1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2013, Anish Gupta (akgupt3@gmail.com) 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice unmodified, this list of conditions, and the following 12 * disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 */ 28 29 /* 30 * This file and its contents are supplied under the terms of the 31 * Common Development and Distribution License ("CDDL"), version 1.0. 32 * You may only use this file in accordance with the terms of version 33 * 1.0 of the CDDL. 34 * 35 * A full copy of the text of the CDDL should have accompanied this 36 * source. A copy of the CDDL is also available via the Internet at 37 * http://www.illumos.org/license/CDDL. 38 * 39 * Copyright 2018 Joyent, Inc. 40 * Copyright 2023 Oxide Computer Company 41 */ 42 43 #include <sys/cdefs.h> 44 __FBSDID("$FreeBSD$"); 45 46 #include <sys/param.h> 47 #include <sys/systm.h> 48 #include <sys/kernel.h> 49 #include <sys/kmem.h> 50 #include <sys/pcpu.h> 51 #include <sys/proc.h> 52 #include <sys/sysctl.h> 53 54 #include <sys/x86_archext.h> 55 #include <sys/trap.h> 56 57 #include <machine/cpufunc.h> 58 #include <machine/psl.h> 59 #include <machine/md_var.h> 60 #include <machine/reg.h> 61 #include <machine/specialreg.h> 62 #include <machine/vmm.h> 63 #include <machine/vmm_dev.h> 64 #include <sys/vmm_instruction_emul.h> 65 #include <sys/vmm_vm.h> 66 #include <sys/vmm_kernel.h> 67 68 #include "vmm_lapic.h" 69 #include "vmm_stat.h" 70 #include "vmm_ioport.h" 71 #include "vatpic.h" 72 #include "vlapic.h" 73 #include "vlapic_priv.h" 74 75 #include "vmcb.h" 76 #include "svm.h" 77 #include "svm_softc.h" 78 #include "svm_msr.h" 79 80 SYSCTL_DECL(_hw_vmm); 81 SYSCTL_NODE(_hw_vmm, OID_AUTO, svm, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL, 82 NULL); 83 84 /* 85 * SVM CPUID function 0x8000_000A, edx bit decoding. 86 */ 87 #define AMD_CPUID_SVM_NP BIT(0) /* Nested paging or RVI */ 88 #define AMD_CPUID_SVM_LBR BIT(1) /* Last branch virtualization */ 89 #define AMD_CPUID_SVM_SVML BIT(2) /* SVM lock */ 90 #define AMD_CPUID_SVM_NRIP_SAVE BIT(3) /* Next RIP is saved */ 91 #define AMD_CPUID_SVM_TSC_RATE BIT(4) /* TSC rate control. */ 92 #define AMD_CPUID_SVM_VMCB_CLEAN BIT(5) /* VMCB state caching */ 93 #define AMD_CPUID_SVM_FLUSH_BY_ASID BIT(6) /* Flush by ASID */ 94 #define AMD_CPUID_SVM_DECODE_ASSIST BIT(7) /* Decode assist */ 95 #define AMD_CPUID_SVM_PAUSE_INC BIT(10) /* Pause intercept filter. */ 96 #define AMD_CPUID_SVM_PAUSE_FTH BIT(12) /* Pause filter threshold */ 97 #define AMD_CPUID_SVM_AVIC BIT(13) /* AVIC present */ 98 99 #define VMCB_CACHE_DEFAULT (VMCB_CACHE_ASID | \ 100 VMCB_CACHE_IOPM | \ 101 VMCB_CACHE_I | \ 102 VMCB_CACHE_TPR | \ 103 VMCB_CACHE_CR2 | \ 104 VMCB_CACHE_CR | \ 105 VMCB_CACHE_DR | \ 106 VMCB_CACHE_DT | \ 107 VMCB_CACHE_SEG | \ 108 VMCB_CACHE_NP) 109 110 /* 111 * Guardrails for supported guest TSC frequencies. 112 * 113 * A minimum of 0.5 GHz, which should be sufficient for all recent AMD CPUs, and 114 * a maximum ratio of (15 * host frequency), which is sufficient to prevent 115 * overflowing frequency calcuations and give plenty of bandwidth for future CPU 116 * frequency increases. 117 */ 118 #define AMD_TSC_MIN_FREQ 500000000 119 #define AMD_TSC_MAX_FREQ_RATIO 15 120 121 static bool svm_has_tsc_freq_ctl; 122 123 static uint32_t vmcb_clean = VMCB_CACHE_DEFAULT; 124 SYSCTL_INT(_hw_vmm_svm, OID_AUTO, vmcb_clean, CTLFLAG_RDTUN, &vmcb_clean, 125 0, NULL); 126 127 /* SVM features advertised by CPUID.8000000AH:EDX */ 128 static uint32_t svm_feature = ~0U; /* AMD SVM features. */ 129 130 static int disable_npf_assist; 131 132 static VMM_STAT_AMD(VCPU_EXITINTINFO, "VM exits during event delivery"); 133 static VMM_STAT_AMD(VCPU_INTINFO_INJECTED, "Events pending at VM entry"); 134 static VMM_STAT_AMD(VMEXIT_VINTR, "VM exits due to interrupt window"); 135 136 static int svm_setreg(void *arg, int vcpu, int ident, uint64_t val); 137 static int svm_getreg(void *arg, int vcpu, int ident, uint64_t *val); 138 static void flush_asid(struct svm_softc *sc, int vcpuid); 139 140 static __inline bool 141 flush_by_asid(void) 142 { 143 return ((svm_feature & AMD_CPUID_SVM_FLUSH_BY_ASID) != 0); 144 } 145 146 static __inline bool 147 decode_assist(void) 148 { 149 return ((svm_feature & AMD_CPUID_SVM_DECODE_ASSIST) != 0); 150 } 151 152 static bool 153 svm_tsc_freq_ctl(void) 154 { 155 return ((svm_feature & AMD_CPUID_SVM_TSC_RATE) != 0); 156 } 157 158 static int 159 svm_cleanup(void) 160 { 161 /* This is taken care of by the hma registration */ 162 return (0); 163 } 164 165 static int 166 svm_init(void) 167 { 168 vmcb_clean &= VMCB_CACHE_DEFAULT; 169 170 svm_has_tsc_freq_ctl = svm_tsc_freq_ctl(); 171 svm_msr_init(); 172 173 return (0); 174 } 175 176 static void 177 svm_restore(void) 178 { 179 /* No-op on illumos */ 180 } 181 182 /* Pentium compatible MSRs */ 183 #define MSR_PENTIUM_START 0 184 #define MSR_PENTIUM_END 0x1FFF 185 /* AMD 6th generation and Intel compatible MSRs */ 186 #define MSR_AMD6TH_START 0xC0000000UL 187 #define MSR_AMD6TH_END 0xC0001FFFUL 188 /* AMD 7th and 8th generation compatible MSRs */ 189 #define MSR_AMD7TH_START 0xC0010000UL 190 #define MSR_AMD7TH_END 0xC0011FFFUL 191 192 /* 193 * Get the index and bit position for a MSR in permission bitmap. 194 * Two bits are used for each MSR: lower bit for read and higher bit for write. 195 */ 196 static int 197 svm_msr_index(uint64_t msr, int *index, int *bit) 198 { 199 uint32_t base, off; 200 201 *index = -1; 202 *bit = (msr % 4) * 2; 203 base = 0; 204 205 if (msr <= MSR_PENTIUM_END) { 206 *index = msr / 4; 207 return (0); 208 } 209 210 base += (MSR_PENTIUM_END - MSR_PENTIUM_START + 1); 211 if (msr >= MSR_AMD6TH_START && msr <= MSR_AMD6TH_END) { 212 off = (msr - MSR_AMD6TH_START); 213 *index = (off + base) / 4; 214 return (0); 215 } 216 217 base += (MSR_AMD6TH_END - MSR_AMD6TH_START + 1); 218 if (msr >= MSR_AMD7TH_START && msr <= MSR_AMD7TH_END) { 219 off = (msr - MSR_AMD7TH_START); 220 *index = (off + base) / 4; 221 return (0); 222 } 223 224 return (EINVAL); 225 } 226 227 /* 228 * Allow vcpu to read or write the 'msr' without trapping into the hypervisor. 229 */ 230 static void 231 svm_msr_perm(uint8_t *perm_bitmap, uint64_t msr, bool read, bool write) 232 { 233 int index, bit, error; 234 235 error = svm_msr_index(msr, &index, &bit); 236 KASSERT(error == 0, ("%s: invalid msr %lx", __func__, msr)); 237 KASSERT(index >= 0 && index < SVM_MSR_BITMAP_SIZE, 238 ("%s: invalid index %d for msr %lx", __func__, index, msr)); 239 KASSERT(bit >= 0 && bit <= 6, ("%s: invalid bit position %d " 240 "msr %lx", __func__, bit, msr)); 241 242 if (read) 243 perm_bitmap[index] &= ~(1UL << bit); 244 245 if (write) 246 perm_bitmap[index] &= ~(2UL << bit); 247 } 248 249 static void 250 svm_msr_rw_ok(uint8_t *perm_bitmap, uint64_t msr) 251 { 252 253 svm_msr_perm(perm_bitmap, msr, true, true); 254 } 255 256 static void 257 svm_msr_rd_ok(uint8_t *perm_bitmap, uint64_t msr) 258 { 259 260 svm_msr_perm(perm_bitmap, msr, true, false); 261 } 262 263 static __inline int 264 svm_get_intercept(struct svm_softc *sc, int vcpu, int idx, uint32_t bitmask) 265 { 266 struct vmcb_ctrl *ctrl; 267 268 KASSERT(idx >= 0 && idx < 5, ("invalid intercept index %d", idx)); 269 270 ctrl = svm_get_vmcb_ctrl(sc, vcpu); 271 return (ctrl->intercept[idx] & bitmask ? 1 : 0); 272 } 273 274 static __inline void 275 svm_set_intercept(struct svm_softc *sc, int vcpu, int idx, uint32_t bitmask, 276 int enabled) 277 { 278 struct vmcb_ctrl *ctrl; 279 uint32_t oldval; 280 281 KASSERT(idx >= 0 && idx < 5, ("invalid intercept index %d", idx)); 282 283 ctrl = svm_get_vmcb_ctrl(sc, vcpu); 284 oldval = ctrl->intercept[idx]; 285 286 if (enabled) 287 ctrl->intercept[idx] |= bitmask; 288 else 289 ctrl->intercept[idx] &= ~bitmask; 290 291 if (ctrl->intercept[idx] != oldval) { 292 svm_set_dirty(sc, vcpu, VMCB_CACHE_I); 293 } 294 } 295 296 static __inline void 297 svm_disable_intercept(struct svm_softc *sc, int vcpu, int off, uint32_t bitmask) 298 { 299 300 svm_set_intercept(sc, vcpu, off, bitmask, 0); 301 } 302 303 static __inline void 304 svm_enable_intercept(struct svm_softc *sc, int vcpu, int off, uint32_t bitmask) 305 { 306 307 svm_set_intercept(sc, vcpu, off, bitmask, 1); 308 } 309 310 static void 311 vmcb_init(struct svm_softc *sc, int vcpu, uint64_t iopm_base_pa, 312 uint64_t msrpm_base_pa, uint64_t np_pml4) 313 { 314 struct vmcb_ctrl *ctrl; 315 struct vmcb_state *state; 316 uint32_t mask; 317 int n; 318 319 ctrl = svm_get_vmcb_ctrl(sc, vcpu); 320 state = svm_get_vmcb_state(sc, vcpu); 321 322 ctrl->iopm_base_pa = iopm_base_pa; 323 ctrl->msrpm_base_pa = msrpm_base_pa; 324 325 /* Enable nested paging */ 326 ctrl->np_ctrl = NP_ENABLE; 327 ctrl->n_cr3 = np_pml4; 328 329 /* 330 * Intercept accesses to the control registers that are not shadowed 331 * in the VMCB - i.e. all except cr0, cr2, cr3, cr4 and cr8. 332 */ 333 for (n = 0; n < 16; n++) { 334 mask = (BIT(n) << 16) | BIT(n); 335 if (n == 0 || n == 2 || n == 3 || n == 4 || n == 8) 336 svm_disable_intercept(sc, vcpu, VMCB_CR_INTCPT, mask); 337 else 338 svm_enable_intercept(sc, vcpu, VMCB_CR_INTCPT, mask); 339 } 340 341 /* 342 * Selectively intercept writes to %cr0. This triggers on operations 343 * which would change bits other than TS or MP. 344 */ 345 svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, 346 VMCB_INTCPT_CR0_WRITE); 347 348 /* 349 * Intercept everything when tracing guest exceptions otherwise 350 * just intercept machine check exception. 351 */ 352 if (vcpu_trace_exceptions(sc->vm, vcpu)) { 353 for (n = 0; n < 32; n++) { 354 /* 355 * Skip unimplemented vectors in the exception bitmap. 356 */ 357 if (n == 2 || n == 9) { 358 continue; 359 } 360 svm_enable_intercept(sc, vcpu, VMCB_EXC_INTCPT, BIT(n)); 361 } 362 } else { 363 svm_enable_intercept(sc, vcpu, VMCB_EXC_INTCPT, BIT(IDT_MC)); 364 } 365 366 /* Intercept various events (for e.g. I/O, MSR and CPUID accesses) */ 367 svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_IO); 368 svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_MSR); 369 svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_CPUID); 370 svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_INTR); 371 svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_INIT); 372 svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_NMI); 373 svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_SMI); 374 svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_SHUTDOWN); 375 svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, 376 VMCB_INTCPT_FERR_FREEZE); 377 378 /* Enable exit-on-hlt by default */ 379 svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_HLT); 380 381 svm_enable_intercept(sc, vcpu, VMCB_CTRL2_INTCPT, VMCB_INTCPT_MONITOR); 382 svm_enable_intercept(sc, vcpu, VMCB_CTRL2_INTCPT, VMCB_INTCPT_MWAIT); 383 384 /* Intercept privileged invalidation instructions. */ 385 svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_INVD); 386 svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_INVLPGA); 387 388 /* 389 * Intercept all virtualization-related instructions. 390 * 391 * From section "Canonicalization and Consistency Checks" in APMv2 392 * the VMRUN intercept bit must be set to pass the consistency check. 393 */ 394 svm_enable_intercept(sc, vcpu, VMCB_CTRL2_INTCPT, VMCB_INTCPT_VMRUN); 395 svm_enable_intercept(sc, vcpu, VMCB_CTRL2_INTCPT, VMCB_INTCPT_VMMCALL); 396 svm_enable_intercept(sc, vcpu, VMCB_CTRL2_INTCPT, VMCB_INTCPT_VMLOAD); 397 svm_enable_intercept(sc, vcpu, VMCB_CTRL2_INTCPT, VMCB_INTCPT_VMSAVE); 398 svm_enable_intercept(sc, vcpu, VMCB_CTRL2_INTCPT, VMCB_INTCPT_STGI); 399 svm_enable_intercept(sc, vcpu, VMCB_CTRL2_INTCPT, VMCB_INTCPT_CLGI); 400 svm_enable_intercept(sc, vcpu, VMCB_CTRL2_INTCPT, VMCB_INTCPT_SKINIT); 401 if (vcpu_trap_wbinvd(sc->vm, vcpu) != 0) { 402 svm_enable_intercept(sc, vcpu, VMCB_CTRL2_INTCPT, 403 VMCB_INTCPT_WBINVD); 404 } 405 406 /* 407 * The ASID will be set to a non-zero value just before VMRUN. 408 */ 409 ctrl->asid = 0; 410 411 /* 412 * Section 15.21.1, Interrupt Masking in EFLAGS 413 * Section 15.21.2, Virtualizing APIC.TPR 414 * 415 * This must be set for %rflag and %cr8 isolation of guest and host. 416 */ 417 ctrl->v_intr_ctrl |= V_INTR_MASKING; 418 419 /* Enable Last Branch Record aka LBR for debugging */ 420 ctrl->misc_ctrl |= LBR_VIRT_ENABLE; 421 state->dbgctl = BIT(0); 422 423 /* EFER_SVM must always be set when the guest is executing */ 424 state->efer = EFER_SVM; 425 426 /* Set up the PAT to power-on state */ 427 state->g_pat = PAT_VALUE(0, PAT_WRITE_BACK) | 428 PAT_VALUE(1, PAT_WRITE_THROUGH) | 429 PAT_VALUE(2, PAT_UNCACHED) | 430 PAT_VALUE(3, PAT_UNCACHEABLE) | 431 PAT_VALUE(4, PAT_WRITE_BACK) | 432 PAT_VALUE(5, PAT_WRITE_THROUGH) | 433 PAT_VALUE(6, PAT_UNCACHED) | 434 PAT_VALUE(7, PAT_UNCACHEABLE); 435 436 /* Set up DR6/7 to power-on state */ 437 state->dr6 = DBREG_DR6_RESERVED1; 438 state->dr7 = DBREG_DR7_RESERVED1; 439 } 440 441 /* 442 * Initialize a virtual machine. 443 */ 444 static void * 445 svm_vminit(struct vm *vm) 446 { 447 struct svm_softc *svm_sc; 448 struct svm_vcpu *vcpu; 449 vm_paddr_t msrpm_pa, iopm_pa, pml4_pa; 450 int i; 451 uint16_t maxcpus; 452 453 svm_sc = kmem_zalloc(sizeof (*svm_sc), KM_SLEEP); 454 VERIFY3U(((uintptr_t)svm_sc & PAGE_MASK), ==, 0); 455 456 svm_sc->msr_bitmap = vmm_contig_alloc(SVM_MSR_BITMAP_SIZE); 457 if (svm_sc->msr_bitmap == NULL) 458 panic("contigmalloc of SVM MSR bitmap failed"); 459 svm_sc->iopm_bitmap = vmm_contig_alloc(SVM_IO_BITMAP_SIZE); 460 if (svm_sc->iopm_bitmap == NULL) 461 panic("contigmalloc of SVM IO bitmap failed"); 462 463 svm_sc->vm = vm; 464 svm_sc->nptp = vmspace_table_root(vm_get_vmspace(vm)); 465 466 /* 467 * Intercept read and write accesses to all MSRs. 468 */ 469 memset(svm_sc->msr_bitmap, 0xFF, SVM_MSR_BITMAP_SIZE); 470 471 /* 472 * Access to the following MSRs is redirected to the VMCB when the 473 * guest is executing. Therefore it is safe to allow the guest to 474 * read/write these MSRs directly without hypervisor involvement. 475 */ 476 svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_GSBASE); 477 svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_FSBASE); 478 svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_KGSBASE); 479 480 svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_STAR); 481 svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_LSTAR); 482 svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_CSTAR); 483 svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_SF_MASK); 484 svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_SYSENTER_CS_MSR); 485 svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_SYSENTER_ESP_MSR); 486 svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_SYSENTER_EIP_MSR); 487 svm_msr_rw_ok(svm_sc->msr_bitmap, MSR_PAT); 488 489 svm_msr_rd_ok(svm_sc->msr_bitmap, MSR_TSC); 490 491 /* 492 * Intercept writes to make sure that the EFER_SVM bit is not cleared. 493 */ 494 svm_msr_rd_ok(svm_sc->msr_bitmap, MSR_EFER); 495 496 /* Intercept access to all I/O ports. */ 497 memset(svm_sc->iopm_bitmap, 0xFF, SVM_IO_BITMAP_SIZE); 498 499 iopm_pa = vtophys(svm_sc->iopm_bitmap); 500 msrpm_pa = vtophys(svm_sc->msr_bitmap); 501 pml4_pa = svm_sc->nptp; 502 maxcpus = vm_get_maxcpus(svm_sc->vm); 503 for (i = 0; i < maxcpus; i++) { 504 vcpu = svm_get_vcpu(svm_sc, i); 505 vcpu->nextrip = ~0; 506 vcpu->lastcpu = NOCPU; 507 vcpu->vmcb_pa = vtophys(&vcpu->vmcb); 508 vmcb_init(svm_sc, i, iopm_pa, msrpm_pa, pml4_pa); 509 svm_msr_guest_init(svm_sc, i); 510 } 511 return (svm_sc); 512 } 513 514 /* 515 * Collateral for a generic SVM VM-exit. 516 */ 517 static void 518 vm_exit_svm(struct vm_exit *vme, uint64_t code, uint64_t info1, uint64_t info2) 519 { 520 521 vme->exitcode = VM_EXITCODE_SVM; 522 vme->u.svm.exitcode = code; 523 vme->u.svm.exitinfo1 = info1; 524 vme->u.svm.exitinfo2 = info2; 525 } 526 527 static enum vm_cpu_mode 528 svm_vcpu_mode(struct vmcb *vmcb) 529 { 530 struct vmcb_state *state; 531 532 state = &vmcb->state; 533 534 if (state->efer & EFER_LMA) { 535 struct vmcb_segment *seg; 536 537 /* 538 * Section 4.8.1 for APM2, check if Code Segment has 539 * Long attribute set in descriptor. 540 */ 541 seg = vmcb_segptr(vmcb, VM_REG_GUEST_CS); 542 if (seg->attrib & VMCB_CS_ATTRIB_L) 543 return (CPU_MODE_64BIT); 544 else 545 return (CPU_MODE_COMPATIBILITY); 546 } else if (state->cr0 & CR0_PE) { 547 return (CPU_MODE_PROTECTED); 548 } else { 549 return (CPU_MODE_REAL); 550 } 551 } 552 553 static enum vm_paging_mode 554 svm_paging_mode(uint64_t cr0, uint64_t cr4, uint64_t efer) 555 { 556 557 if ((cr0 & CR0_PG) == 0) 558 return (PAGING_MODE_FLAT); 559 if ((cr4 & CR4_PAE) == 0) 560 return (PAGING_MODE_32); 561 if (efer & EFER_LME) 562 return (PAGING_MODE_64); 563 else 564 return (PAGING_MODE_PAE); 565 } 566 567 static void 568 svm_paging_info(struct vmcb *vmcb, struct vm_guest_paging *paging) 569 { 570 struct vmcb_state *state; 571 572 state = &vmcb->state; 573 paging->cr3 = state->cr3; 574 paging->cpl = state->cpl; 575 paging->cpu_mode = svm_vcpu_mode(vmcb); 576 paging->paging_mode = svm_paging_mode(state->cr0, state->cr4, 577 state->efer); 578 } 579 580 #define UNHANDLED 0 581 582 /* 583 * Handle guest I/O intercept. 584 */ 585 static int 586 svm_handle_inout(struct svm_softc *svm_sc, int vcpu, struct vm_exit *vmexit) 587 { 588 struct vmcb_ctrl *ctrl; 589 struct vmcb_state *state; 590 struct vm_inout *inout; 591 struct vie *vie; 592 uint64_t info1; 593 struct vm_guest_paging paging; 594 595 state = svm_get_vmcb_state(svm_sc, vcpu); 596 ctrl = svm_get_vmcb_ctrl(svm_sc, vcpu); 597 inout = &vmexit->u.inout; 598 info1 = ctrl->exitinfo1; 599 600 inout->bytes = (info1 >> 4) & 0x7; 601 inout->flags = 0; 602 inout->flags |= (info1 & BIT(0)) ? INOUT_IN : 0; 603 inout->flags |= (info1 & BIT(3)) ? INOUT_REP : 0; 604 inout->flags |= (info1 & BIT(2)) ? INOUT_STR : 0; 605 inout->port = (uint16_t)(info1 >> 16); 606 inout->eax = (uint32_t)(state->rax); 607 608 if ((inout->flags & INOUT_STR) != 0) { 609 /* 610 * The effective segment number in EXITINFO1[12:10] is populated 611 * only if the processor has the DecodeAssist capability. 612 * 613 * This is not specified explicitly in APMv2 but can be verified 614 * empirically. 615 */ 616 if (!decode_assist()) { 617 /* 618 * Without decoding assistance, force the task of 619 * emulating the ins/outs on userspace. 620 */ 621 vmexit->exitcode = VM_EXITCODE_INST_EMUL; 622 bzero(&vmexit->u.inst_emul, 623 sizeof (vmexit->u.inst_emul)); 624 return (UNHANDLED); 625 } 626 627 /* 628 * Bits 7-9 encode the address size of ins/outs operations where 629 * the 1/2/4 values correspond to 16/32/64 bit sizes. 630 */ 631 inout->addrsize = 2 * ((info1 >> 7) & 0x7); 632 VERIFY(inout->addrsize == 2 || inout->addrsize == 4 || 633 inout->addrsize == 8); 634 635 if (inout->flags & INOUT_IN) { 636 /* 637 * For INS instructions, %es (encoded as 0) is the 638 * implied segment for the operation. 639 */ 640 inout->segment = 0; 641 } else { 642 /* 643 * Bits 10-12 encode the segment for OUTS. 644 * This value follows the standard x86 segment order. 645 */ 646 inout->segment = (info1 >> 10) & 0x7; 647 } 648 } 649 650 vmexit->exitcode = VM_EXITCODE_INOUT; 651 svm_paging_info(svm_get_vmcb(svm_sc, vcpu), &paging); 652 vie = vm_vie_ctx(svm_sc->vm, vcpu); 653 vie_init_inout(vie, inout, vmexit->inst_length, &paging); 654 655 /* The in/out emulation will handle advancing %rip */ 656 vmexit->inst_length = 0; 657 658 return (UNHANDLED); 659 } 660 661 static int 662 npf_fault_type(uint64_t exitinfo1) 663 { 664 665 if (exitinfo1 & VMCB_NPF_INFO1_W) 666 return (PROT_WRITE); 667 else if (exitinfo1 & VMCB_NPF_INFO1_ID) 668 return (PROT_EXEC); 669 else 670 return (PROT_READ); 671 } 672 673 static bool 674 svm_npf_emul_fault(uint64_t exitinfo1) 675 { 676 if (exitinfo1 & VMCB_NPF_INFO1_ID) { 677 return (false); 678 } 679 680 if (exitinfo1 & VMCB_NPF_INFO1_GPT) { 681 return (false); 682 } 683 684 if ((exitinfo1 & VMCB_NPF_INFO1_GPA) == 0) { 685 return (false); 686 } 687 688 return (true); 689 } 690 691 static void 692 svm_handle_mmio_emul(struct svm_softc *svm_sc, int vcpu, struct vm_exit *vmexit, 693 uint64_t gpa) 694 { 695 struct vmcb_ctrl *ctrl; 696 struct vmcb *vmcb; 697 struct vie *vie; 698 struct vm_guest_paging paging; 699 struct vmcb_segment *seg; 700 char *inst_bytes = NULL; 701 uint8_t inst_len = 0; 702 703 vmcb = svm_get_vmcb(svm_sc, vcpu); 704 ctrl = &vmcb->ctrl; 705 706 vmexit->exitcode = VM_EXITCODE_MMIO_EMUL; 707 vmexit->u.mmio_emul.gpa = gpa; 708 vmexit->u.mmio_emul.gla = VIE_INVALID_GLA; 709 svm_paging_info(vmcb, &paging); 710 711 switch (paging.cpu_mode) { 712 case CPU_MODE_REAL: 713 seg = vmcb_segptr(vmcb, VM_REG_GUEST_CS); 714 vmexit->u.mmio_emul.cs_base = seg->base; 715 vmexit->u.mmio_emul.cs_d = 0; 716 break; 717 case CPU_MODE_PROTECTED: 718 case CPU_MODE_COMPATIBILITY: 719 seg = vmcb_segptr(vmcb, VM_REG_GUEST_CS); 720 vmexit->u.mmio_emul.cs_base = seg->base; 721 722 /* 723 * Section 4.8.1 of APM2, Default Operand Size or D bit. 724 */ 725 vmexit->u.mmio_emul.cs_d = (seg->attrib & VMCB_CS_ATTRIB_D) ? 726 1 : 0; 727 break; 728 default: 729 vmexit->u.mmio_emul.cs_base = 0; 730 vmexit->u.mmio_emul.cs_d = 0; 731 break; 732 } 733 734 /* 735 * Copy the instruction bytes into 'vie' if available. 736 */ 737 if (decode_assist() && !disable_npf_assist) { 738 inst_len = ctrl->inst_len; 739 inst_bytes = (char *)ctrl->inst_bytes; 740 } 741 vie = vm_vie_ctx(svm_sc->vm, vcpu); 742 vie_init_mmio(vie, inst_bytes, inst_len, &paging, gpa); 743 } 744 745 /* 746 * Do not allow CD, NW, or invalid high bits to be asserted in the value of cr0 747 * which is live in the guest. They are visible via the shadow instead. 748 */ 749 #define SVM_CR0_MASK ~(CR0_CD | CR0_NW | 0xffffffff00000000) 750 751 static void 752 svm_set_cr0(struct svm_softc *svm_sc, int vcpu, uint64_t val, bool guest_write) 753 { 754 struct vmcb_state *state; 755 struct svm_regctx *regctx; 756 uint64_t masked, old, diff; 757 758 state = svm_get_vmcb_state(svm_sc, vcpu); 759 regctx = svm_get_guest_regctx(svm_sc, vcpu); 760 761 old = state->cr0 | (regctx->sctx_cr0_shadow & ~SVM_CR0_MASK); 762 diff = old ^ val; 763 764 /* No further work needed if register contents remain the same */ 765 if (diff == 0) { 766 return; 767 } 768 769 /* Flush the TLB if the paging or write-protect bits are changing */ 770 if ((diff & CR0_PG) != 0 || (diff & CR0_WP) != 0) { 771 flush_asid(svm_sc, vcpu); 772 } 773 774 /* 775 * If the change in %cr0 is due to a guest action (via interception) 776 * then other CPU state updates may be required. 777 */ 778 if (guest_write) { 779 if ((diff & CR0_PG) != 0) { 780 uint64_t efer = state->efer; 781 782 /* Keep the long-mode state in EFER in sync */ 783 if ((val & CR0_PG) != 0 && (efer & EFER_LME) != 0) { 784 state->efer |= EFER_LMA; 785 } 786 if ((val & CR0_PG) == 0 && (efer & EFER_LME) != 0) { 787 state->efer &= ~EFER_LMA; 788 } 789 } 790 } 791 792 masked = val & SVM_CR0_MASK; 793 regctx->sctx_cr0_shadow = val; 794 state->cr0 = masked; 795 svm_set_dirty(svm_sc, vcpu, VMCB_CACHE_CR); 796 797 if ((masked ^ val) != 0) { 798 /* 799 * The guest has set bits in %cr0 which we are masking out and 800 * exposing via shadow. 801 * 802 * We must intercept %cr0 reads in order to make the shadowed 803 * view available to the guest. 804 * 805 * Writes to %cr0 must also be intercepted (unconditionally, 806 * unlike the VMCB_INTCPT_CR0_WRITE mechanism) so we can catch 807 * if/when the guest clears those shadowed bits. 808 */ 809 svm_enable_intercept(svm_sc, vcpu, VMCB_CR_INTCPT, 810 BIT(0) | BIT(16)); 811 } else { 812 /* 813 * When no bits remain in %cr0 which require shadowing, the 814 * unconditional intercept of reads/writes to %cr0 can be 815 * disabled. 816 * 817 * The selective write intercept (VMCB_INTCPT_CR0_WRITE) remains 818 * in place so we can be notified of operations which change 819 * bits other than TS or MP. 820 */ 821 svm_disable_intercept(svm_sc, vcpu, VMCB_CR_INTCPT, 822 BIT(0) | BIT(16)); 823 } 824 svm_set_dirty(svm_sc, vcpu, VMCB_CACHE_I); 825 } 826 827 static void 828 svm_get_cr0(struct svm_softc *svm_sc, int vcpu, uint64_t *val) 829 { 830 struct vmcb *vmcb; 831 struct svm_regctx *regctx; 832 833 vmcb = svm_get_vmcb(svm_sc, vcpu); 834 regctx = svm_get_guest_regctx(svm_sc, vcpu); 835 836 /* 837 * Include the %cr0 bits which exist only in the shadow along with those 838 * in the running vCPU state. 839 */ 840 *val = vmcb->state.cr0 | (regctx->sctx_cr0_shadow & ~SVM_CR0_MASK); 841 } 842 843 static void 844 svm_handle_cr0_read(struct svm_softc *svm_sc, int vcpu, enum vm_reg_name reg) 845 { 846 uint64_t val; 847 int err __maybe_unused; 848 849 svm_get_cr0(svm_sc, vcpu, &val); 850 err = svm_setreg(svm_sc, vcpu, reg, val); 851 ASSERT(err == 0); 852 } 853 854 static void 855 svm_handle_cr0_write(struct svm_softc *svm_sc, int vcpu, enum vm_reg_name reg) 856 { 857 struct vmcb_state *state; 858 uint64_t val; 859 int err __maybe_unused; 860 861 state = svm_get_vmcb_state(svm_sc, vcpu); 862 863 err = svm_getreg(svm_sc, vcpu, reg, &val); 864 ASSERT(err == 0); 865 866 if ((val & CR0_NW) != 0 && (val & CR0_CD) == 0) { 867 /* NW without CD is nonsensical */ 868 vm_inject_gp(svm_sc->vm, vcpu); 869 return; 870 } 871 if ((val & CR0_PG) != 0 && (val & CR0_PE) == 0) { 872 /* PG requires PE */ 873 vm_inject_gp(svm_sc->vm, vcpu); 874 return; 875 } 876 if ((state->cr0 & CR0_PG) == 0 && (val & CR0_PG) != 0) { 877 /* When enabling paging, PAE must be enabled if LME is. */ 878 if ((state->efer & EFER_LME) != 0 && 879 (state->cr4 & CR4_PAE) == 0) { 880 vm_inject_gp(svm_sc->vm, vcpu); 881 return; 882 } 883 } 884 885 svm_set_cr0(svm_sc, vcpu, val, true); 886 } 887 888 static void 889 svm_inst_emul_other(struct svm_softc *svm_sc, int vcpu, struct vm_exit *vmexit) 890 { 891 struct vie *vie; 892 struct vm_guest_paging paging; 893 894 /* Let the instruction emulation (hopefully in-kernel) handle it */ 895 vmexit->exitcode = VM_EXITCODE_INST_EMUL; 896 bzero(&vmexit->u.inst_emul, sizeof (vmexit->u.inst_emul)); 897 vie = vm_vie_ctx(svm_sc->vm, vcpu); 898 svm_paging_info(svm_get_vmcb(svm_sc, vcpu), &paging); 899 vie_init_other(vie, &paging); 900 901 /* The instruction emulation will handle advancing %rip */ 902 vmexit->inst_length = 0; 903 } 904 905 static void 906 svm_update_virqinfo(struct svm_softc *sc, int vcpu) 907 { 908 struct vm *vm; 909 struct vlapic *vlapic; 910 struct vmcb_ctrl *ctrl; 911 912 vm = sc->vm; 913 vlapic = vm_lapic(vm, vcpu); 914 ctrl = svm_get_vmcb_ctrl(sc, vcpu); 915 916 /* Update %cr8 in the emulated vlapic */ 917 vlapic_set_cr8(vlapic, ctrl->v_tpr); 918 919 /* Virtual interrupt injection is not used. */ 920 KASSERT(ctrl->v_intr_vector == 0, ("%s: invalid " 921 "v_intr_vector %d", __func__, ctrl->v_intr_vector)); 922 } 923 924 CTASSERT(VMCB_EVENTINJ_TYPE_INTR == VM_INTINFO_HWINTR); 925 CTASSERT(VMCB_EVENTINJ_TYPE_NMI == VM_INTINFO_NMI); 926 CTASSERT(VMCB_EVENTINJ_TYPE_EXCEPTION == VM_INTINFO_HWEXCP); 927 CTASSERT(VMCB_EVENTINJ_TYPE_INTn == VM_INTINFO_SWINTR); 928 CTASSERT(VMCB_EVENTINJ_EC_VALID == VM_INTINFO_DEL_ERRCODE); 929 CTASSERT(VMCB_EVENTINJ_VALID == VM_INTINFO_VALID); 930 931 /* 932 * Store SVM-specific event injection info for later handling. This depends on 933 * the bhyve-internal event definitions matching those in the VMCB, as ensured 934 * by the above CTASSERTs. 935 */ 936 static void 937 svm_stash_intinfo(struct svm_softc *svm_sc, int vcpu, uint64_t intinfo) 938 { 939 ASSERT(VMCB_EXITINTINFO_VALID(intinfo)); 940 941 /* 942 * If stashing an NMI pending injection, ensure that it bears the 943 * correct vector which exit_intinfo expects. 944 */ 945 if (VM_INTINFO_TYPE(intinfo) == VM_INTINFO_NMI) { 946 intinfo &= ~VM_INTINFO_MASK_VECTOR; 947 intinfo |= IDT_NMI; 948 } 949 950 VERIFY0(vm_exit_intinfo(svm_sc->vm, vcpu, intinfo)); 951 } 952 953 static void 954 svm_save_exitintinfo(struct svm_softc *svm_sc, int vcpu) 955 { 956 struct vmcb_ctrl *ctrl = svm_get_vmcb_ctrl(svm_sc, vcpu); 957 uint64_t intinfo = ctrl->exitintinfo; 958 959 if (VMCB_EXITINTINFO_VALID(intinfo)) { 960 /* 961 * If a #VMEXIT happened during event delivery then record the 962 * event that was being delivered. 963 */ 964 vmm_stat_incr(svm_sc->vm, vcpu, VCPU_EXITINTINFO, 1); 965 966 svm_stash_intinfo(svm_sc, vcpu, intinfo); 967 } 968 } 969 970 static __inline int 971 vintr_intercept_enabled(struct svm_softc *sc, int vcpu) 972 { 973 974 return (svm_get_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, 975 VMCB_INTCPT_VINTR)); 976 } 977 978 static void 979 svm_enable_intr_window_exiting(struct svm_softc *sc, int vcpu) 980 { 981 struct vmcb_ctrl *ctrl; 982 struct vmcb_state *state; 983 984 ctrl = svm_get_vmcb_ctrl(sc, vcpu); 985 state = svm_get_vmcb_state(sc, vcpu); 986 987 if ((ctrl->v_irq & V_IRQ) != 0 && ctrl->v_intr_vector == 0) { 988 KASSERT(ctrl->v_intr_prio & V_IGN_TPR, 989 ("%s: invalid v_ign_tpr", __func__)); 990 KASSERT(vintr_intercept_enabled(sc, vcpu), 991 ("%s: vintr intercept should be enabled", __func__)); 992 return; 993 } 994 995 /* 996 * We use V_IRQ in conjunction with the VINTR intercept to trap into the 997 * hypervisor as soon as a virtual interrupt can be delivered. 998 * 999 * Since injected events are not subject to intercept checks we need to 1000 * ensure that the V_IRQ is not actually going to be delivered on VM 1001 * entry. 1002 */ 1003 VERIFY((ctrl->eventinj & VMCB_EVENTINJ_VALID) != 0 || 1004 (state->rflags & PSL_I) == 0 || ctrl->intr_shadow); 1005 1006 ctrl->v_irq |= V_IRQ; 1007 ctrl->v_intr_prio |= V_IGN_TPR; 1008 ctrl->v_intr_vector = 0; 1009 svm_set_dirty(sc, vcpu, VMCB_CACHE_TPR); 1010 svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_VINTR); 1011 } 1012 1013 static void 1014 svm_disable_intr_window_exiting(struct svm_softc *sc, int vcpu) 1015 { 1016 struct vmcb_ctrl *ctrl; 1017 1018 ctrl = svm_get_vmcb_ctrl(sc, vcpu); 1019 1020 if ((ctrl->v_irq & V_IRQ) == 0 && ctrl->v_intr_vector == 0) { 1021 KASSERT(!vintr_intercept_enabled(sc, vcpu), 1022 ("%s: vintr intercept should be disabled", __func__)); 1023 return; 1024 } 1025 1026 ctrl->v_irq &= ~V_IRQ; 1027 ctrl->v_intr_vector = 0; 1028 svm_set_dirty(sc, vcpu, VMCB_CACHE_TPR); 1029 svm_disable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_VINTR); 1030 } 1031 1032 /* 1033 * Once an NMI is injected it blocks delivery of further NMIs until the handler 1034 * executes an IRET. The IRET intercept is enabled when an NMI is injected to 1035 * to track when the vcpu is done handling the NMI. 1036 */ 1037 static int 1038 svm_nmi_blocked(struct svm_softc *sc, int vcpu) 1039 { 1040 return (svm_get_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, 1041 VMCB_INTCPT_IRET)); 1042 } 1043 1044 static void 1045 svm_clear_nmi_blocking(struct svm_softc *sc, int vcpu) 1046 { 1047 struct vmcb_ctrl *ctrl; 1048 1049 KASSERT(svm_nmi_blocked(sc, vcpu), ("vNMI already unblocked")); 1050 /* 1051 * When the IRET intercept is cleared the vcpu will attempt to execute 1052 * the "iret" when it runs next. However, it is possible to inject 1053 * another NMI into the vcpu before the "iret" has actually executed. 1054 * 1055 * For e.g. if the "iret" encounters a #NPF when accessing the stack 1056 * it will trap back into the hypervisor. If an NMI is pending for 1057 * the vcpu it will be injected into the guest. 1058 * 1059 * XXX this needs to be fixed 1060 */ 1061 svm_disable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_IRET); 1062 1063 /* 1064 * Set an interrupt shadow to prevent an NMI from being immediately 1065 * injected on the next VMRUN. 1066 */ 1067 ctrl = svm_get_vmcb_ctrl(sc, vcpu); 1068 ctrl->intr_shadow = 1; 1069 } 1070 1071 static void 1072 svm_inject_event(struct vmcb_ctrl *ctrl, uint64_t info) 1073 { 1074 ASSERT(VM_INTINFO_PENDING(info)); 1075 1076 uint8_t vector = VM_INTINFO_VECTOR(info); 1077 uint32_t type = VM_INTINFO_TYPE(info); 1078 1079 /* 1080 * Correct behavior depends on bhyve intinfo event types lining up with 1081 * those defined by AMD for event injection in the VMCB. The CTASSERTs 1082 * above svm_save_exitintinfo() ensure it. 1083 */ 1084 switch (type) { 1085 case VM_INTINFO_NMI: 1086 /* Ensure vector for injected event matches its type (NMI) */ 1087 vector = IDT_NMI; 1088 break; 1089 case VM_INTINFO_HWINTR: 1090 case VM_INTINFO_SWINTR: 1091 break; 1092 case VM_INTINFO_HWEXCP: 1093 if (vector == IDT_NMI) { 1094 /* 1095 * NMIs are expected to be injected with 1096 * VMCB_EVENTINJ_TYPE_NMI, rather than as an exception 1097 * with the NMI vector. 1098 */ 1099 type = VM_INTINFO_NMI; 1100 } 1101 VERIFY(vector < 32); 1102 break; 1103 default: 1104 /* 1105 * Since there is not strong validation for injected event types 1106 * at this point, fall back to software interrupt for those we 1107 * do not recognized. 1108 */ 1109 type = VM_INTINFO_SWINTR; 1110 break; 1111 } 1112 1113 ctrl->eventinj = VMCB_EVENTINJ_VALID | type | vector; 1114 if (VM_INTINFO_HAS_ERRCODE(info)) { 1115 ctrl->eventinj |= VMCB_EVENTINJ_EC_VALID; 1116 ctrl->eventinj |= (uint64_t)VM_INTINFO_ERRCODE(info) << 32; 1117 } 1118 } 1119 1120 static void 1121 svm_inject_nmi(struct svm_softc *sc, int vcpu) 1122 { 1123 struct vmcb_ctrl *ctrl = svm_get_vmcb_ctrl(sc, vcpu); 1124 1125 ASSERT(!svm_nmi_blocked(sc, vcpu)); 1126 1127 ctrl->eventinj = VMCB_EVENTINJ_VALID | VMCB_EVENTINJ_TYPE_NMI; 1128 vm_nmi_clear(sc->vm, vcpu); 1129 1130 /* 1131 * Virtual NMI blocking is now in effect. 1132 * 1133 * Not only does this block a subsequent NMI injection from taking 1134 * place, it also configures an intercept on the IRET so we can track 1135 * when the next injection can take place. 1136 */ 1137 svm_enable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_IRET); 1138 } 1139 1140 static void 1141 svm_inject_irq(struct svm_softc *sc, int vcpu, int vector) 1142 { 1143 struct vmcb_ctrl *ctrl = svm_get_vmcb_ctrl(sc, vcpu); 1144 1145 ASSERT(vector >= 0 && vector <= 255); 1146 1147 ctrl->eventinj = VMCB_EVENTINJ_VALID | vector; 1148 } 1149 1150 #define EFER_MBZ_BITS 0xFFFFFFFFFFFF0200UL 1151 1152 static vm_msr_result_t 1153 svm_write_efer(struct svm_softc *sc, int vcpu, uint64_t newval) 1154 { 1155 struct vmcb_state *state = svm_get_vmcb_state(sc, vcpu); 1156 uint64_t lma; 1157 int error; 1158 1159 newval &= ~0xFE; /* clear the Read-As-Zero (RAZ) bits */ 1160 1161 if (newval & EFER_MBZ_BITS) { 1162 return (VMR_GP); 1163 } 1164 1165 /* APMv2 Table 14-5 "Long-Mode Consistency Checks" */ 1166 const uint64_t changed = state->efer ^ newval; 1167 if (changed & EFER_LME) { 1168 if (state->cr0 & CR0_PG) { 1169 return (VMR_GP); 1170 } 1171 } 1172 1173 /* EFER.LMA = EFER.LME & CR0.PG */ 1174 if ((newval & EFER_LME) != 0 && (state->cr0 & CR0_PG) != 0) { 1175 lma = EFER_LMA; 1176 } else { 1177 lma = 0; 1178 } 1179 if ((newval & EFER_LMA) != lma) { 1180 return (VMR_GP); 1181 } 1182 1183 if ((newval & EFER_NXE) != 0 && 1184 !vm_cpuid_capability(sc->vm, vcpu, VCC_NO_EXECUTE)) { 1185 return (VMR_GP); 1186 } 1187 if ((newval & EFER_FFXSR) != 0 && 1188 !vm_cpuid_capability(sc->vm, vcpu, VCC_FFXSR)) { 1189 return (VMR_GP); 1190 } 1191 if ((newval & EFER_TCE) != 0 && 1192 !vm_cpuid_capability(sc->vm, vcpu, VCC_TCE)) { 1193 return (VMR_GP); 1194 } 1195 1196 /* 1197 * Until bhyve has proper support for long-mode segment limits, just 1198 * toss a #GP at the guest if they attempt to use it. 1199 */ 1200 if (newval & EFER_LMSLE) { 1201 return (VMR_GP); 1202 } 1203 1204 error = svm_setreg(sc, vcpu, VM_REG_GUEST_EFER, newval); 1205 VERIFY0(error); 1206 return (VMR_OK); 1207 } 1208 1209 static int 1210 svm_handle_msr(struct svm_softc *svm_sc, int vcpu, struct vm_exit *vmexit, 1211 bool is_wrmsr) 1212 { 1213 struct vmcb_state *state = svm_get_vmcb_state(svm_sc, vcpu); 1214 struct svm_regctx *ctx = svm_get_guest_regctx(svm_sc, vcpu); 1215 const uint32_t ecx = ctx->sctx_rcx; 1216 vm_msr_result_t res; 1217 uint64_t val = 0; 1218 1219 if (is_wrmsr) { 1220 vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_WRMSR, 1); 1221 val = ctx->sctx_rdx << 32 | (uint32_t)state->rax; 1222 1223 if (vlapic_owned_msr(ecx)) { 1224 struct vlapic *vlapic = vm_lapic(svm_sc->vm, vcpu); 1225 1226 res = vlapic_wrmsr(vlapic, ecx, val); 1227 } else if (ecx == MSR_EFER) { 1228 res = svm_write_efer(svm_sc, vcpu, val); 1229 } else { 1230 res = svm_wrmsr(svm_sc, vcpu, ecx, val); 1231 } 1232 } else { 1233 vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_RDMSR, 1); 1234 1235 if (vlapic_owned_msr(ecx)) { 1236 struct vlapic *vlapic = vm_lapic(svm_sc->vm, vcpu); 1237 1238 res = vlapic_rdmsr(vlapic, ecx, &val); 1239 } else { 1240 res = svm_rdmsr(svm_sc, vcpu, ecx, &val); 1241 } 1242 } 1243 1244 switch (res) { 1245 case VMR_OK: 1246 /* Store rdmsr result in the appropriate registers */ 1247 if (!is_wrmsr) { 1248 state->rax = (uint32_t)val; 1249 ctx->sctx_rdx = val >> 32; 1250 } 1251 return (1); 1252 case VMR_GP: 1253 vm_inject_gp(svm_sc->vm, vcpu); 1254 return (1); 1255 case VMR_UNHANLDED: 1256 vmexit->exitcode = is_wrmsr ? 1257 VM_EXITCODE_WRMSR : VM_EXITCODE_RDMSR; 1258 vmexit->u.msr.code = ecx; 1259 vmexit->u.msr.wval = val; 1260 return (0); 1261 default: 1262 panic("unexpected msr result %u\n", res); 1263 } 1264 } 1265 1266 /* 1267 * From section "State Saved on Exit" in APMv2: nRIP is saved for all #VMEXITs 1268 * that are due to instruction intercepts as well as MSR and IOIO intercepts 1269 * and exceptions caused by INT3, INTO and BOUND instructions. 1270 * 1271 * Return 1 if the nRIP is valid and 0 otherwise. 1272 */ 1273 static int 1274 nrip_valid(uint64_t exitcode) 1275 { 1276 switch (exitcode) { 1277 case 0x00 ... 0x0F: /* read of CR0 through CR15 */ 1278 case 0x10 ... 0x1F: /* write of CR0 through CR15 */ 1279 case 0x20 ... 0x2F: /* read of DR0 through DR15 */ 1280 case 0x30 ... 0x3F: /* write of DR0 through DR15 */ 1281 case 0x43: /* INT3 */ 1282 case 0x44: /* INTO */ 1283 case 0x45: /* BOUND */ 1284 case 0x65 ... 0x7C: /* VMEXIT_CR0_SEL_WRITE ... VMEXIT_MSR */ 1285 case 0x80 ... 0x8D: /* VMEXIT_VMRUN ... VMEXIT_XSETBV */ 1286 return (1); 1287 default: 1288 return (0); 1289 } 1290 } 1291 1292 static int 1293 svm_vmexit(struct svm_softc *svm_sc, int vcpu, struct vm_exit *vmexit) 1294 { 1295 struct vmcb *vmcb; 1296 struct vmcb_state *state; 1297 struct vmcb_ctrl *ctrl; 1298 struct svm_regctx *ctx; 1299 uint64_t code, info1, info2; 1300 int handled; 1301 1302 ctx = svm_get_guest_regctx(svm_sc, vcpu); 1303 vmcb = svm_get_vmcb(svm_sc, vcpu); 1304 state = &vmcb->state; 1305 ctrl = &vmcb->ctrl; 1306 1307 handled = 0; 1308 code = ctrl->exitcode; 1309 info1 = ctrl->exitinfo1; 1310 info2 = ctrl->exitinfo2; 1311 1312 vmexit->exitcode = VM_EXITCODE_BOGUS; 1313 vmexit->rip = state->rip; 1314 vmexit->inst_length = nrip_valid(code) ? ctrl->nrip - state->rip : 0; 1315 1316 vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_COUNT, 1); 1317 1318 /* 1319 * #VMEXIT(INVALID) needs to be handled early because the VMCB is 1320 * in an inconsistent state and can trigger assertions that would 1321 * never happen otherwise. 1322 */ 1323 if (code == VMCB_EXIT_INVALID) { 1324 vm_exit_svm(vmexit, code, info1, info2); 1325 return (0); 1326 } 1327 1328 KASSERT((ctrl->eventinj & VMCB_EVENTINJ_VALID) == 0, ("%s: event " 1329 "injection valid bit is set %lx", __func__, ctrl->eventinj)); 1330 1331 KASSERT(vmexit->inst_length >= 0 && vmexit->inst_length <= 15, 1332 ("invalid inst_length %d: code (%lx), info1 (%lx), info2 (%lx)", 1333 vmexit->inst_length, code, info1, info2)); 1334 1335 svm_update_virqinfo(svm_sc, vcpu); 1336 svm_save_exitintinfo(svm_sc, vcpu); 1337 1338 switch (code) { 1339 case VMCB_EXIT_CR0_READ: 1340 if (VMCB_CRx_INFO1_VALID(info1) != 0) { 1341 svm_handle_cr0_read(svm_sc, vcpu, 1342 vie_regnum_map(VMCB_CRx_INFO1_GPR(info1))); 1343 handled = 1; 1344 } else { 1345 /* 1346 * If SMSW is used to read the contents of %cr0, then 1347 * the VALID bit will not be set in `info1`, since the 1348 * handling is different from the mov-to-reg case. 1349 * 1350 * Punt to the instruction emulation to handle it. 1351 */ 1352 svm_inst_emul_other(svm_sc, vcpu, vmexit); 1353 } 1354 break; 1355 case VMCB_EXIT_CR0_WRITE: 1356 case VMCB_EXIT_CR0_SEL_WRITE: 1357 if (VMCB_CRx_INFO1_VALID(info1) != 0) { 1358 svm_handle_cr0_write(svm_sc, vcpu, 1359 vie_regnum_map(VMCB_CRx_INFO1_GPR(info1))); 1360 handled = 1; 1361 } else { 1362 /* 1363 * Writes to %cr0 without VALID being set in `info1` are 1364 * initiated by the LMSW and CLTS instructions. While 1365 * LMSW (like SMSW) sees little use in modern OSes and 1366 * bootloaders, CLTS is still used for handling FPU 1367 * state transitions. 1368 * 1369 * Punt to the instruction emulation to handle them. 1370 */ 1371 svm_inst_emul_other(svm_sc, vcpu, vmexit); 1372 } 1373 break; 1374 case VMCB_EXIT_IRET: 1375 /* 1376 * Restart execution at "iret" but with the intercept cleared. 1377 */ 1378 vmexit->inst_length = 0; 1379 svm_clear_nmi_blocking(svm_sc, vcpu); 1380 handled = 1; 1381 break; 1382 case VMCB_EXIT_VINTR: /* interrupt window exiting */ 1383 vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_VINTR, 1); 1384 svm_disable_intr_window_exiting(svm_sc, vcpu); 1385 handled = 1; 1386 break; 1387 case VMCB_EXIT_INTR: /* external interrupt */ 1388 vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_EXTINT, 1); 1389 handled = 1; 1390 break; 1391 case VMCB_EXIT_NMI: 1392 case VMCB_EXIT_SMI: 1393 case VMCB_EXIT_INIT: 1394 /* 1395 * For external NMI/SMI and physical INIT interrupts, simply 1396 * continue execution, as those host events will be handled by 1397 * the physical CPU. 1398 */ 1399 handled = 1; 1400 break; 1401 case VMCB_EXIT_EXCP0 ... VMCB_EXIT_EXCP31: { 1402 vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_EXCEPTION, 1); 1403 1404 const uint8_t idtvec = code - VMCB_EXIT_EXCP0; 1405 uint32_t errcode = 0; 1406 bool reflect = true; 1407 bool errcode_valid = false; 1408 1409 switch (idtvec) { 1410 case IDT_MC: 1411 /* The host will handle the MCE itself. */ 1412 reflect = false; 1413 vmm_call_trap(T_MCE); 1414 break; 1415 case IDT_PF: 1416 VERIFY0(svm_setreg(svm_sc, vcpu, VM_REG_GUEST_CR2, 1417 info2)); 1418 /* fallthru */ 1419 case IDT_NP: 1420 case IDT_SS: 1421 case IDT_GP: 1422 case IDT_AC: 1423 case IDT_TS: 1424 errcode_valid = true; 1425 errcode = info1; 1426 break; 1427 1428 case IDT_DF: 1429 errcode_valid = true; 1430 break; 1431 1432 case IDT_BP: 1433 case IDT_OF: 1434 case IDT_BR: 1435 /* 1436 * The 'nrip' field is populated for INT3, INTO and 1437 * BOUND exceptions and this also implies that 1438 * 'inst_length' is non-zero. 1439 * 1440 * Reset 'inst_length' to zero so the guest %rip at 1441 * event injection is identical to what it was when 1442 * the exception originally happened. 1443 */ 1444 vmexit->inst_length = 0; 1445 /* fallthru */ 1446 default: 1447 errcode_valid = false; 1448 break; 1449 } 1450 VERIFY0(vmexit->inst_length); 1451 1452 if (reflect) { 1453 /* Reflect the exception back into the guest */ 1454 VERIFY0(vm_inject_exception(svm_sc->vm, vcpu, idtvec, 1455 errcode_valid, errcode, false)); 1456 } 1457 handled = 1; 1458 break; 1459 } 1460 case VMCB_EXIT_MSR: 1461 handled = svm_handle_msr(svm_sc, vcpu, vmexit, info1 != 0); 1462 break; 1463 case VMCB_EXIT_IO: 1464 handled = svm_handle_inout(svm_sc, vcpu, vmexit); 1465 vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_INOUT, 1); 1466 break; 1467 case VMCB_EXIT_SHUTDOWN: 1468 (void) vm_suspend(svm_sc->vm, VM_SUSPEND_TRIPLEFAULT); 1469 handled = 1; 1470 break; 1471 case VMCB_EXIT_INVLPGA: 1472 /* privileged invalidation instructions */ 1473 vm_inject_ud(svm_sc->vm, vcpu); 1474 handled = 1; 1475 break; 1476 case VMCB_EXIT_VMRUN: 1477 case VMCB_EXIT_VMLOAD: 1478 case VMCB_EXIT_VMSAVE: 1479 case VMCB_EXIT_STGI: 1480 case VMCB_EXIT_CLGI: 1481 case VMCB_EXIT_SKINIT: 1482 /* privileged vmm instructions */ 1483 vm_inject_ud(svm_sc->vm, vcpu); 1484 handled = 1; 1485 break; 1486 case VMCB_EXIT_INVD: 1487 case VMCB_EXIT_WBINVD: 1488 /* ignore exit */ 1489 handled = 1; 1490 break; 1491 case VMCB_EXIT_VMMCALL: 1492 /* No handlers make use of VMMCALL for now */ 1493 vm_inject_ud(svm_sc->vm, vcpu); 1494 handled = 1; 1495 break; 1496 case VMCB_EXIT_CPUID: 1497 vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_CPUID, 1); 1498 vcpu_emulate_cpuid(svm_sc->vm, vcpu, &state->rax, 1499 &ctx->sctx_rbx, &ctx->sctx_rcx, &ctx->sctx_rdx); 1500 handled = 1; 1501 break; 1502 case VMCB_EXIT_HLT: 1503 vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_HLT, 1); 1504 vmexit->exitcode = VM_EXITCODE_HLT; 1505 vmexit->u.hlt.rflags = state->rflags; 1506 break; 1507 case VMCB_EXIT_PAUSE: 1508 vmexit->exitcode = VM_EXITCODE_PAUSE; 1509 vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_PAUSE, 1); 1510 break; 1511 case VMCB_EXIT_NPF: 1512 /* EXITINFO2 contains the faulting guest physical address */ 1513 if (info1 & VMCB_NPF_INFO1_RSV) { 1514 /* nested fault with reserved bits set */ 1515 } else if (vm_mem_allocated(svm_sc->vm, vcpu, info2)) { 1516 vmexit->exitcode = VM_EXITCODE_PAGING; 1517 vmexit->u.paging.gpa = info2; 1518 vmexit->u.paging.fault_type = npf_fault_type(info1); 1519 vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_NESTED_FAULT, 1); 1520 } else if (svm_npf_emul_fault(info1)) { 1521 svm_handle_mmio_emul(svm_sc, vcpu, vmexit, info2); 1522 vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_MMIO_EMUL, 1); 1523 } 1524 break; 1525 case VMCB_EXIT_MONITOR: 1526 vmexit->exitcode = VM_EXITCODE_MONITOR; 1527 break; 1528 case VMCB_EXIT_MWAIT: 1529 vmexit->exitcode = VM_EXITCODE_MWAIT; 1530 break; 1531 default: 1532 vmm_stat_incr(svm_sc->vm, vcpu, VMEXIT_UNKNOWN, 1); 1533 break; 1534 } 1535 1536 DTRACE_PROBE3(vmm__vexit, int, vcpu, uint64_t, vmexit->rip, uint32_t, 1537 code); 1538 1539 if (handled) { 1540 vmexit->rip += vmexit->inst_length; 1541 vmexit->inst_length = 0; 1542 state->rip = vmexit->rip; 1543 } else { 1544 if (vmexit->exitcode == VM_EXITCODE_BOGUS) { 1545 /* 1546 * If this VM exit was not claimed by anybody then 1547 * treat it as a generic SVM exit. 1548 */ 1549 vm_exit_svm(vmexit, code, info1, info2); 1550 } else { 1551 /* 1552 * The exitcode and collateral have been populated. 1553 * The VM exit will be processed further in userland. 1554 */ 1555 } 1556 } 1557 return (handled); 1558 } 1559 1560 /* 1561 * Inject exceptions, NMIs, and ExtINTs. 1562 * 1563 * The logic behind these are complicated and may involve mutex contention, so 1564 * the injection is performed without the protection of host CPU interrupts 1565 * being disabled. This means a racing notification could be "lost", 1566 * necessitating a later call to svm_inject_recheck() to close that window 1567 * of opportunity. 1568 */ 1569 static enum event_inject_state 1570 svm_inject_events(struct svm_softc *sc, int vcpu) 1571 { 1572 struct vmcb_ctrl *ctrl; 1573 struct vmcb_state *state; 1574 struct svm_vcpu *vcpustate; 1575 uint64_t intinfo; 1576 enum event_inject_state ev_state; 1577 1578 state = svm_get_vmcb_state(sc, vcpu); 1579 ctrl = svm_get_vmcb_ctrl(sc, vcpu); 1580 vcpustate = svm_get_vcpu(sc, vcpu); 1581 ev_state = EIS_CAN_INJECT; 1582 1583 /* Clear any interrupt shadow if guest %rip has changed */ 1584 if (vcpustate->nextrip != state->rip) { 1585 ctrl->intr_shadow = 0; 1586 } 1587 1588 /* 1589 * An event is already pending for injection. This can occur when the 1590 * vCPU exits prior to VM entry (like for an AST). 1591 */ 1592 if (ctrl->eventinj & VMCB_EVENTINJ_VALID) { 1593 return (EIS_EV_EXISTING | EIS_REQ_EXIT); 1594 } 1595 1596 /* 1597 * Inject pending events or exceptions for this vcpu. 1598 * 1599 * An event might be pending because the previous #VMEXIT happened 1600 * during event delivery (i.e. ctrl->exitintinfo). 1601 * 1602 * An event might also be pending because an exception was injected 1603 * by the hypervisor (e.g. #PF during instruction emulation). 1604 */ 1605 if (vm_entry_intinfo(sc->vm, vcpu, &intinfo)) { 1606 svm_inject_event(ctrl, intinfo); 1607 vmm_stat_incr(sc->vm, vcpu, VCPU_INTINFO_INJECTED, 1); 1608 ev_state = EIS_EV_INJECTED; 1609 } 1610 1611 /* NMI event has priority over interrupts. */ 1612 if (vm_nmi_pending(sc->vm, vcpu) && !svm_nmi_blocked(sc, vcpu)) { 1613 if (ev_state == EIS_CAN_INJECT) { 1614 /* Can't inject NMI if vcpu is in an intr_shadow. */ 1615 if (ctrl->intr_shadow) { 1616 return (EIS_GI_BLOCK); 1617 } 1618 1619 svm_inject_nmi(sc, vcpu); 1620 ev_state = EIS_EV_INJECTED; 1621 } else { 1622 return (ev_state | EIS_REQ_EXIT); 1623 } 1624 } 1625 1626 if (vm_extint_pending(sc->vm, vcpu)) { 1627 int vector; 1628 1629 if (ev_state != EIS_CAN_INJECT) { 1630 return (ev_state | EIS_REQ_EXIT); 1631 } 1632 1633 /* 1634 * If the guest has disabled interrupts or is in an interrupt 1635 * shadow then we cannot inject the pending interrupt. 1636 */ 1637 if ((state->rflags & PSL_I) == 0 || ctrl->intr_shadow) { 1638 return (EIS_GI_BLOCK); 1639 } 1640 1641 /* Ask the legacy pic for a vector to inject */ 1642 vatpic_pending_intr(sc->vm, &vector); 1643 KASSERT(vector >= 0 && vector <= 255, 1644 ("invalid vector %d from INTR", vector)); 1645 1646 svm_inject_irq(sc, vcpu, vector); 1647 vm_extint_clear(sc->vm, vcpu); 1648 vatpic_intr_accepted(sc->vm, vector); 1649 ev_state = EIS_EV_INJECTED; 1650 } 1651 1652 return (ev_state); 1653 } 1654 1655 /* 1656 * Synchronize vLAPIC state and inject any interrupts pending on it. 1657 * 1658 * This is done with host CPU interrupts disabled so notification IPIs will be 1659 * queued on the host APIC and recognized when entering SVM guest context. 1660 */ 1661 static enum event_inject_state 1662 svm_inject_vlapic(struct svm_softc *sc, int vcpu, struct vlapic *vlapic, 1663 enum event_inject_state ev_state) 1664 { 1665 struct vmcb_ctrl *ctrl; 1666 struct vmcb_state *state; 1667 int vector; 1668 uint8_t v_tpr; 1669 1670 state = svm_get_vmcb_state(sc, vcpu); 1671 ctrl = svm_get_vmcb_ctrl(sc, vcpu); 1672 1673 /* 1674 * The guest can modify the TPR by writing to %cr8. In guest mode the 1675 * CPU reflects this write to V_TPR without hypervisor intervention. 1676 * 1677 * The guest can also modify the TPR by writing to it via the memory 1678 * mapped APIC page. In this case, the write will be emulated by the 1679 * hypervisor. For this reason V_TPR must be updated before every 1680 * VMRUN. 1681 */ 1682 v_tpr = vlapic_get_cr8(vlapic); 1683 KASSERT(v_tpr <= 15, ("invalid v_tpr %x", v_tpr)); 1684 if (ctrl->v_tpr != v_tpr) { 1685 ctrl->v_tpr = v_tpr; 1686 svm_set_dirty(sc, vcpu, VMCB_CACHE_TPR); 1687 } 1688 1689 /* If an event cannot otherwise be injected, we are done for now */ 1690 if (ev_state != EIS_CAN_INJECT) { 1691 return (ev_state); 1692 } 1693 1694 if (!vlapic_pending_intr(vlapic, &vector)) { 1695 return (EIS_CAN_INJECT); 1696 } 1697 KASSERT(vector >= 16 && vector <= 255, 1698 ("invalid vector %d from local APIC", vector)); 1699 1700 /* 1701 * If the guest has disabled interrupts or is in an interrupt shadow 1702 * then we cannot inject the pending interrupt. 1703 */ 1704 if ((state->rflags & PSL_I) == 0 || ctrl->intr_shadow) { 1705 return (EIS_GI_BLOCK); 1706 } 1707 1708 svm_inject_irq(sc, vcpu, vector); 1709 vlapic_intr_accepted(vlapic, vector); 1710 return (EIS_EV_INJECTED); 1711 } 1712 1713 /* 1714 * Re-check for events to be injected. 1715 * 1716 * Once host CPU interrupts are disabled, check for the presence of any events 1717 * which require injection processing. If an exit is required upon injection, 1718 * or once the guest becomes interruptable, that will be configured too. 1719 */ 1720 static bool 1721 svm_inject_recheck(struct svm_softc *sc, int vcpu, 1722 enum event_inject_state ev_state) 1723 { 1724 struct vmcb_ctrl *ctrl; 1725 1726 ctrl = svm_get_vmcb_ctrl(sc, vcpu); 1727 1728 if (ev_state == EIS_CAN_INJECT) { 1729 /* 1730 * An active interrupt shadow would preclude us from injecting 1731 * any events picked up during a re-check. 1732 */ 1733 if (ctrl->intr_shadow != 0) { 1734 return (false); 1735 } 1736 1737 if (vm_nmi_pending(sc->vm, vcpu) && 1738 !svm_nmi_blocked(sc, vcpu)) { 1739 /* queued NMI not blocked by NMI-window-exiting */ 1740 return (true); 1741 } 1742 if (vm_extint_pending(sc->vm, vcpu)) { 1743 /* queued ExtINT not blocked by existing injection */ 1744 return (true); 1745 } 1746 } else { 1747 if ((ev_state & EIS_REQ_EXIT) != 0) { 1748 /* 1749 * Use a self-IPI to force an immediate exit after 1750 * event injection has occurred. 1751 */ 1752 poke_cpu(CPU->cpu_id); 1753 } else { 1754 /* 1755 * If any event is being injected, an exit immediately 1756 * upon becoming interruptable again will allow pending 1757 * or newly queued events to be injected in a timely 1758 * manner. 1759 */ 1760 svm_enable_intr_window_exiting(sc, vcpu); 1761 } 1762 } 1763 return (false); 1764 } 1765 1766 1767 static void 1768 check_asid(struct svm_softc *sc, int vcpuid, uint_t thiscpu, uint64_t nptgen) 1769 { 1770 struct svm_vcpu *vcpustate = svm_get_vcpu(sc, vcpuid); 1771 struct vmcb_ctrl *ctrl = svm_get_vmcb_ctrl(sc, vcpuid); 1772 uint8_t flush; 1773 1774 flush = hma_svm_asid_update(&vcpustate->hma_asid, flush_by_asid(), 1775 vcpustate->nptgen != nptgen); 1776 1777 if (flush != VMCB_TLB_FLUSH_NOTHING) { 1778 ctrl->asid = vcpustate->hma_asid.hsa_asid; 1779 svm_set_dirty(sc, vcpuid, VMCB_CACHE_ASID); 1780 } 1781 ctrl->tlb_ctrl = flush; 1782 vcpustate->nptgen = nptgen; 1783 } 1784 1785 static void 1786 flush_asid(struct svm_softc *sc, int vcpuid) 1787 { 1788 struct svm_vcpu *vcpustate = svm_get_vcpu(sc, vcpuid); 1789 struct vmcb_ctrl *ctrl = svm_get_vmcb_ctrl(sc, vcpuid); 1790 uint8_t flush; 1791 1792 flush = hma_svm_asid_update(&vcpustate->hma_asid, flush_by_asid(), 1793 true); 1794 1795 ASSERT(flush != VMCB_TLB_FLUSH_NOTHING); 1796 ctrl->asid = vcpustate->hma_asid.hsa_asid; 1797 ctrl->tlb_ctrl = flush; 1798 svm_set_dirty(sc, vcpuid, VMCB_CACHE_ASID); 1799 /* 1800 * A potential future optimization: We could choose to update the nptgen 1801 * associated with the vCPU, since any pending nptgen change requiring a 1802 * flush will be satisfied by the one which has just now been queued. 1803 */ 1804 } 1805 1806 static __inline void 1807 disable_gintr(void) 1808 { 1809 __asm __volatile("clgi"); 1810 } 1811 1812 static __inline void 1813 enable_gintr(void) 1814 { 1815 __asm __volatile("stgi"); 1816 } 1817 1818 static __inline void 1819 svm_dr_enter_guest(struct svm_regctx *gctx) 1820 { 1821 1822 /* Save host control debug registers. */ 1823 gctx->host_dr7 = rdr7(); 1824 gctx->host_debugctl = rdmsr(MSR_DEBUGCTLMSR); 1825 1826 /* 1827 * Disable debugging in DR7 and DEBUGCTL to avoid triggering 1828 * exceptions in the host based on the guest DRx values. The 1829 * guest DR6, DR7, and DEBUGCTL are saved/restored in the 1830 * VMCB. 1831 */ 1832 load_dr7(0); 1833 wrmsr(MSR_DEBUGCTLMSR, 0); 1834 1835 /* Save host debug registers. */ 1836 gctx->host_dr0 = rdr0(); 1837 gctx->host_dr1 = rdr1(); 1838 gctx->host_dr2 = rdr2(); 1839 gctx->host_dr3 = rdr3(); 1840 gctx->host_dr6 = rdr6(); 1841 1842 /* Restore guest debug registers. */ 1843 load_dr0(gctx->sctx_dr0); 1844 load_dr1(gctx->sctx_dr1); 1845 load_dr2(gctx->sctx_dr2); 1846 load_dr3(gctx->sctx_dr3); 1847 } 1848 1849 static __inline void 1850 svm_dr_leave_guest(struct svm_regctx *gctx) 1851 { 1852 1853 /* Save guest debug registers. */ 1854 gctx->sctx_dr0 = rdr0(); 1855 gctx->sctx_dr1 = rdr1(); 1856 gctx->sctx_dr2 = rdr2(); 1857 gctx->sctx_dr3 = rdr3(); 1858 1859 /* 1860 * Restore host debug registers. Restore DR7 and DEBUGCTL 1861 * last. 1862 */ 1863 load_dr0(gctx->host_dr0); 1864 load_dr1(gctx->host_dr1); 1865 load_dr2(gctx->host_dr2); 1866 load_dr3(gctx->host_dr3); 1867 load_dr6(gctx->host_dr6); 1868 wrmsr(MSR_DEBUGCTLMSR, gctx->host_debugctl); 1869 load_dr7(gctx->host_dr7); 1870 } 1871 1872 /* 1873 * Apply the TSC offset for a vCPU, including physical CPU and per-vCPU offsets. 1874 */ 1875 static void 1876 svm_apply_tsc_adjust(struct svm_softc *svm_sc, int vcpuid) 1877 { 1878 const uint64_t offset = vcpu_tsc_offset(svm_sc->vm, vcpuid, true); 1879 struct vmcb_ctrl *ctrl = svm_get_vmcb_ctrl(svm_sc, vcpuid); 1880 1881 if (ctrl->tsc_offset != offset) { 1882 ctrl->tsc_offset = offset; 1883 svm_set_dirty(svm_sc, vcpuid, VMCB_CACHE_I); 1884 } 1885 } 1886 1887 /* 1888 * Start vcpu with specified RIP. 1889 */ 1890 static int 1891 svm_vmrun(void *arg, int vcpu, uint64_t rip) 1892 { 1893 struct svm_regctx *gctx; 1894 struct svm_softc *svm_sc; 1895 struct svm_vcpu *vcpustate; 1896 struct vmcb_state *state; 1897 struct vmcb_ctrl *ctrl; 1898 struct vm_exit *vmexit; 1899 struct vlapic *vlapic; 1900 vm_client_t *vmc; 1901 struct vm *vm; 1902 uint64_t vmcb_pa; 1903 int handled; 1904 uint16_t ldt_sel; 1905 1906 svm_sc = arg; 1907 vm = svm_sc->vm; 1908 1909 vcpustate = svm_get_vcpu(svm_sc, vcpu); 1910 state = svm_get_vmcb_state(svm_sc, vcpu); 1911 ctrl = svm_get_vmcb_ctrl(svm_sc, vcpu); 1912 vmexit = vm_exitinfo(vm, vcpu); 1913 vlapic = vm_lapic(vm, vcpu); 1914 vmc = vm_get_vmclient(vm, vcpu); 1915 1916 gctx = svm_get_guest_regctx(svm_sc, vcpu); 1917 vmcb_pa = svm_sc->vcpu[vcpu].vmcb_pa; 1918 1919 if (vcpustate->lastcpu != curcpu) { 1920 /* 1921 * Force new ASID allocation by invalidating the generation. 1922 */ 1923 vcpustate->hma_asid.hsa_gen = 0; 1924 1925 /* 1926 * Invalidate the VMCB state cache by marking all fields dirty. 1927 */ 1928 svm_set_dirty(svm_sc, vcpu, 0xffffffff); 1929 1930 /* 1931 * XXX 1932 * Setting 'vcpustate->lastcpu' here is bit premature because 1933 * we may return from this function without actually executing 1934 * the VMRUN instruction. This could happen if an AST or yield 1935 * condition is pending on the first time through the loop. 1936 * 1937 * This works for now but any new side-effects of vcpu 1938 * migration should take this case into account. 1939 */ 1940 vcpustate->lastcpu = curcpu; 1941 vmm_stat_incr(vm, vcpu, VCPU_MIGRATIONS, 1); 1942 } 1943 1944 svm_apply_tsc_adjust(svm_sc, vcpu); 1945 1946 svm_msr_guest_enter(svm_sc, vcpu); 1947 1948 VERIFY(!vcpustate->loaded && curthread->t_preempt != 0); 1949 vcpustate->loaded = B_TRUE; 1950 1951 /* Update Guest RIP */ 1952 state->rip = rip; 1953 1954 do { 1955 enum event_inject_state inject_state; 1956 uint64_t nptgen; 1957 1958 /* 1959 * Initial event injection is complex and may involve mutex 1960 * contention, so it must be performed with global interrupts 1961 * still enabled. 1962 */ 1963 inject_state = svm_inject_events(svm_sc, vcpu); 1964 handled = 0; 1965 1966 /* 1967 * Disable global interrupts to guarantee atomicity during 1968 * loading of guest state. This includes not only the state 1969 * loaded by the "vmrun" instruction but also software state 1970 * maintained by the hypervisor: suspended and rendezvous 1971 * state, NPT generation number, vlapic interrupts etc. 1972 */ 1973 disable_gintr(); 1974 1975 /* 1976 * Synchronizing and injecting vlapic state is lock-free and is 1977 * safe (and prudent) to perform with interrupts disabled. 1978 */ 1979 inject_state = svm_inject_vlapic(svm_sc, vcpu, vlapic, 1980 inject_state); 1981 1982 /* 1983 * Check for vCPU bail-out conditions. This must be done after 1984 * svm_inject_events() to detect a triple-fault condition. 1985 */ 1986 if (vcpu_entry_bailout_checks(vm, vcpu, state->rip)) { 1987 enable_gintr(); 1988 break; 1989 } 1990 1991 if (vcpu_run_state_pending(vm, vcpu)) { 1992 enable_gintr(); 1993 vm_exit_run_state(vm, vcpu, state->rip); 1994 break; 1995 } 1996 1997 /* 1998 * If subsequent activity queued events which require injection 1999 * handling, take another lap to handle them. 2000 */ 2001 if (svm_inject_recheck(svm_sc, vcpu, inject_state)) { 2002 enable_gintr(); 2003 handled = 1; 2004 continue; 2005 } 2006 2007 /* 2008 * #VMEXIT resumes the host with the guest LDTR, so 2009 * save the current LDT selector so it can be restored 2010 * after an exit. The userspace hypervisor probably 2011 * doesn't use a LDT, but save and restore it to be 2012 * safe. 2013 */ 2014 ldt_sel = sldt(); 2015 2016 /* 2017 * Check the vmspace and ASID generations to ensure that the 2018 * vcpu does not use stale TLB mappings. 2019 */ 2020 nptgen = vmc_table_enter(vmc); 2021 check_asid(svm_sc, vcpu, curcpu, nptgen); 2022 2023 ctrl->vmcb_clean = vmcb_clean & ~vcpustate->dirty; 2024 vcpustate->dirty = 0; 2025 2026 /* Launch Virtual Machine. */ 2027 vcpu_ustate_change(vm, vcpu, VU_RUN); 2028 svm_dr_enter_guest(gctx); 2029 svm_launch(vmcb_pa, gctx, get_pcpu()); 2030 svm_dr_leave_guest(gctx); 2031 vcpu_ustate_change(vm, vcpu, VU_EMU_KERN); 2032 2033 /* Restore host LDTR. */ 2034 lldt(ldt_sel); 2035 2036 /* #VMEXIT disables interrupts so re-enable them here. */ 2037 enable_gintr(); 2038 2039 vmc_table_exit(vmc); 2040 2041 /* Update 'nextrip' */ 2042 vcpustate->nextrip = state->rip; 2043 2044 /* Handle #VMEXIT and if required return to user space. */ 2045 handled = svm_vmexit(svm_sc, vcpu, vmexit); 2046 } while (handled); 2047 2048 svm_msr_guest_exit(svm_sc, vcpu); 2049 2050 VERIFY(vcpustate->loaded && curthread->t_preempt != 0); 2051 vcpustate->loaded = B_FALSE; 2052 2053 return (0); 2054 } 2055 2056 static void 2057 svm_vmcleanup(void *arg) 2058 { 2059 struct svm_softc *sc = arg; 2060 2061 vmm_contig_free(sc->iopm_bitmap, SVM_IO_BITMAP_SIZE); 2062 vmm_contig_free(sc->msr_bitmap, SVM_MSR_BITMAP_SIZE); 2063 kmem_free(sc, sizeof (*sc)); 2064 } 2065 2066 static uint64_t * 2067 swctx_regptr(struct svm_regctx *regctx, int reg) 2068 { 2069 switch (reg) { 2070 case VM_REG_GUEST_RBX: 2071 return (®ctx->sctx_rbx); 2072 case VM_REG_GUEST_RCX: 2073 return (®ctx->sctx_rcx); 2074 case VM_REG_GUEST_RDX: 2075 return (®ctx->sctx_rdx); 2076 case VM_REG_GUEST_RDI: 2077 return (®ctx->sctx_rdi); 2078 case VM_REG_GUEST_RSI: 2079 return (®ctx->sctx_rsi); 2080 case VM_REG_GUEST_RBP: 2081 return (®ctx->sctx_rbp); 2082 case VM_REG_GUEST_R8: 2083 return (®ctx->sctx_r8); 2084 case VM_REG_GUEST_R9: 2085 return (®ctx->sctx_r9); 2086 case VM_REG_GUEST_R10: 2087 return (®ctx->sctx_r10); 2088 case VM_REG_GUEST_R11: 2089 return (®ctx->sctx_r11); 2090 case VM_REG_GUEST_R12: 2091 return (®ctx->sctx_r12); 2092 case VM_REG_GUEST_R13: 2093 return (®ctx->sctx_r13); 2094 case VM_REG_GUEST_R14: 2095 return (®ctx->sctx_r14); 2096 case VM_REG_GUEST_R15: 2097 return (®ctx->sctx_r15); 2098 case VM_REG_GUEST_DR0: 2099 return (®ctx->sctx_dr0); 2100 case VM_REG_GUEST_DR1: 2101 return (®ctx->sctx_dr1); 2102 case VM_REG_GUEST_DR2: 2103 return (®ctx->sctx_dr2); 2104 case VM_REG_GUEST_DR3: 2105 return (®ctx->sctx_dr3); 2106 default: 2107 return (NULL); 2108 } 2109 } 2110 2111 static int 2112 svm_getreg(void *arg, int vcpu, int ident, uint64_t *val) 2113 { 2114 struct svm_softc *sc; 2115 struct vmcb *vmcb; 2116 uint64_t *regp; 2117 uint64_t *fieldp; 2118 struct vmcb_segment *seg; 2119 2120 sc = arg; 2121 vmcb = svm_get_vmcb(sc, vcpu); 2122 2123 regp = swctx_regptr(svm_get_guest_regctx(sc, vcpu), ident); 2124 if (regp != NULL) { 2125 *val = *regp; 2126 return (0); 2127 } 2128 2129 switch (ident) { 2130 case VM_REG_GUEST_INTR_SHADOW: 2131 *val = (vmcb->ctrl.intr_shadow != 0) ? 1 : 0; 2132 break; 2133 2134 case VM_REG_GUEST_CR0: 2135 svm_get_cr0(sc, vcpu, val); 2136 break; 2137 case VM_REG_GUEST_CR2: 2138 case VM_REG_GUEST_CR3: 2139 case VM_REG_GUEST_CR4: 2140 case VM_REG_GUEST_DR6: 2141 case VM_REG_GUEST_DR7: 2142 case VM_REG_GUEST_EFER: 2143 case VM_REG_GUEST_RAX: 2144 case VM_REG_GUEST_RFLAGS: 2145 case VM_REG_GUEST_RIP: 2146 case VM_REG_GUEST_RSP: 2147 fieldp = vmcb_regptr(vmcb, ident, NULL); 2148 *val = *fieldp; 2149 break; 2150 2151 case VM_REG_GUEST_CS: 2152 case VM_REG_GUEST_DS: 2153 case VM_REG_GUEST_ES: 2154 case VM_REG_GUEST_FS: 2155 case VM_REG_GUEST_GS: 2156 case VM_REG_GUEST_SS: 2157 case VM_REG_GUEST_LDTR: 2158 case VM_REG_GUEST_TR: 2159 seg = vmcb_segptr(vmcb, ident); 2160 *val = seg->selector; 2161 break; 2162 2163 case VM_REG_GUEST_GDTR: 2164 case VM_REG_GUEST_IDTR: 2165 /* GDTR and IDTR don't have segment selectors */ 2166 return (EINVAL); 2167 2168 case VM_REG_GUEST_PDPTE0: 2169 case VM_REG_GUEST_PDPTE1: 2170 case VM_REG_GUEST_PDPTE2: 2171 case VM_REG_GUEST_PDPTE3: 2172 /* 2173 * Unlike VMX, where the PDPTEs are explicitly cached as part of 2174 * several well-defined events related to paging (such as 2175 * loading %cr3), SVM walks the PDPEs (their PDPTE) as part of 2176 * nested paging lookups. This makes these registers 2177 * effectively irrelevant on SVM. 2178 * 2179 * Rather than tossing an error, emit zeroed values so casual 2180 * consumers do not need to be as careful about that difference. 2181 */ 2182 *val = 0; 2183 break; 2184 2185 default: 2186 return (EINVAL); 2187 } 2188 2189 return (0); 2190 } 2191 2192 static int 2193 svm_setreg(void *arg, int vcpu, int ident, uint64_t val) 2194 { 2195 struct svm_softc *sc; 2196 struct vmcb *vmcb; 2197 uint64_t *regp; 2198 uint64_t *fieldp; 2199 uint32_t dirty; 2200 struct vmcb_segment *seg; 2201 2202 sc = arg; 2203 vmcb = svm_get_vmcb(sc, vcpu); 2204 2205 regp = swctx_regptr(svm_get_guest_regctx(sc, vcpu), ident); 2206 if (regp != NULL) { 2207 *regp = val; 2208 return (0); 2209 } 2210 2211 dirty = VMCB_CACHE_NONE; 2212 switch (ident) { 2213 case VM_REG_GUEST_INTR_SHADOW: 2214 vmcb->ctrl.intr_shadow = (val != 0) ? 1 : 0; 2215 break; 2216 2217 case VM_REG_GUEST_EFER: 2218 fieldp = vmcb_regptr(vmcb, ident, &dirty); 2219 /* EFER_SVM must always be set when the guest is executing */ 2220 *fieldp = val | EFER_SVM; 2221 dirty |= VMCB_CACHE_CR; 2222 break; 2223 2224 case VM_REG_GUEST_CR0: 2225 svm_set_cr0(sc, vcpu, val, false); 2226 break; 2227 case VM_REG_GUEST_CR2: 2228 case VM_REG_GUEST_CR3: 2229 case VM_REG_GUEST_CR4: 2230 case VM_REG_GUEST_DR6: 2231 case VM_REG_GUEST_DR7: 2232 case VM_REG_GUEST_RAX: 2233 case VM_REG_GUEST_RFLAGS: 2234 case VM_REG_GUEST_RIP: 2235 case VM_REG_GUEST_RSP: 2236 fieldp = vmcb_regptr(vmcb, ident, &dirty); 2237 *fieldp = val; 2238 break; 2239 2240 case VM_REG_GUEST_CS: 2241 case VM_REG_GUEST_DS: 2242 case VM_REG_GUEST_ES: 2243 case VM_REG_GUEST_SS: 2244 case VM_REG_GUEST_FS: 2245 case VM_REG_GUEST_GS: 2246 case VM_REG_GUEST_LDTR: 2247 case VM_REG_GUEST_TR: 2248 dirty |= VMCB_CACHE_SEG; 2249 seg = vmcb_segptr(vmcb, ident); 2250 seg->selector = (uint16_t)val; 2251 break; 2252 2253 case VM_REG_GUEST_GDTR: 2254 case VM_REG_GUEST_IDTR: 2255 /* GDTR and IDTR don't have segment selectors */ 2256 return (EINVAL); 2257 2258 case VM_REG_GUEST_PDPTE0: 2259 case VM_REG_GUEST_PDPTE1: 2260 case VM_REG_GUEST_PDPTE2: 2261 case VM_REG_GUEST_PDPTE3: 2262 /* 2263 * PDPEs (AMD's PDPTE) are not cached under SVM, so we can 2264 * ignore attempts to set them. See handler in svm_getreg() for 2265 * more details. 2266 */ 2267 break; 2268 2269 default: 2270 return (EINVAL); 2271 } 2272 2273 if (dirty != VMCB_CACHE_NONE) { 2274 svm_set_dirty(sc, vcpu, dirty); 2275 } 2276 2277 /* 2278 * XXX deal with CR3 and invalidate TLB entries tagged with the 2279 * vcpu's ASID. This needs to be treated differently depending on 2280 * whether 'running' is true/false. 2281 */ 2282 2283 return (0); 2284 } 2285 2286 static int 2287 svm_setdesc(void *arg, int vcpu, int reg, const struct seg_desc *desc) 2288 { 2289 struct vmcb *vmcb; 2290 struct svm_softc *sc; 2291 struct vmcb_segment *seg; 2292 2293 sc = arg; 2294 vmcb = svm_get_vmcb(sc, vcpu); 2295 2296 switch (reg) { 2297 case VM_REG_GUEST_CS: 2298 case VM_REG_GUEST_DS: 2299 case VM_REG_GUEST_ES: 2300 case VM_REG_GUEST_SS: 2301 case VM_REG_GUEST_FS: 2302 case VM_REG_GUEST_GS: 2303 case VM_REG_GUEST_LDTR: 2304 case VM_REG_GUEST_TR: 2305 svm_set_dirty(sc, vcpu, VMCB_CACHE_SEG); 2306 seg = vmcb_segptr(vmcb, reg); 2307 /* 2308 * Map seg_desc access to VMCB attribute format. 2309 * 2310 * SVM uses the 'P' bit in the segment attributes to indicate a 2311 * NULL segment so clear it if the segment is marked unusable. 2312 */ 2313 seg->attrib = VMCB_ACCESS2ATTR(desc->access); 2314 if (SEG_DESC_UNUSABLE(desc->access)) { 2315 seg->attrib &= ~0x80; 2316 } 2317 /* 2318 * Keep CPL synced with the DPL specified for %ss. 2319 * 2320 * KVM notes that a SYSRET to non-cpl-3 is possible on AMD 2321 * (unlike Intel), but accepts such a possible deviation for 2322 * what is otherwise unreasonable behavior for a guest OS, since 2323 * they do the same synchronization. 2324 */ 2325 if (reg == VM_REG_GUEST_SS) { 2326 vmcb->state.cpl = SEG_DESC_DPL(desc->access); 2327 } 2328 break; 2329 2330 case VM_REG_GUEST_GDTR: 2331 case VM_REG_GUEST_IDTR: 2332 svm_set_dirty(sc, vcpu, VMCB_CACHE_DT); 2333 seg = vmcb_segptr(vmcb, reg); 2334 break; 2335 2336 default: 2337 return (EINVAL); 2338 } 2339 2340 ASSERT(seg != NULL); 2341 seg->base = desc->base; 2342 seg->limit = desc->limit; 2343 2344 return (0); 2345 } 2346 2347 static int 2348 svm_getdesc(void *arg, int vcpu, int reg, struct seg_desc *desc) 2349 { 2350 struct vmcb *vmcb; 2351 struct svm_softc *sc; 2352 struct vmcb_segment *seg; 2353 2354 sc = arg; 2355 vmcb = svm_get_vmcb(sc, vcpu); 2356 2357 switch (reg) { 2358 case VM_REG_GUEST_DS: 2359 case VM_REG_GUEST_ES: 2360 case VM_REG_GUEST_FS: 2361 case VM_REG_GUEST_GS: 2362 case VM_REG_GUEST_SS: 2363 case VM_REG_GUEST_LDTR: 2364 seg = vmcb_segptr(vmcb, reg); 2365 desc->access = VMCB_ATTR2ACCESS(seg->attrib); 2366 /* 2367 * VT-x uses bit 16 to indicate a segment that has been loaded 2368 * with a NULL selector (aka unusable). The 'desc->access' 2369 * field is interpreted in the VT-x format by the 2370 * processor-independent code. 2371 * 2372 * SVM uses the 'P' bit to convey the same information so 2373 * convert it into the VT-x format. For more details refer to 2374 * section "Segment State in the VMCB" in APMv2. 2375 */ 2376 if ((desc->access & 0x80) == 0) { 2377 /* Unusable segment */ 2378 desc->access |= 0x10000; 2379 } 2380 2381 /* 2382 * Just as CPL (in the VMCB) is kept synced to SS when the 2383 * segment is written, so too shall the segment sync from CPL 2384 * when it is read. 2385 */ 2386 if (reg == VM_REG_GUEST_SS) { 2387 desc->access &= 2388 ~(SEG_DESC_DPL_MASK << SEG_DESC_DPL_SHIFT); 2389 desc->access |= 2390 (vmcb->state.cpl & SEG_DESC_DPL_MASK) << 2391 SEG_DESC_DPL_SHIFT; 2392 } 2393 break; 2394 2395 case VM_REG_GUEST_CS: 2396 case VM_REG_GUEST_TR: 2397 seg = vmcb_segptr(vmcb, reg); 2398 desc->access = VMCB_ATTR2ACCESS(seg->attrib); 2399 break; 2400 2401 case VM_REG_GUEST_GDTR: 2402 case VM_REG_GUEST_IDTR: 2403 seg = vmcb_segptr(vmcb, reg); 2404 /* 2405 * Since there are no access bits associated with the GDTR or 2406 * the IDTR, zero out the field to ensure it does not contain 2407 * garbage which might confuse the consumer. 2408 */ 2409 desc->access = 0; 2410 break; 2411 2412 default: 2413 return (EINVAL); 2414 } 2415 2416 ASSERT(seg != NULL); 2417 desc->base = seg->base; 2418 desc->limit = seg->limit; 2419 return (0); 2420 } 2421 2422 static int 2423 svm_get_msr(void *arg, int vcpu, uint32_t msr, uint64_t *valp) 2424 { 2425 struct svm_softc *sc = arg; 2426 struct vmcb *vmcb = svm_get_vmcb(sc, vcpu); 2427 const uint64_t *msrp = vmcb_msr_ptr(vmcb, msr, NULL); 2428 2429 if (msrp != NULL) { 2430 *valp = *msrp; 2431 return (0); 2432 } 2433 2434 return (EINVAL); 2435 } 2436 2437 static int 2438 svm_set_msr(void *arg, int vcpu, uint32_t msr, uint64_t val) 2439 { 2440 struct svm_softc *sc = arg; 2441 struct vmcb *vmcb = svm_get_vmcb(sc, vcpu); 2442 2443 uint32_t dirty = 0; 2444 uint64_t *msrp = vmcb_msr_ptr(vmcb, msr, &dirty); 2445 if (msrp == NULL) { 2446 return (EINVAL); 2447 } 2448 switch (msr) { 2449 case MSR_EFER: 2450 /* 2451 * For now, just clone the logic from 2452 * svm_setreg(): 2453 * 2454 * EFER_SVM must always be set when the guest is 2455 * executing 2456 */ 2457 *msrp = val | EFER_SVM; 2458 break; 2459 /* TODO: other necessary MSR masking */ 2460 default: 2461 *msrp = val; 2462 break; 2463 } 2464 if (dirty != 0) { 2465 svm_set_dirty(sc, vcpu, dirty); 2466 } 2467 return (0); 2468 2469 } 2470 2471 static int 2472 svm_setcap(void *arg, int vcpu, int type, int val) 2473 { 2474 struct svm_softc *sc; 2475 int error; 2476 2477 sc = arg; 2478 error = 0; 2479 switch (type) { 2480 case VM_CAP_HALT_EXIT: 2481 svm_set_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, 2482 VMCB_INTCPT_HLT, val); 2483 break; 2484 case VM_CAP_PAUSE_EXIT: 2485 svm_set_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, 2486 VMCB_INTCPT_PAUSE, val); 2487 break; 2488 default: 2489 error = ENOENT; 2490 break; 2491 } 2492 return (error); 2493 } 2494 2495 static int 2496 svm_getcap(void *arg, int vcpu, int type, int *retval) 2497 { 2498 struct svm_softc *sc; 2499 int error; 2500 2501 sc = arg; 2502 error = 0; 2503 2504 switch (type) { 2505 case VM_CAP_HALT_EXIT: 2506 *retval = svm_get_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, 2507 VMCB_INTCPT_HLT); 2508 break; 2509 case VM_CAP_PAUSE_EXIT: 2510 *retval = svm_get_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, 2511 VMCB_INTCPT_PAUSE); 2512 break; 2513 default: 2514 error = ENOENT; 2515 break; 2516 } 2517 return (error); 2518 } 2519 2520 static struct vlapic * 2521 svm_vlapic_init(void *arg, int vcpuid) 2522 { 2523 struct svm_softc *svm_sc; 2524 struct vlapic *vlapic; 2525 2526 svm_sc = arg; 2527 vlapic = kmem_zalloc(sizeof (struct vlapic), KM_SLEEP); 2528 vlapic->vm = svm_sc->vm; 2529 vlapic->vcpuid = vcpuid; 2530 vlapic->apic_page = (struct LAPIC *)&svm_sc->apic_page[vcpuid]; 2531 2532 vlapic_init(vlapic); 2533 2534 return (vlapic); 2535 } 2536 2537 static void 2538 svm_vlapic_cleanup(void *arg, struct vlapic *vlapic) 2539 { 2540 vlapic_cleanup(vlapic); 2541 kmem_free(vlapic, sizeof (struct vlapic)); 2542 } 2543 2544 static void 2545 svm_pause(void *arg, int vcpu) 2546 { 2547 struct svm_softc *sc = arg; 2548 struct vmcb_ctrl *ctrl = svm_get_vmcb_ctrl(sc, vcpu); 2549 2550 /* 2551 * If an event is pending injection in the VMCB, stash it in 2552 * exit_intinfo as if it were deferred by an exit from guest context. 2553 */ 2554 const uint64_t intinfo = ctrl->eventinj; 2555 if ((intinfo & VMCB_EVENTINJ_VALID) != 0) { 2556 svm_stash_intinfo(sc, vcpu, intinfo); 2557 ctrl->eventinj = 0; 2558 } 2559 2560 /* 2561 * Now that no event is pending injection, interrupt-window exiting and 2562 * NMI-blocking can be disabled. If/when this vCPU is made to run 2563 * again, those conditions will be reinstated when the now-queued events 2564 * are re-injected. 2565 */ 2566 svm_disable_intr_window_exiting(sc, vcpu); 2567 svm_disable_intercept(sc, vcpu, VMCB_CTRL1_INTCPT, VMCB_INTCPT_IRET); 2568 } 2569 2570 static void 2571 svm_savectx(void *arg, int vcpu) 2572 { 2573 struct svm_softc *sc = arg; 2574 2575 if (sc->vcpu[vcpu].loaded) { 2576 svm_msr_guest_exit(sc, vcpu); 2577 } 2578 } 2579 2580 static void 2581 svm_restorectx(void *arg, int vcpu) 2582 { 2583 struct svm_softc *sc = arg; 2584 2585 if (sc->vcpu[vcpu].loaded) { 2586 svm_msr_guest_enter(sc, vcpu); 2587 } 2588 } 2589 2590 static freqratio_res_t 2591 svm_freq_ratio(uint64_t guest_hz, uint64_t host_hz, uint64_t *mult) 2592 { 2593 /* 2594 * Check whether scaling is needed at all before potentially erroring 2595 * out for other reasons. 2596 */ 2597 if (guest_hz == host_hz) { 2598 return (FR_SCALING_NOT_NEEDED); 2599 } 2600 2601 /* 2602 * Confirm that scaling is available. 2603 */ 2604 if (!svm_has_tsc_freq_ctl) { 2605 return (FR_SCALING_NOT_SUPPORTED); 2606 } 2607 2608 /* 2609 * Verify the guest_hz is within the supported range. 2610 */ 2611 if ((guest_hz < AMD_TSC_MIN_FREQ) || 2612 (guest_hz >= (host_hz * AMD_TSC_MAX_FREQ_RATIO))) { 2613 return (FR_OUT_OF_RANGE); 2614 } 2615 2616 /* Calculate the multiplier. */ 2617 uint64_t m = vmm_calc_freq_multiplier(guest_hz, host_hz, 2618 AMD_TSCM_FRAC_SIZE); 2619 *mult = m; 2620 2621 return (FR_VALID); 2622 } 2623 2624 struct vmm_ops vmm_ops_amd = { 2625 .init = svm_init, 2626 .cleanup = svm_cleanup, 2627 .resume = svm_restore, 2628 2629 .vminit = svm_vminit, 2630 .vmrun = svm_vmrun, 2631 .vmcleanup = svm_vmcleanup, 2632 .vmgetreg = svm_getreg, 2633 .vmsetreg = svm_setreg, 2634 .vmgetdesc = svm_getdesc, 2635 .vmsetdesc = svm_setdesc, 2636 .vmgetcap = svm_getcap, 2637 .vmsetcap = svm_setcap, 2638 .vlapic_init = svm_vlapic_init, 2639 .vlapic_cleanup = svm_vlapic_cleanup, 2640 .vmpause = svm_pause, 2641 2642 .vmsavectx = svm_savectx, 2643 .vmrestorectx = svm_restorectx, 2644 2645 .vmgetmsr = svm_get_msr, 2646 .vmsetmsr = svm_set_msr, 2647 2648 .vmfreqratio = svm_freq_ratio, 2649 .fr_intsize = AMD_TSCM_INT_SIZE, 2650 .fr_fracsize = AMD_TSCM_FRAC_SIZE, 2651 }; 2652