1 /* 2 * This file and its contents are supplied under the terms of the 3 * Common Development and Distribution License ("CDDL"), version 1.0. 4 * You may only use this file in accordance with the terms of version 5 * 1.0 of the CDDL. 6 * 7 * A full copy of the text of the CDDL should have accompanied this 8 * source. A copy of the CDDL is also available via the Internet at 9 * http://www.illumos.org/license/CDDL. 10 */ 11 12 /* 13 * Copyright 2019 Joyent, Inc. 14 * Copyright 2023 Oxide Computer Company 15 */ 16 17 #include <sys/types.h> 18 #include <sys/atomic.h> 19 #include <sys/kmem.h> 20 #include <sys/sysmacros.h> 21 #include <sys/sunddi.h> 22 #include <sys/panic.h> 23 #include <vm/hat.h> 24 #include <vm/as.h> 25 #include <vm/hat_i86.h> 26 27 #include <sys/vmm_gpt.h> 28 29 /* 30 * VMM Generic Page Tables 31 * 32 * Bhyve runs on AMD and Intel hosts and both support nested page tables 33 * describing the guest's physical address space. But the two use different and 34 * mutually incompatible page table formats: Intel uses the EPT, which is based 35 * on the Itanium page table format, while AMD uses the nPT, which is based on 36 * the x86_64 page table format. 37 * 38 * The GPT abstracts these format differences, and provides a single interface 39 * for interacting with either kind of table structure. 40 * 41 * At a high-level, the GPT is a tree that mirrors the paging table radix tree. 42 * It is parameterized with operations on PTEs that are specific to the table 43 * type (EPT or nPT) and also keeps track of how many pages the table maps, as 44 * well as a pointer to the root node in the tree. 45 * 46 * A node in the GPT keep pointers to its parent (NULL for the root), its 47 * left-most child, and its siblings. The node understands its position in the 48 * tree in terms of the level it appears at and the index it occupies at its 49 * parent's level, as well as how many children it has. It also owns the 50 * physical memory page for the hardware page table entries that map its 51 * children. Thus, for a node at any given level in the tree, the nested PTE 52 * for that node's child at index $i$ is the i'th uint64_t in that node's entry 53 * page and the entry page is part of the paging structure consumed by hardware. 54 * 55 * The GPT interface provides functions for populating and vacating the tree for 56 * regions in the guest physical address space, and for mapping and unmapping 57 * pages in populated regions. Users must populate a region before mapping 58 * pages into it, and must unmap pages before vacating the region. 59 * 60 * The interface also exposes a function for walking the table from the root to 61 * a leaf entry, populating an array of pointers to PTEs. This walk uses the 62 * hardware page structure itself, and is thus fast, though as a result it 63 * potentially aliases entries; caveat emptor. The walk primitive is used for 64 * mapping, unmapping, and lookups. 65 * 66 * Format-specific differences are abstracted by parameterizing the GPT with a 67 * set of PTE operations specific to the platform. The GPT code makes use of 68 * these when mapping or populating entries, resetting accessed and dirty bits 69 * on entries, and similar operations. 70 */ 71 72 /* 73 * A GPT node. 74 * 75 * Each node contains pointers to its parent, its left-most child, and its 76 * siblings. Interior nodes also maintain a reference count, and each node 77 * contains its level and index in its parent's table. Finally, each node 78 * contains the host PFN of the page that it links into the page table, as well 79 * as a kernel pointer to table. 80 * 81 * On leaf nodes, the reference count tracks how many entries in the table are 82 * covered by mapping from the containing vmspace. This is maintained during 83 * calls to vmm_populate_region() and vmm_gpt_vacate_region() as part of vmspace 84 * map/unmap operations, rather than in the data path of faults populating the 85 * PTEs themselves. 86 * 87 * Note, this is carefully sized to fit exactly into a 64-byte cache line. 88 */ 89 typedef struct vmm_gpt_node vmm_gpt_node_t; 90 struct vmm_gpt_node { 91 uint64_t vgn_host_pfn; 92 uint16_t vgn_level; 93 uint16_t vgn_index; 94 uint32_t vgn_ref_cnt; 95 vmm_gpt_node_t *vgn_parent; 96 vmm_gpt_node_t *vgn_children; 97 vmm_gpt_node_t *vgn_sib_next; 98 vmm_gpt_node_t *vgn_sib_prev; 99 uint64_t *vgn_entries; 100 uint64_t vgn_gpa; 101 }; 102 103 /* Maximum node index determined by number of entries in page table (512) */ 104 #define PTE_PER_TABLE 512 105 #define MAX_NODE_IDX (PTE_PER_TABLE - 1) 106 107 /* 108 * A VMM Generic Page Table. 109 * 110 * The generic page table is a format-agnostic, 4-level paging structure 111 * modeling a second-level page table (EPT on Intel, nPT on AMD). It 112 * contains a counter of pages the table maps, a pointer to the root node 113 * in the table, and is parameterized with a set of PTE operations specific 114 * to the table type. 115 */ 116 struct vmm_gpt { 117 vmm_gpt_node_t *vgpt_root; 118 vmm_pte_ops_t *vgpt_pte_ops; 119 }; 120 121 /* 122 * Allocates a vmm_gpt_node_t structure with corresponding page of memory to 123 * hold the PTEs it contains. 124 */ 125 static vmm_gpt_node_t * 126 vmm_gpt_node_alloc(void) 127 { 128 vmm_gpt_node_t *node; 129 caddr_t page; 130 131 node = kmem_zalloc(sizeof (*node), KM_SLEEP); 132 /* 133 * Note: despite the man page, allocating PAGESIZE bytes is 134 * guaranteed to be page-aligned. 135 */ 136 page = kmem_zalloc(PAGESIZE, KM_SLEEP); 137 node->vgn_entries = (uint64_t *)page; 138 node->vgn_host_pfn = hat_getpfnum(kas.a_hat, page); 139 140 return (node); 141 } 142 143 /* 144 * Allocates and initializes a vmm_gpt_t. 145 */ 146 vmm_gpt_t * 147 vmm_gpt_alloc(vmm_pte_ops_t *pte_ops) 148 { 149 vmm_gpt_t *gpt; 150 151 VERIFY(pte_ops != NULL); 152 gpt = kmem_zalloc(sizeof (*gpt), KM_SLEEP); 153 gpt->vgpt_pte_ops = pte_ops; 154 gpt->vgpt_root = vmm_gpt_node_alloc(); 155 156 return (gpt); 157 } 158 159 /* 160 * Frees a given node. The node is expected to have no familial (parent, 161 * children, siblings) associations at this point. Accordingly, its reference 162 * count should be zero. 163 */ 164 static void 165 vmm_gpt_node_free(vmm_gpt_node_t *node) 166 { 167 ASSERT(node != NULL); 168 ASSERT3U(node->vgn_ref_cnt, ==, 0); 169 ASSERT(node->vgn_host_pfn != PFN_INVALID); 170 ASSERT(node->vgn_entries != NULL); 171 ASSERT(node->vgn_parent == NULL); 172 173 kmem_free(node->vgn_entries, PAGESIZE); 174 kmem_free(node, sizeof (*node)); 175 } 176 177 /* 178 * Frees a vmm_gpt_t. Any lingering nodes in the GPT will be freed too. 179 */ 180 void 181 vmm_gpt_free(vmm_gpt_t *gpt) 182 { 183 /* Empty anything remaining in the tree */ 184 vmm_gpt_vacate_region(gpt, 0, UINT64_MAX & PAGEMASK); 185 186 VERIFY(gpt->vgpt_root != NULL); 187 VERIFY3U(gpt->vgpt_root->vgn_ref_cnt, ==, 0); 188 189 vmm_gpt_node_free(gpt->vgpt_root); 190 kmem_free(gpt, sizeof (*gpt)); 191 } 192 193 /* 194 * Given a GPA, return its corresponding index in a paging structure at the 195 * provided level. 196 */ 197 static inline uint16_t 198 vmm_gpt_lvl_index(vmm_gpt_node_level_t level, uint64_t gpa) 199 { 200 ASSERT(level < MAX_GPT_LEVEL); 201 202 const uint_t shifts[] = { 203 [LEVEL4] = 39, 204 [LEVEL3] = 30, 205 [LEVEL2] = 21, 206 [LEVEL1] = 12, 207 }; 208 const uint16_t mask = (1U << 9) - 1; 209 return ((gpa >> shifts[level]) & mask); 210 } 211 212 /* Get mask for addresses of entries at a given table level. */ 213 static inline uint64_t 214 vmm_gpt_lvl_mask(vmm_gpt_node_level_t level) 215 { 216 ASSERT(level < MAX_GPT_LEVEL); 217 218 const uint64_t gpa_mask[] = { 219 [LEVEL4] = 0xffffff8000000000ul, /* entries cover 512G */ 220 [LEVEL3] = 0xffffffffc0000000ul, /* entries cover 1G */ 221 [LEVEL2] = 0xffffffffffe00000ul, /* entries cover 2M */ 222 [LEVEL1] = 0xfffffffffffff000ul, /* entries cover 4K */ 223 }; 224 return (gpa_mask[level]); 225 } 226 227 /* Get length of GPA covered by entries at a given table level. */ 228 static inline uint64_t 229 vmm_gpt_lvl_len(vmm_gpt_node_level_t level) 230 { 231 ASSERT(level < MAX_GPT_LEVEL); 232 233 const uint64_t gpa_len[] = { 234 [LEVEL4] = 0x8000000000ul, /* entries cover 512G */ 235 [LEVEL3] = 0x40000000ul, /* entries cover 1G */ 236 [LEVEL2] = 0x200000ul, /* entries cover 2M */ 237 [LEVEL1] = 0x1000ul, /* entries cover 4K */ 238 }; 239 return (gpa_len[level]); 240 } 241 242 /* 243 * Get the ending GPA which this node could possibly cover given its base 244 * address and level. 245 */ 246 static inline uint64_t 247 vmm_gpt_node_end(vmm_gpt_node_t *node) 248 { 249 ASSERT(node->vgn_level > LEVEL4); 250 return (node->vgn_gpa + vmm_gpt_lvl_len(node->vgn_level - 1)); 251 } 252 253 /* 254 * Is this node the last entry in its parent node, based solely by its GPA? 255 */ 256 static inline bool 257 vmm_gpt_node_is_last(vmm_gpt_node_t *node) 258 { 259 return (node->vgn_index == MAX_NODE_IDX); 260 } 261 262 /* 263 * How many table entries (if any) in this node are covered by the range of 264 * [start, end). 265 */ 266 static uint16_t 267 vmm_gpt_node_entries_covered(vmm_gpt_node_t *node, uint64_t start, uint64_t end) 268 { 269 const uint64_t node_end = vmm_gpt_node_end(node); 270 271 /* Is this node covered at all by the region? */ 272 if (start >= node_end || end <= node->vgn_gpa) { 273 return (0); 274 } 275 276 const uint64_t mask = vmm_gpt_lvl_mask(node->vgn_level); 277 const uint64_t covered_start = MAX(node->vgn_gpa, start & mask); 278 const uint64_t covered_end = MIN(node_end, end & mask); 279 const uint64_t per_entry = vmm_gpt_lvl_len(node->vgn_level); 280 281 return ((covered_end - covered_start) / per_entry); 282 } 283 284 /* 285 * Find the next node (by address) in the tree at the same level. 286 * 287 * Returns NULL if this is the last node in the tree or if `only_seq` was true 288 * and there is an address gap between this node and the next. 289 */ 290 static vmm_gpt_node_t * 291 vmm_gpt_node_next(vmm_gpt_node_t *node, bool only_seq) 292 { 293 ASSERT3P(node->vgn_parent, !=, NULL); 294 ASSERT3U(node->vgn_level, >, LEVEL4); 295 296 /* 297 * Next node sequentially would be the one at the address starting at 298 * the end of what is covered by this node. 299 */ 300 const uint64_t gpa_match = vmm_gpt_node_end(node); 301 302 /* Try our next sibling */ 303 vmm_gpt_node_t *next = node->vgn_sib_next; 304 if (next != NULL) { 305 if (next->vgn_gpa == gpa_match || !only_seq) { 306 return (next); 307 } 308 } else { 309 /* 310 * If the next-sibling pointer is NULL on the node, it can mean 311 * one of two things: 312 * 313 * 1. This entry represents the space leading up to the trailing 314 * boundary of what this node covers. 315 * 316 * 2. The node is not entirely populated, and there is a gap 317 * between the last populated entry, and the trailing 318 * boundary of the node. 319 * 320 * Either way, the proper course of action is to check the first 321 * child of our parent's next sibling. 322 */ 323 vmm_gpt_node_t *pibling = node->vgn_parent->vgn_sib_next; 324 if (pibling != NULL) { 325 next = pibling->vgn_children; 326 if (next != NULL) { 327 if (next->vgn_gpa == gpa_match || !only_seq) { 328 return (next); 329 } 330 } 331 } 332 } 333 334 return (NULL); 335 } 336 337 338 /* 339 * Finds the child for the given GPA in the given parent node. 340 * Returns a pointer to node, or NULL if it is not found. 341 */ 342 static vmm_gpt_node_t * 343 vmm_gpt_node_find_child(vmm_gpt_node_t *parent, uint64_t gpa) 344 { 345 const uint16_t index = vmm_gpt_lvl_index(parent->vgn_level, gpa); 346 for (vmm_gpt_node_t *child = parent->vgn_children; 347 child != NULL && child->vgn_index <= index; 348 child = child->vgn_sib_next) { 349 if (child->vgn_index == index) 350 return (child); 351 } 352 353 return (NULL); 354 } 355 356 /* 357 * Add a child node to the GPT at a position determined by GPA, parent, and (if 358 * present) preceding sibling. 359 * 360 * If `parent` node contains any children, `prev_sibling` must be populated with 361 * a pointer to the node preceding (by GPA) the to-be-added child node. 362 */ 363 static void 364 vmm_gpt_node_add(vmm_gpt_t *gpt, vmm_gpt_node_t *parent, 365 vmm_gpt_node_t *child, uint64_t gpa, vmm_gpt_node_t *prev_sibling) 366 { 367 ASSERT3U(parent->vgn_level, <, LEVEL1); 368 ASSERT3U(child->vgn_parent, ==, NULL); 369 370 const uint16_t idx = vmm_gpt_lvl_index(parent->vgn_level, gpa); 371 child->vgn_index = idx; 372 child->vgn_level = parent->vgn_level + 1; 373 child->vgn_gpa = gpa & vmm_gpt_lvl_mask(parent->vgn_level); 374 375 /* Establish familial connections */ 376 child->vgn_parent = parent; 377 if (prev_sibling != NULL) { 378 ASSERT3U(prev_sibling->vgn_gpa, <, child->vgn_gpa); 379 380 child->vgn_sib_next = prev_sibling->vgn_sib_next; 381 if (child->vgn_sib_next != NULL) { 382 child->vgn_sib_next->vgn_sib_prev = child; 383 } 384 child->vgn_sib_prev = prev_sibling; 385 prev_sibling->vgn_sib_next = child; 386 } else if (parent->vgn_children != NULL) { 387 vmm_gpt_node_t *next_sibling = parent->vgn_children; 388 389 ASSERT3U(next_sibling->vgn_gpa, >, child->vgn_gpa); 390 ASSERT3U(next_sibling->vgn_sib_prev, ==, NULL); 391 392 child->vgn_sib_next = next_sibling; 393 child->vgn_sib_prev = NULL; 394 next_sibling->vgn_sib_prev = child; 395 parent->vgn_children = child; 396 } else { 397 parent->vgn_children = child; 398 child->vgn_sib_next = NULL; 399 child->vgn_sib_prev = NULL; 400 } 401 402 /* Configure PTE for child table */ 403 parent->vgn_entries[idx] = 404 gpt->vgpt_pte_ops->vpeo_map_table(child->vgn_host_pfn); 405 parent->vgn_ref_cnt++; 406 } 407 408 /* 409 * Remove a child node from its relatives (parent, siblings) and free it. 410 */ 411 static void 412 vmm_gpt_node_remove(vmm_gpt_node_t *child) 413 { 414 ASSERT3P(child->vgn_children, ==, NULL); 415 ASSERT3U(child->vgn_ref_cnt, ==, 0); 416 ASSERT3P(child->vgn_parent, !=, NULL); 417 418 /* Unlink child from its siblings and parent */ 419 vmm_gpt_node_t *parent = child->vgn_parent; 420 vmm_gpt_node_t *prev = child->vgn_sib_prev; 421 vmm_gpt_node_t *next = child->vgn_sib_next; 422 if (prev != NULL) { 423 ASSERT3P(prev->vgn_sib_next, ==, child); 424 prev->vgn_sib_next = next; 425 } 426 if (next != NULL) { 427 ASSERT3P(next->vgn_sib_prev, ==, child); 428 next->vgn_sib_prev = prev; 429 } 430 if (prev == NULL) { 431 ASSERT3P(parent->vgn_children, ==, child); 432 parent->vgn_children = next; 433 } 434 child->vgn_parent = NULL; 435 child->vgn_sib_next = NULL; 436 child->vgn_sib_prev = NULL; 437 parent->vgn_entries[child->vgn_index] = 0; 438 parent->vgn_ref_cnt--; 439 440 vmm_gpt_node_free(child); 441 } 442 443 /* 444 * Walks the GPT for the given GPA, accumulating entries to the given depth. If 445 * the walk terminates before the depth is reached, the remaining entries are 446 * written with NULLs. 447 */ 448 void 449 vmm_gpt_walk(vmm_gpt_t *gpt, uint64_t gpa, uint64_t **entries, 450 vmm_gpt_node_level_t depth) 451 { 452 uint64_t *current_entries, entry; 453 pfn_t pfn; 454 455 ASSERT(gpt != NULL); 456 current_entries = gpt->vgpt_root->vgn_entries; 457 for (uint_t i = 0; i < depth; i++) { 458 if (current_entries == NULL) { 459 entries[i] = NULL; 460 continue; 461 } 462 entries[i] = ¤t_entries[vmm_gpt_lvl_index(i, gpa)]; 463 entry = *entries[i]; 464 if (!gpt->vgpt_pte_ops->vpeo_pte_is_present(entry)) { 465 current_entries = NULL; 466 continue; 467 } 468 pfn = gpt->vgpt_pte_ops->vpeo_pte_pfn(entry); 469 current_entries = (uint64_t *)hat_kpm_pfn2va(pfn); 470 } 471 } 472 473 /* 474 * Looks up an entry given GPA. 475 */ 476 uint64_t * 477 vmm_gpt_lookup(vmm_gpt_t *gpt, uint64_t gpa) 478 { 479 uint64_t *entries[MAX_GPT_LEVEL]; 480 481 vmm_gpt_walk(gpt, gpa, entries, MAX_GPT_LEVEL); 482 483 return (entries[LEVEL1]); 484 } 485 486 /* 487 * Populate child table nodes for a given level between the provided interval 488 * of [addr, addr + len). Caller is expected to provide a pointer to the parent 489 * node which would contain the child node for GPA at `addr`. A pointer to said 490 * child node will be returned when the operation is complete. 491 */ 492 static vmm_gpt_node_t * 493 vmm_gpt_populate_region_lvl(vmm_gpt_t *gpt, uint64_t addr, uint64_t len, 494 vmm_gpt_node_t *node_start) 495 { 496 const vmm_gpt_node_level_t lvl = node_start->vgn_level; 497 const uint64_t end = addr + len; 498 const uint64_t incr = vmm_gpt_lvl_len(lvl); 499 uint64_t gpa = addr & vmm_gpt_lvl_mask(lvl); 500 vmm_gpt_node_t *parent = node_start; 501 502 /* Try to locate node at starting address */ 503 vmm_gpt_node_t *prev = NULL, *node = parent->vgn_children; 504 while (node != NULL && node->vgn_gpa < gpa) { 505 prev = node; 506 node = node->vgn_sib_next; 507 } 508 509 /* 510 * If no node exists at the starting address, create one and link it 511 * into the parent. 512 */ 513 if (node == NULL || node->vgn_gpa > gpa) { 514 /* Need to insert node for starting GPA */ 515 node = vmm_gpt_node_alloc(); 516 vmm_gpt_node_add(gpt, parent, node, gpa, prev); 517 } 518 519 vmm_gpt_node_t *front_node = node; 520 prev = node; 521 gpa += incr; 522 523 /* 524 * With a node at the starting address, walk forward creating nodes in 525 * any of the gaps. 526 */ 527 for (; gpa < end; gpa += incr, prev = node) { 528 node = vmm_gpt_node_next(prev, true); 529 if (node != NULL) { 530 ASSERT3U(node->vgn_gpa, ==, gpa); 531 532 /* We may have crossed into a new parent */ 533 parent = node->vgn_parent; 534 continue; 535 } 536 537 if (vmm_gpt_node_is_last(prev)) { 538 /* 539 * The node preceding this was the last one in its 540 * containing parent, so move on to that parent's 541 * sibling. We expect (demand) that it exist already. 542 */ 543 parent = vmm_gpt_node_next(parent, true); 544 ASSERT(parent != NULL); 545 546 /* 547 * Forget our previous sibling, since it is of no use 548 * for assigning the new node to the a now-different 549 * parent. 550 */ 551 prev = NULL; 552 553 } 554 node = vmm_gpt_node_alloc(); 555 vmm_gpt_node_add(gpt, parent, node, gpa, prev); 556 } 557 558 return (front_node); 559 } 560 561 /* 562 * Ensures that PTEs for the region of address space bounded by 563 * [addr, addr + len) exist in the tree. 564 */ 565 void 566 vmm_gpt_populate_region(vmm_gpt_t *gpt, uint64_t addr, uint64_t len) 567 { 568 ASSERT0(addr & PAGEOFFSET); 569 ASSERT0(len & PAGEOFFSET); 570 571 /* 572 * Starting at the top of the tree, ensure that tables covering the 573 * requested region exist at each level. 574 */ 575 vmm_gpt_node_t *node = gpt->vgpt_root; 576 for (uint_t lvl = LEVEL4; lvl < LEVEL1; lvl++) { 577 ASSERT3U(node->vgn_level, ==, lvl); 578 579 node = vmm_gpt_populate_region_lvl(gpt, addr, len, node); 580 } 581 582 583 /* 584 * Establish reference counts for the soon-to-be memory PTEs which will 585 * be filling these LEVEL1 tables. 586 */ 587 uint64_t gpa = addr; 588 const uint64_t end = addr + len; 589 while (gpa < end) { 590 ASSERT(node != NULL); 591 ASSERT3U(node->vgn_level, ==, LEVEL1); 592 593 const uint16_t covered = 594 vmm_gpt_node_entries_covered(node, addr, end); 595 596 ASSERT(covered != 0); 597 ASSERT3U(node->vgn_ref_cnt, <, PTE_PER_TABLE); 598 ASSERT3U(node->vgn_ref_cnt + covered, <=, PTE_PER_TABLE); 599 600 node->vgn_ref_cnt += covered; 601 602 vmm_gpt_node_t *next = vmm_gpt_node_next(node, true); 603 if (next != NULL) { 604 gpa = next->vgn_gpa; 605 node = next; 606 } else { 607 /* 608 * We do not expect to find a subsequent node after 609 * filling the last node in the table, completing PTE 610 * accounting for the specified range. 611 */ 612 VERIFY3U(end, <=, vmm_gpt_node_end(node)); 613 break; 614 } 615 } 616 } 617 618 /* 619 * Format a PTE and install it in the provided PTE-pointer. 620 */ 621 bool 622 vmm_gpt_map_at(vmm_gpt_t *gpt, uint64_t *ptep, pfn_t pfn, uint_t prot, 623 uint8_t attr) 624 { 625 uint64_t entry, old_entry; 626 627 entry = gpt->vgpt_pte_ops->vpeo_map_page(pfn, prot, attr); 628 old_entry = atomic_cas_64(ptep, 0, entry); 629 if (old_entry != 0) { 630 ASSERT3U(gpt->vgpt_pte_ops->vpeo_pte_pfn(entry), ==, 631 gpt->vgpt_pte_ops->vpeo_pte_pfn(old_entry)); 632 return (false); 633 } 634 635 return (true); 636 } 637 638 /* 639 * Inserts an entry for a given GPA into the table. The caller must 640 * ensure that a conflicting PFN is not mapped at the requested location. 641 * Racing operations to map the same PFN at one location is acceptable and 642 * properly handled. 643 */ 644 bool 645 vmm_gpt_map(vmm_gpt_t *gpt, uint64_t gpa, pfn_t pfn, uint_t prot, uint8_t attr) 646 { 647 uint64_t *entries[MAX_GPT_LEVEL]; 648 649 ASSERT(gpt != NULL); 650 vmm_gpt_walk(gpt, gpa, entries, MAX_GPT_LEVEL); 651 ASSERT(entries[LEVEL1] != NULL); 652 653 return (vmm_gpt_map_at(gpt, entries[LEVEL1], pfn, prot, attr)); 654 } 655 656 /* 657 * Cleans up the unused inner nodes in the GPT for a region of guest physical 658 * address space of [addr, addr + len). The region must map no pages. 659 */ 660 void 661 vmm_gpt_vacate_region(vmm_gpt_t *gpt, uint64_t addr, uint64_t len) 662 { 663 ASSERT0(addr & PAGEOFFSET); 664 ASSERT0(len & PAGEOFFSET); 665 666 const uint64_t end = addr + len; 667 vmm_gpt_node_t *node, *starts[MAX_GPT_LEVEL] = { 668 [LEVEL4] = gpt->vgpt_root, 669 }; 670 671 for (vmm_gpt_node_level_t lvl = LEVEL4; lvl < LEVEL1; lvl++) { 672 node = vmm_gpt_node_find_child(starts[lvl], addr); 673 if (node == NULL) { 674 break; 675 } 676 starts[lvl + 1] = node; 677 } 678 679 /* 680 * Starting at the bottom of the tree, ensure that PTEs for pages have 681 * been cleared for the region, and remove the corresponding reference 682 * counts from the containing LEVEL1 tables. 683 */ 684 uint64_t gpa = addr; 685 node = starts[LEVEL1]; 686 while (gpa < end && node != NULL) { 687 const uint16_t covered = 688 vmm_gpt_node_entries_covered(node, addr, end); 689 690 ASSERT3U(node->vgn_ref_cnt, >=, covered); 691 node->vgn_ref_cnt -= covered; 692 693 node = vmm_gpt_node_next(node, false); 694 if (node != NULL) { 695 gpa = node->vgn_gpa; 696 } 697 } 698 699 /* 700 * With the page PTE references eliminated, work up from the bottom of 701 * the table, removing nodes which have no remaining references. 702 * 703 * This stops short of LEVEL4, which is the root table of the GPT. It 704 * is left standing to be cleaned up when the vmm_gpt_t is destroyed. 705 */ 706 for (vmm_gpt_node_level_t lvl = LEVEL1; lvl > LEVEL4; lvl--) { 707 gpa = addr; 708 node = starts[lvl]; 709 710 while (gpa < end && node != NULL) { 711 vmm_gpt_node_t *next = vmm_gpt_node_next(node, false); 712 713 if (node->vgn_ref_cnt == 0) { 714 vmm_gpt_node_remove(node); 715 } 716 if (next != NULL) { 717 gpa = next->vgn_gpa; 718 } 719 node = next; 720 } 721 } 722 } 723 724 /* 725 * Remove a mapping from the table. Returns false if the page was not mapped, 726 * otherwise returns true. 727 */ 728 bool 729 vmm_gpt_unmap(vmm_gpt_t *gpt, uint64_t gpa) 730 { 731 uint64_t *entries[MAX_GPT_LEVEL], entry; 732 733 ASSERT(gpt != NULL); 734 vmm_gpt_walk(gpt, gpa, entries, MAX_GPT_LEVEL); 735 if (entries[LEVEL1] == NULL) 736 return (false); 737 738 entry = *entries[LEVEL1]; 739 *entries[LEVEL1] = 0; 740 return (gpt->vgpt_pte_ops->vpeo_pte_is_present(entry)); 741 } 742 743 /* 744 * Un-maps the region of guest physical address space bounded by [start..end). 745 * Returns the number of pages that are unmapped. 746 */ 747 size_t 748 vmm_gpt_unmap_region(vmm_gpt_t *gpt, uint64_t addr, uint64_t len) 749 { 750 ASSERT0(addr & PAGEOFFSET); 751 ASSERT0(len & PAGEOFFSET); 752 753 const uint64_t end = addr + len; 754 size_t num_unmapped = 0; 755 for (uint64_t gpa = addr; gpa < end; gpa += PAGESIZE) { 756 if (vmm_gpt_unmap(gpt, gpa) != 0) { 757 num_unmapped++; 758 } 759 } 760 761 return (num_unmapped); 762 } 763 764 /* 765 * Returns a value indicating whether or not this GPT maps the given 766 * GPA. If the GPA is mapped, *protp will be filled with the protection 767 * bits of the entry. Otherwise, it will be ignored. 768 */ 769 bool 770 vmm_gpt_is_mapped(vmm_gpt_t *gpt, uint64_t *ptep, pfn_t *pfnp, uint_t *protp) 771 { 772 uint64_t entry; 773 774 ASSERT(pfnp != NULL); 775 ASSERT(protp != NULL); 776 777 if (ptep == NULL) { 778 return (false); 779 } 780 entry = *ptep; 781 if (!gpt->vgpt_pte_ops->vpeo_pte_is_present(entry)) { 782 return (false); 783 } 784 *pfnp = gpt->vgpt_pte_ops->vpeo_pte_pfn(entry); 785 *protp = gpt->vgpt_pte_ops->vpeo_pte_prot(entry); 786 return (true); 787 } 788 789 /* 790 * Resets the accessed bit on the page table entry pointed to be `entry`. 791 * If `on` is true, the bit will be set, otherwise it will be cleared. 792 * The old value of the bit is returned. 793 */ 794 uint_t 795 vmm_gpt_reset_accessed(vmm_gpt_t *gpt, uint64_t *entry, bool on) 796 { 797 ASSERT(entry != NULL); 798 return (gpt->vgpt_pte_ops->vpeo_reset_accessed(entry, on)); 799 } 800 801 /* 802 * Resets the dirty bit on the page table entry pointed to be `entry`. 803 * If `on` is true, the bit will be set, otherwise it will be cleared. 804 * The old value of the bit is returned. 805 */ 806 uint_t 807 vmm_gpt_reset_dirty(vmm_gpt_t *gpt, uint64_t *entry, bool on) 808 { 809 ASSERT(entry != NULL); 810 return (gpt->vgpt_pte_ops->vpeo_reset_dirty(entry, on)); 811 } 812 813 /* 814 * Query state from PTE pointed to by `entry`. 815 */ 816 bool 817 vmm_gpt_query(vmm_gpt_t *gpt, uint64_t *entry, vmm_gpt_query_t query) 818 { 819 ASSERT(entry != NULL); 820 return (gpt->vgpt_pte_ops->vpeo_query(entry, query)); 821 } 822 823 /* 824 * Get properly formatted PML4 (EPTP/nCR3) for GPT. 825 */ 826 uint64_t 827 vmm_gpt_get_pmtp(vmm_gpt_t *gpt, bool track_dirty) 828 { 829 const pfn_t root_pfn = gpt->vgpt_root->vgn_host_pfn; 830 return (gpt->vgpt_pte_ops->vpeo_get_pmtp(root_pfn, track_dirty)); 831 } 832 833 /* 834 * Does the GPT hardware support dirty-page-tracking? 835 */ 836 bool 837 vmm_gpt_can_track_dirty(vmm_gpt_t *gpt) 838 { 839 return (gpt->vgpt_pte_ops->vpeo_hw_ad_supported()); 840 } 841