1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2011 NetApp, Inc. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 * 28 * $FreeBSD$ 29 */ 30 /* 31 * This file and its contents are supplied under the terms of the 32 * Common Development and Distribution License ("CDDL"), version 1.0. 33 * You may only use this file in accordance with the terms of version 34 * 1.0 of the CDDL. 35 * 36 * A full copy of the text of the CDDL should have accompanied this 37 * source. A copy of the CDDL is also available via the Internet at 38 * http://www.illumos.org/license/CDDL. 39 * 40 * Copyright 2015 Pluribus Networks Inc. 41 * Copyright 2019 Joyent, Inc. 42 * Copyright 2022 Oxide Computer Company 43 * Copyright 2021 OmniOS Community Edition (OmniOSce) Association. 44 */ 45 46 #ifndef _VMM_KERNEL_H_ 47 #define _VMM_KERNEL_H_ 48 49 #include <sys/sdt.h> 50 #include <x86/segments.h> 51 #include <sys/vmm.h> 52 #include <sys/vmm_data.h> 53 #include <sys/linker_set.h> 54 55 SDT_PROVIDER_DECLARE(vmm); 56 57 struct vm; 58 struct vm_exception; 59 struct seg_desc; 60 struct vm_exit; 61 struct vie; 62 struct vm_run; 63 struct vhpet; 64 struct vioapic; 65 struct vlapic; 66 struct vmspace; 67 struct vm_client; 68 struct vm_object; 69 struct vm_guest_paging; 70 struct vmm_data_req; 71 72 typedef int (*vmm_init_func_t)(void); 73 typedef int (*vmm_cleanup_func_t)(void); 74 typedef void (*vmm_resume_func_t)(void); 75 typedef void * (*vmi_init_func_t)(struct vm *vm); 76 typedef int (*vmi_run_func_t)(void *vmi, int vcpu, uint64_t rip); 77 typedef void (*vmi_cleanup_func_t)(void *vmi); 78 typedef int (*vmi_get_register_t)(void *vmi, int vcpu, int num, 79 uint64_t *retval); 80 typedef int (*vmi_set_register_t)(void *vmi, int vcpu, int num, 81 uint64_t val); 82 typedef int (*vmi_get_desc_t)(void *vmi, int vcpu, int num, 83 struct seg_desc *desc); 84 typedef int (*vmi_set_desc_t)(void *vmi, int vcpu, int num, 85 const struct seg_desc *desc); 86 typedef int (*vmi_get_cap_t)(void *vmi, int vcpu, int num, int *retval); 87 typedef int (*vmi_set_cap_t)(void *vmi, int vcpu, int num, int val); 88 typedef struct vlapic *(*vmi_vlapic_init)(void *vmi, int vcpu); 89 typedef void (*vmi_vlapic_cleanup)(void *vmi, struct vlapic *vlapic); 90 typedef void (*vmi_savectx)(void *vmi, int vcpu); 91 typedef void (*vmi_restorectx)(void *vmi, int vcpu); 92 93 typedef int (*vmi_get_msr_t)(void *vmi, int vcpu, uint32_t msr, 94 uint64_t *valp); 95 typedef int (*vmi_set_msr_t)(void *vmi, int vcpu, uint32_t msr, 96 uint64_t val); 97 98 struct vmm_ops { 99 vmm_init_func_t init; /* module wide initialization */ 100 vmm_cleanup_func_t cleanup; 101 vmm_resume_func_t resume; 102 103 vmi_init_func_t vminit; /* vm-specific initialization */ 104 vmi_run_func_t vmrun; 105 vmi_cleanup_func_t vmcleanup; 106 vmi_get_register_t vmgetreg; 107 vmi_set_register_t vmsetreg; 108 vmi_get_desc_t vmgetdesc; 109 vmi_set_desc_t vmsetdesc; 110 vmi_get_cap_t vmgetcap; 111 vmi_set_cap_t vmsetcap; 112 vmi_vlapic_init vlapic_init; 113 vmi_vlapic_cleanup vlapic_cleanup; 114 115 vmi_savectx vmsavectx; 116 vmi_restorectx vmrestorectx; 117 118 vmi_get_msr_t vmgetmsr; 119 vmi_set_msr_t vmsetmsr; 120 }; 121 122 extern struct vmm_ops vmm_ops_intel; 123 extern struct vmm_ops vmm_ops_amd; 124 125 int vm_create(uint64_t flags, struct vm **retvm); 126 void vm_destroy(struct vm *vm); 127 int vm_reinit(struct vm *vm, uint64_t); 128 uint16_t vm_get_maxcpus(struct vm *vm); 129 void vm_get_topology(struct vm *vm, uint16_t *sockets, uint16_t *cores, 130 uint16_t *threads, uint16_t *maxcpus); 131 int vm_set_topology(struct vm *vm, uint16_t sockets, uint16_t cores, 132 uint16_t threads, uint16_t maxcpus); 133 134 int vm_pause_instance(struct vm *); 135 int vm_resume_instance(struct vm *); 136 bool vm_is_paused(struct vm *); 137 138 /* 139 * APIs that race against hardware. 140 */ 141 int vm_track_dirty_pages(struct vm *, uint64_t, size_t, uint8_t *); 142 143 /* 144 * APIs that modify the guest memory map require all vcpus to be frozen. 145 */ 146 int vm_mmap_memseg(struct vm *vm, vm_paddr_t gpa, int segid, vm_ooffset_t off, 147 size_t len, int prot, int flags); 148 int vm_munmap_memseg(struct vm *vm, vm_paddr_t gpa, size_t len); 149 int vm_alloc_memseg(struct vm *vm, int ident, size_t len, bool sysmem); 150 void vm_free_memseg(struct vm *vm, int ident); 151 int vm_map_mmio(struct vm *vm, vm_paddr_t gpa, size_t len, vm_paddr_t hpa); 152 int vm_unmap_mmio(struct vm *vm, vm_paddr_t gpa, size_t len); 153 int vm_assign_pptdev(struct vm *vm, int pptfd); 154 int vm_unassign_pptdev(struct vm *vm, int pptfd); 155 156 /* 157 * APIs that inspect the guest memory map require only a *single* vcpu to 158 * be frozen. This acts like a read lock on the guest memory map since any 159 * modification requires *all* vcpus to be frozen. 160 */ 161 int vm_mmap_getnext(struct vm *vm, vm_paddr_t *gpa, int *segid, 162 vm_ooffset_t *segoff, size_t *len, int *prot, int *flags); 163 int vm_get_memseg(struct vm *vm, int ident, size_t *len, bool *sysmem, 164 struct vm_object **objptr); 165 vm_paddr_t vmm_sysmem_maxaddr(struct vm *vm); 166 bool vm_mem_allocated(struct vm *vm, int vcpuid, vm_paddr_t gpa); 167 168 int vm_get_register(struct vm *vm, int vcpu, int reg, uint64_t *retval); 169 int vm_set_register(struct vm *vm, int vcpu, int reg, uint64_t val); 170 int vm_get_seg_desc(struct vm *vm, int vcpu, int reg, 171 struct seg_desc *ret_desc); 172 int vm_set_seg_desc(struct vm *vm, int vcpu, int reg, 173 const struct seg_desc *desc); 174 int vm_get_run_state(struct vm *vm, int vcpuid, uint32_t *state, 175 uint8_t *sipi_vec); 176 int vm_set_run_state(struct vm *vm, int vcpuid, uint32_t state, 177 uint8_t sipi_vec); 178 int vm_get_fpu(struct vm *vm, int vcpuid, void *buf, size_t len); 179 int vm_set_fpu(struct vm *vm, int vcpuid, void *buf, size_t len); 180 int vm_run(struct vm *vm, int vcpuid, const struct vm_entry *); 181 int vm_suspend(struct vm *vm, enum vm_suspend_how how); 182 int vm_inject_nmi(struct vm *vm, int vcpu); 183 bool vm_nmi_pending(struct vm *vm, int vcpuid); 184 void vm_nmi_clear(struct vm *vm, int vcpuid); 185 int vm_inject_extint(struct vm *vm, int vcpu); 186 bool vm_extint_pending(struct vm *vm, int vcpuid); 187 void vm_extint_clear(struct vm *vm, int vcpuid); 188 int vm_inject_init(struct vm *vm, int vcpuid); 189 int vm_inject_sipi(struct vm *vm, int vcpuid, uint8_t vec); 190 struct vlapic *vm_lapic(struct vm *vm, int cpu); 191 struct vioapic *vm_ioapic(struct vm *vm); 192 struct vhpet *vm_hpet(struct vm *vm); 193 int vm_get_capability(struct vm *vm, int vcpu, int type, int *val); 194 int vm_set_capability(struct vm *vm, int vcpu, int type, int val); 195 int vm_get_x2apic_state(struct vm *vm, int vcpu, enum x2apic_state *state); 196 int vm_set_x2apic_state(struct vm *vm, int vcpu, enum x2apic_state state); 197 int vm_apicid2vcpuid(struct vm *vm, int apicid); 198 int vm_activate_cpu(struct vm *vm, int vcpu); 199 int vm_suspend_cpu(struct vm *vm, int vcpu); 200 int vm_resume_cpu(struct vm *vm, int vcpu); 201 struct vm_exit *vm_exitinfo(struct vm *vm, int vcpuid); 202 struct vie *vm_vie_ctx(struct vm *vm, int vcpuid); 203 void vm_exit_suspended(struct vm *vm, int vcpuid, uint64_t rip); 204 void vm_exit_debug(struct vm *vm, int vcpuid, uint64_t rip); 205 void vm_exit_astpending(struct vm *vm, int vcpuid, uint64_t rip); 206 void vm_exit_reqidle(struct vm *vm, int vcpuid, uint64_t rip); 207 void vm_exit_run_state(struct vm *vm, int vcpuid, uint64_t rip); 208 int vm_service_mmio_read(struct vm *vm, int cpuid, uint64_t gpa, uint64_t *rval, 209 int rsize); 210 int vm_service_mmio_write(struct vm *vm, int cpuid, uint64_t gpa, uint64_t wval, 211 int wsize); 212 213 #ifdef _SYS__CPUSET_H_ 214 cpuset_t vm_active_cpus(struct vm *vm); 215 cpuset_t vm_debug_cpus(struct vm *vm); 216 cpuset_t vm_suspended_cpus(struct vm *vm); 217 #endif /* _SYS__CPUSET_H_ */ 218 219 bool vcpu_entry_bailout_checks(struct vm *vm, int vcpuid, uint64_t rip); 220 bool vcpu_run_state_pending(struct vm *vm, int vcpuid); 221 int vcpu_arch_reset(struct vm *vm, int vcpuid, bool init_only); 222 223 /* 224 * Return true if device indicated by bus/slot/func is supposed to be a 225 * pci passthrough device. 226 * 227 * Return false otherwise. 228 */ 229 bool vmm_is_pptdev(int bus, int slot, int func); 230 231 void *vm_iommu_domain(struct vm *vm); 232 233 enum vcpu_state { 234 VCPU_IDLE, 235 VCPU_FROZEN, 236 VCPU_RUNNING, 237 VCPU_SLEEPING, 238 }; 239 240 int vcpu_set_state(struct vm *vm, int vcpu, enum vcpu_state state, 241 bool from_idle); 242 enum vcpu_state vcpu_get_state(struct vm *vm, int vcpu, int *hostcpu); 243 void vcpu_block_run(struct vm *, int); 244 void vcpu_unblock_run(struct vm *, int); 245 246 uint64_t vcpu_tsc_offset(struct vm *vm, int vcpuid, bool phys_adj); 247 hrtime_t vm_normalize_hrtime(struct vm *, hrtime_t); 248 hrtime_t vm_denormalize_hrtime(struct vm *, hrtime_t); 249 250 static __inline bool 251 vcpu_is_running(struct vm *vm, int vcpu, int *hostcpu) 252 { 253 return (vcpu_get_state(vm, vcpu, hostcpu) == VCPU_RUNNING); 254 } 255 256 #ifdef _SYS_THREAD_H 257 static __inline int 258 vcpu_should_yield(struct vm *vm, int vcpu) 259 { 260 261 if (curthread->t_astflag) 262 return (1); 263 else if (CPU->cpu_runrun) 264 return (1); 265 else 266 return (0); 267 } 268 #endif /* _SYS_THREAD_H */ 269 270 typedef enum vcpu_notify { 271 VCPU_NOTIFY_NONE, 272 VCPU_NOTIFY_APIC, /* Posted intr notification (if possible) */ 273 VCPU_NOTIFY_EXIT, /* IPI to cause VM exit */ 274 } vcpu_notify_t; 275 276 void *vcpu_stats(struct vm *vm, int vcpu); 277 void vcpu_notify_event(struct vm *vm, int vcpuid); 278 void vcpu_notify_event_type(struct vm *vm, int vcpuid, vcpu_notify_t); 279 struct vmspace *vm_get_vmspace(struct vm *vm); 280 struct vm_client *vm_get_vmclient(struct vm *vm, int vcpuid); 281 struct vatpic *vm_atpic(struct vm *vm); 282 struct vatpit *vm_atpit(struct vm *vm); 283 struct vpmtmr *vm_pmtmr(struct vm *vm); 284 struct vrtc *vm_rtc(struct vm *vm); 285 286 /* 287 * Inject exception 'vector' into the guest vcpu. This function returns 0 on 288 * success and non-zero on failure. 289 * 290 * Wrapper functions like 'vm_inject_gp()' should be preferred to calling 291 * this function directly because they enforce the trap-like or fault-like 292 * behavior of an exception. 293 * 294 * This function should only be called in the context of the thread that is 295 * executing this vcpu. 296 */ 297 int vm_inject_exception(struct vm *vm, int vcpuid, uint8_t vector, 298 bool err_valid, uint32_t errcode, bool restart_instruction); 299 300 /* 301 * This function is called after a VM-exit that occurred during exception or 302 * interrupt delivery through the IDT. The format of 'intinfo' is described 303 * in Figure 15-1, "EXITINTINFO for All Intercepts", APM, Vol 2. 304 * 305 * If a VM-exit handler completes the event delivery successfully then it 306 * should call vm_exit_intinfo() to extinguish the pending event. For e.g., 307 * if the task switch emulation is triggered via a task gate then it should 308 * call this function with 'intinfo=0' to indicate that the external event 309 * is not pending anymore. 310 * 311 * Return value is 0 on success and non-zero on failure. 312 */ 313 int vm_exit_intinfo(struct vm *vm, int vcpuid, uint64_t intinfo); 314 315 /* 316 * This function is called before every VM-entry to retrieve a pending 317 * event that should be injected into the guest. This function combines 318 * nested events into a double or triple fault. 319 * 320 * Returns false if there are no events that need to be injected into the guest. 321 */ 322 bool vm_entry_intinfo(struct vm *vm, int vcpuid, uint64_t *info); 323 324 int vm_get_intinfo(struct vm *vm, int vcpuid, uint64_t *info1, uint64_t *info2); 325 326 enum vm_reg_name vm_segment_name(int seg_encoding); 327 328 struct vm_copyinfo { 329 uint64_t gpa; 330 size_t len; 331 int prot; 332 void *hva; 333 void *cookie; 334 }; 335 336 /* 337 * Set up 'copyinfo[]' to copy to/from guest linear address space starting 338 * at 'gla' and 'len' bytes long. The 'prot' should be set to PROT_READ for 339 * a copyin or PROT_WRITE for a copyout. 340 * 341 * retval is_fault Interpretation 342 * 0 0 Success 343 * 0 1 An exception was injected into the guest 344 * EFAULT N/A Unrecoverable error 345 * 346 * The 'copyinfo[]' can be passed to 'vm_copyin()' or 'vm_copyout()' only if 347 * the return value is 0. The 'copyinfo[]' resources should be freed by calling 348 * 'vm_copy_teardown()' after the copy is done. 349 */ 350 int vm_copy_setup(struct vm *vm, int vcpuid, struct vm_guest_paging *paging, 351 uint64_t gla, size_t len, int prot, struct vm_copyinfo *copyinfo, 352 uint_t num_copyinfo, int *is_fault); 353 void vm_copy_teardown(struct vm *vm, int vcpuid, struct vm_copyinfo *copyinfo, 354 uint_t num_copyinfo); 355 void vm_copyin(struct vm *vm, int vcpuid, struct vm_copyinfo *copyinfo, 356 void *kaddr, size_t len); 357 void vm_copyout(struct vm *vm, int vcpuid, const void *kaddr, 358 struct vm_copyinfo *copyinfo, size_t len); 359 360 int vcpu_trace_exceptions(struct vm *vm, int vcpuid); 361 int vcpu_trap_wbinvd(struct vm *vm, int vcpuid); 362 363 void vm_inject_ud(struct vm *vm, int vcpuid); 364 void vm_inject_gp(struct vm *vm, int vcpuid); 365 void vm_inject_ac(struct vm *vm, int vcpuid, uint32_t errcode); 366 void vm_inject_ss(struct vm *vm, int vcpuid, uint32_t errcode); 367 void vm_inject_pf(struct vm *vm, int vcpuid, uint32_t errcode, uint64_t cr2); 368 369 /* 370 * Both SVM and VMX have complex logic for injecting events such as exceptions 371 * or interrupts into the guest. Within those two backends, the progress of 372 * event injection is tracked by event_inject_state, hopefully making it easier 373 * to reason about. 374 */ 375 enum event_inject_state { 376 EIS_CAN_INJECT = 0, /* exception/interrupt can be injected */ 377 EIS_EV_EXISTING = 1, /* blocked by existing event */ 378 EIS_EV_INJECTED = 2, /* blocked by injected event */ 379 EIS_GI_BLOCK = 3, /* blocked by guest interruptability */ 380 381 /* 382 * Flag to request an immediate exit from VM context after event 383 * injection in order to perform more processing 384 */ 385 EIS_REQ_EXIT = (1 << 15), 386 }; 387 388 /* Possible result codes for MSR access emulation */ 389 typedef enum vm_msr_result { 390 VMR_OK = 0, /* succesfully emulated */ 391 VMR_GP = 1, /* #GP should be injected */ 392 VMR_UNHANLDED = 2, /* handle in userspace, kernel cannot emulate */ 393 } vm_msr_result_t; 394 395 enum vm_cpuid_capability { 396 VCC_NONE, 397 VCC_NO_EXECUTE, 398 VCC_FFXSR, 399 VCC_TCE, 400 VCC_LAST 401 }; 402 403 /* Possible flags and entry count limit definited in sys/vmm.h */ 404 typedef struct vcpu_cpuid_config { 405 uint32_t vcc_flags; 406 uint32_t vcc_nent; 407 struct vcpu_cpuid_entry *vcc_entries; 408 } vcpu_cpuid_config_t; 409 410 vcpu_cpuid_config_t *vm_cpuid_config(struct vm *, int); 411 int vm_get_cpuid(struct vm *, int, vcpu_cpuid_config_t *); 412 int vm_set_cpuid(struct vm *, int, const vcpu_cpuid_config_t *); 413 void vcpu_emulate_cpuid(struct vm *, int, uint64_t *, uint64_t *, uint64_t *, 414 uint64_t *); 415 void legacy_emulate_cpuid(struct vm *, int, uint32_t *, uint32_t *, uint32_t *, 416 uint32_t *); 417 void vcpu_cpuid_init(vcpu_cpuid_config_t *); 418 void vcpu_cpuid_cleanup(vcpu_cpuid_config_t *); 419 420 bool vm_cpuid_capability(struct vm *, int, enum vm_cpuid_capability); 421 bool validate_guest_xcr0(uint64_t, uint64_t); 422 423 void vmm_sol_glue_init(void); 424 void vmm_sol_glue_cleanup(void); 425 426 void *vmm_contig_alloc(size_t); 427 void vmm_contig_free(void *, size_t); 428 429 int vmm_mod_load(void); 430 int vmm_mod_unload(void); 431 432 bool vmm_check_iommu(void); 433 434 void vmm_call_trap(uint64_t); 435 436 /* 437 * Because of tangled headers, this is not exposed directly via the vmm_drv 438 * interface, but rather mirrored as vmm_drv_iop_cb_t in vmm_drv.h. 439 */ 440 typedef int (*ioport_handler_t)(void *, bool, uint16_t, uint8_t, uint32_t *); 441 442 int vm_ioport_access(struct vm *vm, int vcpuid, bool in, uint16_t port, 443 uint8_t bytes, uint32_t *val); 444 445 int vm_ioport_attach(struct vm *vm, uint16_t port, ioport_handler_t func, 446 void *arg, void **cookie); 447 int vm_ioport_detach(struct vm *vm, void **cookie, ioport_handler_t *old_func, 448 void **old_arg); 449 450 int vm_ioport_hook(struct vm *, uint16_t, ioport_handler_t, void *, void **); 451 void vm_ioport_unhook(struct vm *, void **); 452 453 enum vcpu_ustate { 454 VU_INIT = 0, /* initialized but has not yet attempted to run */ 455 VU_RUN, /* running in guest context */ 456 VU_IDLE, /* idle (HLTed, wait-for-SIPI, etc) */ 457 VU_EMU_KERN, /* emulation performed in-kernel */ 458 VU_EMU_USER, /* emulation performed in userspace */ 459 VU_SCHED, /* off-cpu for interrupt, preempt, lock contention */ 460 VU_MAX 461 }; 462 463 void vcpu_ustate_change(struct vm *, int, enum vcpu_ustate); 464 465 typedef struct vmm_kstats { 466 kstat_named_t vk_name; 467 } vmm_kstats_t; 468 469 typedef struct vmm_vcpu_kstats { 470 kstat_named_t vvk_vcpu; 471 kstat_named_t vvk_time_init; 472 kstat_named_t vvk_time_run; 473 kstat_named_t vvk_time_idle; 474 kstat_named_t vvk_time_emu_kern; 475 kstat_named_t vvk_time_emu_user; 476 kstat_named_t vvk_time_sched; 477 } vmm_vcpu_kstats_t; 478 479 #define VMM_KSTAT_CLASS "misc" 480 481 int vmm_kstat_update_vcpu(struct kstat *, int); 482 483 typedef struct vmm_data_req { 484 uint16_t vdr_class; 485 uint16_t vdr_version; 486 uint32_t vdr_flags; 487 uint32_t vdr_len; 488 void *vdr_data; 489 uint32_t *vdr_result_len; 490 } vmm_data_req_t; 491 492 typedef int (*vmm_data_writef_t)(void *, const vmm_data_req_t *); 493 typedef int (*vmm_data_readf_t)(void *, const vmm_data_req_t *); 494 495 typedef struct vmm_data_version_entry { 496 uint16_t vdve_class; 497 uint16_t vdve_version; 498 uint16_t vdve_len_expect; 499 uint16_t vdve_len_per_item; 500 vmm_data_readf_t vdve_readf; 501 vmm_data_writef_t vdve_writef; 502 } vmm_data_version_entry_t; 503 504 #define VMM_DATA_VERSION(sym) SET_ENTRY(vmm_data_version_entries, sym) 505 506 int vmm_data_read(struct vm *, int, const vmm_data_req_t *); 507 int vmm_data_write(struct vm *, int, const vmm_data_req_t *); 508 509 #endif /* _VMM_KERNEL_H_ */ 510