xref: /illumos-gate/usr/src/uts/intel/io/vmm/vmm_gpt.c (revision 5016ae894be01e501342a67035ea848043662a45)
1 /*
2  * This file and its contents are supplied under the terms of the
3  * Common Development and Distribution License ("CDDL"), version 1.0.
4  * You may only use this file in accordance with the terms of version
5  * 1.0 of the CDDL.
6  *
7  * A full copy of the text of the CDDL should have accompanied this
8  * source.  A copy of the CDDL is also available via the Internet at
9  * http://www.illumos.org/license/CDDL.
10  */
11 
12 /*
13  * Copyright 2019 Joyent, Inc.
14  * Copyright 2024 Oxide Computer Company
15  */
16 
17 #include <sys/types.h>
18 #include <sys/atomic.h>
19 #include <sys/kmem.h>
20 #include <sys/sysmacros.h>
21 #include <sys/sunddi.h>
22 #include <sys/panic.h>
23 #include <vm/hat.h>
24 #include <vm/as.h>
25 #include <vm/hat_i86.h>
26 
27 #include <sys/vmm_gpt.h>
28 
29 /*
30  * VMM Generic Page Tables
31  *
32  * Bhyve runs on AMD and Intel hosts and both support nested page tables
33  * describing the guest's physical address space.  But the two use different and
34  * mutually incompatible page table formats: Intel uses the EPT, which is based
35  * on the Itanium page table format, while AMD uses the nPT, which is based on
36  * the x86_64 page table format.
37  *
38  * The GPT abstracts these format differences, and provides a single interface
39  * for interacting with either kind of table structure.
40  *
41  * At a high-level, the GPT is a tree that mirrors the paging table radix tree.
42  * It is parameterized with operations on PTEs that are specific to the table
43  * type (EPT or nPT) and also keeps track of how many pages the table maps, as
44  * well as a pointer to the root node in the tree.
45  *
46  * A node in the GPT keep pointers to its parent (NULL for the root), its
47  * left-most child, and its siblings.  The node understands its position in the
48  * tree in terms of the level it appears at and the index it occupies at its
49  * parent's level, as well as how many children it has.  It also owns the
50  * physical memory page for the hardware page table entries that map its
51  * children.  Thus, for a node at any given level in the tree, the nested PTE
52  * for that node's child at index $i$ is the i'th uint64_t in that node's entry
53  * page and the entry page is part of the paging structure consumed by hardware.
54  *
55  * The GPT interface provides functions for populating and vacating the tree for
56  * regions in the guest physical address space, and for mapping and unmapping
57  * pages in populated regions.  Users must populate a region before mapping
58  * pages into it, and must unmap pages before vacating the region.
59  *
60  * The interface also exposes a function for walking the table from the root to
61  * a leaf entry, populating an array of pointers to PTEs.  This walk uses the
62  * hardware page structure itself, and is thus fast, though as a result it
63  * potentially aliases entries; caveat emptor.  The walk primitive is used for
64  * mapping, unmapping, and lookups.
65  *
66  * Format-specific differences are abstracted by parameterizing the GPT with a
67  * set of PTE operations specific to the platform.  The GPT code makes use of
68  * these when mapping or populating entries, resetting accessed and dirty bits
69  * on entries, and similar operations.
70  */
71 
72 /*
73  * A GPT node.
74  *
75  * Each node contains pointers to its parent, its left-most child, and its
76  * siblings.  Interior nodes also maintain a reference count, and each node
77  * contains its level and index in its parent's table.  Finally, each node
78  * contains the host PFN of the page that it links into the page table, as well
79  * as a kernel pointer to table.
80  *
81  * On leaf nodes, the reference count tracks how many entries in the table are
82  * covered by mapping from the containing vmspace.  This is maintained during
83  * calls to vmm_populate_region() and vmm_gpt_vacate_region() as part of vmspace
84  * map/unmap operations, rather than in the data path of faults populating the
85  * PTEs themselves.
86  *
87  * Note, this is carefully sized to fit exactly into a 64-byte cache line.
88  */
89 typedef struct vmm_gpt_node vmm_gpt_node_t;
90 struct vmm_gpt_node {
91 	uint64_t	vgn_host_pfn;
92 	uint16_t	vgn_level;
93 	uint16_t	vgn_index;
94 	uint32_t	vgn_ref_cnt;
95 	vmm_gpt_node_t	*vgn_parent;
96 	vmm_gpt_node_t	*vgn_children;
97 	vmm_gpt_node_t	*vgn_sib_next;
98 	vmm_gpt_node_t	*vgn_sib_prev;
99 	uint64_t	*vgn_entries;
100 	uint64_t	vgn_gpa;
101 };
102 
103 /* Maximum node index determined by number of entries in page table (512) */
104 #define	PTE_PER_TABLE	512
105 #define	MAX_NODE_IDX	(PTE_PER_TABLE - 1)
106 
107 /*
108  * A VMM Generic Page Table.
109  *
110  * The generic page table is a format-agnostic, 4-level paging structure
111  * modeling a second-level page table (EPT on Intel, nPT on AMD).  It
112  * contains a counter of pages the table maps, a pointer to the root node
113  * in the table, and is parameterized with a set of PTE operations specific
114  * to the table type.
115  */
116 struct vmm_gpt {
117 	vmm_gpt_node_t	*vgpt_root;
118 	vmm_pte_ops_t	*vgpt_pte_ops;
119 };
120 
121 /*
122  * Allocates a vmm_gpt_node_t structure with corresponding page of memory to
123  * hold the PTEs it contains.
124  */
125 static vmm_gpt_node_t *
126 vmm_gpt_node_alloc(void)
127 {
128 	vmm_gpt_node_t *node;
129 	caddr_t page;
130 
131 	node = kmem_zalloc(sizeof (*node), KM_SLEEP);
132 	/*
133 	 * Note: despite the man page, allocating PAGESIZE bytes is
134 	 * guaranteed to be page-aligned.
135 	 */
136 	page = kmem_zalloc(PAGESIZE, KM_SLEEP);
137 	node->vgn_entries = (uint64_t *)page;
138 	node->vgn_host_pfn = hat_getpfnum(kas.a_hat, page);
139 
140 	return (node);
141 }
142 
143 /*
144  * Allocates and initializes a vmm_gpt_t.
145  */
146 vmm_gpt_t *
147 vmm_gpt_alloc(vmm_pte_ops_t *pte_ops)
148 {
149 	vmm_gpt_t *gpt;
150 
151 	VERIFY(pte_ops != NULL);
152 	gpt = kmem_zalloc(sizeof (*gpt), KM_SLEEP);
153 	gpt->vgpt_pte_ops = pte_ops;
154 	gpt->vgpt_root = vmm_gpt_node_alloc();
155 
156 	return (gpt);
157 }
158 
159 /*
160  * Frees a given node.  The node is expected to have no familial (parent,
161  * children, siblings) associations at this point.  Accordingly, its reference
162  * count should be zero.
163  */
164 static void
165 vmm_gpt_node_free(vmm_gpt_node_t *node)
166 {
167 	ASSERT(node != NULL);
168 	ASSERT3U(node->vgn_ref_cnt, ==, 0);
169 	ASSERT(node->vgn_host_pfn != PFN_INVALID);
170 	ASSERT(node->vgn_entries != NULL);
171 	ASSERT(node->vgn_parent == NULL);
172 
173 	kmem_free(node->vgn_entries, PAGESIZE);
174 	kmem_free(node, sizeof (*node));
175 }
176 
177 /*
178  * Frees a vmm_gpt_t.  Any lingering nodes in the GPT will be freed too.
179  */
180 void
181 vmm_gpt_free(vmm_gpt_t *gpt)
182 {
183 	/* Empty anything remaining in the tree */
184 	vmm_gpt_vacate_region(gpt, 0, UINT64_MAX & PAGEMASK);
185 
186 	VERIFY(gpt->vgpt_root != NULL);
187 	VERIFY3U(gpt->vgpt_root->vgn_ref_cnt, ==, 0);
188 
189 	vmm_gpt_node_free(gpt->vgpt_root);
190 	kmem_free(gpt, sizeof (*gpt));
191 }
192 
193 /*
194  * Given a GPA, return its corresponding index in a paging structure at the
195  * provided level.
196  */
197 static inline uint16_t
198 vmm_gpt_lvl_index(vmm_gpt_node_level_t level, uint64_t gpa)
199 {
200 	ASSERT(level < MAX_GPT_LEVEL);
201 
202 	const uint16_t mask = (1U << 9) - 1;
203 	switch (level) {
204 	case LEVEL4: return ((gpa >> 39) & mask);
205 	case LEVEL3: return ((gpa >> 30) & mask);
206 	case LEVEL2: return ((gpa >> 21) & mask);
207 	case LEVEL1: return ((gpa >> 12) & mask);
208 	default:
209 		panic("impossible level value");
210 	};
211 }
212 
213 /* Get mask for addresses of entries at a given table level. */
214 static inline uint64_t
215 vmm_gpt_lvl_mask(vmm_gpt_node_level_t level)
216 {
217 	ASSERT(level < MAX_GPT_LEVEL);
218 
219 	switch (level) {
220 	case LEVEL4: return (0xffffff8000000000ul);	/* entries cover 512G */
221 	case LEVEL3: return (0xffffffffc0000000ul);	/* entries cover 1G */
222 	case LEVEL2: return (0xffffffffffe00000ul);	/* entries cover 2M */
223 	case LEVEL1: return (0xfffffffffffff000ul);	/* entries cover 4K */
224 	default:
225 		panic("impossible level value");
226 	};
227 }
228 
229 /* Get length of GPA covered by entries at a given table level. */
230 static inline uint64_t
231 vmm_gpt_lvl_len(vmm_gpt_node_level_t level)
232 {
233 	ASSERT(level < MAX_GPT_LEVEL);
234 
235 	switch (level) {
236 	case LEVEL4: return (0x8000000000ul);	/* entries cover 512G */
237 	case LEVEL3: return (0x40000000ul);	/* entries cover 1G */
238 	case LEVEL2: return (0x200000ul);	/* entries cover 2M */
239 	case LEVEL1: return (0x1000ul);		/* entries cover 4K */
240 	default:
241 		panic("impossible level value");
242 	};
243 }
244 
245 /*
246  * Get the ending GPA which this node could possibly cover given its base
247  * address and level.
248  */
249 static inline uint64_t
250 vmm_gpt_node_end(vmm_gpt_node_t *node)
251 {
252 	ASSERT(node->vgn_level > LEVEL4);
253 	return (node->vgn_gpa + vmm_gpt_lvl_len(node->vgn_level - 1));
254 }
255 
256 /*
257  * Is this node the last entry in its parent node, based solely by its GPA?
258  */
259 static inline bool
260 vmm_gpt_node_is_last(vmm_gpt_node_t *node)
261 {
262 	return (node->vgn_index == MAX_NODE_IDX);
263 }
264 
265 /*
266  * How many table entries (if any) in this node are covered by the range of
267  * [start, end).
268  */
269 static uint16_t
270 vmm_gpt_node_entries_covered(vmm_gpt_node_t *node, uint64_t start, uint64_t end)
271 {
272 	const uint64_t node_end = vmm_gpt_node_end(node);
273 
274 	/* Is this node covered at all by the region? */
275 	if (start >= node_end || end <= node->vgn_gpa) {
276 		return (0);
277 	}
278 
279 	const uint64_t mask = vmm_gpt_lvl_mask(node->vgn_level);
280 	const uint64_t covered_start = MAX(node->vgn_gpa, start & mask);
281 	const uint64_t covered_end = MIN(node_end, end & mask);
282 	const uint64_t per_entry = vmm_gpt_lvl_len(node->vgn_level);
283 
284 	return ((covered_end - covered_start) / per_entry);
285 }
286 
287 /*
288  * Find the next node (by address) in the tree at the same level.
289  *
290  * Returns NULL if this is the last node in the tree or if `only_seq` was true
291  * and there is an address gap between this node and the next.
292  */
293 static vmm_gpt_node_t *
294 vmm_gpt_node_next(vmm_gpt_node_t *node, bool only_seq)
295 {
296 	ASSERT3P(node->vgn_parent, !=, NULL);
297 	ASSERT3U(node->vgn_level, >, LEVEL4);
298 
299 	/*
300 	 * Next node sequentially would be the one at the address starting at
301 	 * the end of what is covered by this node.
302 	 */
303 	const uint64_t gpa_match = vmm_gpt_node_end(node);
304 
305 	/* Try our next sibling */
306 	vmm_gpt_node_t *next = node->vgn_sib_next;
307 	if (next != NULL) {
308 		if (next->vgn_gpa == gpa_match || !only_seq) {
309 			return (next);
310 		}
311 	} else {
312 		/*
313 		 * If the next-sibling pointer is NULL on the node, it can mean
314 		 * one of two things:
315 		 *
316 		 * 1. This entry represents the space leading up to the trailing
317 		 *    boundary of what this node covers.
318 		 *
319 		 * 2. The node is not entirely populated, and there is a gap
320 		 *    between the last populated entry, and the trailing
321 		 *    boundary of the node.
322 		 *
323 		 * Either way, the proper course of action is to check the first
324 		 * child of our parent's next sibling.
325 		 */
326 		vmm_gpt_node_t *pibling = node->vgn_parent->vgn_sib_next;
327 		if (pibling != NULL) {
328 			next = pibling->vgn_children;
329 			if (next != NULL) {
330 				if (next->vgn_gpa == gpa_match || !only_seq) {
331 					return (next);
332 				}
333 			}
334 		}
335 	}
336 
337 	return (NULL);
338 }
339 
340 
341 /*
342  * Finds the child for the given GPA in the given parent node.
343  * Returns a pointer to node, or NULL if it is not found.
344  */
345 static vmm_gpt_node_t *
346 vmm_gpt_node_find_child(vmm_gpt_node_t *parent, uint64_t gpa)
347 {
348 	const uint16_t index = vmm_gpt_lvl_index(parent->vgn_level, gpa);
349 	for (vmm_gpt_node_t *child = parent->vgn_children;
350 	    child != NULL && child->vgn_index <= index;
351 	    child = child->vgn_sib_next) {
352 		if (child->vgn_index == index)
353 			return (child);
354 	}
355 
356 	return (NULL);
357 }
358 
359 /*
360  * Add a child node to the GPT at a position determined by GPA, parent, and (if
361  * present) preceding sibling.
362  *
363  * If `parent` node contains any children, `prev_sibling` must be populated with
364  * a pointer to the node preceding (by GPA) the to-be-added child node.
365  */
366 static void
367 vmm_gpt_node_add(vmm_gpt_t *gpt, vmm_gpt_node_t *parent,
368     vmm_gpt_node_t *child, uint64_t gpa, vmm_gpt_node_t *prev_sibling)
369 {
370 	ASSERT3U(parent->vgn_level, <, LEVEL1);
371 	ASSERT3U(child->vgn_parent, ==, NULL);
372 
373 	const uint16_t idx = vmm_gpt_lvl_index(parent->vgn_level, gpa);
374 	child->vgn_index = idx;
375 	child->vgn_level = parent->vgn_level + 1;
376 	child->vgn_gpa = gpa & vmm_gpt_lvl_mask(parent->vgn_level);
377 
378 	/* Establish familial connections */
379 	child->vgn_parent = parent;
380 	if (prev_sibling != NULL) {
381 		ASSERT3U(prev_sibling->vgn_gpa, <, child->vgn_gpa);
382 
383 		child->vgn_sib_next = prev_sibling->vgn_sib_next;
384 		if (child->vgn_sib_next != NULL) {
385 			child->vgn_sib_next->vgn_sib_prev = child;
386 		}
387 		child->vgn_sib_prev = prev_sibling;
388 		prev_sibling->vgn_sib_next = child;
389 	} else if (parent->vgn_children != NULL) {
390 		vmm_gpt_node_t *next_sibling = parent->vgn_children;
391 
392 		ASSERT3U(next_sibling->vgn_gpa, >, child->vgn_gpa);
393 		ASSERT3U(next_sibling->vgn_sib_prev, ==, NULL);
394 
395 		child->vgn_sib_next = next_sibling;
396 		child->vgn_sib_prev = NULL;
397 		next_sibling->vgn_sib_prev = child;
398 		parent->vgn_children = child;
399 	} else {
400 		parent->vgn_children = child;
401 		child->vgn_sib_next = NULL;
402 		child->vgn_sib_prev = NULL;
403 	}
404 
405 	/* Configure PTE for child table */
406 	parent->vgn_entries[idx] =
407 	    gpt->vgpt_pte_ops->vpeo_map_table(child->vgn_host_pfn);
408 	parent->vgn_ref_cnt++;
409 }
410 
411 /*
412  * Remove a child node from its relatives (parent, siblings) and free it.
413  */
414 static void
415 vmm_gpt_node_remove(vmm_gpt_node_t *child)
416 {
417 	ASSERT3P(child->vgn_children, ==, NULL);
418 	ASSERT3U(child->vgn_ref_cnt, ==, 0);
419 	ASSERT3P(child->vgn_parent, !=, NULL);
420 
421 	/* Unlink child from its siblings and parent */
422 	vmm_gpt_node_t *parent = child->vgn_parent;
423 	vmm_gpt_node_t *prev = child->vgn_sib_prev;
424 	vmm_gpt_node_t *next = child->vgn_sib_next;
425 	if (prev != NULL) {
426 		ASSERT3P(prev->vgn_sib_next, ==, child);
427 		prev->vgn_sib_next = next;
428 	}
429 	if (next != NULL) {
430 		ASSERT3P(next->vgn_sib_prev, ==, child);
431 		next->vgn_sib_prev = prev;
432 	}
433 	if (prev == NULL) {
434 		ASSERT3P(parent->vgn_children, ==, child);
435 		parent->vgn_children = next;
436 	}
437 	child->vgn_parent = NULL;
438 	child->vgn_sib_next = NULL;
439 	child->vgn_sib_prev = NULL;
440 	parent->vgn_entries[child->vgn_index] = 0;
441 	parent->vgn_ref_cnt--;
442 
443 	vmm_gpt_node_free(child);
444 }
445 
446 /*
447  * Walks the GPT for the given GPA, accumulating entries to the given depth.  If
448  * the walk terminates before the depth is reached, the remaining entries are
449  * written with NULLs.
450  */
451 void
452 vmm_gpt_walk(vmm_gpt_t *gpt, uint64_t gpa, uint64_t **entries,
453     vmm_gpt_node_level_t depth)
454 {
455 	uint64_t *current_entries, entry;
456 	pfn_t pfn;
457 
458 	ASSERT(gpt != NULL);
459 	current_entries = gpt->vgpt_root->vgn_entries;
460 	for (uint_t i = 0; i < depth; i++) {
461 		if (current_entries == NULL) {
462 			entries[i] = NULL;
463 			continue;
464 		}
465 		entries[i] = &current_entries[vmm_gpt_lvl_index(i, gpa)];
466 		entry = *entries[i];
467 		if (!gpt->vgpt_pte_ops->vpeo_pte_is_present(entry)) {
468 			current_entries = NULL;
469 			continue;
470 		}
471 		pfn = gpt->vgpt_pte_ops->vpeo_pte_pfn(entry);
472 		current_entries = (uint64_t *)hat_kpm_pfn2va(pfn);
473 	}
474 }
475 
476 /*
477  * Looks up an entry given GPA.
478  */
479 uint64_t *
480 vmm_gpt_lookup(vmm_gpt_t *gpt, uint64_t gpa)
481 {
482 	uint64_t *entries[MAX_GPT_LEVEL];
483 
484 	vmm_gpt_walk(gpt, gpa, entries, MAX_GPT_LEVEL);
485 
486 	return (entries[LEVEL1]);
487 }
488 
489 /*
490  * Populate child table nodes for a given level between the provided interval
491  * of [addr, addr + len).  Caller is expected to provide a pointer to the parent
492  * node which would contain the child node for GPA at `addr`.  A pointer to said
493  * child node will be returned when the operation is complete.
494  */
495 static vmm_gpt_node_t *
496 vmm_gpt_populate_region_lvl(vmm_gpt_t *gpt, uint64_t addr, uint64_t len,
497     vmm_gpt_node_t *node_start)
498 {
499 	const vmm_gpt_node_level_t lvl = node_start->vgn_level;
500 	const uint64_t end = addr + len;
501 	const uint64_t incr = vmm_gpt_lvl_len(lvl);
502 	uint64_t gpa = addr & vmm_gpt_lvl_mask(lvl);
503 	vmm_gpt_node_t *parent = node_start;
504 
505 	/* Try to locate node at starting address */
506 	vmm_gpt_node_t *prev = NULL, *node = parent->vgn_children;
507 	while (node != NULL && node->vgn_gpa < gpa) {
508 		prev = node;
509 		node = node->vgn_sib_next;
510 	}
511 
512 	/*
513 	 * If no node exists at the starting address, create one and link it
514 	 * into the parent.
515 	 */
516 	if (node == NULL || node->vgn_gpa > gpa) {
517 		/* Need to insert node for starting GPA */
518 		node = vmm_gpt_node_alloc();
519 		vmm_gpt_node_add(gpt, parent, node, gpa, prev);
520 	}
521 
522 	vmm_gpt_node_t *front_node = node;
523 	prev = node;
524 	gpa += incr;
525 
526 	/*
527 	 * With a node at the starting address, walk forward creating nodes in
528 	 * any of the gaps.
529 	 */
530 	for (; gpa < end; gpa += incr, prev = node) {
531 		node = vmm_gpt_node_next(prev, true);
532 		if (node != NULL) {
533 			ASSERT3U(node->vgn_gpa, ==, gpa);
534 
535 			/* We may have crossed into a new parent */
536 			parent = node->vgn_parent;
537 			continue;
538 		}
539 
540 		if (vmm_gpt_node_is_last(prev)) {
541 			/*
542 			 * The node preceding this was the last one in its
543 			 * containing parent, so move on to that parent's
544 			 * sibling.  We expect (demand) that it exist already.
545 			 */
546 			parent = vmm_gpt_node_next(parent, true);
547 			ASSERT(parent != NULL);
548 
549 			/*
550 			 * Forget our previous sibling, since it is of no use
551 			 * for assigning the new node to the a now-different
552 			 * parent.
553 			 */
554 			prev = NULL;
555 
556 		}
557 		node = vmm_gpt_node_alloc();
558 		vmm_gpt_node_add(gpt, parent, node, gpa, prev);
559 	}
560 
561 	return (front_node);
562 }
563 
564 /*
565  * Ensures that PTEs for the region of address space bounded by
566  * [addr, addr + len) exist in the tree.
567  */
568 void
569 vmm_gpt_populate_region(vmm_gpt_t *gpt, uint64_t addr, uint64_t len)
570 {
571 	ASSERT0(addr & PAGEOFFSET);
572 	ASSERT0(len & PAGEOFFSET);
573 
574 	/*
575 	 * Starting at the top of the tree, ensure that tables covering the
576 	 * requested region exist at each level.
577 	 */
578 	vmm_gpt_node_t *node = gpt->vgpt_root;
579 	for (uint_t lvl = LEVEL4; lvl < LEVEL1; lvl++) {
580 		ASSERT3U(node->vgn_level, ==, lvl);
581 
582 		node = vmm_gpt_populate_region_lvl(gpt, addr, len, node);
583 	}
584 
585 
586 	/*
587 	 * Establish reference counts for the soon-to-be memory PTEs which will
588 	 * be filling these LEVEL1 tables.
589 	 */
590 	uint64_t gpa = addr;
591 	const uint64_t end = addr + len;
592 	while (gpa < end) {
593 		ASSERT(node != NULL);
594 		ASSERT3U(node->vgn_level, ==, LEVEL1);
595 
596 		const uint16_t covered =
597 		    vmm_gpt_node_entries_covered(node, addr, end);
598 
599 		ASSERT(covered != 0);
600 		ASSERT3U(node->vgn_ref_cnt, <, PTE_PER_TABLE);
601 		ASSERT3U(node->vgn_ref_cnt + covered, <=, PTE_PER_TABLE);
602 
603 		node->vgn_ref_cnt += covered;
604 
605 		vmm_gpt_node_t *next = vmm_gpt_node_next(node, true);
606 		if (next != NULL) {
607 			gpa = next->vgn_gpa;
608 			node = next;
609 		} else {
610 			/*
611 			 * We do not expect to find a subsequent node after
612 			 * filling the last node in the table, completing PTE
613 			 * accounting for the specified range.
614 			 */
615 			VERIFY3U(end, <=, vmm_gpt_node_end(node));
616 			break;
617 		}
618 	}
619 }
620 
621 /*
622  * Format a PTE and install it in the provided PTE-pointer.
623  */
624 bool
625 vmm_gpt_map_at(vmm_gpt_t *gpt, uint64_t *ptep, pfn_t pfn, uint_t prot,
626     uint8_t attr)
627 {
628 	uint64_t entry, old_entry;
629 
630 	entry = gpt->vgpt_pte_ops->vpeo_map_page(pfn, prot, attr);
631 	old_entry = atomic_cas_64(ptep, 0, entry);
632 	if (old_entry != 0) {
633 		ASSERT3U(gpt->vgpt_pte_ops->vpeo_pte_pfn(entry), ==,
634 		    gpt->vgpt_pte_ops->vpeo_pte_pfn(old_entry));
635 		return (false);
636 	}
637 
638 	return (true);
639 }
640 
641 /*
642  * Inserts an entry for a given GPA into the table.  The caller must
643  * ensure that a conflicting PFN is not mapped at the requested location.
644  * Racing operations to map the same PFN at one location is acceptable and
645  * properly handled.
646  */
647 bool
648 vmm_gpt_map(vmm_gpt_t *gpt, uint64_t gpa, pfn_t pfn, uint_t prot, uint8_t attr)
649 {
650 	uint64_t *entries[MAX_GPT_LEVEL];
651 
652 	ASSERT(gpt != NULL);
653 	vmm_gpt_walk(gpt, gpa, entries, MAX_GPT_LEVEL);
654 	ASSERT(entries[LEVEL1] != NULL);
655 
656 	return (vmm_gpt_map_at(gpt, entries[LEVEL1], pfn, prot, attr));
657 }
658 
659 /*
660  * Cleans up the unused inner nodes in the GPT for a region of guest physical
661  * address space of [addr, addr + len).  The region must map no pages.
662  */
663 void
664 vmm_gpt_vacate_region(vmm_gpt_t *gpt, uint64_t addr, uint64_t len)
665 {
666 	ASSERT0(addr & PAGEOFFSET);
667 	ASSERT0(len & PAGEOFFSET);
668 
669 	const uint64_t end = addr + len;
670 	vmm_gpt_node_t *node, *starts[MAX_GPT_LEVEL] = {
671 		[LEVEL4] = gpt->vgpt_root,
672 	};
673 
674 	for (vmm_gpt_node_level_t lvl = LEVEL4; lvl < LEVEL1; lvl++) {
675 		node = vmm_gpt_node_find_child(starts[lvl], addr);
676 		if (node == NULL) {
677 			break;
678 		}
679 		starts[lvl + 1] = node;
680 	}
681 
682 	/*
683 	 * Starting at the bottom of the tree, ensure that PTEs for pages have
684 	 * been cleared for the region, and remove the corresponding reference
685 	 * counts from the containing LEVEL1 tables.
686 	 */
687 	uint64_t gpa = addr;
688 	node = starts[LEVEL1];
689 	while (gpa < end && node != NULL) {
690 		const uint16_t covered =
691 		    vmm_gpt_node_entries_covered(node, addr, end);
692 
693 		ASSERT3U(node->vgn_ref_cnt, >=, covered);
694 		node->vgn_ref_cnt -= covered;
695 
696 		node = vmm_gpt_node_next(node, false);
697 		if (node != NULL) {
698 			gpa = node->vgn_gpa;
699 		}
700 	}
701 
702 	/*
703 	 * With the page PTE references eliminated, work up from the bottom of
704 	 * the table, removing nodes which have no remaining references.
705 	 *
706 	 * This stops short of LEVEL4, which is the root table of the GPT.  It
707 	 * is left standing to be cleaned up when the vmm_gpt_t is destroyed.
708 	 */
709 	for (vmm_gpt_node_level_t lvl = LEVEL1; lvl > LEVEL4; lvl--) {
710 		gpa = addr;
711 		node = starts[lvl];
712 
713 		while (gpa < end && node != NULL) {
714 			vmm_gpt_node_t *next = vmm_gpt_node_next(node, false);
715 
716 			if (node->vgn_ref_cnt == 0) {
717 				vmm_gpt_node_remove(node);
718 			}
719 			if (next != NULL) {
720 				gpa = next->vgn_gpa;
721 			}
722 			node = next;
723 		}
724 	}
725 }
726 
727 /*
728  * Remove a mapping from the table.  Returns false if the page was not mapped,
729  * otherwise returns true.
730  */
731 bool
732 vmm_gpt_unmap(vmm_gpt_t *gpt, uint64_t gpa)
733 {
734 	uint64_t *entries[MAX_GPT_LEVEL], entry;
735 
736 	ASSERT(gpt != NULL);
737 	vmm_gpt_walk(gpt, gpa, entries, MAX_GPT_LEVEL);
738 	if (entries[LEVEL1] == NULL)
739 		return (false);
740 
741 	entry = *entries[LEVEL1];
742 	*entries[LEVEL1] = 0;
743 	return (gpt->vgpt_pte_ops->vpeo_pte_is_present(entry));
744 }
745 
746 /*
747  * Un-maps the region of guest physical address space bounded by [start..end).
748  * Returns the number of pages that are unmapped.
749  */
750 size_t
751 vmm_gpt_unmap_region(vmm_gpt_t *gpt, uint64_t addr, uint64_t len)
752 {
753 	ASSERT0(addr & PAGEOFFSET);
754 	ASSERT0(len & PAGEOFFSET);
755 
756 	const uint64_t end = addr + len;
757 	size_t num_unmapped = 0;
758 	for (uint64_t gpa = addr; gpa < end; gpa += PAGESIZE) {
759 		if (vmm_gpt_unmap(gpt, gpa) != 0) {
760 			num_unmapped++;
761 		}
762 	}
763 
764 	return (num_unmapped);
765 }
766 
767 /*
768  * Returns a value indicating whether or not this GPT maps the given
769  * GPA.  If the GPA is mapped, *protp will be filled with the protection
770  * bits of the entry.  Otherwise, it will be ignored.
771  */
772 bool
773 vmm_gpt_is_mapped(vmm_gpt_t *gpt, uint64_t *ptep, pfn_t *pfnp, uint_t *protp)
774 {
775 	uint64_t entry;
776 
777 	ASSERT(pfnp != NULL);
778 	ASSERT(protp != NULL);
779 
780 	if (ptep == NULL) {
781 		return (false);
782 	}
783 	entry = *ptep;
784 	if (!gpt->vgpt_pte_ops->vpeo_pte_is_present(entry)) {
785 		return (false);
786 	}
787 	*pfnp = gpt->vgpt_pte_ops->vpeo_pte_pfn(entry);
788 	*protp = gpt->vgpt_pte_ops->vpeo_pte_prot(entry);
789 	return (true);
790 }
791 
792 /*
793  * Resets the accessed bit on the page table entry pointed to be `entry`.
794  * If `on` is true, the bit will be set, otherwise it will be cleared.
795  * The old value of the bit is returned.
796  */
797 uint_t
798 vmm_gpt_reset_accessed(vmm_gpt_t *gpt, uint64_t *entry, bool on)
799 {
800 	ASSERT(entry != NULL);
801 	return (gpt->vgpt_pte_ops->vpeo_reset_accessed(entry, on));
802 }
803 
804 /*
805  * Resets the dirty bit on the page table entry pointed to be `entry`.
806  * If `on` is true, the bit will be set, otherwise it will be cleared.
807  * The old value of the bit is returned.
808  */
809 uint_t
810 vmm_gpt_reset_dirty(vmm_gpt_t *gpt, uint64_t *entry, bool on)
811 {
812 	ASSERT(entry != NULL);
813 	return (gpt->vgpt_pte_ops->vpeo_reset_dirty(entry, on));
814 }
815 
816 /*
817  * Query state from PTE pointed to by `entry`.
818  */
819 bool
820 vmm_gpt_query(vmm_gpt_t *gpt, uint64_t *entry, vmm_gpt_query_t query)
821 {
822 	ASSERT(entry != NULL);
823 	return (gpt->vgpt_pte_ops->vpeo_query(entry, query));
824 }
825 
826 /*
827  * Get properly formatted PML4 (EPTP/nCR3) for GPT.
828  */
829 uint64_t
830 vmm_gpt_get_pmtp(vmm_gpt_t *gpt, bool track_dirty)
831 {
832 	const pfn_t root_pfn = gpt->vgpt_root->vgn_host_pfn;
833 	return (gpt->vgpt_pte_ops->vpeo_get_pmtp(root_pfn, track_dirty));
834 }
835 
836 /*
837  * Does the GPT hardware support dirty-page-tracking?
838  */
839 bool
840 vmm_gpt_can_track_dirty(vmm_gpt_t *gpt)
841 {
842 	return (gpt->vgpt_pte_ops->vpeo_hw_ad_supported());
843 }
844