = vm_debug_cpus(sc->vmm_vm);
1544 		} else {
1545 			error = EINVAL;
1546 		}
1547 
1548 		ASSERT(size > 0 && size <= sizeof (tempset));
1549 		if (error == 0 &&
1550 		    ddi_copyout(srcp, vm_cpuset.cpus, size, md)) {
1551 			error = EFAULT;
1552 			break;
1553 		}
1554 		break;
1555 	}
1556 	case VM_SET_INTINFO: {
1557 		struct vm_intinfo vmii;
1558 
1559 		if (ddi_copyin(datap, &vmii, sizeof (vmii), md)) {
1560 			error = EFAULT;
1561 			break;
1562 		}
1563 		error = vm_exit_intinfo(sc->vmm_vm, vcpu, vmii.info1);
1564 		break;
1565 	}
1566 	case VM_GET_INTINFO: {
1567 		struct vm_intinfo vmii;
1568 
1569 		vmii.vcpuid = vcpu;
1570 		error = vm_get_intinfo(sc->vmm_vm, vcpu, &vmii.info1,
1571 		    &vmii.info2);
1572 		if (error == 0 &&
1573 		    ddi_copyout(&vmii, datap, sizeof (vmii), md)) {
1574 			error = EFAULT;
1575 			break;
1576 		}
1577 		break;
1578 	}
1579 	case VM_RTC_WRITE: {
1580 		struct vm_rtc_data rtcdata;
1581 
1582 		if (ddi_copyin(datap, &rtcdata, sizeof (rtcdata), md)) {
1583 			error = EFAULT;
1584 			break;
1585 		}
1586 		error = vrtc_nvram_write(sc->vmm_vm, rtcdata.offset,
1587 		    rtcdata.value);
1588 		break;
1589 	}
1590 	case VM_RTC_READ: {
1591 		struct vm_rtc_data rtcdata;
1592 
1593 		if (ddi_copyin(datap, &rtcdata, sizeof (rtcdata), md)) {
1594 			error = EFAULT;
1595 			break;
1596 		}
1597 		error = vrtc_nvram_read(sc->vmm_vm, rtcdata.offset,
1598 		    &rtcdata.value);
1599 		if (error == 0 &&
1600 		    ddi_copyout(&rtcdata, datap, sizeof (rtcdata), md)) {
1601 			error = EFAULT;
1602 			break;
1603 		}
1604 		break;
1605 	}
1606 	case VM_RTC_SETTIME: {
1607 		struct vm_rtc_time rtctime;
1608 
1609 		if (ddi_copyin(datap, &rtctime, sizeof (rtctime), md)) {
1610 			error = EFAULT;
1611 			break;
1612 		}
1613 		error = vrtc_set_time(sc->vmm_vm, rtctime.secs);
1614 		break;
1615 	}
1616 	case VM_RTC_GETTIME: {
1617 		struct vm_rtc_time rtctime;
1618 
1619 		rtctime.secs = vrtc_get_time(sc->vmm_vm);
1620 		if (ddi_copyout(&rtctime, datap, sizeof (rtctime), md)) {
1621 			error = EFAULT;
1622 			break;
1623 		}
1624 		break;
1625 	}
1626 
1627 	case VM_PMTMR_LOCATE: {
1628 		uint16_t port = arg;
1629 		error = vpmtmr_set_location(sc->vmm_vm, port);
1630 		break;
1631 	}
1632 
1633 	case VM_RESTART_INSTRUCTION:
1634 		error = vm_restart_instruction(sc->vmm_vm, vcpu);
1635 		break;
1636 
1637 	case VM_SET_TOPOLOGY: {
1638 		struct vm_cpu_topology topo;
1639 
1640 		if (ddi_copyin(datap, &topo, sizeof (topo), md) != 0) {
1641 			error = EFAULT;
1642 			break;
1643 		}
1644 		error = vm_set_topology(sc->vmm_vm, topo.sockets, topo.cores,
1645 		    topo.threads, topo.maxcpus);
1646 		break;
1647 	}
1648 	case VM_GET_TOPOLOGY: {
1649 		struct vm_cpu_topology topo;
1650 
1651 		vm_get_topology(sc->vmm_vm, &topo.sockets, &topo.cores,
1652 		    &topo.threads, &topo.maxcpus);
1653 		if (ddi_copyout(&topo, datap, sizeof (topo), md) != 0) {
1654 			error = EFAULT;
1655 			break;
1656 		}
1657 		break;
1658 	}
1659 	case VM_DEVMEM_GETOFFSET: {
1660 		struct vm_devmem_offset vdo;
1661 		vmm_devmem_entry_t *de;
1662 
1663 		if (ddi_copyin(datap, &vdo, sizeof (vdo), md) != 0) {
1664 			error = EFAULT;
1665 			break;
1666 		}
1667 
1668 		de = vmmdev_devmem_find(sc, vdo.segid);
1669 		if (de != NULL) {
1670 			vdo.offset = de->vde_off;
1671 			if (ddi_copyout(&vdo, datap, sizeof (vdo), md) != 0) {
1672 				error = EFAULT;
1673 			}
1674 		} else {
1675 			error = ENOENT;
1676 		}
1677 		break;
1678 	}
1679 	case VM_TRACK_DIRTY_PAGES: {
1680 		const size_t max_track_region_len = 8 * PAGESIZE * 8 * PAGESIZE;
1681 		struct vmm_dirty_tracker tracker;
1682 		uint8_t *bitmap;
1683 		size_t len;
1684 
1685 		if (ddi_copyin(datap, &tracker, sizeof (tracker), md) != 0) {
1686 			error = EFAULT;
1687 			break;
1688 		}
1689 		if ((tracker.vdt_start_gpa & PAGEOFFSET) != 0) {
1690 			error = EINVAL;
1691 			break;
1692 		}
1693 		if (tracker.vdt_len == 0) {
1694 			break;
1695 		}
1696 		if ((tracker.vdt_len & PAGEOFFSET) != 0) {
1697 			error = EINVAL;
1698 			break;
1699 		}
1700 		if (tracker.vdt_len > max_track_region_len) {
1701 			error = EINVAL;
1702 			break;
1703 		}
1704 		len = roundup(tracker.vdt_len / PAGESIZE, 8) / 8;
1705 		bitmap = kmem_zalloc(len, KM_SLEEP);
1706 		vm_track_dirty_pages(sc->vmm_vm, tracker.vdt_start_gpa,
1707 		    tracker.vdt_len, bitmap);
1708 		if (ddi_copyout(bitmap, tracker.vdt_pfns, len, md) != 0) {
1709 			error = EFAULT;
1710 		}
1711 		kmem_free(bitmap, len);
1712 
1713 		break;
1714 	}
1715 	case VM_WRLOCK_CYCLE: {
1716 		/*
1717 		 * Present a test mechanism to acquire/release the write lock
1718 		 * on the VM without any other effects.
1719 		 */
1720 		break;
1721 	}
1722 	case VM_DATA_READ: {
1723 		struct vm_data_xfer vdx;
1724 
1725 		if (ddi_copyin(datap, &vdx, sizeof (vdx), md) != 0) {
1726 			error = EFAULT;
1727 			break;
1728 		}
1729 		if ((vdx.vdx_flags & ~VDX_FLAGS_VALID) != 0) {
1730 			error = EINVAL;
1731 			break;
1732 		}
1733 		if (vdx.vdx_len > VM_DATA_XFER_LIMIT) {
1734 			error = EFBIG;
1735 			break;
1736 		}
1737 
1738 		const size_t len = vdx.vdx_len;
1739 		void *buf = NULL;
1740 		if (len != 0) {
1741 			buf = kmem_alloc(len, KM_SLEEP);
1742 			if ((vdx.vdx_flags & VDX_FLAG_READ_COPYIN) != 0 &&
1743 			    ddi_copyin(vdx.vdx_data, buf, len, md) != 0) {
1744 				kmem_free(buf, len);
1745 				error = EFAULT;
1746 				break;
1747 			} else {
1748 				bzero(buf, len);
1749 			}
1750 		}
1751 
1752 		vdx.vdx_result_len = 0;
1753 		vmm_data_req_t req = {
1754 			.vdr_class = vdx.vdx_class,
1755 			.vdr_version = vdx.vdx_version,
1756 			.vdr_flags = vdx.vdx_flags,
1757 			.vdr_len = len,
1758 			.vdr_data = buf,
1759 			.vdr_result_len = &vdx.vdx_result_len,
1760 		};
1761 		error = vmm_data_read(sc->vmm_vm, vdx.vdx_vcpuid, &req);
1762 
1763 		if (error == 0 && buf != NULL) {
1764 			if (ddi_copyout(buf, vdx.vdx_data, len, md) != 0) {
1765 				error = EFAULT;
1766 			}
1767 		}
1768 
1769 		/*
1770 		 * Copy out the transfer request so that the value of
1771 		 * vdx_result_len can be made available, regardless of any
1772 		 * error(s) which may have occurred.
1773 		 */
1774 		if (ddi_copyout(&vdx, datap, sizeof (vdx), md) != 0) {
1775 			error = (error != 0) ? error : EFAULT;
1776 		}
1777 
1778 		if (buf != NULL) {
1779 			kmem_free(buf, len);
1780 		}
1781 		break;
1782 	}
1783 	case VM_DATA_WRITE: {
1784 		struct vm_data_xfer vdx;
1785 
1786 		if (ddi_copyin(datap, &vdx, sizeof (vdx), md) != 0) {
1787 			error = EFAULT;
1788 			break;
1789 		}
1790 		if ((vdx.vdx_flags & ~VDX_FLAGS_VALID) != 0) {
1791 			error = EINVAL;
1792 			break;
1793 		}
1794 		if (vdx.vdx_len > VM_DATA_XFER_LIMIT) {
1795 			error = EFBIG;
1796 			break;
1797 		}
1798 
1799 		const size_t len = vdx.vdx_len;
1800 		void *buf = NULL;
1801 		if (len != 0) {
1802 			buf = kmem_alloc(len, KM_SLEEP);
1803 			if (ddi_copyin(vdx.vdx_data, buf, len, md) != 0) {
1804 				kmem_free(buf, len);
1805 				error = EFAULT;
1806 				break;
1807 			}
1808 		}
1809 
1810 		vdx.vdx_result_len = 0;
1811 		vmm_data_req_t req = {
1812 			.vdr_class = vdx.vdx_class,
1813 			.vdr_version = vdx.vdx_version,
1814 			.vdr_flags = vdx.vdx_flags,
1815 			.vdr_len = len,
1816 			.vdr_data = buf,
1817 			.vdr_result_len = &vdx.vdx_result_len,
1818 		};
1819 		if (vmm_allow_state_writes == 0) {
1820 			/* XXX: Play it safe for now */
1821 			error = EPERM;
1822 		} else {
1823 			error = vmm_data_write(sc->vmm_vm, vdx.vdx_vcpuid,
1824 			    &req);
1825 		}
1826 
1827 		if (error == 0 && buf != NULL &&
1828 		    (vdx.vdx_flags & VDX_FLAG_WRITE_COPYOUT) != 0) {
1829 			if (ddi_copyout(buf, vdx.vdx_data, len, md) != 0) {
1830 				error = EFAULT;
1831 			}
1832 		}
1833 
1834 		/*
1835 		 * Copy out the transfer request so that the value of
1836 		 * vdx_result_len can be made available, regardless of any
1837 		 * error(s) which may have occurred.
1838 		 */
1839 		if (ddi_copyout(&vdx, datap, sizeof (vdx), md) != 0) {
1840 			error = (error != 0) ? error : EFAULT;
1841 		}
1842 
1843 		if (buf != NULL) {
1844 			kmem_free(buf, len);
1845 		}
1846 		break;
1847 	}
1848 
1849 	case VM_PAUSE: {
1850 		error = vm_pause_instance(sc->vmm_vm);
1851 		break;
1852 	}
1853 	case VM_RESUME: {
1854 		error = vm_resume_instance(sc->vmm_vm);
1855 		break;
1856 	}
1857 
1858 	default:
1859 		error = ENOTTY;
1860 		break;
1861 	}
1862 
1863 	/* Release exclusion resources */
1864 	switch (lock_type) {
1865 	case LOCK_NONE:
1866 		break;
1867 	case LOCK_VCPU:
1868 		vcpu_unlock_one(sc, vcpu);
1869 		break;
1870 	case LOCK_READ_HOLD:
1871 		vmm_read_unlock(sc);
1872 		break;
1873 	case LOCK_WRITE_HOLD:
1874 		vmm_write_unlock(sc);
1875 		break;
1876 	default:
1877 		panic("unexpected lock type");
1878 		break;
1879 	}
1880 
1881 	return (error);
1882 }
1883 
1884 static vmm_softc_t *
1885 vmm_lookup(const char *name)
1886 {
1887 	list_t *vml = &vmm_list;
1888 	vmm_softc_t *sc;
1889 
1890 	ASSERT(MUTEX_HELD(&vmm_mtx));
1891 
1892 	for (sc = list_head(vml); sc != NULL; sc = list_next(vml, sc)) {
1893 		if (strcmp(sc->vmm_name, name) == 0) {
1894 			break;
1895 		}
1896 	}
1897 
1898 	return (sc);
1899 }
1900 
1901 /*
1902  * Acquire an HMA registration if not already held.
1903  */
1904 static boolean_t
1905 vmm_hma_acquire(void)
1906 {
1907 	ASSERT(MUTEX_NOT_HELD(&vmm_mtx));
1908 
1909 	mutex_enter(&vmmdev_mtx);
1910 
1911 	if (vmmdev_hma_reg == NULL) {
1912 		VERIFY3U(vmmdev_hma_ref, ==, 0);
1913 		vmmdev_hma_reg = hma_register(vmmdev_hvm_name);
1914 		if (vmmdev_hma_reg == NULL) {
1915 			cmn_err(CE_WARN, "%s HMA registration failed.",
1916 			    vmmdev_hvm_name);
1917 			mutex_exit(&vmmdev_mtx);
1918 			return (B_FALSE);
1919 		}
1920 	}
1921 
1922 	vmmdev_hma_ref++;
1923 
1924 	mutex_exit(&vmmdev_mtx);
1925 
1926 	return (B_TRUE);
1927 }
1928 
1929 /*
1930  * Release the HMA registration if held and there are no remaining VMs.
1931  */
1932 static void
1933 vmm_hma_release(void)
1934 {
1935 	ASSERT(MUTEX_NOT_HELD(&vmm_mtx));
1936 
1937 	mutex_enter(&vmmdev_mtx);
1938 
1939 	VERIFY3U(vmmdev_hma_ref, !=, 0);
1940 
1941 	vmmdev_hma_ref--;
1942 
1943 	if (vmmdev_hma_ref == 0) {
1944 		VERIFY(vmmdev_hma_reg != NULL);
1945 		hma_unregister(vmmdev_hma_reg);
1946 		vmmdev_hma_reg = NULL;
1947 	}
1948 	mutex_exit(&vmmdev_mtx);
1949 }
1950 
1951 static int
1952 vmmdev_do_vm_create(const struct vm_create_req *req, cred_t *cr)
1953 {
1954 	vmm_softc_t	*sc = NULL;
1955 	minor_t		minor;
1956 	int		error = ENOMEM;
1957 	size_t		len;
1958 	const char	*name = req->name;
1959 
1960 	len = strnlen(name, VM_MAX_NAMELEN);
1961 	if (len == 0) {
1962 		return (EINVAL);
1963 	}
1964 	if (len >= VM_MAX_NAMELEN) {
1965 		return (ENAMETOOLONG);
1966 	}
1967 	if (strchr(name, '/') != NULL) {
1968 		return (EINVAL);
1969 	}
1970 
1971 	if (!vmm_hma_acquire())
1972 		return (ENXIO);
1973 
1974 	mutex_enter(&vmm_mtx);
1975 
1976 	/* Look for duplicate names */
1977 	if (vmm_lookup(name) != NULL) {
1978 		mutex_exit(&vmm_mtx);
1979 		vmm_hma_release();
1980 		return (EEXIST);
1981 	}
1982 
1983 	/* Allow only one instance per non-global zone. */
1984 	if (!INGLOBALZONE(curproc)) {
1985 		for (sc = list_head(&vmm_list); sc != NULL;
1986 		    sc = list_next(&vmm_list, sc)) {
1987 			if (sc->vmm_zone == curzone) {
1988 				mutex_exit(&vmm_mtx);
1989 				vmm_hma_release();
1990 				return (EINVAL);
1991 			}
1992 		}
1993 	}
1994 
1995 	minor = id_alloc(vmm_minors);
1996 	if (ddi_soft_state_zalloc(vmm_statep, minor) != DDI_SUCCESS) {
1997 		goto fail;
1998 	} else if ((sc = ddi_get_soft_state(vmm_statep, minor)) == NULL) {
1999 		ddi_soft_state_free(vmm_statep, minor);
2000 		goto fail;
2001 	} else if (ddi_create_minor_node(vmmdev_dip, name, S_IFCHR, minor,
2002 	    DDI_PSEUDO, 0) != DDI_SUCCESS) {
2003 		goto fail;
2004 	}
2005 
2006 	if (vmm_kstat_alloc(sc, minor, cr) != 0) {
2007 		goto fail;
2008 	}
2009 
2010 	error = vm_create(req->flags, &sc->vmm_vm);
2011 	if (error == 0) {
2012 		/* Complete VM intialization and report success. */
2013 		(void) strlcpy(sc->vmm_name, name, sizeof (sc->vmm_name));
2014 		sc->vmm_minor = minor;
2015 		list_create(&sc->vmm_devmem_list, sizeof (vmm_devmem_entry_t),
2016 		    offsetof(vmm_devmem_entry_t, vde_node));
2017 
2018 		list_create(&sc->vmm_holds, sizeof (vmm_hold_t),
2019 		    offsetof(vmm_hold_t, vmh_node));
2020 		cv_init(&sc->vmm_cv, NULL, CV_DEFAULT, NULL);
2021 
2022 		mutex_init(&sc->vmm_lease_lock, NULL, MUTEX_DEFAULT, NULL);
2023 		list_create(&sc->vmm_lease_list, sizeof (vmm_lease_t),
2024 		    offsetof(vmm_lease_t, vml_node));
2025 		cv_init(&sc->vmm_lease_cv, NULL, CV_DEFAULT, NULL);
2026 		rw_init(&sc->vmm_rwlock, NULL, RW_DEFAULT, NULL);
2027 
2028 		sc->vmm_zone = crgetzone(cr);
2029 		zone_hold(sc->vmm_zone);
2030 		vmm_zsd_add_vm(sc);
2031 		vmm_kstat_init(sc);
2032 
2033 		list_insert_tail(&vmm_list, sc);
2034 		mutex_exit(&vmm_mtx);
2035 		return (0);
2036 	}
2037 
2038 	vmm_kstat_fini(sc);
2039 	ddi_remove_minor_node(vmmdev_dip, name);
2040 fail:
2041 	id_free(vmm_minors, minor);
2042 	if (sc != NULL) {
2043 		ddi_soft_state_free(vmm_statep, minor);
2044 	}
2045 	mutex_exit(&vmm_mtx);
2046 	vmm_hma_release();
2047 
2048 	return (error);
2049 }
2050 
2051 /*
2052  * Bhyve 'Driver' Interface
2053  *
2054  * While many devices are emulated in the bhyve userspace process, there are
2055  * others with performance constraints which require that they run mostly or
2056  * entirely in-kernel.  For those not integrated directly into bhyve, an API is
2057  * needed so they can query/manipulate the portions of VM state needed to
2058  * fulfill their purpose.
2059  *
2060  * This includes:
2061  * - Translating guest-physical addresses to host-virtual pointers
2062  * - Injecting MSIs
2063  * - Hooking IO port addresses
2064  *
2065  * The vmm_drv interface exists to provide that functionality to its consumers.
2066  * (At this time, 'viona' is the only user)
2067  */
2068 int
2069 vmm_drv_hold(file_t *fp, cred_t *cr, vmm_hold_t **holdp)
2070 {
2071 	vnode_t *vp = fp->f_vnode;
2072 	const dev_t dev = vp->v_rdev;
2073 	vmm_softc_t *sc;
2074 	vmm_hold_t *hold;
2075 	int err = 0;
2076 
2077 	if (vp->v_type != VCHR) {
2078 		return (ENXIO);
2079 	}
2080 	const major_t major = getmajor(dev);
2081 	const minor_t minor = getminor(dev);
2082 
2083 	mutex_enter(&vmmdev_mtx);
2084 	if (vmmdev_dip == NULL || major != ddi_driver_major(vmmdev_dip)) {
2085 		mutex_exit(&vmmdev_mtx);
2086 		return (ENOENT);
2087 	}
2088 	mutex_enter(&vmm_mtx);
2089 	mutex_exit(&vmmdev_mtx);
2090 
2091 	if ((sc = ddi_get_soft_state(vmm_statep, minor)) == NULL) {
2092 		err = ENOENT;
2093 		goto out;
2094 	}
2095 	/* XXXJOY: check cred permissions against instance */
2096 
2097 	if ((sc->vmm_flags & VMM_DESTROY) != 0) {
2098 		err = EBUSY;
2099 		goto out;
2100 	}
2101 
2102 	hold = kmem_zalloc(sizeof (*hold), KM_SLEEP);
2103 	hold->vmh_sc = sc;
2104 	hold->vmh_release_req = B_FALSE;
2105 
2106 	list_insert_tail(&sc->vmm_holds, hold);
2107 	sc->vmm_flags |= VMM_HELD;
2108 	*holdp = hold;
2109 
2110 out:
2111 	mutex_exit(&vmm_mtx);
2112 	return (err);
2113 }
2114 
2115 void
2116 vmm_drv_rele(vmm_hold_t *hold)
2117 {
2118 	vmm_softc_t *sc;
2119 	bool hma_release = false;
2120 
2121 	ASSERT(hold != NULL);
2122 	ASSERT(hold->vmh_sc != NULL);
2123 	VERIFY(hold->vmh_ioport_hook_cnt == 0);
2124 
2125 	mutex_enter(&vmm_mtx);
2126 	sc = hold->vmh_sc;
2127 	list_remove(&sc->vmm_holds, hold);
2128 	kmem_free(hold, sizeof (*hold));
2129 
2130 	if (list_is_empty(&sc->vmm_holds)) {
2131 		sc->vmm_flags &= ~VMM_HELD;
2132 
2133 		/*
2134 		 * Since outstanding holds would prevent instance destruction
2135 		 * from completing, attempt to finish it now if it was already
2136 		 * set in motion.
2137 		 */
2138 		if ((sc->vmm_flags & VMM_DESTROY) != 0) {
2139 			VERIFY0(vmm_destroy_locked(sc, VDO_DEFAULT,
2140 			    &hma_release));
2141 		}
2142 	}
2143 	mutex_exit(&vmm_mtx);
2144 
2145 	if (hma_release) {
2146 		vmm_hma_release();
2147 	}
2148 }
2149 
2150 boolean_t
2151 vmm_drv_release_reqd(vmm_hold_t *hold)
2152 {
2153 	ASSERT(hold != NULL);
2154 
2155 	return (hold->vmh_release_req);
2156 }
2157 
2158 vmm_lease_t *
2159 vmm_drv_lease_sign(vmm_hold_t *hold, boolean_t (*expiref)(void *), void *arg)
2160 {
2161 	vmm_softc_t *sc = hold->vmh_sc;
2162 	vmm_lease_t *lease;
2163 
2164 	ASSERT3P(expiref, !=, NULL);
2165 
2166 	if (hold->vmh_release_req) {
2167 		return (NULL);
2168 	}
2169 
2170 	lease = kmem_alloc(sizeof (*lease), KM_SLEEP);
2171 	list_link_init(&lease->vml_node);
2172 	lease->vml_expire_func = expiref;
2173 	lease->vml_expire_arg = arg;
2174 	lease->vml_expired = B_FALSE;
2175 	lease->vml_break_deferred = B_FALSE;
2176 	lease->vml_hold = hold;
2177 	/* cache the VM pointer for one less pointer chase */
2178 	lease->vml_vm = sc->vmm_vm;
2179 	lease->vml_vmclient = vmspace_client_alloc(vm_get_vmspace(sc->vmm_vm));
2180 
2181 	mutex_enter(&sc->vmm_lease_lock);
2182 	while (sc->vmm_lease_blocker != 0) {
2183 		cv_wait(&sc->vmm_lease_cv, &sc->vmm_lease_lock);
2184 	}
2185 	list_insert_tail(&sc->vmm_lease_list, lease);
2186 	vmm_read_lock(sc);
2187 	mutex_exit(&sc->vmm_lease_lock);
2188 
2189 	return (lease);
2190 }
2191 
2192 static void
2193 vmm_lease_break_locked(vmm_softc_t *sc, vmm_lease_t *lease)
2194 {
2195 	ASSERT(MUTEX_HELD(&sc->vmm_lease_lock));
2196 
2197 	list_remove(&sc->vmm_lease_list, lease);
2198 	vmm_read_unlock(sc);
2199 	vmc_destroy(lease->vml_vmclient);
2200 	kmem_free(lease, sizeof (*lease));
2201 }
2202 
2203 static void
2204 vmm_lease_block(vmm_softc_t *sc)
2205 {
2206 	mutex_enter(&sc->vmm_lease_lock);
2207 	VERIFY3U(sc->vmm_lease_blocker, !=, UINT_MAX);
2208 	sc->vmm_lease_blocker++;
2209 	if (sc->vmm_lease_blocker == 1) {
2210 		list_t *list = &sc->vmm_lease_list;
2211 		vmm_lease_t *lease = list_head(list);
2212 
2213 		while (lease != NULL) {
2214 			void *arg = lease->vml_expire_arg;
2215 			boolean_t (*expiref)(void *) = lease->vml_expire_func;
2216 			boolean_t sync_break = B_FALSE;
2217 
2218 			/*
2219 			 * Since the lease expiration notification may
2220 			 * need to take locks which would deadlock with
2221 			 * vmm_lease_lock, drop it across the call.
2222 			 *
2223 			 * We are the only one allowed to manipulate
2224 			 * vmm_lease_list right now, so it is safe to
2225 			 * continue iterating through it after
2226 			 * reacquiring the lock.
2227 			 */
2228 			lease->vml_expired = B_TRUE;
2229 			mutex_exit(&sc->vmm_lease_lock);
2230 			sync_break = expiref(arg);
2231 			mutex_enter(&sc->vmm_lease_lock);
2232 
2233 			if (sync_break) {
2234 				vmm_lease_t *next;
2235 
2236 				/*
2237 				 * These leases which are synchronously broken
2238 				 * result in vmm_read_unlock() calls from a
2239 				 * different thread than the corresponding
2240 				 * vmm_read_lock().  This is acceptable, given
2241 				 * that the rwlock underpinning the whole
2242 				 * mechanism tolerates the behavior.  This
2243 				 * flexibility is _only_ afforded to VM read
2244 				 * lock (RW_READER) holders.
2245 				 */
2246 				next = list_next(list, lease);
2247 				vmm_lease_break_locked(sc, lease);
2248 				lease = next;
2249 			} else {
2250 				lease = list_next(list, lease);
2251 			}
2252 		}
2253 
2254 		/* Process leases which were not broken synchronously. */
2255 		while (!list_is_empty(list)) {
2256 			/*
2257 			 * Although the nested loops are quadratic, the number
2258 			 * of leases is small.
2259 			 */
2260 			lease = list_head(list);
2261 			while (lease != NULL) {
2262 				vmm_lease_t *next = list_next(list, lease);
2263 				if (lease->vml_break_deferred) {
2264 					vmm_lease_break_locked(sc, lease);
2265 				}
2266 				lease = next;
2267 			}
2268 			if (list_is_empty(list)) {
2269 				break;
2270 			}
2271 			cv_wait(&sc->vmm_lease_cv, &sc->vmm_lease_lock);
2272 		}
2273 		/* Wake anyone else waiting for the lease list to be empty  */
2274 		cv_broadcast(&sc->vmm_lease_cv);
2275 	} else {
2276 		list_t *list = &sc->vmm_lease_list;
2277 
2278 		/*
2279 		 * Some other thread beat us to the duty of lease cleanup.
2280 		 * Wait until that is complete.
2281 		 */
2282 		while (!list_is_empty(list)) {
2283 			cv_wait(&sc->vmm_lease_cv, &sc->vmm_lease_lock);
2284 		}
2285 	}
2286 	mutex_exit(&sc->vmm_lease_lock);
2287 }
2288 
2289 static void
2290 vmm_lease_unblock(vmm_softc_t *sc)
2291 {
2292 	mutex_enter(&sc->vmm_lease_lock);
2293 	VERIFY3U(sc->vmm_lease_blocker, !=, 0);
2294 	sc->vmm_lease_blocker--;
2295 	if (sc->vmm_lease_blocker == 0) {
2296 		cv_broadcast(&sc->vmm_lease_cv);
2297 	}
2298 	mutex_exit(&sc->vmm_lease_lock);
2299 }
2300 
2301 void
2302 vmm_drv_lease_break(vmm_hold_t *hold, vmm_lease_t *lease)
2303 {
2304 	vmm_softc_t *sc = hold->vmh_sc;
2305 
2306 	VERIFY3P(hold, ==, lease->vml_hold);
2307 	VERIFY(!lease->vml_break_deferred);
2308 
2309 	mutex_enter(&sc->vmm_lease_lock);
2310 	if (sc->vmm_lease_blocker == 0) {
2311 		vmm_lease_break_locked(sc, lease);
2312 	} else {
2313 		/*
2314 		 * Defer the lease-breaking to whichever thread is currently
2315 		 * cleaning up all leases as part of a vmm_lease_block() call.
2316 		 */
2317 		lease->vml_break_deferred = B_TRUE;
2318 		cv_broadcast(&sc->vmm_lease_cv);
2319 	}
2320 	mutex_exit(&sc->vmm_lease_lock);
2321 }
2322 
2323 boolean_t
2324 vmm_drv_lease_expired(vmm_lease_t *lease)
2325 {
2326 	return (lease->vml_expired);
2327 }
2328 
2329 vmm_page_t *
2330 vmm_drv_page_hold(vmm_lease_t *lease, uintptr_t gpa, int prot)
2331 {
2332 	ASSERT(lease != NULL);
2333 	ASSERT0(gpa & PAGEOFFSET);
2334 
2335 	return ((vmm_page_t *)vmc_hold(lease->vml_vmclient, gpa, prot));
2336 }
2337 
2338 void
2339 vmm_drv_page_release(vmm_page_t *vmmp)
2340 {
2341 	(void) vmp_release((vm_page_t *)vmmp);
2342 }
2343 
2344 void
2345 vmm_drv_page_release_chain(vmm_page_t *vmmp)
2346 {
2347 	(void) vmp_release_chain((vm_page_t *)vmmp);
2348 }
2349 
2350 const void *
2351 vmm_drv_page_readable(const vmm_page_t *vmmp)
2352 {
2353 	return (vmp_get_readable((const vm_page_t *)vmmp));
2354 }
2355 
2356 void *
2357 vmm_drv_page_writable(const vmm_page_t *vmmp)
2358 {
2359 	return (vmp_get_writable((const vm_page_t *)vmmp));
2360 }
2361 
2362 void
2363 vmm_drv_page_chain(vmm_page_t *vmmp, vmm_page_t *to_chain)
2364 {
2365 	vmp_chain((vm_page_t *)vmmp, (vm_page_t *)to_chain);
2366 }
2367 
2368 vmm_page_t *
2369 vmm_drv_page_next(const vmm_page_t *vmmp)
2370 {
2371 	return ((vmm_page_t *)vmp_next((vm_page_t *)vmmp));
2372 }
2373 
2374 int
2375 vmm_drv_msi(vmm_lease_t *lease, uint64_t addr, uint64_t msg)
2376 {
2377 	ASSERT(lease != NULL);
2378 
2379 	return (lapic_intr_msi(lease->vml_vm, addr, msg));
2380 }
2381 
2382 int
2383 vmm_drv_ioport_hook(vmm_hold_t *hold, uint16_t ioport, vmm_drv_iop_cb_t func,
2384     void *arg, void **cookie)
2385 {
2386 	vmm_softc_t *sc;
2387 	int err;
2388 
2389 	ASSERT(hold != NULL);
2390 	ASSERT(cookie != NULL);
2391 
2392 	sc = hold->vmh_sc;
2393 	mutex_enter(&vmm_mtx);
2394 	/* Confirm that hook installation is not blocked */
2395 	if ((sc->vmm_flags & VMM_BLOCK_HOOK) != 0) {
2396 		mutex_exit(&vmm_mtx);
2397 		return (EBUSY);
2398 	}
2399 	/*
2400 	 * Optimistically record an installed hook which will prevent a block
2401 	 * from being asserted while the mutex is dropped.
2402 	 */
2403 	hold->vmh_ioport_hook_cnt++;
2404 	mutex_exit(&vmm_mtx);
2405 
2406 	vmm_write_lock(sc);
2407 	err = vm_ioport_hook(sc->vmm_vm, ioport, (ioport_handler_t)func,
2408 	    arg, cookie);
2409 	vmm_write_unlock(sc);
2410 
2411 	if (err != 0) {
2412 		mutex_enter(&vmm_mtx);
2413 		/* Walk back optimism about the hook installation */
2414 		hold->vmh_ioport_hook_cnt--;
2415 		mutex_exit(&vmm_mtx);
2416 	}
2417 	return (err);
2418 }
2419 
2420 void
2421 vmm_drv_ioport_unhook(vmm_hold_t *hold, void **cookie)
2422 {
2423 	vmm_softc_t *sc;
2424 
2425 	ASSERT(hold != NULL);
2426 	ASSERT(cookie != NULL);
2427 	ASSERT(hold->vmh_ioport_hook_cnt != 0);
2428 
2429 	sc = hold->vmh_sc;
2430 	vmm_write_lock(sc);
2431 	vm_ioport_unhook(sc->vmm_vm, cookie);
2432 	vmm_write_unlock(sc);
2433 
2434 	mutex_enter(&vmm_mtx);
2435 	hold->vmh_ioport_hook_cnt--;
2436 	mutex_exit(&vmm_mtx);
2437 }
2438 
2439 static void
2440 vmm_drv_purge(vmm_softc_t *sc)
2441 {
2442 	ASSERT(MUTEX_HELD(&vmm_mtx));
2443 
2444 	if ((sc->vmm_flags & VMM_HELD) != 0) {
2445 		vmm_hold_t *hold;
2446 
2447 		for (hold = list_head(&sc->vmm_holds); hold != NULL;
2448 		    hold = list_next(&sc->vmm_holds, hold)) {
2449 			hold->vmh_release_req = B_TRUE;
2450 		}
2451 
2452 		/*
2453 		 * Require that all leases on the instance be broken, now that
2454 		 * all associated holds have been marked as needing release.
2455 		 *
2456 		 * Dropping vmm_mtx is not strictly necessary, but if any of the
2457 		 * lessees are slow to respond, it would be nice to leave it
2458 		 * available for other parties.
2459 		 */
2460 		mutex_exit(&vmm_mtx);
2461 		vmm_lease_block(sc);
2462 		vmm_lease_unblock(sc);
2463 		mutex_enter(&vmm_mtx);
2464 	}
2465 }
2466 
2467 static int
2468 vmm_drv_block_hook(vmm_softc_t *sc, boolean_t enable_block)
2469 {
2470 	int err = 0;
2471 
2472 	mutex_enter(&vmm_mtx);
2473 	if (!enable_block) {
2474 		VERIFY((sc->vmm_flags & VMM_BLOCK_HOOK) != 0);
2475 
2476 		sc->vmm_flags &= ~VMM_BLOCK_HOOK;
2477 		goto done;
2478 	}
2479 
2480 	/* If any holds have hooks installed, the block is a failure */
2481 	if (!list_is_empty(&sc->vmm_holds)) {
2482 		vmm_hold_t *hold;
2483 
2484 		for (hold = list_head(&sc->vmm_holds); hold != NULL;
2485 		    hold = list_next(&sc->vmm_holds, hold)) {
2486 			if (hold->vmh_ioport_hook_cnt != 0) {
2487 				err = EBUSY;
2488 				goto done;
2489 			}
2490 		}
2491 	}
2492 	sc->vmm_flags |= VMM_BLOCK_HOOK;
2493 
2494 done:
2495 	mutex_exit(&vmm_mtx);
2496 	return (err);
2497 }
2498 
2499 
2500 static void
2501 vmm_destroy_begin(vmm_softc_t *sc, vmm_destroy_opts_t opts)
2502 {
2503 	ASSERT(MUTEX_HELD(&vmm_mtx));
2504 	ASSERT0(sc->vmm_flags & VMM_DESTROY);
2505 
2506 	sc->vmm_flags |= VMM_DESTROY;
2507 
2508 	/*
2509 	 * Lock and unlock all of the vCPUs to ensure that they are kicked out
2510 	 * of guest context, being unable to return now that the instance is
2511 	 * marked for destruction.
2512 	 */
2513 	const int maxcpus = vm_get_maxcpus(sc->vmm_vm);
2514 	for (int vcpu = 0; vcpu < maxcpus; vcpu++) {
2515 		vcpu_lock_one(sc, vcpu);
2516 		vcpu_unlock_one(sc, vcpu);
2517 	}
2518 
2519 	vmmdev_devmem_purge(sc);
2520 	if ((opts & VDO_NO_CLEAN_ZSD) == 0) {
2521 		/*
2522 		 * The ZSD should be cleaned up now, unless destruction of the
2523 		 * instance was initated by destruction of the containing zone,
2524 		 * in which case the ZSD has already been removed.
2525 		 */
2526 		vmm_zsd_rem_vm(sc);
2527 	}
2528 	zone_rele(sc->vmm_zone);
2529 
2530 	vmm_drv_purge(sc);
2531 }
2532 
2533 static bool
2534 vmm_destroy_ready(vmm_softc_t *sc)
2535 {
2536 	ASSERT(MUTEX_HELD(&vmm_mtx));
2537 
2538 	if ((sc->vmm_flags & (VMM_HELD | VMM_IS_OPEN)) == 0) {
2539 		VERIFY(list_is_empty(&sc->vmm_holds));
2540 		return (true);
2541 	}
2542 
2543 	return (false);
2544 }
2545 
2546 static void
2547 vmm_destroy_finish(vmm_softc_t *sc)
2548 {
2549 	ASSERT(MUTEX_HELD(&vmm_mtx));
2550 	ASSERT(vmm_destroy_ready(sc));
2551 
2552 	list_remove(&vmm_list, sc);
2553 	vmm_kstat_fini(sc);
2554 	vm_destroy(sc->vmm_vm);
2555 	ddi_remove_minor_node(vmmdev_dip, sc->vmm_name);
2556 	(void) devfs_clean(ddi_get_parent(vmmdev_dip), NULL, DV_CLEAN_FORCE);
2557 
2558 	const minor_t minor = sc->vmm_minor;
2559 	ddi_soft_state_free(vmm_statep, minor);
2560 	id_free(vmm_minors, minor);
2561 }
2562 
2563 /*
2564  * Initiate or attempt to finish destruction of a VMM instance.
2565  *
2566  * This is called from several contexts:
2567  * - An explicit destroy ioctl is made
2568  * - A vmm_drv consumer releases its hold (being the last on the instance)
2569  * - The vmm device is closed, and auto-destruct is enabled
2570  */
2571 static int
2572 vmm_destroy_locked(vmm_softc_t *sc, vmm_destroy_opts_t opts,
2573     bool *hma_release)
2574 {
2575 	ASSERT(MUTEX_HELD(&vmm_mtx));
2576 
2577 	*hma_release = false;
2578 
2579 	/*
2580 	 * When instance destruction begins, it is so marked such that any
2581 	 * further requests to operate the instance will fail.
2582 	 */
2583 	if ((sc->vmm_flags & VMM_DESTROY) == 0) {
2584 		vmm_destroy_begin(sc, opts);
2585 	}
2586 
2587 	if (vmm_destroy_ready(sc)) {
2588 
2589 		/*
2590 		 * Notify anyone waiting for the destruction to finish.  They
2591 		 * must be clear before we can safely tear down the softc.
2592 		 */
2593 		if (sc->vmm_destroy_waiters != 0) {
2594 			cv_broadcast(&sc->vmm_cv);
2595 			while (sc->vmm_destroy_waiters != 0) {
2596 				cv_wait(&sc->vmm_cv, &vmm_mtx);
2597 			}
2598 		}
2599 
2600 		/*
2601 		 * Finish destruction of instance.  After this point, the softc
2602 		 * is freed and cannot be accessed again.
2603 		 *
2604 		 * With destruction complete, the HMA hold can be released
2605 		 */
2606 		vmm_destroy_finish(sc);
2607 		*hma_release = true;
2608 		return (0);
2609 	} else if ((opts & VDO_ATTEMPT_WAIT) != 0) {
2610 		int err = 0;
2611 
2612 		sc->vmm_destroy_waiters++;
2613 		while (!vmm_destroy_ready(sc) && err == 0) {
2614 			if (cv_wait_sig(&sc->vmm_cv, &vmm_mtx) <= 0) {
2615 				err = EINTR;
2616 			}
2617 		}
2618 		sc->vmm_destroy_waiters--;
2619 
2620 		if (sc->vmm_destroy_waiters == 0) {
2621 			/*
2622 			 * If we were the last waiter, it could be that VM
2623 			 * destruction is waiting on _us_ to proceed with the
2624 			 * final clean-up.
2625 			 */
2626 			cv_signal(&sc->vmm_cv);
2627 		}
2628 		return (err);
2629 	} else {
2630 		/*
2631 		 * Since the instance is not ready for destruction, and the
2632 		 * caller did not ask to wait, consider it a success for now.
2633 		 */
2634 		return (0);
2635 	}
2636 }
2637 
2638 void
2639 vmm_zone_vm_destroy(vmm_softc_t *sc)
2640 {
2641 	bool hma_release = false;
2642 	int err;
2643 
2644 	mutex_enter(&vmm_mtx);
2645 	err = vmm_destroy_locked(sc, VDO_NO_CLEAN_ZSD, &hma_release);
2646 	mutex_exit(&vmm_mtx);
2647 
2648 	VERIFY0(err);
2649 
2650 	if (hma_release) {
2651 		vmm_hma_release();
2652 	}
2653 }
2654 
2655 static int
2656 vmmdev_do_vm_destroy(const struct vm_destroy_req *req, cred_t *cr)
2657 {
2658 	vmm_softc_t *sc;
2659 	bool hma_release = false;
2660 	int err;
2661 
2662 	if (crgetuid(cr) != 0) {
2663 		return (EPERM);
2664 	}
2665 
2666 	mutex_enter(&vmm_mtx);
2667 	sc = vmm_lookup(req->name);
2668 	if (sc == NULL) {
2669 		mutex_exit(&vmm_mtx);
2670 		return (ENOENT);
2671 	}
2672 	/*
2673 	 * We don't check this in vmm_lookup() since that function is also used
2674 	 * for validation during create and currently vmm names must be unique.
2675 	 */
2676 	if (!INGLOBALZONE(curproc) && sc->vmm_zone != curzone) {
2677 		mutex_exit(&vmm_mtx);
2678 		return (EPERM);
2679 	}
2680 
2681 	err = vmm_destroy_locked(sc, VDO_ATTEMPT_WAIT, &hma_release);
2682 	mutex_exit(&vmm_mtx);
2683 
2684 	if (hma_release) {
2685 		vmm_hma_release();
2686 	}
2687 
2688 	return (err);
2689 }
2690 
2691 #define	VCPU_NAME_BUFLEN	32
2692 
2693 static int
2694 vmm_kstat_alloc(vmm_softc_t *sc, minor_t minor, const cred_t *cr)
2695 {
2696 	zoneid_t zid = crgetzoneid(cr);
2697 	int instance = minor;
2698 	kstat_t *ksp;
2699 
2700 	ASSERT3P(sc->vmm_kstat_vm, ==, NULL);
2701 
2702 	ksp = kstat_create_zone(VMM_MODULE_NAME, instance, "vm",
2703 	    VMM_KSTAT_CLASS, KSTAT_TYPE_NAMED,
2704 	    sizeof (vmm_kstats_t) / sizeof (kstat_named_t), 0, zid);
2705 
2706 	if (ksp == NULL) {
2707 		return (-1);
2708 	}
2709 	sc->vmm_kstat_vm = ksp;
2710 
2711 	for (uint_t i = 0; i < VM_MAXCPU; i++) {
2712 		char namebuf[VCPU_NAME_BUFLEN];
2713 
2714 		ASSERT3P(sc->vmm_kstat_vcpu[i], ==, NULL);
2715 
2716 		(void) snprintf(namebuf, VCPU_NAME_BUFLEN, "vcpu%u", i);
2717 		ksp = kstat_create_zone(VMM_MODULE_NAME, instance, namebuf,
2718 		    VMM_KSTAT_CLASS, KSTAT_TYPE_NAMED,
2719 		    sizeof (vmm_vcpu_kstats_t) / sizeof (kstat_named_t),
2720 		    0, zid);
2721 		if (ksp == NULL) {
2722 			goto fail;
2723 		}
2724 
2725 		sc->vmm_kstat_vcpu[i] = ksp;
2726 	}
2727 
2728 	/*
2729 	 * If this instance is associated with a non-global zone, make its
2730 	 * kstats visible from the GZ.
2731 	 */
2732 	if (zid != GLOBAL_ZONEID) {
2733 		kstat_zone_add(sc->vmm_kstat_vm, GLOBAL_ZONEID);
2734 		for (uint_t i = 0; i < VM_MAXCPU; i++) {
2735 			kstat_zone_add(sc->vmm_kstat_vcpu[i], GLOBAL_ZONEID);
2736 		}
2737 	}
2738 
2739 	return (0);
2740 
2741 fail:
2742 	for (uint_t i = 0; i < VM_MAXCPU; i++) {
2743 		if (sc->vmm_kstat_vcpu[i] != NULL) {
2744 			kstat_delete(sc->vmm_kstat_vcpu[i]);
2745 			sc->vmm_kstat_vcpu[i] = NULL;
2746 		} else {
2747 			break;
2748 		}
2749 	}
2750 	kstat_delete(sc->vmm_kstat_vm);
2751 	sc->vmm_kstat_vm = NULL;
2752 	return (-1);
2753 }
2754 
2755 static void
2756 vmm_kstat_init(vmm_softc_t *sc)
2757 {
2758 	kstat_t *ksp;
2759 
2760 	ASSERT3P(sc->vmm_vm, !=, NULL);
2761 	ASSERT3P(sc->vmm_kstat_vm, !=, NULL);
2762 
2763 	ksp = sc->vmm_kstat_vm;
2764 	vmm_kstats_t *vk = ksp->ks_data;
2765 	ksp->ks_private = sc->vmm_vm;
2766 	kstat_named_init(&vk->vk_name, "vm_name", KSTAT_DATA_STRING);
2767 	kstat_named_setstr(&vk->vk_name, sc->vmm_name);
2768 
2769 	for (uint_t i = 0; i < VM_MAXCPU; i++) {
2770 		ASSERT3P(sc->vmm_kstat_vcpu[i], !=, NULL);
2771 
2772 		ksp = sc->vmm_kstat_vcpu[i];
2773 		vmm_vcpu_kstats_t *vvk = ksp->ks_data;
2774 
2775 		kstat_named_init(&vvk->vvk_vcpu, "vcpu", KSTAT_DATA_UINT32);
2776 		vvk->vvk_vcpu.value.ui32 = i;
2777 		kstat_named_init(&vvk->vvk_time_init, "time_init",
2778 		    KSTAT_DATA_UINT64);
2779 		kstat_named_init(&vvk->vvk_time_run, "time_run",
2780 		    KSTAT_DATA_UINT64);
2781 		kstat_named_init(&vvk->vvk_time_idle, "time_idle",
2782 		    KSTAT_DATA_UINT64);
2783 		kstat_named_init(&vvk->vvk_time_emu_kern, "time_emu_kern",
2784 		    KSTAT_DATA_UINT64);
2785 		kstat_named_init(&vvk->vvk_time_emu_user, "time_emu_user",
2786 		    KSTAT_DATA_UINT64);
2787 		kstat_named_init(&vvk->vvk_time_sched, "time_sched",
2788 		    KSTAT_DATA_UINT64);
2789 		ksp->ks_private = sc->vmm_vm;
2790 		ksp->ks_update = vmm_kstat_update_vcpu;
2791 	}
2792 
2793 	kstat_install(sc->vmm_kstat_vm);
2794 	for (uint_t i = 0; i < VM_MAXCPU; i++) {
2795 		kstat_install(sc->vmm_kstat_vcpu[i]);
2796 	}
2797 }
2798 
2799 static void
2800 vmm_kstat_fini(vmm_softc_t *sc)
2801 {
2802 	ASSERT(sc->vmm_kstat_vm != NULL);
2803 
2804 	kstat_delete(sc->vmm_kstat_vm);
2805 	sc->vmm_kstat_vm = NULL;
2806 
2807 	for (uint_t i = 0; i < VM_MAXCPU; i++) {
2808 		ASSERT3P(sc->vmm_kstat_vcpu[i], !=, NULL);
2809 
2810 		kstat_delete(sc->vmm_kstat_vcpu[i]);
2811 		sc->vmm_kstat_vcpu[i] = NULL;
2812 	}
2813 }
2814 
2815 static int
2816 vmm_open(dev_t *devp, int flag, int otyp, cred_t *credp)
2817 {
2818 	minor_t		minor;
2819 	vmm_softc_t	*sc;
2820 
2821 	/*
2822 	 * Forbid running bhyve in a 32-bit process until it has been tested and
2823 	 * verified to be safe.
2824 	 */
2825 	if (curproc->p_model != DATAMODEL_LP64) {
2826 		return (EFBIG);
2827 	}
2828 
2829 	minor = getminor(*devp);
2830 	if (minor == VMM_CTL_MINOR) {
2831 		/*
2832 		 * Master control device must be opened exclusively.
2833 		 */
2834 		if ((flag & FEXCL) != FEXCL || otyp != OTYP_CHR) {
2835 			return (EINVAL);
2836 		}
2837 
2838 		return (0);
2839 	}
2840 
2841 	mutex_enter(&vmm_mtx);
2842 	sc = ddi_get_soft_state(vmm_statep, minor);
2843 	if (sc == NULL) {
2844 		mutex_exit(&vmm_mtx);
2845 		return (ENXIO);
2846 	}
2847 
2848 	sc->vmm_flags |= VMM_IS_OPEN;
2849 	mutex_exit(&vmm_mtx);
2850 
2851 	return (0);
2852 }
2853 
2854 static int
2855 vmm_close(dev_t dev, int flag, int otyp, cred_t *credp)
2856 {
2857 	const minor_t minor = getminor(dev);
2858 	vmm_softc_t *sc;
2859 	bool hma_release = false;
2860 
2861 	if (minor == VMM_CTL_MINOR) {
2862 		return (0);
2863 	}
2864 
2865 	mutex_enter(&vmm_mtx);
2866 	sc = ddi_get_soft_state(vmm_statep, minor);
2867 	if (sc == NULL) {
2868 		mutex_exit(&vmm_mtx);
2869 		return (ENXIO);
2870 	}
2871 
2872 	VERIFY3U(sc->vmm_flags & VMM_IS_OPEN, !=, 0);
2873 	sc->vmm_flags &= ~VMM_IS_OPEN;
2874 
2875 	/*
2876 	 * If instance was marked for auto-destruction begin that now.  Instance
2877 	 * destruction may have been initated already, so try to make progress
2878 	 * in that case, since closure of the device is one of its requirements.
2879 	 */
2880 	if ((sc->vmm_flags & VMM_DESTROY) != 0 ||
2881 	    (sc->vmm_flags & VMM_AUTODESTROY) != 0) {
2882 		VERIFY0(vmm_destroy_locked(sc, VDO_DEFAULT, &hma_release));
2883 	}
2884 	mutex_exit(&vmm_mtx);
2885 
2886 	if (hma_release) {
2887 		vmm_hma_release();
2888 	}
2889 
2890 	return (0);
2891 }
2892 
2893 static int
2894 vmm_is_supported(intptr_t arg)
2895 {
2896 	int r;
2897 	const char *msg;
2898 
2899 	if (vmm_is_intel()) {
2900 		r = vmx_x86_supported(&msg);
2901 	} else if (vmm_is_svm()) {
2902 		/*
2903 		 * HMA already ensured that the features necessary for SVM
2904 		 * operation were present and online during vmm_attach().
2905 		 */
2906 		r = 0;
2907 	} else {
2908 		r = ENXIO;
2909 		msg = "Unsupported CPU vendor";
2910 	}
2911 
2912 	if (r != 0 && arg != (intptr_t)NULL) {
2913 		if (copyoutstr(msg, (char *)arg, strlen(msg) + 1, NULL) != 0)
2914 			return (EFAULT);
2915 	}
2916 	return (r);
2917 }
2918 
2919 static int
2920 vmm_ctl_ioctl(int cmd, intptr_t arg, int md, cred_t *cr, int *rvalp)
2921 {
2922 	void *argp = (void *)arg;
2923 
2924 	switch (cmd) {
2925 	case VMM_CREATE_VM: {
2926 		struct vm_create_req req;
2927 
2928 		if ((md & FWRITE) == 0) {
2929 			return (EPERM);
2930 		}
2931 		if (ddi_copyin(argp, &req, sizeof (req), md) != 0) {
2932 			return (EFAULT);
2933 		}
2934 		return (vmmdev_do_vm_create(&req, cr));
2935 	}
2936 	case VMM_DESTROY_VM: {
2937 		struct vm_destroy_req req;
2938 
2939 		if ((md & FWRITE) == 0) {
2940 			return (EPERM);
2941 		}
2942 		if (ddi_copyin(argp, &req, sizeof (req), md) != 0) {
2943 			return (EFAULT);
2944 		}
2945 		return (vmmdev_do_vm_destroy(&req, cr));
2946 	}
2947 	case VMM_VM_SUPPORTED:
2948 		return (vmm_is_supported(arg));
2949 	case VMM_CHECK_IOMMU:
2950 		if (!vmm_check_iommu()) {
2951 			return (ENXIO);
2952 		}
2953 		return (0);
2954 	case VMM_RESV_QUERY:
2955 	case VMM_RESV_ADD:
2956 	case VMM_RESV_REMOVE:
2957 		return (vmmr_ioctl(cmd, arg, md, cr, rvalp));
2958 	default:
2959 		break;
2960 	}
2961 	/* No other actions are legal on ctl device */
2962 	return (ENOTTY);
2963 }
2964 
2965 static int
2966 vmm_ioctl(dev_t dev, int cmd, intptr_t arg, int mode, cred_t *credp,
2967     int *rvalp)
2968 {
2969 	vmm_softc_t	*sc;
2970 	minor_t		minor;
2971 
2972 	/*
2973 	 * Forbid running bhyve in a 32-bit process until it has been tested and
2974 	 * verified to be safe.
2975 	 */
2976 	if (curproc->p_model != DATAMODEL_LP64) {
2977 		return (EFBIG);
2978 	}
2979 
2980 	/* The structs in bhyve ioctls assume a 64-bit datamodel */
2981 	if (ddi_model_convert_from(mode & FMODELS) != DDI_MODEL_NONE) {
2982 		return (ENOTSUP);
2983 	}
2984 
2985 	/*
2986 	 * Regardless of minor (vmmctl or instance), we respond to queries of
2987 	 * the interface version.
2988 	 */
2989 	if (cmd == VMM_INTERFACE_VERSION) {
2990 		*rvalp = VMM_CURRENT_INTERFACE_VERSION;
2991 		return (0);
2992 	}
2993 
2994 	minor = getminor(dev);
2995 
2996 	if (minor == VMM_CTL_MINOR) {
2997 		return (vmm_ctl_ioctl(cmd, arg, mode, credp, rvalp));
2998 	}
2999 
3000 	sc = ddi_get_soft_state(vmm_statep, minor);
3001 	ASSERT(sc != NULL);
3002 
3003 	/*
3004 	 * Turn away any ioctls against an instance when it is being destroyed.
3005 	 * (Except for the ioctl inquiring about that destroy-in-progress.)
3006 	 */
3007 	if ((sc->vmm_flags & VMM_DESTROY) != 0) {
3008 		if (cmd == VM_DESTROY_PENDING) {
3009 			*rvalp = 1;
3010 			return (0);
3011 		}
3012 		return (ENXIO);
3013 	}
3014 
3015 	return (vmmdev_do_ioctl(sc, cmd, arg, mode, credp, rvalp));
3016 }
3017 
3018 static int
3019 vmm_segmap(dev_t dev, off_t off, struct as *as, caddr_t *addrp, off_t len,
3020     unsigned int prot, unsigned int maxprot, unsigned int flags, cred_t *credp)
3021 {
3022 	vmm_softc_t *sc;
3023 	const minor_t minor = getminor(dev);
3024 	int err;
3025 
3026 	if (minor == VMM_CTL_MINOR) {
3027 		return (ENODEV);
3028 	}
3029 	if (off < 0 || (off + len) <= 0) {
3030 		return (EINVAL);
3031 	}
3032 	if ((prot & PROT_USER) == 0) {
3033 		return (EACCES);
3034 	}
3035 
3036 	sc = ddi_get_soft_state(vmm_statep, minor);
3037 	ASSERT(sc);
3038 
3039 	if (sc->vmm_flags & VMM_DESTROY)
3040 		return (ENXIO);
3041 
3042 	/* Grab read lock on the VM to prevent any changes to the memory map */
3043 	vmm_read_lock(sc);
3044 
3045 	if (off >= VM_DEVMEM_START) {
3046 		int segid;
3047 		off_t segoff;
3048 
3049 		/* Mapping a devmem "device" */
3050 		if (!vmmdev_devmem_segid(sc, off, len, &segid, &segoff)) {
3051 			err = ENODEV;
3052 		} else {
3053 			err = vm_segmap_obj(sc->vmm_vm, segid, segoff, len, as,
3054 			    addrp, prot, maxprot, flags);
3055 		}
3056 	} else {
3057 		/* Mapping a part of the guest physical space */
3058 		err = vm_segmap_space(sc->vmm_vm, off, as, addrp, len, prot,
3059 		    maxprot, flags);
3060 	}
3061 
3062 	vmm_read_unlock(sc);
3063 	return (err);
3064 }
3065 
3066 static sdev_plugin_validate_t
3067 vmm_sdev_validate(sdev_ctx_t ctx)
3068 {
3069 	const char *name = sdev_ctx_name(ctx);
3070 	vmm_softc_t *sc;
3071 	sdev_plugin_validate_t ret;
3072 	minor_t minor;
3073 
3074 	if (sdev_ctx_vtype(ctx) != VCHR)
3075 		return (SDEV_VTOR_INVALID);
3076 
3077 	VERIFY3S(sdev_ctx_minor(ctx, &minor), ==, 0);
3078 
3079 	mutex_enter(&vmm_mtx);
3080 	if ((sc = vmm_lookup(name)) == NULL)
3081 		ret = SDEV_VTOR_INVALID;
3082 	else if (sc->vmm_minor != minor)
3083 		ret = SDEV_VTOR_STALE;
3084 	else
3085 		ret = SDEV_VTOR_VALID;
3086 	mutex_exit(&vmm_mtx);
3087 
3088 	return (ret);
3089 }
3090 
3091 static int
3092 vmm_sdev_filldir(sdev_ctx_t ctx)
3093 {
3094 	vmm_softc_t *sc;
3095 	int ret;
3096 
3097 	if (strcmp(sdev_ctx_path(ctx), VMM_SDEV_ROOT) != 0) {
3098 		cmn_err(CE_WARN, "%s: bad path '%s' != '%s'\n", __func__,
3099 		    sdev_ctx_path(ctx), VMM_SDEV_ROOT);
3100 		return (EINVAL);
3101 	}
3102 
3103 	mutex_enter(&vmm_mtx);
3104 	ASSERT(vmmdev_dip != NULL);
3105 	for (sc = list_head(&vmm_list); sc != NULL;
3106 	    sc = list_next(&vmm_list, sc)) {
3107 		if (INGLOBALZONE(curproc) || sc->vmm_zone == curzone) {
3108 			ret = sdev_plugin_mknod(ctx, sc->vmm_name,
3109 			    S_IFCHR | 0600,
3110 			    makedevice(ddi_driver_major(vmmdev_dip),
3111 			    sc->vmm_minor));
3112 		} else {
3113 			continue;
3114 		}
3115 		if (ret != 0 && ret != EEXIST)
3116 			goto out;
3117 	}
3118 
3119 	ret = 0;
3120 
3121 out:
3122 	mutex_exit(&vmm_mtx);
3123 	return (ret);
3124 }
3125 
3126 /* ARGSUSED */
3127 static void
3128 vmm_sdev_inactive(sdev_ctx_t ctx)
3129 {
3130 }
3131 
3132 static sdev_plugin_ops_t vmm_sdev_ops = {
3133 	.spo_version = SDEV_PLUGIN_VERSION,
3134 	.spo_flags = SDEV_PLUGIN_SUBDIR,
3135 	.spo_validate = vmm_sdev_validate,
3136 	.spo_filldir = vmm_sdev_filldir,
3137 	.spo_inactive = vmm_sdev_inactive
3138 };
3139 
3140 /* ARGSUSED */
3141 static int
3142 vmm_info(dev_info_t *dip, ddi_info_cmd_t cmd, void *arg, void **result)
3143 {
3144 	int error;
3145 
3146 	switch (cmd) {
3147 	case DDI_INFO_DEVT2DEVINFO:
3148 		*result = (void *)vmmdev_dip;
3149 		error = DDI_SUCCESS;
3150 		break;
3151 	case DDI_INFO_DEVT2INSTANCE:
3152 		*result = (void *)0;
3153 		error = DDI_SUCCESS;
3154 		break;
3155 	default:
3156 		error = DDI_FAILURE;
3157 		break;
3158 	}
3159 	return (error);
3160 }
3161 
3162 static int
3163 vmm_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
3164 {
3165 	sdev_plugin_hdl_t sph;
3166 	hma_reg_t *reg = NULL;
3167 	boolean_t vmm_loaded = B_FALSE;
3168 
3169 	if (cmd != DDI_ATTACH) {
3170 		return (DDI_FAILURE);
3171 	}
3172 
3173 	mutex_enter(&vmmdev_mtx);
3174 	/* Ensure we are not already attached. */
3175 	if (vmmdev_dip != NULL) {
3176 		mutex_exit(&vmmdev_mtx);
3177 		return (DDI_FAILURE);
3178 	}
3179 
3180 	vmm_sol_glue_init();
3181 
3182 	/*
3183 	 * Perform temporary HMA registration to determine if the system
3184 	 * is capable.
3185 	 */
3186 	if ((reg = hma_register(vmmdev_hvm_name)) == NULL) {
3187 		goto fail;
3188 	} else if (vmm_mod_load() != 0) {
3189 		goto fail;
3190 	}
3191 	vmm_loaded = B_TRUE;
3192 	hma_unregister(reg);
3193 	reg = NULL;
3194 
3195 	/* Create control node.  Other nodes will be created on demand. */
3196 	if (ddi_create_minor_node(dip, "ctl", S_IFCHR,
3197 	    VMM_CTL_MINOR, DDI_PSEUDO, 0) != 0) {
3198 		goto fail;
3199 	}
3200 
3201 	sph = sdev_plugin_register(VMM_MODULE_NAME, &vmm_sdev_ops, NULL);
3202 	if (sph == (sdev_plugin_hdl_t)NULL) {
3203 		ddi_remove_minor_node(dip, NULL);
3204 		goto fail;
3205 	}
3206 
3207 	ddi_report_dev(dip);
3208 	vmmdev_sdev_hdl = sph;
3209 	vmmdev_dip = dip;
3210 	mutex_exit(&vmmdev_mtx);
3211 	return (DDI_SUCCESS);
3212 
3213 fail:
3214 	if (vmm_loaded) {
3215 		VERIFY0(vmm_mod_unload());
3216 	}
3217 	if (reg != NULL) {
3218 		hma_unregister(reg);
3219 	}
3220 	vmm_sol_glue_cleanup();
3221 	mutex_exit(&vmmdev_mtx);
3222 	return (DDI_FAILURE);
3223 }
3224 
3225 static int
3226 vmm_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
3227 {
3228 	if (cmd != DDI_DETACH) {
3229 		return (DDI_FAILURE);
3230 	}
3231 
3232 	/*
3233 	 * Ensure that all resources have been cleaned up.
3234 	 *
3235 	 * To prevent a deadlock with iommu_cleanup() we'll fail the detach if
3236 	 * vmmdev_mtx is already held. We can't wait for vmmdev_mtx with our
3237 	 * devinfo locked as iommu_cleanup() tries to recursively lock each
3238 	 * devinfo, including our own, while holding vmmdev_mtx.
3239 	 */
3240 	if (mutex_tryenter(&vmmdev_mtx) == 0)
3241 		return (DDI_FAILURE);
3242 
3243 	mutex_enter(&vmm_mtx);
3244 	if (!list_is_empty(&vmm_list)) {
3245 		mutex_exit(&vmm_mtx);
3246 		mutex_exit(&vmmdev_mtx);
3247 		return (DDI_FAILURE);
3248 	}
3249 	mutex_exit(&vmm_mtx);
3250 
3251 	if (!vmmr_is_empty()) {
3252 		mutex_exit(&vmmdev_mtx);
3253 		return (DDI_FAILURE);
3254 	}
3255 
3256 	VERIFY(vmmdev_sdev_hdl != (sdev_plugin_hdl_t)NULL);
3257 	if (sdev_plugin_unregister(vmmdev_sdev_hdl) != 0) {
3258 		mutex_exit(&vmmdev_mtx);
3259 		return (DDI_FAILURE);
3260 	}
3261 	vmmdev_sdev_hdl = (sdev_plugin_hdl_t)NULL;
3262 
3263 	/* Remove the control node. */
3264 	ddi_remove_minor_node(dip, "ctl");
3265 	vmmdev_dip = NULL;
3266 
3267 	VERIFY0(vmm_mod_unload());
3268 	VERIFY3U(vmmdev_hma_reg, ==, NULL);
3269 	vmm_sol_glue_cleanup();
3270 
3271 	mutex_exit(&vmmdev_mtx);
3272 
3273 	return (DDI_SUCCESS);
3274 }
3275 
3276 static struct cb_ops vmm_cb_ops = {
3277 	vmm_open,
3278 	vmm_close,
3279 	nodev,		/* strategy */
3280 	nodev,		/* print */
3281 	nodev,		/* dump */
3282 	nodev,		/* read */
3283 	nodev,		/* write */
3284 	vmm_ioctl,
3285 	nodev,		/* devmap */
3286 	nodev,		/* mmap */
3287 	vmm_segmap,
3288 	nochpoll,	/* poll */
3289 	ddi_prop_op,
3290 	NULL,
3291 	D_NEW | D_MP | D_DEVMAP
3292 };
3293 
3294 static struct dev_ops vmm_ops = {
3295 	DEVO_REV,
3296 	0,
3297 	vmm_info,
3298 	nulldev,	/* identify */
3299 	nulldev,	/* probe */
3300 	vmm_attach,
3301 	vmm_detach,
3302 	nodev,		/* reset */
3303 	&vmm_cb_ops,
3304 	(struct bus_ops *)NULL
3305 };
3306 
3307 static struct modldrv modldrv = {
3308 	&mod_driverops,
3309 	"bhyve vmm",
3310 	&vmm_ops
3311 };
3312 
3313 static struct modlinkage modlinkage = {
3314 	MODREV_1,
3315 	&modldrv,
3316 	NULL
3317 };
3318 
3319 int
3320 _init(void)
3321 {
3322 	int	error;
3323 
3324 	sysinit();
3325 
3326 	mutex_init(&vmmdev_mtx, NULL, MUTEX_DRIVER, NULL);
3327 	mutex_init(&vmm_mtx, NULL, MUTEX_DRIVER, NULL);
3328 	list_create(&vmm_list, sizeof (vmm_softc_t),
3329 	    offsetof(vmm_softc_t, vmm_node));
3330 	vmm_minors = id_space_create("vmm_minors", VMM_CTL_MINOR + 1, MAXMIN32);
3331 
3332 	error = ddi_soft_state_init(&vmm_statep, sizeof (vmm_softc_t), 0);
3333 	if (error) {
3334 		return (error);
3335 	}
3336 
3337 	vmm_zsd_init();
3338 	vmmr_init();
3339 
3340 	error = mod_install(&modlinkage);
3341 	if (error) {
3342 		ddi_soft_state_fini(&vmm_statep);
3343 		vmm_zsd_fini();
3344 		vmmr_fini();
3345 	}
3346 
3347 	return (error);
3348 }
3349 
3350 int
3351 _fini(void)
3352 {
3353 	int	error;
3354 
3355 	error = mod_remove(&modlinkage);
3356 	if (error) {
3357 		return (error);
3358 	}
3359 
3360 	vmm_zsd_fini();
3361 	vmmr_fini();
3362 
3363 	ddi_soft_state_fini(&vmm_statep);
3364 
3365 	return (0);
3366 }
3367 
3368 int
3369 _info(struct modinfo *modinfop)
3370 {
3371 	return (mod_info(&modlinkage, modinfop));
3372 }
3373