1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2013, Anish Gupta (akgupt3@gmail.com) 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice unmodified, this list of conditions, and the following 12 * disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 */ 28 29 /* 30 * This file and its contents are supplied under the terms of the 31 * Common Development and Distribution License ("CDDL"), version 1.0. 32 * You may only use this file in accordance with the terms of version 33 * 1.0 of the CDDL. 34 * 35 * A full copy of the text of the CDDL should have accompanied this 36 * source. A copy of the CDDL is also available via the Internet at 37 * http://www.illumos.org/license/CDDL. 38 * 39 * Copyright 2018 Joyent, Inc. 40 * Copyright 2022 Oxide Computer Company 41 */ 42 43 #include <sys/cdefs.h> 44 __FBSDID("$FreeBSD$"); 45 46 #include <sys/param.h> 47 #include <sys/systm.h> 48 #include <sys/kernel.h> 49 #include <sys/kmem.h> 50 #include <sys/pcpu.h> 51 #include <sys/proc.h> 52 #include <sys/sysctl.h> 53 54 #include <sys/x86_archext.h> 55 #include <sys/trap.h> 56 57 #include <machine/cpufunc.h> 58 #include <machine/psl.h> 59 #include <machine/md_var.h> 60 #include <machine/reg.h> 61 #include <machine/specialreg.h> 62 #include <machine/vmm.h> 63 #include <machine/vmm_dev.h> 64 #include <sys/vmm_instruction_emul.h> 65 #include <sys/vmm_vm.h> 66 #include <sys/vmm_kernel.h> 67 68 #include "vmm_lapic.h" 69 #include "vmm_stat.h" 70 #include "vmm_ioport.h" 71 #include "vatpic.h" 72 #include "vlapic.h" 73 #include "vlapic_priv.h" 74 75 #include "vmcb.h" 76 #include "svm.h" 77 #include "svm_softc.h" 78 #include "svm_msr.h" 79 80 SYSCTL_DECL(_hw_vmm); 81 SYSCTL_NODE(_hw_vmm, OID_AUTO, svm, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL, 82 NULL); 83 84 /* 85 * SVM CPUID function 0x8000_000A, edx bit decoding. 86 */ 87 #define AMD_CPUID_SVM_NP BIT(0) /* Nested paging or RVI */ 88 #define AMD_CPUID_SVM_LBR BIT(1) /* Last branch virtualization */ 89 #define AMD_CPUID_SVM_SVML BIT(2) /* SVM lock */ 90 #define AMD_CPUID_SVM_NRIP_SAVE BIT(3) /* Next RIP is saved */ 91 #define AMD_CPUID_SVM_TSC_RATE BIT(4) /* TSC rate control. */ 92 #define AMD_CPUID_SVM_VMCB_CLEAN BIT(5) /* VMCB state caching */ 93 #define AMD_CPUID_SVM_FLUSH_BY_ASID BIT(6) /* Flush by ASID */ 94 #define AMD_CPUID_SVM_DECODE_ASSIST BIT(7) /* Decode assist */ 95 #define AMD_CPUID_SVM_PAUSE_INC BIT(10) /* Pause intercept filter. */ 96 #define AMD_CPUID_SVM_PAUSE_FTH BIT(12) /* Pause filter threshold */ 97 #define AMD_CPUID_SVM_AVIC BIT(13) /* AVIC present */ 98 99 #define VMCB_CACHE_DEFAULT (VMCB_CACHE_ASID | \ 100 VMCB_CACHE_IOPM | \ 101 VMCB_CACHE_I | \ 102 VMCB_CACHE_TPR | \ 103 VMCB_CACHE_CR2 | \ 104 VMCB_CACHE_CR | \ 105 VMCB_CACHE_DR | \ 106 VMCB_CACHE_DT | \ 107 VMCB_CACHE_SEG | \ 108 VMCB_CACHE_NP) 109 110 static uint32_t vmcb_clean = VMCB_CACHE_DEFAULT; 111 SYSCTL_INT(_hw_vmm_svm, OID_AUTO, vmcb_clean, CTLFLAG_RDTUN, &vmcb_clean, 112 0, NULL); 113 114 /* SVM features advertised by CPUID.8000000AH:EDX */ 115 static uint32_t svm_feature = ~0U; /* AMD SVM features. */ 116 117 static int disable_npf_assist; 118 119 static VMM_STAT_AMD(VCPU_EXITINTINFO, "VM exits during event delivery"); 120 static VMM_STAT_AMD(VCPU_INTINFO_INJECTED, "Events pending at VM entry"); 121 static VMM_STAT_AMD(VMEXIT_VINTR, "VM exits due to interrupt window"); 122 123 static int svm_setreg(void *arg, int vcpu, int ident, uint64_t val); 124 static int svm_getreg(void *arg, int vcpu, int ident, uint64_t *val); 125 static void flush_asid(struct svm_softc *sc, int vcpuid); 126 127 static __inline bool 128 flush_by_asid(void) 129 { 130 return ((svm_feature & AMD_CPUID_SVM_FLUSH_BY_ASID) != 0); 131 } 132 133 static __inline bool 134 decode_assist(void) 135 { 136 return ((svm_feature & AMD_CPUID_SVM_DECODE_ASSIST) != 0); 137 } 138 139 static int 140 svm_cleanup(void) 141 { 142 /* This is taken care of by the hma registration */ 143 return (0); 144 } 145 146 static int 147 svm_init(void) 148 { 149 vmcb_clean &= VMCB_CACHE_DEFAULT; 150 151 svm_msr_init(); 152 153 return (0); 154 } 155 156 static void 157 svm_restore(void) 158 { 159 /* No-op on illumos */ 160 } 161 162 /* Pentium compatible MSRs */ 163 #define MSR_PENTIUM_START 0 164 #define MSR_PENTIUM_END 0x1FFF 165 /* AMD 6th generation and Intel compatible MSRs */ 166 #define MSR_AMD6TH_START 0xC0000000UL 167 #define MSR_AMD6TH_END 0xC0001FFFUL 168 /* AMD 7th and 8th generation compatible MSRs */ 169 #define MSR_AMD7TH_START 0xC0010000UL 170 #define MSR_AMD7TH_END 0xC0011FFFUL 171 172 /* 173 * Get the index and bit position for a MSR in permission bitmap. 174 * Two bits are used for each MSR: lower bit for read and higher bit for write. 175 */ 176 static int 177 svm_msr_index(uint64_t msr, int *index, int *bit) 178 { 179 uint32_t base, off; 180 181 *index = -1; 182 *bit = (msr % 4) * 2; 183 base = 0; 184 185 if (msr <= MSR_PENTIUM_END) { 186 *index = msr / 4; 187 return (0); 188 } 189 190 base += (MSR_PENTIUM_END - MSR_PENTIUM_START + 1); 191 if (msr >= MSR_AMD6TH_START && msr <= MSR_AMD6TH_END) { 192 off = (msr - MSR_AMD6TH_START); 193 *index = (off + base) / 4; 194 return (0); 195 } 196 197 base += (MSR_AMD6TH_END - MSR_AMD6TH_START + 1); 198 if (msr >= MSR_AMD7TH_START && msr <= MSR_AMD7TH_END) { 199 off = (msr - MSR_AMD7TH_START); 200 *index = (off + base) / 4; 201 return (0); 202 } 203 204 return (EINVAL); 205 } 206 207 /* 208 * Allow vcpu to read or write the 'msr' without trapping into the hypervisor. 209 */ 210 static void 211 svm_msr_perm(uint8_t *perm_bitmap, uint64_t msr, bool read, bool write) 212 { 213 int index, bit, error; 214 215 error = svm_msr_index(msr, &index, &bit); 216 KASSERT(error == 0, ("%s: invalid msr %lx", __func__, msr)); 217 KASSERT(index >= 0 && index < SVM_MSR_BITMAP_SIZE, 218 ("%s: invalid index %d for msr %lx", __func__, index, msr)); 219 KASSERT(bit >= 0 && bit <= 6, ("%s: invalid bit position %d " 220 "msr %lx", __func__, bit, msr)); 221 222 if (read) 223 perm_bitmap[index] &= ~(1UL << bit); 224 225 if (write) 226 perm_bitmap[index] &= ~(2UL << bit); 227 } 228 229 static void 230 svm_msr_rw_ok(uint8_t *perm_bitmap, uint64_t msr) 231 { 232 233 svm_msr_perm(perm_bitmap, msr, true, true); 234 } 235 236 static void 237 svm_msr_rd_ok(uint8_t *perm_bitmap, uint64_t msr) 238 { 239 240 svm_msr_perm(perm_bitmap, msr, true, false); 241 } 242 243 static __inline int 244 svm_get_intercept(struct svm_softc *sc, int vcpu, int idx, uint32_t bitmask) 245 { 246 struct vmcb_ctrl *ctrl; 247 248 KASSERT(idx >= 0 && idx < 5, ("invalid intercept index %d", idx)); 249 250 ctrl = svm_get_vmcb_ctrl(sc, vcpu); 251 return (ctrl->intercept[idx] & bitmask ? 1 : 0); 252 } 253 254 static __inline void 255 svm_set_intercept(struct svm_softc *sc, int vcpu, int idx, uint32_t bitmask, 256 int enabled) 257 { 258 struct vmcb_ctrl *ctrl; 259 uint32_t oldval; 260 261 KASSERT(idx >= 0 && idx < 5, ("invalid intercept index %d", idx)); 262 263 ctrl = svm_get_vmcb_ctrl(sc, vcpu); 264 oldval = ctrl->intercept[idx]; 265 266 if (enabled) 267 ctrl->intercept[idx] |= bitmask; 268 else 269 ctrl->intercept[idx] &= ~bitmask; 270 271 if (ctrl->intercept[idx] != oldval) { 272 svm_set_dirty(sc, vcpu, VMCB_CACHE_I); 273 } 274 } 275 276 static __inline void 277 svm_disable_intercept(struct svm_softc *sc, int vcpu, int off, uint32_t bitmask) 278 { 279 280 svm_set_intercept(sc, vcpu, off, bitmask, 0); 281 } 282 283 static __inline void 284 svm_enable_intercept(struct svm_softc *sc, int vcpu, int off, uint32_t bitmask) 285 { 286 287 svm_set_intercept(sc, vcpu, off, bitmask, 1); 288 } 289 290 static void 291 vmcb_init(struct svm_softc *sc, int vcpu, uint64_t iopm_base_pa, 292 uint64_t msrpm_base_pa, uint64_t np_pml4) 293 { 294 struct vmcb_ctrl *ctrl; 295 struct vmcb_state *state; 296 uint32_t mask; 297 int n; 298 299 ctrl = svm_get_vmcb_ctrl(sc, vcpu); 300 state = svm_get_vmcb_state(sc, vcpu); 301 302 ctrl->iopm_base_pa = iopm_base_pa; 303 ctrl->msrpm_base_pa = msrpm_base_pa; 304 305 /* Enable nested paging */ 306 ctrl->np_ctrl = NP_ENABLE; 307 ctrl->n_cr3 = np_pml4; 308 309 /* 310 * Intercept accesses to the control registers that are not shadowed 311 * in the VMCB - i.e. all except cr0, cr2, cr3, cr4 and cr8. 312 */ 313 for (n = 0; n < 16; n++) { 314 mask = (BIT(n) << 16) | BIT(n); 315 if (n == 0 || n == 2 || n == 3 || n == 4 || n == 8) 316 svm_disable_intercept(sc, vcpu, VMCB_CR_INTCPT, mask); 317 else 318 svm_enable_intercept(sc, vcpu, VMCB_CR_INTCPT, mask); 319 } 320 321 /* 322 * Selectively intercept writes to %cr0. This triggers on operations 323 * which would change bits other than TS or MP. 324 */ 325 svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, 326 VMCB_INTCPT_CR0_WRITE); 327 328 /* 329 * Intercept everything when tracing guest exceptions otherwise 330 * just intercept machine check exception. 331 */ 332 if (vcpu_trace_exceptions(sc->vm, vcpu)) { 333 for (n = 0; n < 32; n++) { 334 /* 335 * Skip unimplemented vectors in the exception bitmap. 336 */ 337 if (n == 2 || n == 9) { 338 continue; 339 } 340 svm_enable_intercept(sc, vcpu, VMCB_EXC_INTCPT, BIT(n)); 341 } 342 } else { 343 svm_enable_intercept(sc, vcpu, VMCB_EXC_INTCPT, BIT(IDT_MC)); 344 } 345 346 /* Intercept various events (for e.g. I/O, MSR and CPUID accesses) */ 347 svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_IO); 348 svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_MSR); 349 svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_CPUID); 350 svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_INTR); 351 svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_INIT); 352 svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_NMI); 353 svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_SMI); 354 svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_SHUTDOWN); 355 svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, 356 VMCB_INTCPT_FERR_FREEZE); 357 358 svm_enable_intercept(sc, vcpu, VMCB_CTRL2_INTCPT, VMCB_INTCPT_MONITOR); 359 svm_enable_intercept(sc, vcpu, VMCB_CTRL2_INTCPT, VMCB_INTCPT_MWAIT); 360 361 /* Intercept privileged invalidation instructions. */ 362 svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_INVD); 363 svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_INVLPGA); 364 365 /* 366 * Intercept all virtualization-related instructions. 367 * 368 * From section "Canonicalization and Consistency Checks" in APMv2 369 * the VMRUN intercept bit must be set to pass the consistency check. 370 */ 371 svm_enable_intercept(sc, vcpu, VMCB_CTRL2_INTCPT, VMCB_INTCPT_VMRUN); 372 svm_enable_intercept(sc, vcpu, VMCB_CTRL2_INTCPT, VMCB_INTCPT_VMMCALL); 373 svm_enable_intercept(sc, vcpu, VMCB_CTRL2_INTCPT, VMCB_INTCPT_VMLOAD); 374 svm_enable_intercept(sc, vcpu, VMCB_CTRL2_INTCPT, VMCB_INTCPT_VMSAVE); 375 svm_enable_intercept(sc, vcpu, VMCB_CTRL2_INTCPT, VMCB_INTCPT_STGI); 376 svm_enable_intercept(sc, vcpu, VMCB_CTRL2_INTCPT, VMCB_INTCPT_CLGI); 377 svm_enable_intercept(sc, vcpu, VMCB_CTRL2_INTCPT, VMCB_INTCPT_SKINIT); 378 379 /* 380 * The ASID will be set to a non-zero value just before VMRUN. 381 */ 382 ctrl->asid = 0; 383 384 /* 385 * Section 15.21.1, Interrupt Masking in EFLAGS 386 * Section 15.21.2, Virtualizing APIC.TPR 387 * 388 * This must be set for %rflag and %cr8 isolation of guest and host. 389 */ 390 ctrl->v_intr_ctrl |= V_INTR_MASKING; 391 392 /* Enable Last Branch Record aka LBR for debugging */ 393 ctrl->misc_ctrl |= LBR_VIRT_ENABLE; 394 state->dbgctl = BIT(0); 395 396 /* EFER_SVM must always be set when the guest is executing */ 397 state->efer = EFER_SVM; 398 399 /* Set up the PAT to power-on state */ 400 state->g_pat = PAT_VALUE(0, PAT_WRITE_BACK) | 401 PAT_VALUE(1, PAT_WRITE_THROUGH) | 402 PAT_VALUE(2, PAT_UNCACHED) | 403 PAT_VALUE(3, PAT_UNCACHEABLE) | 404 PAT_VALUE(4, PAT_WRITE_BACK) | 405 PAT_VALUE(5, PAT_WRITE_THROUGH) | 406 PAT_VALUE(6, PAT_UNCACHED) | 407 PAT_VALUE(7, PAT_UNCACHEABLE); 408 409 /* Set up DR6/7 to power-on state */ 410 state->dr6 = DBREG_DR6_RESERVED1; 411 state->dr7 = DBREG_DR7_RESERVED1; 412 } 413 414 /* 415 * Initialize a virtual machine. 416 */ 417 static void * 418 svm_vminit(struct vm *vm) 419 { 420 struct svm_softc *svm_sc; 421 struct svm_vcpu *vcpu; 422 vm_paddr_t msrpm_pa, iopm_pa, pml4_pa; 423 int i; 424 uint16_t maxcpus; 425 426 svm_sc = kmem_zalloc(sizeof (*svm_sc), KM_SLEEP); 427 VERIFY3U(((uintptr_t)svm_sc & PAGE_MASK), ==, 0); 428 429 svm_sc->msr_bitmap = vmm_contig_alloc(SVM_MSR_BITMAP_SIZE); 430 if (svm_sc->msr_bitmap == NULL) 431 panic("contigmalloc of SVM MSR bitmap failed"); 432 svm_sc->iopm_bitmap = vmm_contig_alloc(SVM_IO_BITMAP_SIZE); 433 if (svm_sc->iopm_bitmap == NULL) 434 panic("contigmalloc of SVM IO bitmap failed"); 435 436 svm_sc->vm = vm; 437 svm_sc->nptp = vmspace_table_root(vm_get_vmspace(vm)); 438 439 /* 440 * Intercept read and write accesses to all MSRs. 441 */ 442 memset(svm_sc->msr_bitmap, 0xFF, SVM_MSR_BITMAP_SIZE); 443 444 /* 445 * Access to the following MSRs is redirected to the VMCB when the 446 * guest is executing. Therefore it is safe to allow the guest to 447 * read/write these MSRs directly without hypervisor involvement. 448 */ 449 svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_GSBASE); 450 svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_FSBASE); 451 svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_KGSBASE); 452 453 svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_STAR); 454 svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_LSTAR); 455 svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_CSTAR); 456 svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_SF_MASK); 457 svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_SYSENTER_CS_MSR); 458 svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_SYSENTER_ESP_MSR); 459 svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_SYSENTER_EIP_MSR); 460 svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_PAT); 461 462 svm_msr_rd_ok(svm_sc->msr_bitmap, MSR_TSC); 463 464 /* 465 * Intercept writes to make sure that the EFER_SVM bit is not cleared. 466 */ 467 svm_msr_rd_ok(svm_sc->msr_bitmap, MSR_EFER); 468 469 /* Intercept access to all I/O ports. */ 470 memset(svm_sc->iopm_bitmap, 0xFF, SVM_IO_BITMAP_SIZE); 471 472 iopm_pa = vtophys(svm_sc->iopm_bitmap); 473 msrpm_pa = vtophys(svm_sc->msr_bitmap); 474 pml4_pa = svm_sc->nptp; 475 maxcpus = vm_get_maxcpus(svm_sc->vm); 476 for (i = 0; i < maxcpus; i++) { 477 vcpu = svm_get_vcpu(svm_sc, i); 478 vcpu->nextrip = ~0; 479 vcpu->lastcpu = NOCPU; 480 vcpu->vmcb_pa = vtophys(&vcpu->vmcb); 481 vmcb_init(svm_sc, i, iopm_pa, msrpm_pa, pml4_pa); 482 svm_msr_guest_init(svm_sc, i); 483 } 484 return (svm_sc); 485 } 486 487 /* 488 * Collateral for a generic SVM VM-exit. 489 */ 490 static void 491 vm_exit_svm(struct vm_exit *vme, uint64_t code, uint64_t info1, uint64_t info2) 492 { 493 494 vme->exitcode = VM_EXITCODE_SVM; 495 vme->u.svm.exitcode = code; 496 vme->u.svm.exitinfo1 = info1; 497 vme->u.svm.exitinfo2 = info2; 498 } 499 500 static int 501 svm_cpl(struct vmcb_state *state) 502 { 503 504 /* 505 * From APMv2: 506 * "Retrieve the CPL from the CPL field in the VMCB, not 507 * from any segment DPL" 508 */ 509 return (state->cpl); 510 } 511 512 static enum vm_cpu_mode 513 svm_vcpu_mode(struct vmcb *vmcb) 514 { 515 struct vmcb_state *state; 516 517 state = &vmcb->state; 518 519 if (state->efer & EFER_LMA) { 520 struct vmcb_segment *seg; 521 522 /* 523 * Section 4.8.1 for APM2, check if Code Segment has 524 * Long attribute set in descriptor. 525 */ 526 seg = vmcb_segptr(vmcb, VM_REG_GUEST_CS); 527 if (seg->attrib & VMCB_CS_ATTRIB_L) 528 return (CPU_MODE_64BIT); 529 else 530 return (CPU_MODE_COMPATIBILITY); 531 } else if (state->cr0 & CR0_PE) { 532 return (CPU_MODE_PROTECTED); 533 } else { 534 return (CPU_MODE_REAL); 535 } 536 } 537 538 static enum vm_paging_mode 539 svm_paging_mode(uint64_t cr0, uint64_t cr4, uint64_t efer) 540 { 541 542 if ((cr0 & CR0_PG) == 0) 543 return (PAGING_MODE_FLAT); 544 if ((cr4 & CR4_PAE) == 0) 545 return (PAGING_MODE_32); 546 if (efer & EFER_LME) 547 return (PAGING_MODE_64); 548 else 549 return (PAGING_MODE_PAE); 550 } 551 552 /* 553 * ins/outs utility routines 554 */ 555 556 static void 557 svm_paging_info(struct vmcb *vmcb, struct vm_guest_paging *paging) 558 { 559 struct vmcb_state *state; 560 561 state = &vmcb->state; 562 paging->cr3 = state->cr3; 563 paging->cpl = svm_cpl(state); 564 paging->cpu_mode = svm_vcpu_mode(vmcb); 565 paging->paging_mode = svm_paging_mode(state->cr0, state->cr4, 566 state->efer); 567 } 568 569 #define UNHANDLED 0 570 571 /* 572 * Handle guest I/O intercept. 573 */ 574 static int 575 svm_handle_inout(struct svm_softc *svm_sc, int vcpu, struct vm_exit *vmexit) 576 { 577 struct vmcb_ctrl *ctrl; 578 struct vmcb_state *state; 579 struct vm_inout *inout; 580 struct vie *vie; 581 uint64_t info1; 582 struct vm_guest_paging paging; 583 584 state = svm_get_vmcb_state(svm_sc, vcpu); 585 ctrl = svm_get_vmcb_ctrl(svm_sc, vcpu); 586 inout = &vmexit->u.inout; 587 info1 = ctrl->exitinfo1; 588 589 inout->bytes = (info1 >> 4) & 0x7; 590 inout->flags = 0; 591 inout->flags |= (info1 & BIT(0)) ? INOUT_IN : 0; 592 inout->flags |= (info1 & BIT(3)) ? INOUT_REP : 0; 593 inout->flags |= (info1 & BIT(2)) ? INOUT_STR : 0; 594 inout->port = (uint16_t)(info1 >> 16); 595 inout->eax = (uint32_t)(state->rax); 596 597 if ((inout->flags & INOUT_STR) != 0) { 598 /* 599 * The effective segment number in EXITINFO1[12:10] is populated 600 * only if the processor has the DecodeAssist capability. 601 * 602 * This is not specified explicitly in APMv2 but can be verified 603 * empirically. 604 */ 605 if (!decode_assist()) { 606 /* 607 * Without decoding assistance, force the task of 608 * emulating the ins/outs on userspace. 609 */ 610 vmexit->exitcode = VM_EXITCODE_INST_EMUL; 611 bzero(&vmexit->u.inst_emul, 612 sizeof (vmexit->u.inst_emul)); 613 return (UNHANDLED); 614 } 615 616 /* 617 * Bits 7-9 encode the address size of ins/outs operations where 618 * the 1/2/4 values correspond to 16/32/64 bit sizes. 619 */ 620 inout->addrsize = 2 * ((info1 >> 7) & 0x7); 621 VERIFY(inout->addrsize == 2 || inout->addrsize == 4 || 622 inout->addrsize == 8); 623 624 if (inout->flags & INOUT_IN) { 625 /* 626 * For INS instructions, %es (encoded as 0) is the 627 * implied segment for the operation. 628 */ 629 inout->segment = 0; 630 } else { 631 /* 632 * Bits 10-12 encode the segment for OUTS. 633 * This value follows the standard x86 segment order. 634 */ 635 inout->segment = (info1 >> 10) & 0x7; 636 } 637 } 638 639 vmexit->exitcode = VM_EXITCODE_INOUT; 640 svm_paging_info(svm_get_vmcb(svm_sc, vcpu), &paging); 641 vie = vm_vie_ctx(svm_sc->vm, vcpu); 642 vie_init_inout(vie, inout, vmexit->inst_length, &paging); 643 644 /* The in/out emulation will handle advancing %rip */ 645 vmexit->inst_length = 0; 646 647 return (UNHANDLED); 648 } 649 650 static int 651 npf_fault_type(uint64_t exitinfo1) 652 { 653 654 if (exitinfo1 & VMCB_NPF_INFO1_W) 655 return (PROT_WRITE); 656 else if (exitinfo1 & VMCB_NPF_INFO1_ID) 657 return (PROT_EXEC); 658 else 659 return (PROT_READ); 660 } 661 662 static bool 663 svm_npf_emul_fault(uint64_t exitinfo1) 664 { 665 if (exitinfo1 & VMCB_NPF_INFO1_ID) { 666 return (false); 667 } 668 669 if (exitinfo1 & VMCB_NPF_INFO1_GPT) { 670 return (false); 671 } 672 673 if ((exitinfo1 & VMCB_NPF_INFO1_GPA) == 0) { 674 return (false); 675 } 676 677 return (true); 678 } 679 680 static void 681 svm_handle_mmio_emul(struct svm_softc *svm_sc, int vcpu, struct vm_exit *vmexit, 682 uint64_t gpa) 683 { 684 struct vmcb_ctrl *ctrl; 685 struct vmcb *vmcb; 686 struct vie *vie; 687 struct vm_guest_paging paging; 688 struct vmcb_segment *seg; 689 char *inst_bytes = NULL; 690 uint8_t inst_len = 0; 691 692 vmcb = svm_get_vmcb(svm_sc, vcpu); 693 ctrl = &vmcb->ctrl; 694 695 vmexit->exitcode = VM_EXITCODE_MMIO_EMUL; 696 vmexit->u.mmio_emul.gpa = gpa; 697 vmexit->u.mmio_emul.gla = VIE_INVALID_GLA; 698 svm_paging_info(vmcb, &paging); 699 700 switch (paging.cpu_mode) { 701 case CPU_MODE_REAL: 702 seg = vmcb_segptr(vmcb, VM_REG_GUEST_CS); 703 vmexit->u.mmio_emul.cs_base = seg->base; 704 vmexit->u.mmio_emul.cs_d = 0; 705 break; 706 case CPU_MODE_PROTECTED: 707 case CPU_MODE_COMPATIBILITY: 708 seg = vmcb_segptr(vmcb, VM_REG_GUEST_CS); 709 vmexit->u.mmio_emul.cs_base = seg->base; 710 711 /* 712 * Section 4.8.1 of APM2, Default Operand Size or D bit. 713 */ 714 vmexit->u.mmio_emul.cs_d = (seg->attrib & VMCB_CS_ATTRIB_D) ? 715 1 : 0; 716 break; 717 default: 718 vmexit->u.mmio_emul.cs_base = 0; 719 vmexit->u.mmio_emul.cs_d = 0; 720 break; 721 } 722 723 /* 724 * Copy the instruction bytes into 'vie' if available. 725 */ 726 if (decode_assist() && !disable_npf_assist) { 727 inst_len = ctrl->inst_len; 728 inst_bytes = (char *)ctrl->inst_bytes; 729 } 730 vie = vm_vie_ctx(svm_sc->vm, vcpu); 731 vie_init_mmio(vie, inst_bytes, inst_len, &paging, gpa); 732 } 733 734 /* 735 * Do not allow CD, NW, or invalid high bits to be asserted in the value of cr0 736 * which is live in the guest. They are visible via the shadow instead. 737 */ 738 #define SVM_CR0_MASK ~(CR0_CD | CR0_NW | 0xffffffff00000000) 739 740 static void 741 svm_set_cr0(struct svm_softc *svm_sc, int vcpu, uint64_t val, bool guest_write) 742 { 743 struct vmcb_state *state; 744 struct svm_regctx *regctx; 745 uint64_t masked, old, diff; 746 747 state = svm_get_vmcb_state(svm_sc, vcpu); 748 regctx = svm_get_guest_regctx(svm_sc, vcpu); 749 750 old = state->cr0 | (regctx->sctx_cr0_shadow & ~SVM_CR0_MASK); 751 diff = old ^ val; 752 753 /* No further work needed if register contents remain the same */ 754 if (diff == 0) { 755 return; 756 } 757 758 /* Flush the TLB if the paging or write-protect bits are changing */ 759 if ((diff & CR0_PG) != 0 || (diff & CR0_WP) != 0) { 760 flush_asid(svm_sc, vcpu); 761 } 762 763 /* 764 * If the change in %cr0 is due to a guest action (via interception) 765 * then other CPU state updates may be required. 766 */ 767 if (guest_write) { 768 if ((diff & CR0_PG) != 0) { 769 uint64_t efer = state->efer; 770 771 /* Keep the long-mode state in EFER in sync */ 772 if ((val & CR0_PG) != 0 && (efer & EFER_LME) != 0) { 773 state->efer |= EFER_LMA; 774 } 775 if ((val & CR0_PG) == 0 && (efer & EFER_LME) != 0) { 776 state->efer &= ~EFER_LMA; 777 } 778 } 779 } 780 781 masked = val & SVM_CR0_MASK; 782 regctx->sctx_cr0_shadow = val; 783 state->cr0 = masked; 784 svm_set_dirty(svm_sc, vcpu, VMCB_CACHE_CR); 785 786 if ((masked ^ val) != 0) { 787 /* 788 * The guest has set bits in %cr0 which we are masking out and 789 * exposing via shadow. 790 * 791 * We must intercept %cr0 reads in order to make the shadowed 792 * view available to the guest. 793 * 794 * Writes to %cr0 must also be intercepted (unconditionally, 795 * unlike the VMCB_INTCPT_CR0_WRITE mechanism) so we can catch 796 * if/when the guest clears those shadowed bits. 797 */ 798 svm_enable_intercept(svm_sc, vcpu, VMCB_CR_INTCPT, 799 BIT(0) | BIT(16)); 800 } else { 801 /* 802 * When no bits remain in %cr0 which require shadowing, the 803 * unconditional intercept of reads/writes to %cr0 can be 804 * disabled. 805 * 806 * The selective write intercept (VMCB_INTCPT_CR0_WRITE) remains 807 * in place so we can be notified of operations which change 808 * bits other than TS or MP. 809 */ 810 svm_disable_intercept(svm_sc, vcpu, VMCB_CR_INTCPT, 811 BIT(0) | BIT(16)); 812 } 813 svm_set_dirty(svm_sc, vcpu, VMCB_CACHE_I); 814 } 815 816 static void 817 svm_get_cr0(struct svm_softc *svm_sc, int vcpu, uint64_t *val) 818 { 819 struct vmcb *vmcb; 820 struct svm_regctx *regctx; 821 822 vmcb = svm_get_vmcb(svm_sc, vcpu); 823 regctx = svm_get_guest_regctx(svm_sc, vcpu); 824 825 /* 826 * Include the %cr0 bits which exist only in the shadow along with those 827 * in the running vCPU state. 828 */ 829 *val = vmcb->state.cr0 | (regctx->sctx_cr0_shadow & ~SVM_CR0_MASK); 830 } 831 832 static void 833 svm_handle_cr0_read(struct svm_softc *svm_sc, int vcpu, enum vm_reg_name reg) 834 { 835 uint64_t val; 836 int err; 837 838 svm_get_cr0(svm_sc, vcpu, &val); 839 err = svm_setreg(svm_sc, vcpu, reg, val); 840 ASSERT(err == 0); 841 } 842 843 static void 844 svm_handle_cr0_write(struct svm_softc *svm_sc, int vcpu, enum vm_reg_name reg) 845 { 846 struct vmcb_state *state; 847 uint64_t val; 848 int err; 849 850 state = svm_get_vmcb_state(svm_sc, vcpu); 851 852 err = svm_getreg(svm_sc, vcpu, reg, &val); 853 ASSERT(err == 0); 854 855 if ((val & CR0_NW) != 0 && (val & CR0_CD) == 0) { 856 /* NW without CD is nonsensical */ 857 vm_inject_gp(svm_sc->vm, vcpu); 858 return; 859 } 860 if ((val & CR0_PG) != 0 && (val & CR0_PE) == 0) { 861 /* PG requires PE */ 862 vm_inject_gp(svm_sc->vm, vcpu); 863 return; 864 } 865 if ((state->cr0 & CR0_PG) == 0 && (val & CR0_PG) != 0) { 866 /* When enabling paging, PAE must be enabled if LME is. */ 867 if ((state->efer & EFER_LME) != 0 && 868 (state->cr4 & CR4_PAE) == 0) { 869 vm_inject_gp(svm_sc->vm, vcpu); 870 return; 871 } 872 } 873 874 svm_set_cr0(svm_sc, vcpu, val, true); 875 } 876 877 static void 878 svm_inst_emul_other(struct svm_softc *svm_sc, int vcpu, struct vm_exit *vmexit) 879 { 880 struct vie *vie; 881 struct vm_guest_paging paging; 882 883 /* Let the instruction emulation (hopefully in-kernel) handle it */ 884 vmexit->exitcode = VM_EXITCODE_INST_EMUL; 885 bzero(&vmexit->u.inst_emul, sizeof (vmexit->u.inst_emul)); 886 vie = vm_vie_ctx(svm_sc->vm, vcpu); 887 svm_paging_info(svm_get_vmcb(svm_sc, vcpu), &paging); 888 vie_init_other(vie, &paging); 889 890 /* The instruction emulation will handle advancing %rip */ 891 vmexit->inst_length = 0; 892 } 893 894 static void 895 svm_update_virqinfo(struct svm_softc *sc, int vcpu) 896 { 897 struct vm *vm; 898 struct vlapic *vlapic; 899 struct vmcb_ctrl *ctrl; 900 901 vm = sc->vm; 902 vlapic = vm_lapic(vm, vcpu); 903 ctrl = svm_get_vmcb_ctrl(sc, vcpu); 904 905 /* Update %cr8 in the emulated vlapic */ 906 vlapic_set_cr8(vlapic, ctrl->v_tpr); 907 908 /* Virtual interrupt injection is not used. */ 909 KASSERT(ctrl->v_intr_vector == 0, ("%s: invalid " 910 "v_intr_vector %d", __func__, ctrl->v_intr_vector)); 911 } 912 913 CTASSERT(VMCB_EVENTINJ_TYPE_INTR == VM_INTINFO_HWINTR); 914 CTASSERT(VMCB_EVENTINJ_TYPE_NMI == VM_INTINFO_NMI); 915 CTASSERT(VMCB_EVENTINJ_TYPE_EXCEPTION == VM_INTINFO_HWEXCP); 916 CTASSERT(VMCB_EVENTINJ_TYPE_INTn == VM_INTINFO_SWINTR); 917 CTASSERT(VMCB_EVENTINJ_EC_VALID == VM_INTINFO_DEL_ERRCODE); 918 CTASSERT(VMCB_EVENTINJ_VALID == VM_INTINFO_VALID); 919 920 static void 921 svm_save_exitintinfo(struct svm_softc *svm_sc, int vcpu) 922 { 923 struct vmcb_ctrl *ctrl; 924 uint64_t intinfo; 925 int err; 926 927 ctrl = svm_get_vmcb_ctrl(svm_sc, vcpu); 928 intinfo = ctrl->exitintinfo; 929 if (!VMCB_EXITINTINFO_VALID(intinfo)) 930 return; 931 932 /* 933 * From APMv2, Section "Intercepts during IDT interrupt delivery" 934 * 935 * If a #VMEXIT happened during event delivery then record the event 936 * that was being delivered. 937 */ 938 vmm_stat_incr(svm_sc->vm, vcpu, VCPU_EXITINTINFO, 1); 939 /* 940 * Relies on match between VMCB exitintinfo format and bhyve-generic 941 * format, which is ensured by CTASSERTs above. 942 */ 943 err = vm_exit_intinfo(svm_sc->vm, vcpu, intinfo); 944 VERIFY0(err); 945 } 946 947 static __inline int 948 vintr_intercept_enabled(struct svm_softc *sc, int vcpu) 949 { 950 951 return (svm_get_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, 952 VMCB_INTCPT_VINTR)); 953 } 954 955 static void 956 svm_enable_intr_window_exiting(struct svm_softc *sc, int vcpu) 957 { 958 struct vmcb_ctrl *ctrl; 959 struct vmcb_state *state; 960 961 ctrl = svm_get_vmcb_ctrl(sc, vcpu); 962 state = svm_get_vmcb_state(sc, vcpu); 963 964 if ((ctrl->v_irq & V_IRQ) != 0 && ctrl->v_intr_vector == 0) { 965 KASSERT(ctrl->v_intr_prio & V_IGN_TPR, 966 ("%s: invalid v_ign_tpr", __func__)); 967 KASSERT(vintr_intercept_enabled(sc, vcpu), 968 ("%s: vintr intercept should be enabled", __func__)); 969 return; 970 } 971 972 /* 973 * We use V_IRQ in conjunction with the VINTR intercept to trap into the 974 * hypervisor as soon as a virtual interrupt can be delivered. 975 * 976 * Since injected events are not subject to intercept checks we need to 977 * ensure that the V_IRQ is not actually going to be delivered on VM 978 * entry. 979 */ 980 VERIFY((ctrl->eventinj & VMCB_EVENTINJ_VALID) != 0 || 981 (state->rflags & PSL_I) == 0 || ctrl->intr_shadow); 982 983 ctrl->v_irq |= V_IRQ; 984 ctrl->v_intr_prio |= V_IGN_TPR; 985 ctrl->v_intr_vector = 0; 986 svm_set_dirty(sc, vcpu, VMCB_CACHE_TPR); 987 svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_VINTR); 988 } 989 990 static void 991 svm_disable_intr_window_exiting(struct svm_softc *sc, int vcpu) 992 { 993 struct vmcb_ctrl *ctrl; 994 995 ctrl = svm_get_vmcb_ctrl(sc, vcpu); 996 997 if ((ctrl->v_irq & V_IRQ) == 0 && ctrl->v_intr_vector == 0) { 998 KASSERT(!vintr_intercept_enabled(sc, vcpu), 999 ("%s: vintr intercept should be disabled", __func__)); 1000 return; 1001 } 1002 1003 ctrl->v_irq &= ~V_IRQ; 1004 ctrl->v_intr_vector = 0; 1005 svm_set_dirty(sc, vcpu, VMCB_CACHE_TPR); 1006 svm_disable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_VINTR); 1007 } 1008 1009 /* 1010 * Once an NMI is injected it blocks delivery of further NMIs until the handler 1011 * executes an IRET. The IRET intercept is enabled when an NMI is injected to 1012 * to track when the vcpu is done handling the NMI. 1013 */ 1014 static int 1015 svm_nmi_blocked(struct svm_softc *sc, int vcpu) 1016 { 1017 return (svm_get_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, 1018 VMCB_INTCPT_IRET)); 1019 } 1020 1021 static void 1022 svm_clear_nmi_blocking(struct svm_softc *sc, int vcpu) 1023 { 1024 struct vmcb_ctrl *ctrl; 1025 1026 KASSERT(svm_nmi_blocked(sc, vcpu), ("vNMI already unblocked")); 1027 /* 1028 * When the IRET intercept is cleared the vcpu will attempt to execute 1029 * the "iret" when it runs next. However, it is possible to inject 1030 * another NMI into the vcpu before the "iret" has actually executed. 1031 * 1032 * For e.g. if the "iret" encounters a #NPF when accessing the stack 1033 * it will trap back into the hypervisor. If an NMI is pending for 1034 * the vcpu it will be injected into the guest. 1035 * 1036 * XXX this needs to be fixed 1037 */ 1038 svm_disable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_IRET); 1039 1040 /* 1041 * Set an interrupt shadow to prevent an NMI from being immediately 1042 * injected on the next VMRUN. 1043 */ 1044 ctrl = svm_get_vmcb_ctrl(sc, vcpu); 1045 ctrl->intr_shadow = 1; 1046 } 1047 1048 static void 1049 svm_inject_event(struct vmcb_ctrl *ctrl, uint64_t info) 1050 { 1051 ASSERT(VM_INTINFO_PENDING(info)); 1052 1053 uint8_t vector = VM_INTINFO_VECTOR(info); 1054 uint32_t type = VM_INTINFO_TYPE(info); 1055 1056 /* 1057 * Correct behavior depends on bhyve intinfo event types lining up with 1058 * those defined by AMD for event injection in the VMCB. The CTASSERTs 1059 * above svm_save_exitintinfo() ensure it. 1060 */ 1061 switch (type) { 1062 case VM_INTINFO_NMI: 1063 /* Ensure vector for injected event matches its type (NMI) */ 1064 vector = IDT_NMI; 1065 break; 1066 case VM_INTINFO_HWINTR: 1067 case VM_INTINFO_SWINTR: 1068 break; 1069 case VM_INTINFO_HWEXCP: 1070 if (vector == IDT_NMI) { 1071 /* 1072 * NMIs are expected to be injected with 1073 * VMCB_EVENTINJ_TYPE_NMI, rather than as an exception 1074 * with the NMI vector. 1075 */ 1076 type = VM_INTINFO_NMI; 1077 } 1078 VERIFY(vector < 32); 1079 break; 1080 default: 1081 /* 1082 * Since there is not strong validation for injected event types 1083 * at this point, fall back to software interrupt for those we 1084 * do not recognized. 1085 */ 1086 type = VM_INTINFO_SWINTR; 1087 break; 1088 } 1089 1090 ctrl->eventinj = VMCB_EVENTINJ_VALID | type | vector; 1091 if (VM_INTINFO_HAS_ERRCODE(info)) { 1092 ctrl->eventinj |= VMCB_EVENTINJ_EC_VALID; 1093 ctrl->eventinj |= (uint64_t)VM_INTINFO_ERRCODE(info) << 32; 1094 } 1095 } 1096 1097 static void 1098 svm_inject_nmi(struct svm_softc *sc, int vcpu) 1099 { 1100 struct vmcb_ctrl *ctrl = svm_get_vmcb_ctrl(sc, vcpu); 1101 1102 ASSERT(!svm_nmi_blocked(sc, vcpu)); 1103 1104 ctrl->eventinj = VMCB_EVENTINJ_VALID | VMCB_EVENTINJ_TYPE_NMI; 1105 vm_nmi_clear(sc->vm, vcpu); 1106 1107 /* 1108 * Virtual NMI blocking is now in effect. 1109 * 1110 * Not only does this block a subsequent NMI injection from taking 1111 * place, it also configures an intercept on the IRET so we can track 1112 * when the next injection can take place. 1113 */ 1114 svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_IRET); 1115 } 1116 1117 static void 1118 svm_inject_irq(struct svm_softc *sc, int vcpu, int vector) 1119 { 1120 struct vmcb_ctrl *ctrl = svm_get_vmcb_ctrl(sc, vcpu); 1121 1122 ASSERT(vector >= 0 && vector <= 255); 1123 1124 ctrl->eventinj = VMCB_EVENTINJ_VALID | vector; 1125 } 1126 1127 #define EFER_MBZ_BITS 0xFFFFFFFFFFFF0200UL 1128 1129 static vm_msr_result_t 1130 svm_write_efer(struct svm_softc *sc, int vcpu, uint64_t newval) 1131 { 1132 struct vmcb_state *state = svm_get_vmcb_state(sc, vcpu); 1133 uint64_t lma; 1134 int error; 1135 1136 newval &= ~0xFE; /* clear the Read-As-Zero (RAZ) bits */ 1137 1138 if (newval & EFER_MBZ_BITS) { 1139 return (VMR_GP); 1140 } 1141 1142 /* APMv2 Table 14-5 "Long-Mode Consistency Checks" */ 1143 const uint64_t changed = state->efer ^ newval; 1144 if (changed & EFER_LME) { 1145 if (state->cr0 & CR0_PG) { 1146 return (VMR_GP); 1147 } 1148 } 1149 1150 /* EFER.LMA = EFER.LME & CR0.PG */ 1151 if ((newval & EFER_LME) != 0 && (state->cr0 & CR0_PG) != 0) { 1152 lma = EFER_LMA; 1153 } else { 1154 lma = 0; 1155 } 1156 if ((newval & EFER_LMA) != lma) { 1157 return (VMR_GP); 1158 } 1159 1160 if ((newval & EFER_NXE) != 0 && 1161 !vm_cpuid_capability(sc->vm, vcpu, VCC_NO_EXECUTE)) { 1162 return (VMR_GP); 1163 } 1164 if ((newval & EFER_FFXSR) != 0 && 1165 !vm_cpuid_capability(sc->vm, vcpu, VCC_FFXSR)) { 1166 return (VMR_GP); 1167 } 1168 if ((newval & EFER_TCE) != 0 && 1169 !vm_cpuid_capability(sc->vm, vcpu, VCC_TCE)) { 1170 return (VMR_GP); 1171 } 1172 1173 /* 1174 * Until bhyve has proper support for long-mode segment limits, just 1175 * toss a #GP at the guest if they attempt to use it. 1176 */ 1177 if (newval & EFER_LMSLE) { 1178 return (VMR_GP); 1179 } 1180 1181 error = svm_setreg(sc, vcpu, VM_REG_GUEST_EFER, newval); 1182 VERIFY0(error); 1183 return (VMR_OK); 1184 } 1185 1186 static int 1187 svm_handle_msr(struct svm_softc *svm_sc, int vcpu, struct vm_exit *vmexit, 1188 bool is_wrmsr) 1189 { 1190 struct vmcb_state *state = svm_get_vmcb_state(svm_sc, vcpu); 1191 struct svm_regctx *ctx = svm_get_guest_regctx(svm_sc, vcpu); 1192 const uint32_t ecx = ctx->sctx_rcx; 1193 vm_msr_result_t res; 1194 uint64_t val = 0; 1195 1196 if (is_wrmsr) { 1197 vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_WRMSR, 1); 1198 val = ctx->sctx_rdx << 32 | (uint32_t)state->rax; 1199 1200 if (vlapic_owned_msr(ecx)) { 1201 struct vlapic *vlapic = vm_lapic(svm_sc->vm, vcpu); 1202 1203 res = vlapic_wrmsr(vlapic, ecx, val); 1204 } else if (ecx == MSR_EFER) { 1205 res = svm_write_efer(svm_sc, vcpu, val); 1206 } else { 1207 res = svm_wrmsr(svm_sc, vcpu, ecx, val); 1208 } 1209 } else { 1210 vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_RDMSR, 1); 1211 1212 if (vlapic_owned_msr(ecx)) { 1213 struct vlapic *vlapic = vm_lapic(svm_sc->vm, vcpu); 1214 1215 res = vlapic_rdmsr(vlapic, ecx, &val); 1216 } else { 1217 res = svm_rdmsr(svm_sc, vcpu, ecx, &val); 1218 } 1219 } 1220 1221 switch (res) { 1222 case VMR_OK: 1223 /* Store rdmsr result in the appropriate registers */ 1224 if (!is_wrmsr) { 1225 state->rax = (uint32_t)val; 1226 ctx->sctx_rdx = val >> 32; 1227 } 1228 return (1); 1229 case VMR_GP: 1230 vm_inject_gp(svm_sc->vm, vcpu); 1231 return (1); 1232 case VMR_UNHANLDED: 1233 vmexit->exitcode = is_wrmsr ? 1234 VM_EXITCODE_WRMSR : VM_EXITCODE_RDMSR; 1235 vmexit->u.msr.code = ecx; 1236 vmexit->u.msr.wval = val; 1237 return (0); 1238 default: 1239 panic("unexpected msr result %u\n", res); 1240 } 1241 } 1242 1243 /* 1244 * From section "State Saved on Exit" in APMv2: nRIP is saved for all #VMEXITs 1245 * that are due to instruction intercepts as well as MSR and IOIO intercepts 1246 * and exceptions caused by INT3, INTO and BOUND instructions. 1247 * 1248 * Return 1 if the nRIP is valid and 0 otherwise. 1249 */ 1250 static int 1251 nrip_valid(uint64_t exitcode) 1252 { 1253 switch (exitcode) { 1254 case 0x00 ... 0x0F: /* read of CR0 through CR15 */ 1255 case 0x10 ... 0x1F: /* write of CR0 through CR15 */ 1256 case 0x20 ... 0x2F: /* read of DR0 through DR15 */ 1257 case 0x30 ... 0x3F: /* write of DR0 through DR15 */ 1258 case 0x43: /* INT3 */ 1259 case 0x44: /* INTO */ 1260 case 0x45: /* BOUND */ 1261 case 0x65 ... 0x7C: /* VMEXIT_CR0_SEL_WRITE ... VMEXIT_MSR */ 1262 case 0x80 ... 0x8D: /* VMEXIT_VMRUN ... VMEXIT_XSETBV */ 1263 return (1); 1264 default: 1265 return (0); 1266 } 1267 } 1268 1269 static int 1270 svm_vmexit(struct svm_softc *svm_sc, int vcpu, struct vm_exit *vmexit) 1271 { 1272 struct vmcb *vmcb; 1273 struct vmcb_state *state; 1274 struct vmcb_ctrl *ctrl; 1275 struct svm_regctx *ctx; 1276 uint64_t code, info1, info2; 1277 int handled; 1278 1279 ctx = svm_get_guest_regctx(svm_sc, vcpu); 1280 vmcb = svm_get_vmcb(svm_sc, vcpu); 1281 state = &vmcb->state; 1282 ctrl = &vmcb->ctrl; 1283 1284 handled = 0; 1285 code = ctrl->exitcode; 1286 info1 = ctrl->exitinfo1; 1287 info2 = ctrl->exitinfo2; 1288 1289 vmexit->exitcode = VM_EXITCODE_BOGUS; 1290 vmexit->rip = state->rip; 1291 vmexit->inst_length = nrip_valid(code) ? ctrl->nrip - state->rip : 0; 1292 1293 vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_COUNT, 1); 1294 1295 /* 1296 * #VMEXIT(INVALID) needs to be handled early because the VMCB is 1297 * in an inconsistent state and can trigger assertions that would 1298 * never happen otherwise. 1299 */ 1300 if (code == VMCB_EXIT_INVALID) { 1301 vm_exit_svm(vmexit, code, info1, info2); 1302 return (0); 1303 } 1304 1305 KASSERT((ctrl->eventinj & VMCB_EVENTINJ_VALID) == 0, ("%s: event " 1306 "injection valid bit is set %lx", __func__, ctrl->eventinj)); 1307 1308 KASSERT(vmexit->inst_length >= 0 && vmexit->inst_length <= 15, 1309 ("invalid inst_length %d: code (%lx), info1 (%lx), info2 (%lx)", 1310 vmexit->inst_length, code, info1, info2)); 1311 1312 svm_update_virqinfo(svm_sc, vcpu); 1313 svm_save_exitintinfo(svm_sc, vcpu); 1314 1315 switch (code) { 1316 case VMCB_EXIT_CR0_READ: 1317 if (VMCB_CRx_INFO1_VALID(info1) != 0) { 1318 svm_handle_cr0_read(svm_sc, vcpu, 1319 vie_regnum_map(VMCB_CRx_INFO1_GPR(info1))); 1320 handled = 1; 1321 } else { 1322 /* 1323 * If SMSW is used to read the contents of %cr0, then 1324 * the VALID bit will not be set in `info1`, since the 1325 * handling is different from the mov-to-reg case. 1326 * 1327 * Punt to the instruction emulation to handle it. 1328 */ 1329 svm_inst_emul_other(svm_sc, vcpu, vmexit); 1330 } 1331 break; 1332 case VMCB_EXIT_CR0_WRITE: 1333 case VMCB_EXIT_CR0_SEL_WRITE: 1334 if (VMCB_CRx_INFO1_VALID(info1) != 0) { 1335 svm_handle_cr0_write(svm_sc, vcpu, 1336 vie_regnum_map(VMCB_CRx_INFO1_GPR(info1))); 1337 handled = 1; 1338 } else { 1339 /* 1340 * Writes to %cr0 without VALID being set in `info1` are 1341 * initiated by the LMSW and CLTS instructions. While 1342 * LMSW (like SMSW) sees little use in modern OSes and 1343 * bootloaders, CLTS is still used for handling FPU 1344 * state transitions. 1345 * 1346 * Punt to the instruction emulation to handle them. 1347 */ 1348 svm_inst_emul_other(svm_sc, vcpu, vmexit); 1349 } 1350 break; 1351 case VMCB_EXIT_IRET: 1352 /* 1353 * Restart execution at "iret" but with the intercept cleared. 1354 */ 1355 vmexit->inst_length = 0; 1356 svm_clear_nmi_blocking(svm_sc, vcpu); 1357 handled = 1; 1358 break; 1359 case VMCB_EXIT_VINTR: /* interrupt window exiting */ 1360 vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_VINTR, 1); 1361 svm_disable_intr_window_exiting(svm_sc, vcpu); 1362 handled = 1; 1363 break; 1364 case VMCB_EXIT_INTR: /* external interrupt */ 1365 vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_EXTINT, 1); 1366 handled = 1; 1367 break; 1368 case VMCB_EXIT_NMI: 1369 case VMCB_EXIT_SMI: 1370 case VMCB_EXIT_INIT: 1371 /* 1372 * For external NMI/SMI and physical INIT interrupts, simply 1373 * continue execution, as those host events will be handled by 1374 * the physical CPU. 1375 */ 1376 handled = 1; 1377 break; 1378 case VMCB_EXIT_EXCP0 ... VMCB_EXIT_EXCP31: { 1379 vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_EXCEPTION, 1); 1380 1381 const uint8_t idtvec = code - VMCB_EXIT_EXCP0; 1382 uint32_t errcode = 0; 1383 bool reflect = true; 1384 bool errcode_valid = false; 1385 1386 switch (idtvec) { 1387 case IDT_MC: 1388 /* The host will handle the MCE itself. */ 1389 reflect = false; 1390 vmm_call_trap(T_MCE); 1391 break; 1392 case IDT_PF: 1393 VERIFY0(svm_setreg(svm_sc, vcpu, VM_REG_GUEST_CR2, 1394 info2)); 1395 /* fallthru */ 1396 case IDT_NP: 1397 case IDT_SS: 1398 case IDT_GP: 1399 case IDT_AC: 1400 case IDT_TS: 1401 errcode_valid = true; 1402 errcode = info1; 1403 break; 1404 1405 case IDT_DF: 1406 errcode_valid = true; 1407 break; 1408 1409 case IDT_BP: 1410 case IDT_OF: 1411 case IDT_BR: 1412 /* 1413 * The 'nrip' field is populated for INT3, INTO and 1414 * BOUND exceptions and this also implies that 1415 * 'inst_length' is non-zero. 1416 * 1417 * Reset 'inst_length' to zero so the guest %rip at 1418 * event injection is identical to what it was when 1419 * the exception originally happened. 1420 */ 1421 vmexit->inst_length = 0; 1422 /* fallthru */ 1423 default: 1424 errcode_valid = false; 1425 break; 1426 } 1427 VERIFY0(vmexit->inst_length); 1428 1429 if (reflect) { 1430 /* Reflect the exception back into the guest */ 1431 VERIFY0(vm_inject_exception(svm_sc->vm, vcpu, idtvec, 1432 errcode_valid, errcode, false)); 1433 } 1434 handled = 1; 1435 break; 1436 } 1437 case VMCB_EXIT_MSR: 1438 handled = svm_handle_msr(svm_sc, vcpu, vmexit, info1 != 0); 1439 break; 1440 case VMCB_EXIT_IO: 1441 handled = svm_handle_inout(svm_sc, vcpu, vmexit); 1442 vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_INOUT, 1); 1443 break; 1444 case VMCB_EXIT_SHUTDOWN: 1445 (void) vm_suspend(svm_sc->vm, VM_SUSPEND_TRIPLEFAULT); 1446 handled = 1; 1447 break; 1448 case VMCB_EXIT_INVD: 1449 case VMCB_EXIT_INVLPGA: 1450 /* privileged invalidation instructions */ 1451 vm_inject_ud(svm_sc->vm, vcpu); 1452 handled = 1; 1453 break; 1454 case VMCB_EXIT_VMRUN: 1455 case VMCB_EXIT_VMLOAD: 1456 case VMCB_EXIT_VMSAVE: 1457 case VMCB_EXIT_STGI: 1458 case VMCB_EXIT_CLGI: 1459 case VMCB_EXIT_SKINIT: 1460 /* privileged vmm instructions */ 1461 vm_inject_ud(svm_sc->vm, vcpu); 1462 handled = 1; 1463 break; 1464 case VMCB_EXIT_VMMCALL: 1465 /* No handlers make use of VMMCALL for now */ 1466 vm_inject_ud(svm_sc->vm, vcpu); 1467 handled = 1; 1468 break; 1469 case VMCB_EXIT_CPUID: 1470 vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_CPUID, 1); 1471 vcpu_emulate_cpuid(svm_sc->vm, vcpu, &state->rax, 1472 &ctx->sctx_rbx, &ctx->sctx_rcx, &ctx->sctx_rdx); 1473 handled = 1; 1474 break; 1475 case VMCB_EXIT_HLT: 1476 vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_HLT, 1); 1477 vmexit->exitcode = VM_EXITCODE_HLT; 1478 vmexit->u.hlt.rflags = state->rflags; 1479 break; 1480 case VMCB_EXIT_PAUSE: 1481 vmexit->exitcode = VM_EXITCODE_PAUSE; 1482 vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_PAUSE, 1); 1483 break; 1484 case VMCB_EXIT_NPF: 1485 /* EXITINFO2 contains the faulting guest physical address */ 1486 if (info1 & VMCB_NPF_INFO1_RSV) { 1487 /* nested fault with reserved bits set */ 1488 } else if (vm_mem_allocated(svm_sc->vm, vcpu, info2)) { 1489 vmexit->exitcode = VM_EXITCODE_PAGING; 1490 vmexit->u.paging.gpa = info2; 1491 vmexit->u.paging.fault_type = npf_fault_type(info1); 1492 vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_NESTED_FAULT, 1); 1493 } else if (svm_npf_emul_fault(info1)) { 1494 svm_handle_mmio_emul(svm_sc, vcpu, vmexit, info2); 1495 vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_MMIO_EMUL, 1); 1496 } 1497 break; 1498 case VMCB_EXIT_MONITOR: 1499 vmexit->exitcode = VM_EXITCODE_MONITOR; 1500 break; 1501 case VMCB_EXIT_MWAIT: 1502 vmexit->exitcode = VM_EXITCODE_MWAIT; 1503 break; 1504 default: 1505 vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_UNKNOWN, 1); 1506 break; 1507 } 1508 1509 DTRACE_PROBE3(vmm__vexit, int, vcpu, uint64_t, vmexit->rip, uint32_t, 1510 code); 1511 1512 if (handled) { 1513 vmexit->rip += vmexit->inst_length; 1514 vmexit->inst_length = 0; 1515 state->rip = vmexit->rip; 1516 } else { 1517 if (vmexit->exitcode == VM_EXITCODE_BOGUS) { 1518 /* 1519 * If this VM exit was not claimed by anybody then 1520 * treat it as a generic SVM exit. 1521 */ 1522 vm_exit_svm(vmexit, code, info1, info2); 1523 } else { 1524 /* 1525 * The exitcode and collateral have been populated. 1526 * The VM exit will be processed further in userland. 1527 */ 1528 } 1529 } 1530 return (handled); 1531 } 1532 1533 /* 1534 * Inject exceptions, NMIs, and ExtINTs. 1535 * 1536 * The logic behind these are complicated and may involve mutex contention, so 1537 * the injection is performed without the protection of host CPU interrupts 1538 * being disabled. This means a racing notification could be "lost", 1539 * necessitating a later call to svm_inject_recheck() to close that window 1540 * of opportunity. 1541 */ 1542 static enum event_inject_state 1543 svm_inject_events(struct svm_softc *sc, int vcpu) 1544 { 1545 struct vmcb_ctrl *ctrl; 1546 struct vmcb_state *state; 1547 struct svm_vcpu *vcpustate; 1548 uint64_t intinfo; 1549 enum event_inject_state ev_state; 1550 1551 state = svm_get_vmcb_state(sc, vcpu); 1552 ctrl = svm_get_vmcb_ctrl(sc, vcpu); 1553 vcpustate = svm_get_vcpu(sc, vcpu); 1554 ev_state = EIS_CAN_INJECT; 1555 1556 /* Clear any interrupt shadow if guest %rip has changed */ 1557 if (vcpustate->nextrip != state->rip) { 1558 ctrl->intr_shadow = 0; 1559 } 1560 1561 /* 1562 * An event is already pending for injection. This can occur when the 1563 * vCPU exits prior to VM entry (like for an AST). 1564 */ 1565 if (ctrl->eventinj & VMCB_EVENTINJ_VALID) { 1566 return (EIS_EV_EXISTING | EIS_REQ_EXIT); 1567 } 1568 1569 /* 1570 * Inject pending events or exceptions for this vcpu. 1571 * 1572 * An event might be pending because the previous #VMEXIT happened 1573 * during event delivery (i.e. ctrl->exitintinfo). 1574 * 1575 * An event might also be pending because an exception was injected 1576 * by the hypervisor (e.g. #PF during instruction emulation). 1577 */ 1578 if (vm_entry_intinfo(sc->vm, vcpu, &intinfo)) { 1579 svm_inject_event(ctrl, intinfo); 1580 vmm_stat_incr(sc->vm, vcpu, VCPU_INTINFO_INJECTED, 1); 1581 ev_state = EIS_EV_INJECTED; 1582 } 1583 1584 /* NMI event has priority over interrupts. */ 1585 if (vm_nmi_pending(sc->vm, vcpu) && !svm_nmi_blocked(sc, vcpu)) { 1586 if (ev_state == EIS_CAN_INJECT) { 1587 /* Can't inject NMI if vcpu is in an intr_shadow. */ 1588 if (ctrl->intr_shadow) { 1589 return (EIS_GI_BLOCK); 1590 } 1591 1592 svm_inject_nmi(sc, vcpu); 1593 ev_state = EIS_EV_INJECTED; 1594 } else { 1595 return (ev_state | EIS_REQ_EXIT); 1596 } 1597 } 1598 1599 if (vm_extint_pending(sc->vm, vcpu)) { 1600 int vector; 1601 1602 if (ev_state != EIS_CAN_INJECT) { 1603 return (ev_state | EIS_REQ_EXIT); 1604 } 1605 1606 /* 1607 * If the guest has disabled interrupts or is in an interrupt 1608 * shadow then we cannot inject the pending interrupt. 1609 */ 1610 if ((state->rflags & PSL_I) == 0 || ctrl->intr_shadow) { 1611 return (EIS_GI_BLOCK); 1612 } 1613 1614 /* Ask the legacy pic for a vector to inject */ 1615 vatpic_pending_intr(sc->vm, &vector); 1616 KASSERT(vector >= 0 && vector <= 255, 1617 ("invalid vector %d from INTR", vector)); 1618 1619 svm_inject_irq(sc, vcpu, vector); 1620 vm_extint_clear(sc->vm, vcpu); 1621 vatpic_intr_accepted(sc->vm, vector); 1622 ev_state = EIS_EV_INJECTED; 1623 } 1624 1625 return (ev_state); 1626 } 1627 1628 /* 1629 * Synchronize vLAPIC state and inject any interrupts pending on it. 1630 * 1631 * This is done with host CPU interrupts disabled so notification IPIs will be 1632 * queued on the host APIC and recognized when entering SVM guest context. 1633 */ 1634 static enum event_inject_state 1635 svm_inject_vlapic(struct svm_softc *sc, int vcpu, struct vlapic *vlapic, 1636 enum event_inject_state ev_state) 1637 { 1638 struct vmcb_ctrl *ctrl; 1639 struct vmcb_state *state; 1640 int vector; 1641 uint8_t v_tpr; 1642 1643 state = svm_get_vmcb_state(sc, vcpu); 1644 ctrl = svm_get_vmcb_ctrl(sc, vcpu); 1645 1646 /* 1647 * The guest can modify the TPR by writing to %cr8. In guest mode the 1648 * CPU reflects this write to V_TPR without hypervisor intervention. 1649 * 1650 * The guest can also modify the TPR by writing to it via the memory 1651 * mapped APIC page. In this case, the write will be emulated by the 1652 * hypervisor. For this reason V_TPR must be updated before every 1653 * VMRUN. 1654 */ 1655 v_tpr = vlapic_get_cr8(vlapic); 1656 KASSERT(v_tpr <= 15, ("invalid v_tpr %x", v_tpr)); 1657 if (ctrl->v_tpr != v_tpr) { 1658 ctrl->v_tpr = v_tpr; 1659 svm_set_dirty(sc, vcpu, VMCB_CACHE_TPR); 1660 } 1661 1662 /* If an event cannot otherwise be injected, we are done for now */ 1663 if (ev_state != EIS_CAN_INJECT) { 1664 return (ev_state); 1665 } 1666 1667 if (!vlapic_pending_intr(vlapic, &vector)) { 1668 return (EIS_CAN_INJECT); 1669 } 1670 KASSERT(vector >= 16 && vector <= 255, 1671 ("invalid vector %d from local APIC", vector)); 1672 1673 /* 1674 * If the guest has disabled interrupts or is in an interrupt shadow 1675 * then we cannot inject the pending interrupt. 1676 */ 1677 if ((state->rflags & PSL_I) == 0 || ctrl->intr_shadow) { 1678 return (EIS_GI_BLOCK); 1679 } 1680 1681 svm_inject_irq(sc, vcpu, vector); 1682 vlapic_intr_accepted(vlapic, vector); 1683 return (EIS_EV_INJECTED); 1684 } 1685 1686 /* 1687 * Re-check for events to be injected. 1688 * 1689 * Once host CPU interrupts are disabled, check for the presence of any events 1690 * which require injection processing. If an exit is required upon injection, 1691 * or once the guest becomes interruptable, that will be configured too. 1692 */ 1693 static bool 1694 svm_inject_recheck(struct svm_softc *sc, int vcpu, 1695 enum event_inject_state ev_state) 1696 { 1697 struct vmcb_ctrl *ctrl; 1698 1699 ctrl = svm_get_vmcb_ctrl(sc, vcpu); 1700 1701 if (ev_state == EIS_CAN_INJECT) { 1702 /* 1703 * An active interrupt shadow would preclude us from injecting 1704 * any events picked up during a re-check. 1705 */ 1706 if (ctrl->intr_shadow != 0) { 1707 return (false); 1708 } 1709 1710 if (vm_nmi_pending(sc->vm, vcpu) && 1711 !svm_nmi_blocked(sc, vcpu)) { 1712 /* queued NMI not blocked by NMI-window-exiting */ 1713 return (true); 1714 } 1715 if (vm_extint_pending(sc->vm, vcpu)) { 1716 /* queued ExtINT not blocked by existing injection */ 1717 return (true); 1718 } 1719 } else { 1720 if ((ev_state & EIS_REQ_EXIT) != 0) { 1721 /* 1722 * Use a self-IPI to force an immediate exit after 1723 * event injection has occurred. 1724 */ 1725 poke_cpu(CPU->cpu_id); 1726 } else { 1727 /* 1728 * If any event is being injected, an exit immediately 1729 * upon becoming interruptable again will allow pending 1730 * or newly queued events to be injected in a timely 1731 * manner. 1732 */ 1733 svm_enable_intr_window_exiting(sc, vcpu); 1734 } 1735 } 1736 return (false); 1737 } 1738 1739 1740 static void 1741 check_asid(struct svm_softc *sc, int vcpuid, uint_t thiscpu, uint64_t nptgen) 1742 { 1743 struct svm_vcpu *vcpustate = svm_get_vcpu(sc, vcpuid); 1744 struct vmcb_ctrl *ctrl = svm_get_vmcb_ctrl(sc, vcpuid); 1745 uint8_t flush; 1746 1747 flush = hma_svm_asid_update(&vcpustate->hma_asid, flush_by_asid(), 1748 vcpustate->nptgen != nptgen); 1749 1750 if (flush != VMCB_TLB_FLUSH_NOTHING) { 1751 ctrl->asid = vcpustate->hma_asid.hsa_asid; 1752 svm_set_dirty(sc, vcpuid, VMCB_CACHE_ASID); 1753 } 1754 ctrl->tlb_ctrl = flush; 1755 vcpustate->nptgen = nptgen; 1756 } 1757 1758 static void 1759 flush_asid(struct svm_softc *sc, int vcpuid) 1760 { 1761 struct svm_vcpu *vcpustate = svm_get_vcpu(sc, vcpuid); 1762 struct vmcb_ctrl *ctrl = svm_get_vmcb_ctrl(sc, vcpuid); 1763 uint8_t flush; 1764 1765 flush = hma_svm_asid_update(&vcpustate->hma_asid, flush_by_asid(), 1766 true); 1767 1768 ASSERT(flush != VMCB_TLB_FLUSH_NOTHING); 1769 ctrl->asid = vcpustate->hma_asid.hsa_asid; 1770 ctrl->tlb_ctrl = flush; 1771 svm_set_dirty(sc, vcpuid, VMCB_CACHE_ASID); 1772 /* 1773 * A potential future optimization: We could choose to update the nptgen 1774 * associated with the vCPU, since any pending nptgen change requiring a 1775 * flush will be satisfied by the one which has just now been queued. 1776 */ 1777 } 1778 1779 static __inline void 1780 disable_gintr(void) 1781 { 1782 __asm __volatile("clgi"); 1783 } 1784 1785 static __inline void 1786 enable_gintr(void) 1787 { 1788 __asm __volatile("stgi"); 1789 } 1790 1791 static __inline void 1792 svm_dr_enter_guest(struct svm_regctx *gctx) 1793 { 1794 1795 /* Save host control debug registers. */ 1796 gctx->host_dr7 = rdr7(); 1797 gctx->host_debugctl = rdmsr(MSR_DEBUGCTLMSR); 1798 1799 /* 1800 * Disable debugging in DR7 and DEBUGCTL to avoid triggering 1801 * exceptions in the host based on the guest DRx values. The 1802 * guest DR6, DR7, and DEBUGCTL are saved/restored in the 1803 * VMCB. 1804 */ 1805 load_dr7(0); 1806 wrmsr(MSR_DEBUGCTLMSR, 0); 1807 1808 /* Save host debug registers. */ 1809 gctx->host_dr0 = rdr0(); 1810 gctx->host_dr1 = rdr1(); 1811 gctx->host_dr2 = rdr2(); 1812 gctx->host_dr3 = rdr3(); 1813 gctx->host_dr6 = rdr6(); 1814 1815 /* Restore guest debug registers. */ 1816 load_dr0(gctx->sctx_dr0); 1817 load_dr1(gctx->sctx_dr1); 1818 load_dr2(gctx->sctx_dr2); 1819 load_dr3(gctx->sctx_dr3); 1820 } 1821 1822 static __inline void 1823 svm_dr_leave_guest(struct svm_regctx *gctx) 1824 { 1825 1826 /* Save guest debug registers. */ 1827 gctx->sctx_dr0 = rdr0(); 1828 gctx->sctx_dr1 = rdr1(); 1829 gctx->sctx_dr2 = rdr2(); 1830 gctx->sctx_dr3 = rdr3(); 1831 1832 /* 1833 * Restore host debug registers. Restore DR7 and DEBUGCTL 1834 * last. 1835 */ 1836 load_dr0(gctx->host_dr0); 1837 load_dr1(gctx->host_dr1); 1838 load_dr2(gctx->host_dr2); 1839 load_dr3(gctx->host_dr3); 1840 load_dr6(gctx->host_dr6); 1841 wrmsr(MSR_DEBUGCTLMSR, gctx->host_debugctl); 1842 load_dr7(gctx->host_dr7); 1843 } 1844 1845 static void 1846 svm_apply_tsc_adjust(struct svm_softc *svm_sc, int vcpuid) 1847 { 1848 const uint64_t offset = vcpu_tsc_offset(svm_sc->vm, vcpuid, true); 1849 struct vmcb_ctrl *ctrl = svm_get_vmcb_ctrl(svm_sc, vcpuid); 1850 1851 if (ctrl->tsc_offset != offset) { 1852 ctrl->tsc_offset = offset; 1853 svm_set_dirty(svm_sc, vcpuid, VMCB_CACHE_I); 1854 } 1855 } 1856 1857 1858 /* 1859 * Start vcpu with specified RIP. 1860 */ 1861 static int 1862 svm_vmrun(void *arg, int vcpu, uint64_t rip) 1863 { 1864 struct svm_regctx *gctx; 1865 struct svm_softc *svm_sc; 1866 struct svm_vcpu *vcpustate; 1867 struct vmcb_state *state; 1868 struct vmcb_ctrl *ctrl; 1869 struct vm_exit *vmexit; 1870 struct vlapic *vlapic; 1871 vm_client_t *vmc; 1872 struct vm *vm; 1873 uint64_t vmcb_pa; 1874 int handled; 1875 uint16_t ldt_sel; 1876 1877 svm_sc = arg; 1878 vm = svm_sc->vm; 1879 1880 vcpustate = svm_get_vcpu(svm_sc, vcpu); 1881 state = svm_get_vmcb_state(svm_sc, vcpu); 1882 ctrl = svm_get_vmcb_ctrl(svm_sc, vcpu); 1883 vmexit = vm_exitinfo(vm, vcpu); 1884 vlapic = vm_lapic(vm, vcpu); 1885 vmc = vm_get_vmclient(vm, vcpu); 1886 1887 gctx = svm_get_guest_regctx(svm_sc, vcpu); 1888 vmcb_pa = svm_sc->vcpu[vcpu].vmcb_pa; 1889 1890 if (vcpustate->lastcpu != curcpu) { 1891 /* 1892 * Force new ASID allocation by invalidating the generation. 1893 */ 1894 vcpustate->hma_asid.hsa_gen = 0; 1895 1896 /* 1897 * Invalidate the VMCB state cache by marking all fields dirty. 1898 */ 1899 svm_set_dirty(svm_sc, vcpu, 0xffffffff); 1900 1901 /* 1902 * XXX 1903 * Setting 'vcpustate->lastcpu' here is bit premature because 1904 * we may return from this function without actually executing 1905 * the VMRUN instruction. This could happen if an AST or yield 1906 * condition is pending on the first time through the loop. 1907 * 1908 * This works for now but any new side-effects of vcpu 1909 * migration should take this case into account. 1910 */ 1911 vcpustate->lastcpu = curcpu; 1912 vmm_stat_incr(vm, vcpu, VCPU_MIGRATIONS, 1); 1913 } 1914 1915 svm_apply_tsc_adjust(svm_sc, vcpu); 1916 1917 svm_msr_guest_enter(svm_sc, vcpu); 1918 1919 VERIFY(!vcpustate->loaded && curthread->t_preempt != 0); 1920 vcpustate->loaded = B_TRUE; 1921 1922 /* Update Guest RIP */ 1923 state->rip = rip; 1924 1925 do { 1926 enum event_inject_state inject_state; 1927 uint64_t nptgen; 1928 1929 /* 1930 * Initial event injection is complex and may involve mutex 1931 * contention, so it must be performed with global interrupts 1932 * still enabled. 1933 */ 1934 inject_state = svm_inject_events(svm_sc, vcpu); 1935 handled = 0; 1936 1937 /* 1938 * Disable global interrupts to guarantee atomicity during 1939 * loading of guest state. This includes not only the state 1940 * loaded by the "vmrun" instruction but also software state 1941 * maintained by the hypervisor: suspended and rendezvous 1942 * state, NPT generation number, vlapic interrupts etc. 1943 */ 1944 disable_gintr(); 1945 1946 /* 1947 * Synchronizing and injecting vlapic state is lock-free and is 1948 * safe (and prudent) to perform with interrupts disabled. 1949 */ 1950 inject_state = svm_inject_vlapic(svm_sc, vcpu, vlapic, 1951 inject_state); 1952 1953 /* 1954 * Check for vCPU bail-out conditions. This must be done after 1955 * svm_inject_events() to detect a triple-fault condition. 1956 */ 1957 if (vcpu_entry_bailout_checks(vm, vcpu, state->rip)) { 1958 enable_gintr(); 1959 break; 1960 } 1961 1962 if (vcpu_run_state_pending(vm, vcpu)) { 1963 enable_gintr(); 1964 vm_exit_run_state(vm, vcpu, state->rip); 1965 break; 1966 } 1967 1968 /* 1969 * If subsequent activity queued events which require injection 1970 * handling, take another lap to handle them. 1971 */ 1972 if (svm_inject_recheck(svm_sc, vcpu, inject_state)) { 1973 enable_gintr(); 1974 handled = 1; 1975 continue; 1976 } 1977 1978 /* 1979 * #VMEXIT resumes the host with the guest LDTR, so 1980 * save the current LDT selector so it can be restored 1981 * after an exit. The userspace hypervisor probably 1982 * doesn't use a LDT, but save and restore it to be 1983 * safe. 1984 */ 1985 ldt_sel = sldt(); 1986 1987 /* 1988 * Check the vmspace and ASID generations to ensure that the 1989 * vcpu does not use stale TLB mappings. 1990 */ 1991 nptgen = vmc_table_enter(vmc); 1992 check_asid(svm_sc, vcpu, curcpu, nptgen); 1993 1994 ctrl->vmcb_clean = vmcb_clean & ~vcpustate->dirty; 1995 vcpustate->dirty = 0; 1996 1997 /* Launch Virtual Machine. */ 1998 vcpu_ustate_change(vm, vcpu, VU_RUN); 1999 svm_dr_enter_guest(gctx); 2000 svm_launch(vmcb_pa, gctx, get_pcpu()); 2001 svm_dr_leave_guest(gctx); 2002 vcpu_ustate_change(vm, vcpu, VU_EMU_KERN); 2003 2004 /* Restore host LDTR. */ 2005 lldt(ldt_sel); 2006 2007 /* #VMEXIT disables interrupts so re-enable them here. */ 2008 enable_gintr(); 2009 2010 vmc_table_exit(vmc); 2011 2012 /* Update 'nextrip' */ 2013 vcpustate->nextrip = state->rip; 2014 2015 /* Handle #VMEXIT and if required return to user space. */ 2016 handled = svm_vmexit(svm_sc, vcpu, vmexit); 2017 } while (handled); 2018 2019 svm_msr_guest_exit(svm_sc, vcpu); 2020 2021 VERIFY(vcpustate->loaded && curthread->t_preempt != 0); 2022 vcpustate->loaded = B_FALSE; 2023 2024 return (0); 2025 } 2026 2027 static void 2028 svm_vmcleanup(void *arg) 2029 { 2030 struct svm_softc *sc = arg; 2031 2032 vmm_contig_free(sc->iopm_bitmap, SVM_IO_BITMAP_SIZE); 2033 vmm_contig_free(sc->msr_bitmap, SVM_MSR_BITMAP_SIZE); 2034 kmem_free(sc, sizeof (*sc)); 2035 } 2036 2037 static uint64_t * 2038 swctx_regptr(struct svm_regctx *regctx, int reg) 2039 { 2040 switch (reg) { 2041 case VM_REG_GUEST_RBX: 2042 return (®ctx->sctx_rbx); 2043 case VM_REG_GUEST_RCX: 2044 return (®ctx->sctx_rcx); 2045 case VM_REG_GUEST_RDX: 2046 return (®ctx->sctx_rdx); 2047 case VM_REG_GUEST_RDI: 2048 return (®ctx->sctx_rdi); 2049 case VM_REG_GUEST_RSI: 2050 return (®ctx->sctx_rsi); 2051 case VM_REG_GUEST_RBP: 2052 return (®ctx->sctx_rbp); 2053 case VM_REG_GUEST_R8: 2054 return (®ctx->sctx_r8); 2055 case VM_REG_GUEST_R9: 2056 return (®ctx->sctx_r9); 2057 case VM_REG_GUEST_R10: 2058 return (®ctx->sctx_r10); 2059 case VM_REG_GUEST_R11: 2060 return (®ctx->sctx_r11); 2061 case VM_REG_GUEST_R12: 2062 return (®ctx->sctx_r12); 2063 case VM_REG_GUEST_R13: 2064 return (®ctx->sctx_r13); 2065 case VM_REG_GUEST_R14: 2066 return (®ctx->sctx_r14); 2067 case VM_REG_GUEST_R15: 2068 return (®ctx->sctx_r15); 2069 case VM_REG_GUEST_DR0: 2070 return (®ctx->sctx_dr0); 2071 case VM_REG_GUEST_DR1: 2072 return (®ctx->sctx_dr1); 2073 case VM_REG_GUEST_DR2: 2074 return (®ctx->sctx_dr2); 2075 case VM_REG_GUEST_DR3: 2076 return (®ctx->sctx_dr3); 2077 default: 2078 return (NULL); 2079 } 2080 } 2081 2082 static int 2083 svm_getreg(void *arg, int vcpu, int ident, uint64_t *val) 2084 { 2085 struct svm_softc *sc; 2086 struct vmcb *vmcb; 2087 uint64_t *regp; 2088 uint64_t *fieldp; 2089 struct vmcb_segment *seg; 2090 2091 sc = arg; 2092 vmcb = svm_get_vmcb(sc, vcpu); 2093 2094 regp = swctx_regptr(svm_get_guest_regctx(sc, vcpu), ident); 2095 if (regp != NULL) { 2096 *val = *regp; 2097 return (0); 2098 } 2099 2100 switch (ident) { 2101 case VM_REG_GUEST_INTR_SHADOW: 2102 *val = (vmcb->ctrl.intr_shadow != 0) ? 1 : 0; 2103 break; 2104 2105 case VM_REG_GUEST_CR0: 2106 svm_get_cr0(sc, vcpu, val); 2107 break; 2108 case VM_REG_GUEST_CR2: 2109 case VM_REG_GUEST_CR3: 2110 case VM_REG_GUEST_CR4: 2111 case VM_REG_GUEST_DR6: 2112 case VM_REG_GUEST_DR7: 2113 case VM_REG_GUEST_EFER: 2114 case VM_REG_GUEST_RAX: 2115 case VM_REG_GUEST_RFLAGS: 2116 case VM_REG_GUEST_RIP: 2117 case VM_REG_GUEST_RSP: 2118 fieldp = vmcb_regptr(vmcb, ident, NULL); 2119 *val = *fieldp; 2120 break; 2121 2122 case VM_REG_GUEST_CS: 2123 case VM_REG_GUEST_DS: 2124 case VM_REG_GUEST_ES: 2125 case VM_REG_GUEST_FS: 2126 case VM_REG_GUEST_GS: 2127 case VM_REG_GUEST_SS: 2128 case VM_REG_GUEST_LDTR: 2129 case VM_REG_GUEST_TR: 2130 seg = vmcb_segptr(vmcb, ident); 2131 *val = seg->selector; 2132 break; 2133 2134 case VM_REG_GUEST_GDTR: 2135 case VM_REG_GUEST_IDTR: 2136 /* GDTR and IDTR don't have segment selectors */ 2137 return (EINVAL); 2138 2139 case VM_REG_GUEST_PDPTE0: 2140 case VM_REG_GUEST_PDPTE1: 2141 case VM_REG_GUEST_PDPTE2: 2142 case VM_REG_GUEST_PDPTE3: 2143 /* 2144 * Unlike VMX, where the PDPTEs are explicitly cached as part of 2145 * several well-defined events related to paging (such as 2146 * loading %cr3), SVM walks the PDPEs (their PDPTE) as part of 2147 * nested paging lookups. This makes these registers 2148 * effectively irrelevant on SVM. 2149 * 2150 * Rather than tossing an error, emit zeroed values so casual 2151 * consumers do not need to be as careful about that difference. 2152 */ 2153 *val = 0; 2154 break; 2155 2156 default: 2157 return (EINVAL); 2158 } 2159 2160 return (0); 2161 } 2162 2163 static int 2164 svm_setreg(void *arg, int vcpu, int ident, uint64_t val) 2165 { 2166 struct svm_softc *sc; 2167 struct vmcb *vmcb; 2168 uint64_t *regp; 2169 uint64_t *fieldp; 2170 uint32_t dirty; 2171 struct vmcb_segment *seg; 2172 2173 sc = arg; 2174 vmcb = svm_get_vmcb(sc, vcpu); 2175 2176 regp = swctx_regptr(svm_get_guest_regctx(sc, vcpu), ident); 2177 if (regp != NULL) { 2178 *regp = val; 2179 return (0); 2180 } 2181 2182 dirty = VMCB_CACHE_NONE; 2183 switch (ident) { 2184 case VM_REG_GUEST_INTR_SHADOW: 2185 vmcb->ctrl.intr_shadow = (val != 0) ? 1 : 0; 2186 break; 2187 2188 case VM_REG_GUEST_EFER: 2189 fieldp = vmcb_regptr(vmcb, ident, &dirty); 2190 /* EFER_SVM must always be set when the guest is executing */ 2191 *fieldp = val | EFER_SVM; 2192 dirty |= VMCB_CACHE_CR; 2193 break; 2194 2195 case VM_REG_GUEST_CR0: 2196 svm_set_cr0(sc, vcpu, val, false); 2197 break; 2198 case VM_REG_GUEST_CR2: 2199 case VM_REG_GUEST_CR3: 2200 case VM_REG_GUEST_CR4: 2201 case VM_REG_GUEST_DR6: 2202 case VM_REG_GUEST_DR7: 2203 case VM_REG_GUEST_RAX: 2204 case VM_REG_GUEST_RFLAGS: 2205 case VM_REG_GUEST_RIP: 2206 case VM_REG_GUEST_RSP: 2207 fieldp = vmcb_regptr(vmcb, ident, &dirty); 2208 *fieldp = val; 2209 break; 2210 2211 case VM_REG_GUEST_CS: 2212 case VM_REG_GUEST_DS: 2213 case VM_REG_GUEST_ES: 2214 case VM_REG_GUEST_SS: 2215 case VM_REG_GUEST_FS: 2216 case VM_REG_GUEST_GS: 2217 case VM_REG_GUEST_LDTR: 2218 case VM_REG_GUEST_TR: 2219 dirty |= VMCB_CACHE_SEG; 2220 seg = vmcb_segptr(vmcb, ident); 2221 seg->selector = (uint16_t)val; 2222 break; 2223 2224 case VM_REG_GUEST_GDTR: 2225 case VM_REG_GUEST_IDTR: 2226 /* GDTR and IDTR don't have segment selectors */ 2227 return (EINVAL); 2228 2229 case VM_REG_GUEST_PDPTE0: 2230 case VM_REG_GUEST_PDPTE1: 2231 case VM_REG_GUEST_PDPTE2: 2232 case VM_REG_GUEST_PDPTE3: 2233 /* 2234 * PDPEs (AMD's PDPTE) are not cached under SVM, so we can 2235 * ignore attempts to set them. See handler in svm_getreg() for 2236 * more details. 2237 */ 2238 break; 2239 2240 default: 2241 return (EINVAL); 2242 } 2243 2244 if (dirty != VMCB_CACHE_NONE) { 2245 svm_set_dirty(sc, vcpu, dirty); 2246 } 2247 2248 /* 2249 * XXX deal with CR3 and invalidate TLB entries tagged with the 2250 * vcpu's ASID. This needs to be treated differently depending on 2251 * whether 'running' is true/false. 2252 */ 2253 2254 return (0); 2255 } 2256 2257 static int 2258 svm_setdesc(void *arg, int vcpu, int reg, const struct seg_desc *desc) 2259 { 2260 struct vmcb *vmcb; 2261 struct svm_softc *sc; 2262 struct vmcb_segment *seg; 2263 2264 sc = arg; 2265 vmcb = svm_get_vmcb(sc, vcpu); 2266 2267 switch (reg) { 2268 case VM_REG_GUEST_CS: 2269 case VM_REG_GUEST_DS: 2270 case VM_REG_GUEST_ES: 2271 case VM_REG_GUEST_SS: 2272 case VM_REG_GUEST_FS: 2273 case VM_REG_GUEST_GS: 2274 case VM_REG_GUEST_LDTR: 2275 case VM_REG_GUEST_TR: 2276 svm_set_dirty(sc, vcpu, VMCB_CACHE_SEG); 2277 seg = vmcb_segptr(vmcb, reg); 2278 /* 2279 * Map seg_desc access to VMCB attribute format. 2280 * 2281 * SVM uses the 'P' bit in the segment attributes to indicate a 2282 * NULL segment so clear it if the segment is marked unusable. 2283 */ 2284 seg->attrib = VMCB_ACCESS2ATTR(desc->access); 2285 if (SEG_DESC_UNUSABLE(desc->access)) { 2286 seg->attrib &= ~0x80; 2287 } 2288 /* 2289 * Keep CPL synced with the DPL specified for %ss. 2290 * 2291 * KVM notes that a SYSRET to non-cpl-3 is possible on AMD 2292 * (unlike Intel), but accepts such a possible deviation for 2293 * what is otherwise unreasonable behavior for a guest OS, since 2294 * they do the same synchronization. 2295 */ 2296 if (reg == VM_REG_GUEST_SS) { 2297 vmcb->state.cpl = SEG_DESC_DPL(desc->access); 2298 } 2299 break; 2300 2301 case VM_REG_GUEST_GDTR: 2302 case VM_REG_GUEST_IDTR: 2303 svm_set_dirty(sc, vcpu, VMCB_CACHE_DT); 2304 seg = vmcb_segptr(vmcb, reg); 2305 break; 2306 2307 default: 2308 return (EINVAL); 2309 } 2310 2311 ASSERT(seg != NULL); 2312 seg->base = desc->base; 2313 seg->limit = desc->limit; 2314 2315 return (0); 2316 } 2317 2318 static int 2319 svm_getdesc(void *arg, int vcpu, int reg, struct seg_desc *desc) 2320 { 2321 struct vmcb *vmcb; 2322 struct svm_softc *sc; 2323 struct vmcb_segment *seg; 2324 2325 sc = arg; 2326 vmcb = svm_get_vmcb(sc, vcpu); 2327 2328 switch (reg) { 2329 case VM_REG_GUEST_DS: 2330 case VM_REG_GUEST_ES: 2331 case VM_REG_GUEST_FS: 2332 case VM_REG_GUEST_GS: 2333 case VM_REG_GUEST_SS: 2334 case VM_REG_GUEST_LDTR: 2335 seg = vmcb_segptr(vmcb, reg); 2336 desc->access = VMCB_ATTR2ACCESS(seg->attrib); 2337 /* 2338 * VT-x uses bit 16 to indicate a segment that has been loaded 2339 * with a NULL selector (aka unusable). The 'desc->access' 2340 * field is interpreted in the VT-x format by the 2341 * processor-independent code. 2342 * 2343 * SVM uses the 'P' bit to convey the same information so 2344 * convert it into the VT-x format. For more details refer to 2345 * section "Segment State in the VMCB" in APMv2. 2346 */ 2347 if ((desc->access & 0x80) == 0) { 2348 /* Unusable segment */ 2349 desc->access |= 0x10000; 2350 } 2351 break; 2352 2353 case VM_REG_GUEST_CS: 2354 case VM_REG_GUEST_TR: 2355 seg = vmcb_segptr(vmcb, reg); 2356 desc->access = VMCB_ATTR2ACCESS(seg->attrib); 2357 break; 2358 2359 case VM_REG_GUEST_GDTR: 2360 case VM_REG_GUEST_IDTR: 2361 seg = vmcb_segptr(vmcb, reg); 2362 /* 2363 * Since there are no access bits associated with the GDTR or 2364 * the IDTR, zero out the field to ensure it does not contain 2365 * garbage which might confuse the consumer. 2366 */ 2367 desc->access = 0; 2368 break; 2369 2370 default: 2371 return (EINVAL); 2372 } 2373 2374 ASSERT(seg != NULL); 2375 desc->base = seg->base; 2376 desc->limit = seg->limit; 2377 return (0); 2378 } 2379 2380 static int 2381 svm_get_msr(void *arg, int vcpu, uint32_t msr, uint64_t *valp) 2382 { 2383 struct svm_softc *sc = arg; 2384 struct vmcb *vmcb = svm_get_vmcb(sc, vcpu); 2385 const uint64_t *msrp = vmcb_msr_ptr(vmcb, msr, NULL); 2386 2387 if (msrp != NULL) { 2388 *valp = *msrp; 2389 return (0); 2390 } 2391 2392 return (EINVAL); 2393 } 2394 2395 static int 2396 svm_set_msr(void *arg, int vcpu, uint32_t msr, uint64_t val) 2397 { 2398 struct svm_softc *sc = arg; 2399 struct vmcb *vmcb = svm_get_vmcb(sc, vcpu); 2400 2401 uint32_t dirty = 0; 2402 uint64_t *msrp = vmcb_msr_ptr(vmcb, msr, &dirty); 2403 if (msrp == NULL) { 2404 return (EINVAL); 2405 } 2406 switch (msr) { 2407 case MSR_EFER: 2408 /* 2409 * For now, just clone the logic from 2410 * svm_setreg(): 2411 * 2412 * EFER_SVM must always be set when the guest is 2413 * executing 2414 */ 2415 *msrp = val | EFER_SVM; 2416 break; 2417 /* TODO: other necessary MSR masking */ 2418 default: 2419 *msrp = val; 2420 break; 2421 } 2422 if (dirty != 0) { 2423 svm_set_dirty(sc, vcpu, dirty); 2424 } 2425 return (0); 2426 2427 } 2428 2429 static int 2430 svm_setcap(void *arg, int vcpu, int type, int val) 2431 { 2432 struct svm_softc *sc; 2433 int error; 2434 2435 sc = arg; 2436 error = 0; 2437 switch (type) { 2438 case VM_CAP_HALT_EXIT: 2439 svm_set_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, 2440 VMCB_INTCPT_HLT, val); 2441 break; 2442 case VM_CAP_PAUSE_EXIT: 2443 svm_set_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, 2444 VMCB_INTCPT_PAUSE, val); 2445 break; 2446 default: 2447 error = ENOENT; 2448 break; 2449 } 2450 return (error); 2451 } 2452 2453 static int 2454 svm_getcap(void *arg, int vcpu, int type, int *retval) 2455 { 2456 struct svm_softc *sc; 2457 int error; 2458 2459 sc = arg; 2460 error = 0; 2461 2462 switch (type) { 2463 case VM_CAP_HALT_EXIT: 2464 *retval = svm_get_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, 2465 VMCB_INTCPT_HLT); 2466 break; 2467 case VM_CAP_PAUSE_EXIT: 2468 *retval = svm_get_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, 2469 VMCB_INTCPT_PAUSE); 2470 break; 2471 default: 2472 error = ENOENT; 2473 break; 2474 } 2475 return (error); 2476 } 2477 2478 static struct vlapic * 2479 svm_vlapic_init(void *arg, int vcpuid) 2480 { 2481 struct svm_softc *svm_sc; 2482 struct vlapic *vlapic; 2483 2484 svm_sc = arg; 2485 vlapic = kmem_zalloc(sizeof (struct vlapic), KM_SLEEP); 2486 vlapic->vm = svm_sc->vm; 2487 vlapic->vcpuid = vcpuid; 2488 vlapic->apic_page = (struct LAPIC *)&svm_sc->apic_page[vcpuid]; 2489 2490 vlapic_init(vlapic); 2491 2492 return (vlapic); 2493 } 2494 2495 static void 2496 svm_vlapic_cleanup(void *arg, struct vlapic *vlapic) 2497 { 2498 vlapic_cleanup(vlapic); 2499 kmem_free(vlapic, sizeof (struct vlapic)); 2500 } 2501 2502 static void 2503 svm_savectx(void *arg, int vcpu) 2504 { 2505 struct svm_softc *sc = arg; 2506 2507 if (sc->vcpu[vcpu].loaded) { 2508 svm_msr_guest_exit(sc, vcpu); 2509 } 2510 } 2511 2512 static void 2513 svm_restorectx(void *arg, int vcpu) 2514 { 2515 struct svm_softc *sc = arg; 2516 2517 if (sc->vcpu[vcpu].loaded) { 2518 svm_msr_guest_enter(sc, vcpu); 2519 } 2520 } 2521 2522 struct vmm_ops vmm_ops_amd = { 2523 .init = svm_init, 2524 .cleanup = svm_cleanup, 2525 .resume = svm_restore, 2526 2527 .vminit = svm_vminit, 2528 .vmrun = svm_vmrun, 2529 .vmcleanup = svm_vmcleanup, 2530 .vmgetreg = svm_getreg, 2531 .vmsetreg = svm_setreg, 2532 .vmgetdesc = svm_getdesc, 2533 .vmsetdesc = svm_setdesc, 2534 .vmgetcap = svm_getcap, 2535 .vmsetcap = svm_setcap, 2536 .vlapic_init = svm_vlapic_init, 2537 .vlapic_cleanup = svm_vlapic_cleanup, 2538 2539 .vmsavectx = svm_savectx, 2540 .vmrestorectx = svm_restorectx, 2541 2542 .vmgetmsr = svm_get_msr, 2543 .vmsetmsr = svm_set_msr, 2544 }; 2545