1 /* 2 * O.S : Solaris 3 * FILE NAME : arcmsr.c 4 * BY : Erich Chen, C.L. Huang 5 * Description: SCSI RAID Device Driver for 6 * ARECA RAID Host adapter 7 * 8 * Copyright (C) 2002,2010 Areca Technology Corporation All rights reserved. 9 * Copyright (C) 2002,2010 Erich Chen 10 * Web site: www.areca.com.tw 11 * E-mail: erich@areca.com.tw; ching2048@areca.com.tw 12 * 13 * Redistribution and use in source and binary forms, with or without 14 * modification, are permitted provided that the following conditions 15 * are met: 16 * 1. Redistributions of source code must retain the above copyright 17 * notice, this list of conditions and the following disclaimer. 18 * 2. Redistributions in binary form must reproduce the above copyright 19 * notice, this list of conditions and the following disclaimer in the 20 * documentation and/or other materials provided with the distribution. 21 * 3. The party using or redistributing the source code and binary forms 22 * agrees to the disclaimer below and the terms and conditions set forth 23 * herein. 24 * 25 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 28 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 35 * SUCH DAMAGE. 36 * 37 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 38 * Use is subject to license terms. 39 * 40 */ 41 /* 42 * This file and its contents are supplied under the terms of the 43 * Common Development and Distribution License ("CDDL"), version 1.0. 44 * You may only use this file in accordance with the terms of version 45 * 1.0 of the CDDL. 46 * 47 * A full copy of the text of the CDDL should have accompanied this 48 * source. A copy of the CDDL is also available via the Internet at 49 * http://www.illumos.org/license/CDDL. 50 */ 51 /* 52 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 53 */ 54 #include <sys/types.h> 55 #include <sys/ddidmareq.h> 56 #include <sys/scsi/scsi.h> 57 #include <sys/ddi.h> 58 #include <sys/sunddi.h> 59 #include <sys/file.h> 60 #include <sys/disp.h> 61 #include <sys/signal.h> 62 #include <sys/debug.h> 63 #include <sys/pci.h> 64 #include <sys/policy.h> 65 #include <sys/atomic.h> 66 #include "arcmsr.h" 67 68 static int arcmsr_attach(dev_info_t *dev_info, ddi_attach_cmd_t cmd); 69 static int arcmsr_cb_ioctl(dev_t dev, int ioctl_cmd, intptr_t arg, 70 int mode, cred_t *credp, int *rvalp); 71 static int arcmsr_detach(dev_info_t *dev_info, ddi_detach_cmd_t cmd); 72 static int arcmsr_reset(dev_info_t *resetdev, ddi_reset_cmd_t cmd); 73 static int arcmsr_tran_start(struct scsi_address *ap, struct scsi_pkt *pkt); 74 static int arcmsr_tran_abort(struct scsi_address *ap, struct scsi_pkt *pkt); 75 static int arcmsr_tran_reset(struct scsi_address *ap, int level); 76 static int arcmsr_tran_getcap(struct scsi_address *ap, char *cap, int whom); 77 static int arcmsr_tran_setcap(struct scsi_address *ap, char *cap, int value, 78 int whom); 79 static int arcmsr_tran_tgt_init(dev_info_t *host_dev_info, 80 dev_info_t *target_dev_info, scsi_hba_tran_t *hosttran, 81 struct scsi_device *sd); 82 static void arcmsr_tran_dmafree(struct scsi_address *ap, struct scsi_pkt *pkt); 83 static void arcmsr_tran_destroy_pkt(struct scsi_address *ap, 84 struct scsi_pkt *pkt); 85 static void arcmsr_tran_sync_pkt(struct scsi_address *ap, 86 struct scsi_pkt *pkt); 87 static struct scsi_pkt *arcmsr_tran_init_pkt(struct scsi_address *ap, 88 struct scsi_pkt *pkt, struct buf *bp, int cmdlen, int statuslen, 89 int tgtlen, int flags, int (*callback)(), caddr_t arg); 90 static int arcmsr_config_child(struct ACB *acb, struct scsi_device *sd, 91 dev_info_t **dipp); 92 93 static int arcmsr_config_lun(struct ACB *acb, uint16_t tgt, uint8_t lun, 94 dev_info_t **ldip); 95 static uint8_t arcmsr_abort_host_command(struct ACB *acb); 96 static uint8_t arcmsr_get_echo_from_iop(struct ACB *acb); 97 static uint_t arcmsr_intr_handler(caddr_t arg, caddr_t arg2); 98 static int arcmsr_initialize(struct ACB *acb); 99 static int arcmsr_dma_alloc(struct ACB *acb, 100 struct scsi_pkt *pkt, struct buf *bp, int flags, int (*callback)()); 101 static int arcmsr_dma_move(struct ACB *acb, 102 struct scsi_pkt *pkt, struct buf *bp); 103 static void arcmsr_handle_iop_bus_hold(struct ACB *acb); 104 static void arcmsr_hbc_message_isr(struct ACB *acb); 105 static void arcmsr_pcidev_disattach(struct ACB *acb); 106 static void arcmsr_ccb_complete(struct CCB *ccb, int flag); 107 static void arcmsr_iop_init(struct ACB *acb); 108 static void arcmsr_iop_parking(struct ACB *acb); 109 /*PRINTFLIKE3*/ 110 static void arcmsr_log(struct ACB *acb, int level, char *fmt, ...); 111 /*PRINTFLIKE2*/ 112 static void arcmsr_warn(struct ACB *acb, char *fmt, ...); 113 static void arcmsr_mutex_init(struct ACB *acb); 114 static void arcmsr_remove_intr(struct ACB *acb); 115 static void arcmsr_ccbs_timeout(void* arg); 116 static void arcmsr_devMap_monitor(void* arg); 117 static void arcmsr_pcidev_disattach(struct ACB *acb); 118 static void arcmsr_iop_message_read(struct ACB *acb); 119 static void arcmsr_free_ccb(struct CCB *ccb); 120 static void arcmsr_post_ioctldata2iop(struct ACB *acb); 121 static void arcmsr_report_sense_info(struct CCB *ccb); 122 static void arcmsr_init_list_head(struct list_head *list); 123 static void arcmsr_enable_allintr(struct ACB *acb, uint32_t intmask_org); 124 static void arcmsr_done4abort_postqueue(struct ACB *acb); 125 static void arcmsr_list_add_tail(kmutex_t *list_lock, 126 struct list_head *new_one, struct list_head *head); 127 static int arcmsr_name_node(dev_info_t *dip, char *name, int len); 128 static int arcmsr_seek_cmd2abort(struct ACB *acb, struct scsi_pkt *abortpkt); 129 static int arcmsr_iop_message_xfer(struct ACB *acb, struct scsi_pkt *pkt); 130 static int arcmsr_post_ccb(struct ACB *acb, struct CCB *ccb); 131 static int arcmsr_parse_devname(char *devnm, int *tgt, int *lun); 132 static int arcmsr_do_ddi_attach(dev_info_t *dev_info, int instance); 133 static uint8_t arcmsr_iop_reset(struct ACB *acb); 134 static uint32_t arcmsr_disable_allintr(struct ACB *acb); 135 static uint32_t arcmsr_iop_confirm(struct ACB *acb); 136 static struct CCB *arcmsr_get_freeccb(struct ACB *acb); 137 static void arcmsr_flush_hba_cache(struct ACB *acb); 138 static void arcmsr_flush_hbb_cache(struct ACB *acb); 139 static void arcmsr_flush_hbc_cache(struct ACB *acb); 140 static void arcmsr_stop_hba_bgrb(struct ACB *acb); 141 static void arcmsr_stop_hbb_bgrb(struct ACB *acb); 142 static void arcmsr_stop_hbc_bgrb(struct ACB *acb); 143 static void arcmsr_start_hba_bgrb(struct ACB *acb); 144 static void arcmsr_start_hbb_bgrb(struct ACB *acb); 145 static void arcmsr_start_hbc_bgrb(struct ACB *acb); 146 static void arcmsr_mutex_destroy(struct ACB *acb); 147 static void arcmsr_polling_hba_ccbdone(struct ACB *acb, struct CCB *poll_ccb); 148 static void arcmsr_polling_hbb_ccbdone(struct ACB *acb, struct CCB *poll_ccb); 149 static void arcmsr_polling_hbc_ccbdone(struct ACB *acb, struct CCB *poll_ccb); 150 static void arcmsr_build_ccb(struct CCB *ccb); 151 static int arcmsr_tran_bus_config(dev_info_t *parent, uint_t flags, 152 ddi_bus_config_op_t op, void *arg, dev_info_t **childp); 153 static int arcmsr_name_node(dev_info_t *dip, char *name, int len); 154 static dev_info_t *arcmsr_find_child(struct ACB *acb, uint16_t tgt, 155 uint8_t lun); 156 static struct QBUFFER *arcmsr_get_iop_rqbuffer(struct ACB *acb); 157 158 static int arcmsr_add_intr(struct ACB *, int); 159 160 static void *arcmsr_soft_state = NULL; 161 162 static ddi_dma_attr_t arcmsr_dma_attr = { 163 DMA_ATTR_V0, /* ddi_dma_attr version */ 164 0, /* low DMA address range */ 165 0xffffffffffffffffull, /* high DMA address range */ 166 0x00ffffff, /* DMA counter counter upper bound */ 167 1, /* DMA address alignment requirements */ 168 DEFAULT_BURSTSIZE | BURST32 | BURST64, /* burst sizes */ 169 1, /* minimum effective DMA size */ 170 ARCMSR_MAX_XFER_LEN, /* maximum DMA xfer size */ 171 /* 172 * The dma_attr_seg field supplies the limit of each Scatter/Gather 173 * list element's "address+length". The Intel IOP331 can not use 174 * segments over the 4G boundary due to segment boundary restrictions 175 */ 176 0xffffffff, 177 ARCMSR_MAX_SG_ENTRIES, /* scatter/gather list count */ 178 1, /* device granularity */ 179 DDI_DMA_FORCE_PHYSICAL /* Bus specific DMA flags */ 180 }; 181 182 183 static ddi_dma_attr_t arcmsr_ccb_attr = { 184 DMA_ATTR_V0, /* ddi_dma_attr version */ 185 0, /* low DMA address range */ 186 0xffffffff, /* high DMA address range */ 187 0x00ffffff, /* DMA counter counter upper bound */ 188 1, /* default byte alignment */ 189 DEFAULT_BURSTSIZE | BURST32 | BURST64, /* burst sizes */ 190 1, /* minimum effective DMA size */ 191 0xffffffff, /* maximum DMA xfer size */ 192 0x00ffffff, /* max segment size, segment boundary restrictions */ 193 1, /* scatter/gather list count */ 194 1, /* device granularity */ 195 DDI_DMA_FORCE_PHYSICAL /* Bus specific DMA flags */ 196 }; 197 198 199 static struct cb_ops arcmsr_cb_ops = { 200 scsi_hba_open, /* open(9E) */ 201 scsi_hba_close, /* close(9E) */ 202 nodev, /* strategy(9E), returns ENXIO */ 203 nodev, /* print(9E) */ 204 nodev, /* dump(9E) Cannot be used as a dump device */ 205 nodev, /* read(9E) */ 206 nodev, /* write(9E) */ 207 arcmsr_cb_ioctl, /* ioctl(9E) */ 208 nodev, /* devmap(9E) */ 209 nodev, /* mmap(9E) */ 210 nodev, /* segmap(9E) */ 211 NULL, /* chpoll(9E) returns ENXIO */ 212 nodev, /* prop_op(9E) */ 213 NULL, /* streamtab(9S) */ 214 D_MP, 215 CB_REV, 216 nodev, /* aread(9E) */ 217 nodev /* awrite(9E) */ 218 }; 219 220 static struct dev_ops arcmsr_ops = { 221 DEVO_REV, /* devo_rev */ 222 0, /* reference count */ 223 nodev, /* getinfo */ 224 nulldev, /* identify */ 225 nulldev, /* probe */ 226 arcmsr_attach, /* attach */ 227 arcmsr_detach, /* detach */ 228 arcmsr_reset, /* reset, shutdown, reboot notify */ 229 &arcmsr_cb_ops, /* driver operations */ 230 NULL, /* bus operations */ 231 NULL /* power */ 232 }; 233 234 static struct modldrv arcmsr_modldrv = { 235 &mod_driverops, /* Type of module. This is a driver. */ 236 "ARECA RAID Controller", /* module name, from arcmsr.h */ 237 &arcmsr_ops, /* driver ops */ 238 }; 239 240 static struct modlinkage arcmsr_modlinkage = { 241 MODREV_1, 242 &arcmsr_modldrv, 243 NULL 244 }; 245 246 247 int 248 _init(void) 249 { 250 int ret; 251 252 ret = ddi_soft_state_init(&arcmsr_soft_state, sizeof (struct ACB), 1); 253 if (ret != 0) { 254 return (ret); 255 } 256 if ((ret = scsi_hba_init(&arcmsr_modlinkage)) != 0) { 257 ddi_soft_state_fini(&arcmsr_soft_state); 258 return (ret); 259 } 260 261 if ((ret = mod_install(&arcmsr_modlinkage)) != 0) { 262 scsi_hba_fini(&arcmsr_modlinkage); 263 if (arcmsr_soft_state != NULL) { 264 ddi_soft_state_fini(&arcmsr_soft_state); 265 } 266 } 267 return (ret); 268 } 269 270 271 int 272 _fini(void) 273 { 274 int ret; 275 276 ret = mod_remove(&arcmsr_modlinkage); 277 if (ret == 0) { 278 /* if ret = 0 , said driver can remove */ 279 scsi_hba_fini(&arcmsr_modlinkage); 280 if (arcmsr_soft_state != NULL) { 281 ddi_soft_state_fini(&arcmsr_soft_state); 282 } 283 } 284 return (ret); 285 } 286 287 288 int 289 _info(struct modinfo *modinfop) 290 { 291 return (mod_info(&arcmsr_modlinkage, modinfop)); 292 } 293 294 295 /* 296 * Function: arcmsr_attach(9E) 297 * Description: Set up all device state and allocate data structures, 298 * mutexes, condition variables, etc. for device operation. 299 * Set mt_attr property for driver to indicate MT-safety. 300 * Add interrupts needed. 301 * Input: dev_info_t *dev_info, ddi_attach_cmd_t cmd 302 * Output: Return DDI_SUCCESS if device is ready, 303 * else return DDI_FAILURE 304 */ 305 static int 306 arcmsr_attach(dev_info_t *dev_info, ddi_attach_cmd_t cmd) 307 { 308 scsi_hba_tran_t *hba_trans; 309 struct ACB *acb; 310 311 switch (cmd) { 312 case DDI_ATTACH: 313 return (arcmsr_do_ddi_attach(dev_info, 314 ddi_get_instance(dev_info))); 315 case DDI_RESUME: 316 /* 317 * There is no hardware state to restart and no 318 * timeouts to restart since we didn't DDI_SUSPEND with 319 * active cmds or active timeouts We just need to 320 * unblock waiting threads and restart I/O the code 321 */ 322 hba_trans = ddi_get_driver_private(dev_info); 323 if (hba_trans == NULL) { 324 return (DDI_FAILURE); 325 } 326 acb = hba_trans->tran_hba_private; 327 mutex_enter(&acb->acb_mutex); 328 arcmsr_iop_init(acb); 329 330 /* restart ccbs "timeout" watchdog */ 331 acb->timeout_count = 0; 332 acb->timeout_id = timeout(arcmsr_ccbs_timeout, (caddr_t)acb, 333 (ARCMSR_TIMEOUT_WATCH * drv_usectohz(1000000))); 334 acb->timeout_sc_id = timeout(arcmsr_devMap_monitor, 335 (caddr_t)acb, 336 (ARCMSR_DEV_MAP_WATCH * drv_usectohz(1000000))); 337 mutex_exit(&acb->acb_mutex); 338 return (DDI_SUCCESS); 339 340 default: 341 return (DDI_FAILURE); 342 } 343 } 344 345 /* 346 * Function: arcmsr_detach(9E) 347 * Description: Remove all device allocation and system resources, disable 348 * device interrupt. 349 * Input: dev_info_t *dev_info 350 * ddi_detach_cmd_t cmd 351 * Output: Return DDI_SUCCESS if done, 352 * else returnDDI_FAILURE 353 */ 354 static int 355 arcmsr_detach(dev_info_t *dev_info, ddi_detach_cmd_t cmd) { 356 357 int instance; 358 struct ACB *acb; 359 360 361 instance = ddi_get_instance(dev_info); 362 acb = ddi_get_soft_state(arcmsr_soft_state, instance); 363 if (acb == NULL) 364 return (DDI_FAILURE); 365 366 switch (cmd) { 367 case DDI_DETACH: 368 mutex_enter(&acb->acb_mutex); 369 if (acb->timeout_id != 0) { 370 mutex_exit(&acb->acb_mutex); 371 (void) untimeout(acb->timeout_id); 372 mutex_enter(&acb->acb_mutex); 373 acb->timeout_id = 0; 374 } 375 if (acb->timeout_sc_id != 0) { 376 mutex_exit(&acb->acb_mutex); 377 (void) untimeout(acb->timeout_sc_id); 378 mutex_enter(&acb->acb_mutex); 379 acb->timeout_sc_id = 0; 380 } 381 arcmsr_pcidev_disattach(acb); 382 /* Remove interrupt set up by ddi_add_intr */ 383 arcmsr_remove_intr(acb); 384 /* unbind mapping object to handle */ 385 (void) ddi_dma_unbind_handle(acb->ccbs_pool_handle); 386 /* Free ccb pool memory */ 387 ddi_dma_mem_free(&acb->ccbs_acc_handle); 388 /* Free DMA handle */ 389 ddi_dma_free_handle(&acb->ccbs_pool_handle); 390 ddi_regs_map_free(&acb->reg_mu_acc_handle0); 391 if (scsi_hba_detach(dev_info) != DDI_SUCCESS) 392 arcmsr_warn(acb, "Unable to detach instance cleanly " 393 "(should not happen)"); 394 /* free scsi_hba_transport from scsi_hba_tran_alloc */ 395 scsi_hba_tran_free(acb->scsi_hba_transport); 396 ddi_taskq_destroy(acb->taskq); 397 ddi_prop_remove_all(dev_info); 398 mutex_exit(&acb->acb_mutex); 399 arcmsr_mutex_destroy(acb); 400 pci_config_teardown(&acb->pci_acc_handle); 401 ddi_set_driver_private(dev_info, NULL); 402 ddi_soft_state_free(arcmsr_soft_state, instance); 403 return (DDI_SUCCESS); 404 case DDI_SUSPEND: 405 mutex_enter(&acb->acb_mutex); 406 if (acb->timeout_id != 0) { 407 acb->acb_flags |= ACB_F_SCSISTOPADAPTER; 408 mutex_exit(&acb->acb_mutex); 409 (void) untimeout(acb->timeout_id); 410 (void) untimeout(acb->timeout_sc_id); 411 mutex_enter(&acb->acb_mutex); 412 acb->timeout_id = 0; 413 } 414 415 if (acb->timeout_sc_id != 0) { 416 acb->acb_flags |= ACB_F_SCSISTOPADAPTER; 417 mutex_exit(&acb->acb_mutex); 418 (void) untimeout(acb->timeout_sc_id); 419 mutex_enter(&acb->acb_mutex); 420 acb->timeout_sc_id = 0; 421 } 422 423 /* disable all outbound interrupt */ 424 (void) arcmsr_disable_allintr(acb); 425 /* stop adapter background rebuild */ 426 switch (acb->adapter_type) { 427 case ACB_ADAPTER_TYPE_A: 428 arcmsr_stop_hba_bgrb(acb); 429 arcmsr_flush_hba_cache(acb); 430 break; 431 432 case ACB_ADAPTER_TYPE_B: 433 arcmsr_stop_hbb_bgrb(acb); 434 arcmsr_flush_hbb_cache(acb); 435 break; 436 437 case ACB_ADAPTER_TYPE_C: 438 arcmsr_stop_hbc_bgrb(acb); 439 arcmsr_flush_hbc_cache(acb); 440 break; 441 } 442 mutex_exit(&acb->acb_mutex); 443 return (DDI_SUCCESS); 444 default: 445 return (DDI_FAILURE); 446 } 447 } 448 449 static int 450 arcmsr_reset(dev_info_t *resetdev, ddi_reset_cmd_t cmd) 451 { 452 struct ACB *acb; 453 scsi_hba_tran_t *scsi_hba_transport; 454 _NOTE(ARGUNUSED(cmd)); 455 456 scsi_hba_transport = ddi_get_driver_private(resetdev); 457 if (scsi_hba_transport == NULL) 458 return (DDI_FAILURE); 459 460 acb = (struct ACB *)scsi_hba_transport->tran_hba_private; 461 if (!acb) 462 return (DDI_FAILURE); 463 464 arcmsr_pcidev_disattach(acb); 465 466 return (DDI_SUCCESS); 467 } 468 469 static int 470 arcmsr_cb_ioctl(dev_t dev, int ioctl_cmd, intptr_t arg, int mode, 471 cred_t *credp, int *rvalp) 472 { 473 struct ACB *acb; 474 struct CMD_MESSAGE_FIELD *pktioctlfld; 475 int retvalue = 0; 476 int instance = MINOR2INST(getminor(dev)); 477 478 if (instance < 0) 479 return (ENXIO); 480 481 if (secpolicy_sys_config(credp, B_FALSE) != 0) 482 return (EPERM); 483 484 acb = ddi_get_soft_state(arcmsr_soft_state, instance); 485 if (acb == NULL) 486 return (ENXIO); 487 488 pktioctlfld = kmem_zalloc(sizeof (struct CMD_MESSAGE_FIELD), KM_SLEEP); 489 490 mutex_enter(&acb->ioctl_mutex); 491 if (ddi_copyin((void *)arg, pktioctlfld, 492 sizeof (struct CMD_MESSAGE_FIELD), mode) != 0) { 493 retvalue = ENXIO; 494 goto ioctl_out; 495 } 496 497 if (memcmp(pktioctlfld->cmdmessage.Signature, "ARCMSR", 6) != 0) { 498 /* validity check */ 499 retvalue = ENXIO; 500 goto ioctl_out; 501 } 502 503 switch ((unsigned int)ioctl_cmd) { 504 case ARCMSR_MESSAGE_READ_RQBUFFER: 505 { 506 uint8_t *ver_addr; 507 uint8_t *pQbuffer, *ptmpQbuffer; 508 int32_t allxfer_len = 0; 509 510 ver_addr = kmem_zalloc(MSGDATABUFLEN, KM_SLEEP); 511 ptmpQbuffer = ver_addr; 512 while ((acb->rqbuf_firstidx != acb->rqbuf_lastidx) && 513 (allxfer_len < (MSGDATABUFLEN - 1))) { 514 /* copy READ QBUFFER to srb */ 515 pQbuffer = &acb->rqbuffer[acb->rqbuf_firstidx]; 516 (void) memcpy(ptmpQbuffer, pQbuffer, 1); 517 acb->rqbuf_firstidx++; 518 /* if last index number set it to 0 */ 519 acb->rqbuf_firstidx %= ARCMSR_MAX_QBUFFER; 520 ptmpQbuffer++; 521 allxfer_len++; 522 } 523 524 if (acb->acb_flags & ACB_F_IOPDATA_OVERFLOW) { 525 struct QBUFFER *prbuffer; 526 uint8_t *pQbuffer; 527 uint8_t *iop_data; 528 int32_t iop_len; 529 530 acb->acb_flags &= ~ACB_F_IOPDATA_OVERFLOW; 531 prbuffer = arcmsr_get_iop_rqbuffer(acb); 532 iop_data = (uint8_t *)prbuffer->data; 533 iop_len = (int32_t)prbuffer->data_len; 534 /* 535 * this iop data does no chance to make me overflow 536 * again here, so just do it 537 */ 538 while (iop_len > 0) { 539 pQbuffer = &acb->rqbuffer[acb->rqbuf_lastidx]; 540 (void) memcpy(pQbuffer, iop_data, 1); 541 acb->rqbuf_lastidx++; 542 /* if last index number set it to 0 */ 543 acb->rqbuf_lastidx %= ARCMSR_MAX_QBUFFER; 544 iop_data++; 545 iop_len--; 546 } 547 /* let IOP know data has been read */ 548 arcmsr_iop_message_read(acb); 549 } 550 (void) memcpy(pktioctlfld->messagedatabuffer, 551 ver_addr, allxfer_len); 552 pktioctlfld->cmdmessage.Length = allxfer_len; 553 pktioctlfld->cmdmessage.ReturnCode = 554 ARCMSR_MESSAGE_RETURNCODE_OK; 555 556 if (ddi_copyout(pktioctlfld, (void *)arg, 557 sizeof (struct CMD_MESSAGE_FIELD), mode) != 0) 558 retvalue = ENXIO; 559 560 kmem_free(ver_addr, MSGDATABUFLEN); 561 break; 562 } 563 564 case ARCMSR_MESSAGE_WRITE_WQBUFFER: 565 { 566 uint8_t *ver_addr; 567 int32_t my_empty_len, user_len; 568 int32_t wqbuf_firstidx, wqbuf_lastidx; 569 uint8_t *pQbuffer, *ptmpuserbuffer; 570 571 ver_addr = kmem_zalloc(MSGDATABUFLEN, KM_SLEEP); 572 573 ptmpuserbuffer = ver_addr; 574 user_len = min(pktioctlfld->cmdmessage.Length, 575 MSGDATABUFLEN); 576 (void) memcpy(ptmpuserbuffer, 577 pktioctlfld->messagedatabuffer, user_len); 578 /* 579 * check ifdata xfer length of this request will overflow 580 * my array qbuffer 581 */ 582 wqbuf_lastidx = acb->wqbuf_lastidx; 583 wqbuf_firstidx = acb->wqbuf_firstidx; 584 if (wqbuf_lastidx != wqbuf_firstidx) { 585 arcmsr_post_ioctldata2iop(acb); 586 pktioctlfld->cmdmessage.ReturnCode = 587 ARCMSR_MESSAGE_RETURNCODE_ERROR; 588 } else { 589 my_empty_len = (wqbuf_firstidx - wqbuf_lastidx - 1) 590 & (ARCMSR_MAX_QBUFFER - 1); 591 if (my_empty_len >= user_len) { 592 while (user_len > 0) { 593 /* copy srb data to wqbuffer */ 594 pQbuffer = 595 &acb->wqbuffer[acb->wqbuf_lastidx]; 596 (void) memcpy(pQbuffer, 597 ptmpuserbuffer, 1); 598 acb->wqbuf_lastidx++; 599 /* iflast index number set it to 0 */ 600 acb->wqbuf_lastidx %= 601 ARCMSR_MAX_QBUFFER; 602 ptmpuserbuffer++; 603 user_len--; 604 } 605 /* post first Qbuffer */ 606 if (acb->acb_flags & 607 ACB_F_MESSAGE_WQBUFFER_CLEARED) { 608 acb->acb_flags &= 609 ~ACB_F_MESSAGE_WQBUFFER_CLEARED; 610 arcmsr_post_ioctldata2iop(acb); 611 } 612 pktioctlfld->cmdmessage.ReturnCode = 613 ARCMSR_MESSAGE_RETURNCODE_OK; 614 } else { 615 pktioctlfld->cmdmessage.ReturnCode = 616 ARCMSR_MESSAGE_RETURNCODE_ERROR; 617 } 618 } 619 if (ddi_copyout(pktioctlfld, (void *)arg, 620 sizeof (struct CMD_MESSAGE_FIELD), mode) != 0) 621 retvalue = ENXIO; 622 623 kmem_free(ver_addr, MSGDATABUFLEN); 624 break; 625 } 626 627 case ARCMSR_MESSAGE_CLEAR_RQBUFFER: 628 { 629 uint8_t *pQbuffer = acb->rqbuffer; 630 631 if (acb->acb_flags & ACB_F_IOPDATA_OVERFLOW) { 632 acb->acb_flags &= ~ACB_F_IOPDATA_OVERFLOW; 633 arcmsr_iop_message_read(acb); 634 } 635 acb->acb_flags |= ACB_F_MESSAGE_RQBUFFER_CLEARED; 636 acb->rqbuf_firstidx = 0; 637 acb->rqbuf_lastidx = 0; 638 bzero(pQbuffer, ARCMSR_MAX_QBUFFER); 639 /* report success */ 640 pktioctlfld->cmdmessage.ReturnCode = 641 ARCMSR_MESSAGE_RETURNCODE_OK; 642 643 if (ddi_copyout(pktioctlfld, (void *)arg, 644 sizeof (struct CMD_MESSAGE_FIELD), mode) != 0) 645 retvalue = ENXIO; 646 break; 647 } 648 649 case ARCMSR_MESSAGE_CLEAR_WQBUFFER: 650 { 651 uint8_t *pQbuffer = acb->wqbuffer; 652 653 if (acb->acb_flags & ACB_F_IOPDATA_OVERFLOW) { 654 acb->acb_flags &= ~ACB_F_IOPDATA_OVERFLOW; 655 arcmsr_iop_message_read(acb); 656 } 657 acb->acb_flags |= (ACB_F_MESSAGE_WQBUFFER_CLEARED | 658 ACB_F_MESSAGE_WQBUFFER_READ); 659 acb->wqbuf_firstidx = 0; 660 acb->wqbuf_lastidx = 0; 661 bzero(pQbuffer, ARCMSR_MAX_QBUFFER); 662 /* report success */ 663 pktioctlfld->cmdmessage.ReturnCode = 664 ARCMSR_MESSAGE_RETURNCODE_OK; 665 666 if (ddi_copyout(pktioctlfld, (void *)arg, 667 sizeof (struct CMD_MESSAGE_FIELD), mode) != 0) 668 retvalue = ENXIO; 669 break; 670 } 671 672 case ARCMSR_MESSAGE_CLEAR_ALLQBUFFER: 673 { 674 uint8_t *pQbuffer; 675 676 if (acb->acb_flags & ACB_F_IOPDATA_OVERFLOW) { 677 acb->acb_flags &= ~ACB_F_IOPDATA_OVERFLOW; 678 arcmsr_iop_message_read(acb); 679 } 680 acb->acb_flags |= (ACB_F_MESSAGE_WQBUFFER_CLEARED | 681 ACB_F_MESSAGE_RQBUFFER_CLEARED | 682 ACB_F_MESSAGE_WQBUFFER_READ); 683 acb->rqbuf_firstidx = 0; 684 acb->rqbuf_lastidx = 0; 685 acb->wqbuf_firstidx = 0; 686 acb->wqbuf_lastidx = 0; 687 pQbuffer = acb->rqbuffer; 688 bzero(pQbuffer, sizeof (struct QBUFFER)); 689 pQbuffer = acb->wqbuffer; 690 bzero(pQbuffer, sizeof (struct QBUFFER)); 691 /* report success */ 692 pktioctlfld->cmdmessage.ReturnCode = 693 ARCMSR_MESSAGE_RETURNCODE_OK; 694 if (ddi_copyout(pktioctlfld, (void *)arg, 695 sizeof (struct CMD_MESSAGE_FIELD), mode) != 0) 696 retvalue = ENXIO; 697 break; 698 } 699 700 case ARCMSR_MESSAGE_REQUEST_RETURN_CODE_3F: 701 pktioctlfld->cmdmessage.ReturnCode = 702 ARCMSR_MESSAGE_RETURNCODE_3F; 703 if (ddi_copyout(pktioctlfld, (void *)arg, 704 sizeof (struct CMD_MESSAGE_FIELD), mode) != 0) 705 retvalue = ENXIO; 706 break; 707 708 /* Not supported: ARCMSR_MESSAGE_SAY_HELLO */ 709 case ARCMSR_MESSAGE_SAY_GOODBYE: 710 arcmsr_iop_parking(acb); 711 break; 712 713 case ARCMSR_MESSAGE_FLUSH_ADAPTER_CACHE: 714 switch (acb->adapter_type) { 715 case ACB_ADAPTER_TYPE_A: 716 arcmsr_flush_hba_cache(acb); 717 break; 718 case ACB_ADAPTER_TYPE_B: 719 arcmsr_flush_hbb_cache(acb); 720 break; 721 case ACB_ADAPTER_TYPE_C: 722 arcmsr_flush_hbc_cache(acb); 723 break; 724 } 725 break; 726 727 default: 728 mutex_exit(&acb->ioctl_mutex); 729 kmem_free(pktioctlfld, sizeof (struct CMD_MESSAGE_FIELD)); 730 return (scsi_hba_ioctl(dev, ioctl_cmd, arg, mode, credp, 731 rvalp)); 732 } 733 734 ioctl_out: 735 kmem_free(pktioctlfld, sizeof (struct CMD_MESSAGE_FIELD)); 736 mutex_exit(&acb->ioctl_mutex); 737 738 return (retvalue); 739 } 740 741 742 /* 743 * Function: arcmsr_tran_tgt_init 744 * Description: Called when initializing a target device instance. If 745 * no per-target initialization is required, the HBA 746 * may leave tran_tgt_init to NULL 747 * Input: 748 * dev_info_t *host_dev_info, 749 * dev_info_t *target_dev_info, 750 * scsi_hba_tran_t *tran, 751 * struct scsi_device *sd 752 * 753 * Return: DDI_SUCCESS if success, else return DDI_FAILURE 754 * 755 * entry point enables the HBA to allocate and/or initialize any per- 756 * target resources. 757 * It also enables the HBA to qualify the device's address as valid and 758 * supportable for that particular HBA. 759 * By returning DDI_FAILURE, the instance of the target driver for that 760 * device will not be probed or attached. 761 * This entry point is not required, and if none is supplied, 762 * the framework will attempt to probe and attach all possible instances 763 * of the appropriate target drivers. 764 */ 765 static int 766 arcmsr_tran_tgt_init(dev_info_t *host_dev_info, dev_info_t *target_dev_info, 767 scsi_hba_tran_t *tran, struct scsi_device *sd) 768 { 769 uint16_t target; 770 uint8_t lun; 771 struct ACB *acb = tran->tran_hba_private; 772 773 _NOTE(ARGUNUSED(tran, target_dev_info, host_dev_info)) 774 775 target = sd->sd_address.a_target; 776 lun = sd->sd_address.a_lun; 777 if ((target >= ARCMSR_MAX_TARGETID) || (lun >= ARCMSR_MAX_TARGETLUN)) { 778 return (DDI_FAILURE); 779 } 780 781 782 if (ndi_dev_is_persistent_node(target_dev_info) == 0) { 783 /* 784 * If no persistent node exist, we don't allow .conf node 785 * to be created. 786 */ 787 if (arcmsr_find_child(acb, target, lun) != NULL) { 788 if ((ndi_merge_node(target_dev_info, 789 arcmsr_name_node) != DDI_SUCCESS)) { 790 return (DDI_SUCCESS); 791 } 792 } 793 return (DDI_FAILURE); 794 } 795 796 return (DDI_SUCCESS); 797 } 798 799 /* 800 * Function: arcmsr_tran_getcap(9E) 801 * Description: Get the capability named, and returnits value. 802 * Return Values: current value of capability, ifdefined 803 * -1 ifcapability is not defined 804 * ------------------------------------------------------ 805 * Common Capability Strings Array 806 * ------------------------------------------------------ 807 * #define SCSI_CAP_DMA_MAX 0 808 * #define SCSI_CAP_MSG_OUT 1 809 * #define SCSI_CAP_DISCONNECT 2 810 * #define SCSI_CAP_SYNCHRONOUS 3 811 * #define SCSI_CAP_WIDE_XFER 4 812 * #define SCSI_CAP_PARITY 5 813 * #define SCSI_CAP_INITIATOR_ID 6 814 * #define SCSI_CAP_UNTAGGED_QING 7 815 * #define SCSI_CAP_TAGGED_QING 8 816 * #define SCSI_CAP_ARQ 9 817 * #define SCSI_CAP_LINKED_CMDS 10 a 818 * #define SCSI_CAP_SECTOR_SIZE 11 b 819 * #define SCSI_CAP_TOTAL_SECTORS 12 c 820 * #define SCSI_CAP_GEOMETRY 13 d 821 * #define SCSI_CAP_RESET_NOTIFICATION 14 e 822 * #define SCSI_CAP_QFULL_RETRIES 15 f 823 * #define SCSI_CAP_QFULL_RETRY_INTERVAL 16 10 824 * #define SCSI_CAP_SCSI_VERSION 17 11 825 * #define SCSI_CAP_INTERCONNECT_TYPE 18 12 826 * #define SCSI_CAP_LUN_RESET 19 13 827 */ 828 static int 829 arcmsr_tran_getcap(struct scsi_address *ap, char *cap, int whom) 830 { 831 int capability = 0; 832 struct ACB *acb = (struct ACB *)ap->a_hba_tran->tran_hba_private; 833 834 if (cap == NULL || whom == 0) { 835 return (DDI_FAILURE); 836 } 837 838 mutex_enter(&acb->acb_mutex); 839 if (acb->devstate[ap->a_target][ap->a_lun] == ARECA_RAID_GONE) { 840 mutex_exit(&acb->acb_mutex); 841 return (-1); 842 } 843 switch (scsi_hba_lookup_capstr(cap)) { 844 case SCSI_CAP_MSG_OUT: 845 case SCSI_CAP_DISCONNECT: 846 case SCSI_CAP_WIDE_XFER: 847 case SCSI_CAP_TAGGED_QING: 848 case SCSI_CAP_UNTAGGED_QING: 849 case SCSI_CAP_PARITY: 850 case SCSI_CAP_ARQ: 851 capability = 1; 852 break; 853 case SCSI_CAP_SECTOR_SIZE: 854 capability = ARCMSR_DEV_SECTOR_SIZE; 855 break; 856 case SCSI_CAP_DMA_MAX: 857 /* Limit to 16MB max transfer */ 858 capability = ARCMSR_MAX_XFER_LEN; 859 break; 860 case SCSI_CAP_INITIATOR_ID: 861 capability = ARCMSR_SCSI_INITIATOR_ID; 862 break; 863 case SCSI_CAP_GEOMETRY: 864 /* head , track , cylinder */ 865 capability = (255 << 16) | 63; 866 break; 867 default: 868 capability = -1; 869 break; 870 } 871 mutex_exit(&acb->acb_mutex); 872 return (capability); 873 } 874 875 /* 876 * Function: arcmsr_tran_setcap(9E) 877 * Description: Set the specific capability. 878 * Return Values: 1 - capability exists and can be set to new value 879 * 0 - capability could not be set to new value 880 * -1 - no such capability 881 */ 882 static int 883 arcmsr_tran_setcap(struct scsi_address *ap, char *cap, int value, int whom) 884 { 885 _NOTE(ARGUNUSED(value)) 886 887 int supported = 0; 888 struct ACB *acb = (struct ACB *)ap->a_hba_tran->tran_hba_private; 889 890 if (cap == NULL || whom == 0) { 891 return (-1); 892 } 893 894 mutex_enter(&acb->acb_mutex); 895 if (acb->devstate[ap->a_target][ap->a_lun] == ARECA_RAID_GONE) { 896 mutex_exit(&acb->acb_mutex); 897 return (-1); 898 } 899 switch (supported = scsi_hba_lookup_capstr(cap)) { 900 case SCSI_CAP_ARQ: /* 9 auto request sense */ 901 case SCSI_CAP_UNTAGGED_QING: /* 7 */ 902 case SCSI_CAP_TAGGED_QING: /* 8 */ 903 /* these are always on, and cannot be turned off */ 904 supported = (value == 1) ? 1 : 0; 905 break; 906 case SCSI_CAP_TOTAL_SECTORS: /* c */ 907 supported = 1; 908 break; 909 case SCSI_CAP_DISCONNECT: /* 2 */ 910 case SCSI_CAP_WIDE_XFER: /* 4 */ 911 case SCSI_CAP_INITIATOR_ID: /* 6 */ 912 case SCSI_CAP_DMA_MAX: /* 0 */ 913 case SCSI_CAP_MSG_OUT: /* 1 */ 914 case SCSI_CAP_PARITY: /* 5 */ 915 case SCSI_CAP_LINKED_CMDS: /* a */ 916 case SCSI_CAP_RESET_NOTIFICATION: /* e */ 917 case SCSI_CAP_SECTOR_SIZE: /* b */ 918 /* these are not settable */ 919 supported = 0; 920 break; 921 default: 922 supported = -1; 923 break; 924 } 925 mutex_exit(&acb->acb_mutex); 926 return (supported); 927 } 928 929 930 /* 931 * Function: arcmsr_tran_init_pkt 932 * Return Values: pointer to scsi_pkt, or NULL 933 * Description: simultaneously allocate both a scsi_pkt(9S) structure and 934 * DMA resources for that pkt. 935 * Called by kernel on behalf of a target driver 936 * calling scsi_init_pkt(9F). 937 * Refer to tran_init_pkt(9E) man page 938 * Context: Can be called from different kernel process threads. 939 * Can be called by interrupt thread. 940 * Allocates SCSI packet and DMA resources 941 */ 942 static struct 943 scsi_pkt *arcmsr_tran_init_pkt(struct scsi_address *ap, 944 register struct scsi_pkt *pkt, struct buf *bp, int cmdlen, int statuslen, 945 int tgtlen, int flags, int (*callback)(), caddr_t arg) 946 { 947 struct CCB *ccb; 948 struct ARCMSR_CDB *arcmsr_cdb; 949 struct ACB *acb; 950 int old_pkt_flag; 951 952 acb = (struct ACB *)ap->a_hba_tran->tran_hba_private; 953 954 if (acb->acb_flags & ACB_F_BUS_RESET) { 955 return (NULL); 956 } 957 if (pkt == NULL) { 958 /* get free CCB */ 959 (void) ddi_dma_sync(acb->ccbs_pool_handle, 0, 0, 960 DDI_DMA_SYNC_FORKERNEL); 961 ccb = arcmsr_get_freeccb(acb); 962 if (ccb == (struct CCB *)NULL) { 963 return (NULL); 964 } 965 966 if (statuslen < sizeof (struct scsi_arq_status)) { 967 statuslen = sizeof (struct scsi_arq_status); 968 } 969 pkt = scsi_hba_pkt_alloc(acb->dev_info, ap, cmdlen, 970 statuslen, tgtlen, sizeof (void *), callback, arg); 971 if (pkt == NULL) { 972 arcmsr_warn(acb, "scsi pkt allocation failed"); 973 arcmsr_free_ccb(ccb); 974 return (NULL); 975 } 976 /* Initialize CCB */ 977 ccb->pkt = pkt; 978 ccb->pkt_dma_handle = NULL; 979 /* record how many sg are needed to xfer on this pkt */ 980 ccb->pkt_ncookies = 0; 981 /* record how many sg we got from this window */ 982 ccb->pkt_cookie = 0; 983 /* record how many windows have partial dma map set */ 984 ccb->pkt_nwin = 0; 985 /* record current sg window position */ 986 ccb->pkt_curwin = 0; 987 ccb->pkt_dma_len = 0; 988 ccb->pkt_dma_offset = 0; 989 ccb->resid_dmacookie.dmac_size = 0; 990 991 /* 992 * we will still use this point for we want to fake some 993 * information in tran_start 994 */ 995 ccb->bp = bp; 996 997 /* Initialize arcmsr_cdb */ 998 arcmsr_cdb = &ccb->arcmsr_cdb; 999 bzero(arcmsr_cdb, sizeof (struct ARCMSR_CDB)); 1000 arcmsr_cdb->Bus = 0; 1001 arcmsr_cdb->Function = 1; 1002 arcmsr_cdb->LUN = ap->a_lun; 1003 arcmsr_cdb->TargetID = ap->a_target; 1004 arcmsr_cdb->CdbLength = (uint8_t)cmdlen; 1005 arcmsr_cdb->Context = (uintptr_t)arcmsr_cdb; 1006 1007 /* Fill in the rest of the structure */ 1008 pkt->pkt_ha_private = ccb; 1009 pkt->pkt_address = *ap; 1010 pkt->pkt_comp = NULL; 1011 pkt->pkt_flags = 0; 1012 pkt->pkt_time = 0; 1013 pkt->pkt_resid = 0; 1014 pkt->pkt_statistics = 0; 1015 pkt->pkt_reason = 0; 1016 old_pkt_flag = 0; 1017 } else { 1018 ccb = pkt->pkt_ha_private; 1019 if (ccb->ccb_state & ARCMSR_ABNORMAL_MASK) { 1020 if (!(ccb->ccb_state & ARCMSR_CCB_BACK)) { 1021 return (NULL); 1022 } 1023 } 1024 1025 /* 1026 * you cannot update CdbLength with cmdlen here, it would 1027 * cause a data compare error 1028 */ 1029 ccb->ccb_state = ARCMSR_CCB_UNBUILD; 1030 old_pkt_flag = 1; 1031 } 1032 1033 /* Second step : dma allocation/move */ 1034 if (bp && bp->b_bcount != 0) { 1035 /* 1036 * system had a lot of data trunk need to xfer, from...20 byte 1037 * to 819200 byte. 1038 * arcmsr_dma_alloc will get pkt_dma_handle (not null) until 1039 * this lot of data trunk xfer done this mission will be done 1040 * by some of continue READ or WRITE scsi command, till this 1041 * lot of data trunk xfer completed. 1042 * arcmsr_dma_move do the action repeatedly, and use the same 1043 * ccb till this lot of data trunk xfer complete notice. 1044 * when after the arcmsr_tran_init_pkt returns the solaris 1045 * kernel is by your pkt_resid and its b_bcount to give you 1046 * which type of scsi command descriptor to implement the 1047 * length of folowing arcmsr_tran_start scsi cdb (data length) 1048 * 1049 * Each transfer should be aligned on a 512 byte boundary 1050 */ 1051 if (ccb->pkt_dma_handle == NULL) { 1052 if (arcmsr_dma_alloc(acb, pkt, bp, flags, callback) == 1053 DDI_FAILURE) { 1054 /* 1055 * the HBA driver is unable to allocate DMA 1056 * resources, it must free the allocated 1057 * scsi_pkt(9S) before returning 1058 */ 1059 arcmsr_warn(acb, "dma allocation failure"); 1060 if (old_pkt_flag == 0) { 1061 arcmsr_warn(acb, "dma " 1062 "allocation failed to free " 1063 "scsi hba pkt"); 1064 arcmsr_free_ccb(ccb); 1065 scsi_hba_pkt_free(ap, pkt); 1066 } 1067 return (NULL); 1068 } 1069 } else { 1070 /* DMA resources to next DMA window, for old pkt */ 1071 if (arcmsr_dma_move(acb, pkt, bp) == DDI_FAILURE) { 1072 arcmsr_warn(acb, "dma move failed"); 1073 return (NULL); 1074 } 1075 } 1076 } else { 1077 pkt->pkt_resid = 0; 1078 } 1079 return (pkt); 1080 } 1081 1082 /* 1083 * Function: arcmsr_tran_start(9E) 1084 * Description: Transport the command in pktp to the target device. 1085 * The command is not finished when this returns, only 1086 * sent to the target; arcmsr_intr_handler will call 1087 * scsi_hba_pkt_comp(pktp) when the target device has done. 1088 * 1089 * Input: struct scsi_address *ap, struct scsi_pkt *pktp 1090 * Output: TRAN_ACCEPT if pkt is OK and not driver not busy 1091 * TRAN_BUSY if driver is 1092 * TRAN_BADPKT if pkt is invalid 1093 */ 1094 static int 1095 arcmsr_tran_start(struct scsi_address *ap, struct scsi_pkt *pkt) 1096 { 1097 struct ACB *acb; 1098 struct CCB *ccb; 1099 int target = ap->a_target; 1100 int lun = ap->a_lun; 1101 1102 acb = (struct ACB *)ap->a_hba_tran->tran_hba_private; 1103 ccb = pkt->pkt_ha_private; 1104 *pkt->pkt_scbp = STATUS_GOOD; /* clear arq scsi_status */ 1105 1106 if ((ccb->ccb_flags & CCB_FLAG_DMAVALID) && 1107 (ccb->ccb_flags & DDI_DMA_CONSISTENT)) 1108 (void) ddi_dma_sync(ccb->pkt_dma_handle, 0, 0, 1109 DDI_DMA_SYNC_FORDEV); 1110 1111 if (ccb->ccb_state == ARCMSR_CCB_UNBUILD) 1112 arcmsr_build_ccb(ccb); 1113 1114 if (acb->acb_flags & ACB_F_BUS_RESET) { 1115 pkt->pkt_reason = CMD_RESET; 1116 pkt->pkt_statistics |= STAT_BUS_RESET; 1117 pkt->pkt_state |= (STATE_GOT_BUS | STATE_GOT_TARGET | 1118 STATE_SENT_CMD | STATE_GOT_STATUS); 1119 if ((ccb->ccb_flags & CCB_FLAG_DMACONSISTENT) && 1120 (pkt->pkt_state & STATE_XFERRED_DATA)) 1121 (void) ddi_dma_sync(ccb->pkt_dma_handle, 1122 0, 0, DDI_DMA_SYNC_FORCPU); 1123 1124 scsi_hba_pkt_comp(pkt); 1125 return (TRAN_ACCEPT); 1126 } 1127 1128 /* IMPORTANT: Target 16 is a virtual device for iop message transfer */ 1129 if (target == 16) { 1130 1131 struct buf *bp = ccb->bp; 1132 uint8_t scsicmd = pkt->pkt_cdbp[0]; 1133 1134 switch (scsicmd) { 1135 case SCMD_INQUIRY: { 1136 if (lun != 0) { 1137 ccb->pkt->pkt_reason = CMD_TIMEOUT; 1138 ccb->pkt->pkt_statistics |= STAT_TIMEOUT; 1139 arcmsr_ccb_complete(ccb, 0); 1140 return (TRAN_ACCEPT); 1141 } 1142 1143 if (bp && bp->b_un.b_addr && bp->b_bcount) { 1144 uint8_t inqdata[36]; 1145 1146 /* The EVDP and pagecode is not supported */ 1147 if (pkt->pkt_cdbp[1] || pkt->pkt_cdbp[2]) { 1148 inqdata[1] = 0xFF; 1149 inqdata[2] = 0x00; 1150 } else { 1151 /* Periph Qualifier & Periph Dev Type */ 1152 inqdata[0] = DTYPE_PROCESSOR; 1153 /* rem media bit & Dev Type Modifier */ 1154 inqdata[1] = 0; 1155 /* ISO, ECMA, & ANSI versions */ 1156 inqdata[2] = 0; 1157 inqdata[3] = 0; 1158 /* length of additional data */ 1159 inqdata[4] = 31; 1160 /* Vendor Identification */ 1161 bcopy("Areca ", &inqdata[8], VIDLEN); 1162 /* Product Identification */ 1163 bcopy("RAID controller ", &inqdata[16], 1164 PIDLEN); 1165 /* Product Revision */ 1166 bcopy(&inqdata[32], "R001", REVLEN); 1167 if (bp->b_flags & (B_PHYS | B_PAGEIO)) 1168 bp_mapin(bp); 1169 1170 (void) memcpy(bp->b_un.b_addr, 1171 inqdata, sizeof (inqdata)); 1172 } 1173 ccb->pkt->pkt_state |= STATE_XFERRED_DATA; 1174 } 1175 arcmsr_ccb_complete(ccb, 0); 1176 return (TRAN_ACCEPT); 1177 } 1178 case SCMD_WRITE_BUFFER: 1179 case SCMD_READ_BUFFER: { 1180 if (arcmsr_iop_message_xfer(acb, pkt)) { 1181 /* error just for retry */ 1182 ccb->pkt->pkt_reason = CMD_TRAN_ERR; 1183 ccb->pkt->pkt_statistics |= STAT_TERMINATED; 1184 } 1185 ccb->pkt->pkt_state |= STATE_XFERRED_DATA; 1186 arcmsr_ccb_complete(ccb, 0); 1187 return (TRAN_ACCEPT); 1188 } 1189 default: 1190 ccb->pkt->pkt_state |= STATE_XFERRED_DATA; 1191 arcmsr_ccb_complete(ccb, 0); 1192 return (TRAN_ACCEPT); 1193 } 1194 } 1195 1196 if (acb->devstate[target][lun] == ARECA_RAID_GONE) { 1197 uint8_t block_cmd; 1198 1199 block_cmd = pkt->pkt_cdbp[0] & 0x0f; 1200 if (block_cmd == 0x08 || block_cmd == 0x0a) { 1201 pkt->pkt_reason = CMD_TIMEOUT; 1202 pkt->pkt_statistics |= STAT_TIMEOUT; 1203 pkt->pkt_state |= (STATE_GOT_BUS | STATE_GOT_TARGET | 1204 STATE_SENT_CMD | STATE_GOT_STATUS); 1205 if ((ccb->ccb_flags & CCB_FLAG_DMACONSISTENT) && 1206 (pkt->pkt_state & STATE_XFERRED_DATA)) { 1207 (void) ddi_dma_sync(ccb->pkt_dma_handle, 1208 ccb->pkt_dma_offset, 1209 ccb->pkt_dma_len, DDI_DMA_SYNC_FORCPU); 1210 } 1211 scsi_hba_pkt_comp(pkt); 1212 return (TRAN_ACCEPT); 1213 } 1214 } 1215 mutex_enter(&acb->postq_mutex); 1216 if (acb->ccboutstandingcount >= ARCMSR_MAX_OUTSTANDING_CMD) { 1217 ccb->ccb_state = ARCMSR_CCB_RETRY; 1218 mutex_exit(&acb->postq_mutex); 1219 return (TRAN_BUSY); 1220 } else if (arcmsr_post_ccb(acb, ccb) == DDI_FAILURE) { 1221 arcmsr_warn(acb, "post ccb failure, ccboutstandingcount = %d", 1222 acb->ccboutstandingcount); 1223 mutex_exit(&acb->postq_mutex); 1224 return (TRAN_FATAL_ERROR); 1225 } 1226 mutex_exit(&acb->postq_mutex); 1227 return (TRAN_ACCEPT); 1228 } 1229 1230 /* 1231 * Function name: arcmsr_tran_destroy_pkt 1232 * Return Values: none 1233 * Description: Called by kernel on behalf of a target driver 1234 * calling scsi_destroy_pkt(9F). 1235 * Refer to tran_destroy_pkt(9E) man page 1236 * Context: Can be called from different kernel process threads. 1237 * Can be called by interrupt thread. 1238 */ 1239 static void 1240 arcmsr_tran_destroy_pkt(struct scsi_address *ap, struct scsi_pkt *pkt) 1241 { 1242 struct CCB *ccb = pkt->pkt_ha_private; 1243 ddi_dma_handle_t pkt_dma_handle = ccb->pkt_dma_handle; 1244 1245 if (ccb == NULL) { 1246 return; 1247 } 1248 if (ccb->pkt != pkt) { 1249 return; 1250 } 1251 if (ccb->ccb_flags & CCB_FLAG_DMAVALID) { 1252 ccb->ccb_flags &= ~CCB_FLAG_DMAVALID; 1253 if (pkt_dma_handle) { 1254 (void) ddi_dma_unbind_handle(ccb->pkt_dma_handle); 1255 } 1256 } 1257 if (pkt_dma_handle) { 1258 (void) ddi_dma_free_handle(&pkt_dma_handle); 1259 } 1260 pkt->pkt_ha_private = NULL; 1261 if (ccb) { 1262 if (ccb->ccb_state & ARCMSR_ABNORMAL_MASK) { 1263 if (ccb->ccb_state & ARCMSR_CCB_BACK) { 1264 arcmsr_free_ccb(ccb); 1265 } else { 1266 ccb->ccb_state |= ARCMSR_CCB_WAIT4_FREE; 1267 } 1268 } else { 1269 arcmsr_free_ccb(ccb); 1270 } 1271 } 1272 scsi_hba_pkt_free(ap, pkt); 1273 } 1274 1275 /* 1276 * Function name: arcmsr_tran_dmafree() 1277 * Return Values: none 1278 * Description: free dvma resources 1279 * Context: Can be called from different kernel process threads. 1280 * Can be called by interrupt thread. 1281 */ 1282 static void 1283 arcmsr_tran_dmafree(struct scsi_address *ap, struct scsi_pkt *pkt) 1284 { 1285 struct CCB *ccb = pkt->pkt_ha_private; 1286 1287 if ((ccb == NULL) || (ccb->pkt != pkt)) { 1288 return; 1289 } 1290 if (ccb->ccb_flags & CCB_FLAG_DMAVALID) { 1291 ccb->ccb_flags &= ~CCB_FLAG_DMAVALID; 1292 if (ddi_dma_unbind_handle(ccb->pkt_dma_handle) != DDI_SUCCESS) { 1293 arcmsr_warn(ccb->acb, "ddi_dma_unbind_handle() failed " 1294 "(target %d lun %d)", ap->a_target, ap->a_lun); 1295 } 1296 ddi_dma_free_handle(&ccb->pkt_dma_handle); 1297 ccb->pkt_dma_handle = NULL; 1298 } 1299 } 1300 1301 /* 1302 * Function name: arcmsr_tran_sync_pkt() 1303 * Return Values: none 1304 * Description: sync dma 1305 * Context: Can be called from different kernel process threads. 1306 * Can be called by interrupt thread. 1307 */ 1308 static void 1309 arcmsr_tran_sync_pkt(struct scsi_address *ap, struct scsi_pkt *pkt) 1310 { 1311 struct CCB *ccb; 1312 1313 ccb = pkt->pkt_ha_private; 1314 if ((ccb == NULL) || (ccb->pkt != pkt)) { 1315 return; 1316 } 1317 if (ccb->ccb_flags & CCB_FLAG_DMAVALID) { 1318 if (ddi_dma_sync(ccb->pkt_dma_handle, 0, 0, 1319 (ccb->ccb_flags & CCB_FLAG_DMAWRITE) ? 1320 DDI_DMA_SYNC_FORDEV : DDI_DMA_SYNC_FORCPU) != 1321 DDI_SUCCESS) { 1322 arcmsr_warn(ccb->acb, 1323 "sync pkt failed for target %d lun %d", 1324 ap->a_target, ap->a_lun); 1325 } 1326 } 1327 } 1328 1329 1330 /* 1331 * Function: arcmsr_tran_abort(9E) 1332 * SCSA interface routine to abort pkt(s) in progress. 1333 * Aborts the pkt specified. If NULL pkt, aborts ALL pkts. 1334 * Output: Return 1 if success 1335 * Return 0 if failure 1336 */ 1337 static int 1338 arcmsr_tran_abort(struct scsi_address *ap, struct scsi_pkt *abortpkt) 1339 { 1340 struct ACB *acb; 1341 int return_code; 1342 1343 acb = ap->a_hba_tran->tran_hba_private; 1344 1345 while (acb->ccboutstandingcount != 0) { 1346 drv_usecwait(10000); 1347 } 1348 1349 mutex_enter(&acb->isr_mutex); 1350 return_code = arcmsr_seek_cmd2abort(acb, abortpkt); 1351 mutex_exit(&acb->isr_mutex); 1352 1353 if (return_code != DDI_SUCCESS) { 1354 arcmsr_warn(acb, "abort command failed for target %d lun %d", 1355 ap->a_target, ap->a_lun); 1356 return (0); 1357 } 1358 return (1); 1359 } 1360 1361 /* 1362 * Function: arcmsr_tran_reset(9E) 1363 * SCSA interface routine to perform scsi resets on either 1364 * a specified target or the bus (default). 1365 * Output: Return 1 if success 1366 * Return 0 if failure 1367 */ 1368 static int 1369 arcmsr_tran_reset(struct scsi_address *ap, int level) { 1370 1371 struct ACB *acb; 1372 int return_code = 1; 1373 int target = ap->a_target; 1374 int lun = ap->a_lun; 1375 1376 /* Are we in the middle of dumping core? */ 1377 if (ddi_in_panic()) 1378 return (return_code); 1379 1380 acb = (struct ACB *)ap->a_hba_tran->tran_hba_private; 1381 mutex_enter(&acb->isr_mutex); 1382 switch (level) { 1383 case RESET_ALL: /* 0 */ 1384 acb->num_resets++; 1385 acb->acb_flags |= ACB_F_BUS_RESET; 1386 if (acb->timeout_count) { 1387 if (arcmsr_iop_reset(acb) != 0) { 1388 arcmsr_handle_iop_bus_hold(acb); 1389 acb->acb_flags &= ~ACB_F_BUS_HANG_ON; 1390 } 1391 } 1392 acb->acb_flags &= ~ACB_F_BUS_RESET; 1393 break; 1394 case RESET_TARGET: /* 1 */ 1395 if (acb->devstate[target][lun] == ARECA_RAID_GONE) 1396 return_code = 0; 1397 break; 1398 case RESET_BUS: /* 2 */ 1399 return_code = 0; 1400 break; 1401 case RESET_LUN: /* 3 */ 1402 return_code = 0; 1403 break; 1404 default: 1405 return_code = 0; 1406 } 1407 mutex_exit(&acb->isr_mutex); 1408 return (return_code); 1409 } 1410 1411 static int 1412 arcmsr_tran_bus_config(dev_info_t *parent, uint_t flags, 1413 ddi_bus_config_op_t op, void *arg, dev_info_t **childp) 1414 { 1415 struct ACB *acb; 1416 int circ = 0; 1417 int rval; 1418 int tgt, lun; 1419 1420 if ((acb = ddi_get_soft_state(arcmsr_soft_state, 1421 ddi_get_instance(parent))) == NULL) 1422 return (NDI_FAILURE); 1423 1424 ndi_devi_enter(parent, &circ); 1425 switch (op) { 1426 case BUS_CONFIG_ONE: 1427 if (arcmsr_parse_devname(arg, &tgt, &lun) != 0) { 1428 rval = NDI_FAILURE; 1429 break; 1430 } 1431 if (acb->device_map[tgt] & 1 << lun) { 1432 acb->devstate[tgt][lun] = ARECA_RAID_GOOD; 1433 rval = arcmsr_config_lun(acb, tgt, lun, childp); 1434 } 1435 break; 1436 1437 case BUS_CONFIG_DRIVER: 1438 case BUS_CONFIG_ALL: 1439 for (tgt = 0; tgt < ARCMSR_MAX_TARGETID; tgt++) 1440 for (lun = 0; lun < ARCMSR_MAX_TARGETLUN; lun++) 1441 if (acb->device_map[tgt] & 1 << lun) { 1442 acb->devstate[tgt][lun] = 1443 ARECA_RAID_GOOD; 1444 (void) arcmsr_config_lun(acb, tgt, 1445 lun, NULL); 1446 } 1447 1448 rval = NDI_SUCCESS; 1449 break; 1450 } 1451 if (rval == NDI_SUCCESS) 1452 rval = ndi_busop_bus_config(parent, flags, op, arg, childp, 0); 1453 ndi_devi_exit(parent, circ); 1454 return (rval); 1455 } 1456 1457 /* 1458 * Function name: arcmsr_dma_alloc 1459 * Return Values: 0 if successful, -1 if failure 1460 * Description: allocate DMA resources 1461 * Context: Can only be called from arcmsr_tran_init_pkt() 1462 * register struct scsi_address *ap = &((pkt)->pkt_address); 1463 */ 1464 static int 1465 arcmsr_dma_alloc(struct ACB *acb, struct scsi_pkt *pkt, 1466 struct buf *bp, int flags, int (*callback)()) 1467 { 1468 struct CCB *ccb = pkt->pkt_ha_private; 1469 int alloc_result, map_method, dma_flags; 1470 int resid = 0; 1471 int total_ccb_xferlen = 0; 1472 int (*cb)(caddr_t); 1473 uint8_t i; 1474 1475 /* 1476 * at this point the PKT SCSI CDB is empty, and dma xfer length 1477 * is bp->b_bcount 1478 */ 1479 1480 if (bp->b_flags & B_READ) { 1481 ccb->ccb_flags &= ~CCB_FLAG_DMAWRITE; 1482 dma_flags = DDI_DMA_READ; 1483 } else { 1484 ccb->ccb_flags |= CCB_FLAG_DMAWRITE; 1485 dma_flags = DDI_DMA_WRITE; 1486 } 1487 1488 if (flags & PKT_CONSISTENT) { 1489 ccb->ccb_flags |= CCB_FLAG_DMACONSISTENT; 1490 dma_flags |= DDI_DMA_CONSISTENT; 1491 } 1492 if (flags & PKT_DMA_PARTIAL) { 1493 dma_flags |= DDI_DMA_PARTIAL; 1494 } 1495 1496 dma_flags |= DDI_DMA_REDZONE; 1497 cb = (callback == NULL_FUNC) ? DDI_DMA_DONTWAIT : DDI_DMA_SLEEP; 1498 1499 alloc_result = ddi_dma_alloc_handle(acb->dev_info, &arcmsr_dma_attr, 1500 cb, 0, &ccb->pkt_dma_handle); 1501 if (alloc_result != DDI_SUCCESS) { 1502 arcmsr_warn(acb, "dma allocate failed (%x)", alloc_result); 1503 return (DDI_FAILURE); 1504 } 1505 1506 map_method = ddi_dma_buf_bind_handle(ccb->pkt_dma_handle, 1507 bp, dma_flags, cb, 0, 1508 &ccb->pkt_dmacookies[0], /* SG List pointer */ 1509 &ccb->pkt_ncookies); /* number of sgl cookies */ 1510 1511 switch (map_method) { 1512 case DDI_DMA_PARTIAL_MAP: 1513 /* 1514 * When your main memory size larger then 4G 1515 * DDI_DMA_PARTIAL_MAP will be touched. 1516 * 1517 * We've already set DDI_DMA_PARTIAL in dma_flags, 1518 * so if it's now missing, there's something screwy 1519 * happening. We plow on.... 1520 */ 1521 1522 if ((dma_flags & DDI_DMA_PARTIAL) == 0) { 1523 arcmsr_warn(acb, 1524 "dma partial mapping lost ...impossible case!"); 1525 } 1526 if (ddi_dma_numwin(ccb->pkt_dma_handle, &ccb->pkt_nwin) == 1527 DDI_FAILURE) { 1528 arcmsr_warn(acb, "ddi_dma_numwin() failed"); 1529 } 1530 1531 if (ddi_dma_getwin(ccb->pkt_dma_handle, ccb->pkt_curwin, 1532 &ccb->pkt_dma_offset, &ccb->pkt_dma_len, 1533 &ccb->pkt_dmacookies[0], &ccb->pkt_ncookies) == 1534 DDI_FAILURE) { 1535 arcmsr_warn(acb, "ddi_dma_getwin failed"); 1536 } 1537 1538 i = 0; 1539 /* first cookie is accessed from ccb->pkt_dmacookies[0] */ 1540 total_ccb_xferlen = ccb->pkt_dmacookies[0].dmac_size; 1541 for (;;) { 1542 i++; 1543 if ((i == ARCMSR_MAX_SG_ENTRIES) || 1544 (i == ccb->pkt_ncookies) || 1545 (total_ccb_xferlen == ARCMSR_MAX_XFER_LEN)) { 1546 break; 1547 } 1548 /* 1549 * next cookie will be retrieved from 1550 * ccb->pkt_dmacookies[i] 1551 */ 1552 ddi_dma_nextcookie(ccb->pkt_dma_handle, 1553 &ccb->pkt_dmacookies[i]); 1554 total_ccb_xferlen += ccb->pkt_dmacookies[i].dmac_size; 1555 } 1556 ccb->pkt_cookie = i; 1557 ccb->arcmsr_cdb.sgcount = i; 1558 if (total_ccb_xferlen > 512) { 1559 resid = total_ccb_xferlen % 512; 1560 if (resid != 0) { 1561 i--; 1562 total_ccb_xferlen -= resid; 1563 /* modify last sg length */ 1564 ccb->pkt_dmacookies[i].dmac_size = 1565 ccb->pkt_dmacookies[i].dmac_size - resid; 1566 ccb->resid_dmacookie.dmac_size = resid; 1567 ccb->resid_dmacookie.dmac_laddress = 1568 ccb->pkt_dmacookies[i].dmac_laddress + 1569 ccb->pkt_dmacookies[i].dmac_size; 1570 } 1571 } 1572 ccb->total_dmac_size = total_ccb_xferlen; 1573 ccb->ccb_flags |= CCB_FLAG_DMAVALID; 1574 pkt->pkt_resid = bp->b_bcount - ccb->total_dmac_size; 1575 1576 return (DDI_SUCCESS); 1577 1578 case DDI_DMA_MAPPED: 1579 ccb->pkt_nwin = 1; /* all mapped, so only one window */ 1580 ccb->pkt_dma_len = 0; 1581 ccb->pkt_dma_offset = 0; 1582 i = 0; 1583 /* first cookie is accessed from ccb->pkt_dmacookies[0] */ 1584 total_ccb_xferlen = ccb->pkt_dmacookies[0].dmac_size; 1585 for (;;) { 1586 i++; 1587 if ((i == ARCMSR_MAX_SG_ENTRIES) || 1588 (i == ccb->pkt_ncookies) || 1589 (total_ccb_xferlen == ARCMSR_MAX_XFER_LEN)) { 1590 break; 1591 } 1592 /* 1593 * next cookie will be retrieved from 1594 * ccb->pkt_dmacookies[i] 1595 */ 1596 ddi_dma_nextcookie(ccb->pkt_dma_handle, 1597 &ccb->pkt_dmacookies[i]); 1598 total_ccb_xferlen += ccb->pkt_dmacookies[i].dmac_size; 1599 } 1600 ccb->pkt_cookie = i; 1601 ccb->arcmsr_cdb.sgcount = i; 1602 if (total_ccb_xferlen > 512) { 1603 resid = total_ccb_xferlen % 512; 1604 if (resid != 0) { 1605 i--; 1606 total_ccb_xferlen -= resid; 1607 /* modify last sg length */ 1608 ccb->pkt_dmacookies[i].dmac_size = 1609 ccb->pkt_dmacookies[i].dmac_size - resid; 1610 ccb->resid_dmacookie.dmac_size = resid; 1611 ccb->resid_dmacookie.dmac_laddress = 1612 ccb->pkt_dmacookies[i].dmac_laddress + 1613 ccb->pkt_dmacookies[i].dmac_size; 1614 } 1615 } 1616 ccb->total_dmac_size = total_ccb_xferlen; 1617 ccb->ccb_flags |= CCB_FLAG_DMAVALID; 1618 pkt->pkt_resid = bp->b_bcount - ccb->total_dmac_size; 1619 return (DDI_SUCCESS); 1620 1621 case DDI_DMA_NORESOURCES: 1622 arcmsr_warn(acb, "dma map got 'no resources'"); 1623 bioerror(bp, ENOMEM); 1624 break; 1625 1626 case DDI_DMA_NOMAPPING: 1627 arcmsr_warn(acb, "dma map got 'no mapping'"); 1628 bioerror(bp, EFAULT); 1629 break; 1630 1631 case DDI_DMA_TOOBIG: 1632 arcmsr_warn(acb, "dma map got 'too big'"); 1633 bioerror(bp, EINVAL); 1634 break; 1635 1636 case DDI_DMA_INUSE: 1637 arcmsr_warn(acb, "dma map got 'in use' " 1638 "(should not happen)"); 1639 break; 1640 default: 1641 arcmsr_warn(acb, "dma map failed (0x%x)", i); 1642 break; 1643 } 1644 1645 ddi_dma_free_handle(&ccb->pkt_dma_handle); 1646 ccb->pkt_dma_handle = NULL; 1647 ccb->ccb_flags &= ~CCB_FLAG_DMAVALID; 1648 return (DDI_FAILURE); 1649 } 1650 1651 1652 /* 1653 * Function name: arcmsr_dma_move 1654 * Return Values: 0 if successful, -1 if failure 1655 * Description: move DMA resources to next DMA window 1656 * Context: Can only be called from arcmsr_tran_init_pkt() 1657 */ 1658 static int 1659 arcmsr_dma_move(struct ACB *acb, struct scsi_pkt *pkt, struct buf *bp) 1660 { 1661 struct CCB *ccb = pkt->pkt_ha_private; 1662 uint8_t i = 0; 1663 int resid = 0; 1664 int total_ccb_xferlen = 0; 1665 1666 if (ccb->resid_dmacookie.dmac_size != 0) { 1667 total_ccb_xferlen += ccb->resid_dmacookie.dmac_size; 1668 ccb->pkt_dmacookies[i].dmac_size = 1669 ccb->resid_dmacookie.dmac_size; 1670 ccb->pkt_dmacookies[i].dmac_laddress = 1671 ccb->resid_dmacookie.dmac_laddress; 1672 i++; 1673 ccb->resid_dmacookie.dmac_size = 0; 1674 } 1675 /* 1676 * If there are no more cookies remaining in this window, 1677 * move to the next window. 1678 */ 1679 if (ccb->pkt_cookie == ccb->pkt_ncookies) { 1680 /* 1681 * only dma map "partial" arrive here 1682 */ 1683 if ((ccb->pkt_curwin == ccb->pkt_nwin) && 1684 (ccb->pkt_nwin == 1)) { 1685 return (DDI_SUCCESS); 1686 } 1687 1688 /* At last window, cannot move */ 1689 if (++ccb->pkt_curwin >= ccb->pkt_nwin) { 1690 arcmsr_warn(acb, "dma partial set, numwin exceeded"); 1691 return (DDI_FAILURE); 1692 } 1693 if (ddi_dma_getwin(ccb->pkt_dma_handle, ccb->pkt_curwin, 1694 &ccb->pkt_dma_offset, &ccb->pkt_dma_len, 1695 &ccb->pkt_dmacookies[i], &ccb->pkt_ncookies) == 1696 DDI_FAILURE) { 1697 arcmsr_warn(acb, "ddi_dma_getwin failed"); 1698 return (DDI_FAILURE); 1699 } 1700 /* reset cookie pointer */ 1701 ccb->pkt_cookie = 0; 1702 } else { 1703 /* 1704 * only dma map "all" arrive here 1705 * We still have more cookies in this window, 1706 * get the next one 1707 * access the pkt_dma_handle remain cookie record at 1708 * ccb->pkt_dmacookies array 1709 */ 1710 ddi_dma_nextcookie(ccb->pkt_dma_handle, 1711 &ccb->pkt_dmacookies[i]); 1712 } 1713 1714 /* Get remaining cookies in this window, up to our maximum */ 1715 total_ccb_xferlen += ccb->pkt_dmacookies[i].dmac_size; 1716 1717 /* retrieve and store cookies, start at ccb->pkt_dmacookies[0] */ 1718 for (;;) { 1719 i++; 1720 /* handled cookies count level indicator */ 1721 ccb->pkt_cookie++; 1722 if ((i == ARCMSR_MAX_SG_ENTRIES) || 1723 (ccb->pkt_cookie == ccb->pkt_ncookies) || 1724 (total_ccb_xferlen == ARCMSR_MAX_XFER_LEN)) { 1725 break; 1726 } 1727 ddi_dma_nextcookie(ccb->pkt_dma_handle, 1728 &ccb->pkt_dmacookies[i]); 1729 total_ccb_xferlen += ccb->pkt_dmacookies[i].dmac_size; 1730 } 1731 1732 ccb->arcmsr_cdb.sgcount = i; 1733 if (total_ccb_xferlen > 512) { 1734 resid = total_ccb_xferlen % 512; 1735 if (resid != 0) { 1736 i--; 1737 total_ccb_xferlen -= resid; 1738 /* modify last sg length */ 1739 ccb->pkt_dmacookies[i].dmac_size = 1740 ccb->pkt_dmacookies[i].dmac_size - resid; 1741 ccb->resid_dmacookie.dmac_size = resid; 1742 ccb->resid_dmacookie.dmac_laddress = 1743 ccb->pkt_dmacookies[i].dmac_laddress + 1744 ccb->pkt_dmacookies[i].dmac_size; 1745 } 1746 } 1747 ccb->total_dmac_size += total_ccb_xferlen; 1748 pkt->pkt_resid = bp->b_bcount - ccb->total_dmac_size; 1749 1750 return (DDI_SUCCESS); 1751 } 1752 1753 1754 /*ARGSUSED*/ 1755 static void 1756 arcmsr_build_ccb(struct CCB *ccb) 1757 { 1758 struct scsi_pkt *pkt = ccb->pkt; 1759 struct ARCMSR_CDB *arcmsr_cdb; 1760 char *psge; 1761 uint32_t address_lo, address_hi; 1762 int arccdbsize = 0x30; 1763 uint8_t sgcount; 1764 1765 arcmsr_cdb = (struct ARCMSR_CDB *)&ccb->arcmsr_cdb; 1766 psge = (char *)&arcmsr_cdb->sgu; 1767 1768 bcopy((caddr_t)pkt->pkt_cdbp, arcmsr_cdb->Cdb, arcmsr_cdb->CdbLength); 1769 sgcount = ccb->arcmsr_cdb.sgcount; 1770 1771 if (sgcount != 0) { 1772 int length, i; 1773 int cdb_sgcount = 0; 1774 int total_xfer_length = 0; 1775 1776 /* map stor port SG list to our iop SG List. */ 1777 for (i = 0; i < sgcount; i++) { 1778 /* Get physaddr of the current data pointer */ 1779 length = ccb->pkt_dmacookies[i].dmac_size; 1780 total_xfer_length += length; 1781 address_lo = 1782 dma_addr_lo32(ccb->pkt_dmacookies[i].dmac_laddress); 1783 address_hi = 1784 dma_addr_hi32(ccb->pkt_dmacookies[i].dmac_laddress); 1785 1786 if (address_hi == 0) { 1787 struct SG32ENTRY *dma_sg; 1788 1789 dma_sg = (struct SG32ENTRY *)(intptr_t)psge; 1790 dma_sg->address = address_lo; 1791 dma_sg->length = length; 1792 psge += sizeof (struct SG32ENTRY); 1793 arccdbsize += sizeof (struct SG32ENTRY); 1794 } else { 1795 struct SG64ENTRY *dma_sg; 1796 1797 dma_sg = (struct SG64ENTRY *)(intptr_t)psge; 1798 dma_sg->addresshigh = address_hi; 1799 dma_sg->address = address_lo; 1800 dma_sg->length = length | IS_SG64_ADDR; 1801 psge += sizeof (struct SG64ENTRY); 1802 arccdbsize += sizeof (struct SG64ENTRY); 1803 } 1804 cdb_sgcount++; 1805 } 1806 arcmsr_cdb->sgcount = (uint8_t)cdb_sgcount; 1807 arcmsr_cdb->DataLength = total_xfer_length; 1808 if (arccdbsize > 256) { 1809 arcmsr_cdb->Flags |= ARCMSR_CDB_FLAG_SGL_BSIZE; 1810 } 1811 } else { 1812 arcmsr_cdb->DataLength = 0; 1813 } 1814 1815 if (ccb->ccb_flags & CCB_FLAG_DMAWRITE) 1816 arcmsr_cdb->Flags |= ARCMSR_CDB_FLAG_WRITE; 1817 ccb->arc_cdb_size = arccdbsize; 1818 } 1819 1820 /* 1821 * arcmsr_post_ccb - Send a protocol specific ARC send postcard to a AIOC. 1822 * 1823 * handle: Handle of registered ARC protocol driver 1824 * adapter_id: AIOC unique identifier(integer) 1825 * pPOSTCARD_SEND: Pointer to ARC send postcard 1826 * 1827 * This routine posts a ARC send postcard to the request post FIFO of a 1828 * specific ARC adapter. 1829 */ 1830 static int 1831 arcmsr_post_ccb(struct ACB *acb, struct CCB *ccb) 1832 { 1833 uint32_t cdb_phyaddr_pattern = ccb->cdb_phyaddr_pattern; 1834 struct scsi_pkt *pkt = ccb->pkt; 1835 struct ARCMSR_CDB *arcmsr_cdb; 1836 uint_t pkt_flags = pkt->pkt_flags; 1837 1838 arcmsr_cdb = &ccb->arcmsr_cdb; 1839 1840 /* TODO: Use correct offset and size for syncing? */ 1841 if (ddi_dma_sync(acb->ccbs_pool_handle, 0, 0, DDI_DMA_SYNC_FORDEV) == 1842 DDI_FAILURE) 1843 return (DDI_FAILURE); 1844 1845 atomic_add_32(&acb->ccboutstandingcount, 1); 1846 ccb->ccb_time = (time_t)(ddi_get_time() + pkt->pkt_time); 1847 1848 ccb->ccb_state = ARCMSR_CCB_START; 1849 switch (acb->adapter_type) { 1850 case ACB_ADAPTER_TYPE_A: 1851 { 1852 struct HBA_msgUnit *phbamu; 1853 1854 phbamu = (struct HBA_msgUnit *)acb->pmu; 1855 if (arcmsr_cdb->Flags & ARCMSR_CDB_FLAG_SGL_BSIZE) { 1856 CHIP_REG_WRITE32(acb->reg_mu_acc_handle0, 1857 &phbamu->inbound_queueport, 1858 cdb_phyaddr_pattern | 1859 ARCMSR_CCBPOST_FLAG_SGL_BSIZE); 1860 } else { 1861 CHIP_REG_WRITE32(acb->reg_mu_acc_handle0, 1862 &phbamu->inbound_queueport, cdb_phyaddr_pattern); 1863 } 1864 if (pkt_flags & FLAG_NOINTR) 1865 arcmsr_polling_hba_ccbdone(acb, ccb); 1866 break; 1867 } 1868 1869 case ACB_ADAPTER_TYPE_B: 1870 { 1871 struct HBB_msgUnit *phbbmu; 1872 int ending_index, index; 1873 1874 phbbmu = (struct HBB_msgUnit *)acb->pmu; 1875 index = phbbmu->postq_index; 1876 ending_index = ((index+1)%ARCMSR_MAX_HBB_POSTQUEUE); 1877 phbbmu->post_qbuffer[ending_index] = 0; 1878 if (arcmsr_cdb->Flags & ARCMSR_CDB_FLAG_SGL_BSIZE) { 1879 phbbmu->post_qbuffer[index] = 1880 (cdb_phyaddr_pattern|ARCMSR_CCBPOST_FLAG_SGL_BSIZE); 1881 } else { 1882 phbbmu->post_qbuffer[index] = cdb_phyaddr_pattern; 1883 } 1884 index++; 1885 /* if last index number set it to 0 */ 1886 index %= ARCMSR_MAX_HBB_POSTQUEUE; 1887 phbbmu->postq_index = index; 1888 CHIP_REG_WRITE32(acb->reg_mu_acc_handle0, 1889 &phbbmu->hbb_doorbell->drv2iop_doorbell, 1890 ARCMSR_DRV2IOP_CDB_POSTED); 1891 1892 if (pkt_flags & FLAG_NOINTR) 1893 arcmsr_polling_hbb_ccbdone(acb, ccb); 1894 break; 1895 } 1896 1897 case ACB_ADAPTER_TYPE_C: 1898 { 1899 struct HBC_msgUnit *phbcmu; 1900 uint32_t ccb_post_stamp, arc_cdb_size; 1901 1902 phbcmu = (struct HBC_msgUnit *)acb->pmu; 1903 arc_cdb_size = (ccb->arc_cdb_size > 0x300) ? 0x300 : 1904 ccb->arc_cdb_size; 1905 ccb_post_stamp = (cdb_phyaddr_pattern | 1906 ((arc_cdb_size-1) >> 6) |1); 1907 if (acb->cdb_phyaddr_hi32) { 1908 CHIP_REG_WRITE32(acb->reg_mu_acc_handle0, 1909 &phbcmu->inbound_queueport_high, 1910 acb->cdb_phyaddr_hi32); 1911 CHIP_REG_WRITE32(acb->reg_mu_acc_handle0, 1912 &phbcmu->inbound_queueport_low, ccb_post_stamp); 1913 } else { 1914 CHIP_REG_WRITE32(acb->reg_mu_acc_handle0, 1915 &phbcmu->inbound_queueport_low, ccb_post_stamp); 1916 } 1917 if (pkt_flags & FLAG_NOINTR) 1918 arcmsr_polling_hbc_ccbdone(acb, ccb); 1919 break; 1920 } 1921 1922 } 1923 return (DDI_SUCCESS); 1924 } 1925 1926 1927 static void 1928 arcmsr_ccb_complete(struct CCB *ccb, int flag) 1929 { 1930 struct ACB *acb = ccb->acb; 1931 struct scsi_pkt *pkt = ccb->pkt; 1932 1933 if (pkt == NULL) { 1934 return; 1935 } 1936 ccb->ccb_state |= ARCMSR_CCB_DONE; 1937 pkt->pkt_state |= (STATE_GOT_BUS | STATE_GOT_TARGET | 1938 STATE_SENT_CMD | STATE_GOT_STATUS); 1939 1940 if ((ccb->ccb_flags & CCB_FLAG_DMACONSISTENT) && 1941 (pkt->pkt_state & STATE_XFERRED_DATA)) { 1942 (void) ddi_dma_sync(ccb->pkt_dma_handle, 0, 0, 1943 DDI_DMA_SYNC_FORCPU); 1944 } 1945 /* 1946 * TODO: This represents a potential race condition, and is 1947 * ultimately a poor design decision. Revisit this code 1948 * and solve the mutex ownership issue correctly. 1949 */ 1950 if (mutex_owned(&acb->isr_mutex)) { 1951 mutex_exit(&acb->isr_mutex); 1952 scsi_hba_pkt_comp(pkt); 1953 mutex_enter(&acb->isr_mutex); 1954 } else { 1955 scsi_hba_pkt_comp(pkt); 1956 } 1957 if (flag == 1) { 1958 atomic_add_32(&acb->ccboutstandingcount, -1); 1959 } 1960 } 1961 1962 static void 1963 arcmsr_report_ccb_state(struct ACB *acb, struct CCB *ccb, boolean_t error) 1964 { 1965 int id, lun; 1966 1967 ccb->ccb_state |= ARCMSR_CCB_DONE; 1968 id = ccb->pkt->pkt_address.a_target; 1969 lun = ccb->pkt->pkt_address.a_lun; 1970 1971 if (!error) { 1972 if (acb->devstate[id][lun] == ARECA_RAID_GONE) { 1973 acb->devstate[id][lun] = ARECA_RAID_GOOD; 1974 } 1975 ccb->pkt->pkt_reason = CMD_CMPLT; 1976 ccb->pkt->pkt_state |= STATE_XFERRED_DATA; 1977 arcmsr_list_add_tail(&acb->ccb_complete_list_mutex, 1978 &ccb->complete_queue_pointer, &acb->ccb_complete_list); 1979 1980 } else { 1981 switch (ccb->arcmsr_cdb.DeviceStatus) { 1982 case ARCMSR_DEV_SELECT_TIMEOUT: 1983 if (acb->devstate[id][lun] == ARECA_RAID_GOOD) { 1984 arcmsr_warn(acb, 1985 "target %d lun %d selection " 1986 "timeout", id, lun); 1987 } 1988 acb->devstate[id][lun] = ARECA_RAID_GONE; 1989 ccb->pkt->pkt_reason = CMD_TIMEOUT; /* CMD_DEV_GONE; */ 1990 ccb->pkt->pkt_statistics |= STAT_TIMEOUT; 1991 arcmsr_list_add_tail(&acb->ccb_complete_list_mutex, 1992 &ccb->complete_queue_pointer, 1993 &acb->ccb_complete_list); 1994 break; 1995 case ARCMSR_DEV_ABORTED: 1996 case ARCMSR_DEV_INIT_FAIL: 1997 arcmsr_warn(acb, "isr got 'ARCMSR_DEV_ABORTED'" 1998 " 'ARCMSR_DEV_INIT_FAIL'"); 1999 arcmsr_log(acb, CE_NOTE, "raid volume was kicked out"); 2000 acb->devstate[id][lun] = ARECA_RAID_GONE; 2001 ccb->pkt->pkt_reason = CMD_DEV_GONE; 2002 ccb->pkt->pkt_statistics |= STAT_TERMINATED; 2003 arcmsr_list_add_tail(&acb->ccb_complete_list_mutex, 2004 &ccb->complete_queue_pointer, 2005 &acb->ccb_complete_list); 2006 break; 2007 case SCSISTAT_CHECK_CONDITION: 2008 acb->devstate[id][lun] = ARECA_RAID_GOOD; 2009 arcmsr_report_sense_info(ccb); 2010 arcmsr_list_add_tail(&acb->ccb_complete_list_mutex, 2011 &ccb->complete_queue_pointer, 2012 &acb->ccb_complete_list); 2013 break; 2014 default: 2015 arcmsr_warn(acb, 2016 "target %d lun %d isr received CMD_DONE" 2017 " with unknown DeviceStatus (0x%x)", 2018 id, lun, ccb->arcmsr_cdb.DeviceStatus); 2019 arcmsr_log(acb, CE_NOTE, "raid volume was kicked out"); 2020 acb->devstate[id][lun] = ARECA_RAID_GONE; 2021 /* unknown error or crc error just for retry */ 2022 ccb->pkt->pkt_reason = CMD_TRAN_ERR; 2023 ccb->pkt->pkt_statistics |= STAT_TERMINATED; 2024 arcmsr_list_add_tail(&acb->ccb_complete_list_mutex, 2025 &ccb->complete_queue_pointer, 2026 &acb->ccb_complete_list); 2027 break; 2028 } 2029 } 2030 } 2031 2032 2033 static void 2034 arcmsr_drain_donequeue(struct ACB *acb, struct CCB *ccb, boolean_t error) 2035 { 2036 uint16_t ccb_state; 2037 2038 if (ccb->acb != acb) { 2039 return; 2040 } 2041 if (ccb->ccb_state != ARCMSR_CCB_START) { 2042 switch (ccb->ccb_state & ARCMSR_ABNORMAL_MASK) { 2043 case ARCMSR_CCB_TIMEOUT: 2044 ccb_state = ccb->ccb_state; 2045 if (ccb_state & ARCMSR_CCB_WAIT4_FREE) 2046 arcmsr_free_ccb(ccb); 2047 else 2048 ccb->ccb_state |= ARCMSR_CCB_BACK; 2049 return; 2050 2051 case ARCMSR_CCB_ABORTED: 2052 ccb_state = ccb->ccb_state; 2053 if (ccb_state & ARCMSR_CCB_WAIT4_FREE) 2054 arcmsr_free_ccb(ccb); 2055 else 2056 ccb->ccb_state |= ARCMSR_CCB_BACK; 2057 return; 2058 case ARCMSR_CCB_RESET: 2059 ccb_state = ccb->ccb_state; 2060 if (ccb_state & ARCMSR_CCB_WAIT4_FREE) 2061 arcmsr_free_ccb(ccb); 2062 else 2063 ccb->ccb_state |= ARCMSR_CCB_BACK; 2064 return; 2065 default: 2066 return; 2067 } 2068 } 2069 arcmsr_report_ccb_state(acb, ccb, error); 2070 } 2071 2072 static void 2073 arcmsr_report_sense_info(struct CCB *ccb) 2074 { 2075 struct SENSE_DATA *cdb_sensedata; 2076 struct scsi_pkt *pkt = ccb->pkt; 2077 struct scsi_arq_status *arq_status; 2078 union scsi_cdb *cdbp; 2079 uint64_t err_blkno; 2080 2081 cdbp = (void *)pkt->pkt_cdbp; 2082 err_blkno = ARCMSR_GETGXADDR(ccb->arcmsr_cdb.CdbLength, cdbp); 2083 2084 arq_status = (struct scsi_arq_status *)(intptr_t)(pkt->pkt_scbp); 2085 bzero((caddr_t)arq_status, sizeof (struct scsi_arq_status)); 2086 *pkt->pkt_scbp = STATUS_CHECK; /* CHECK CONDITION */ 2087 arq_status->sts_rqpkt_reason = CMD_CMPLT; 2088 arq_status->sts_rqpkt_state = (STATE_GOT_BUS | STATE_GOT_TARGET | 2089 STATE_SENT_CMD | STATE_XFERRED_DATA | STATE_GOT_STATUS); 2090 arq_status->sts_rqpkt_statistics = 0; 2091 arq_status->sts_rqpkt_resid = 0; 2092 2093 pkt->pkt_reason = CMD_CMPLT; 2094 /* auto rqsense took place */ 2095 pkt->pkt_state |= STATE_ARQ_DONE; 2096 2097 cdb_sensedata = (struct SENSE_DATA *)ccb->arcmsr_cdb.SenseData; 2098 if (&arq_status->sts_sensedata != NULL) { 2099 if (err_blkno <= 0xfffffffful) { 2100 struct scsi_extended_sense *sts_sensedata; 2101 2102 sts_sensedata = &arq_status->sts_sensedata; 2103 sts_sensedata->es_code = cdb_sensedata->ErrorCode; 2104 /* must eq CLASS_EXTENDED_SENSE (0x07) */ 2105 sts_sensedata->es_class = cdb_sensedata->ErrorClass; 2106 sts_sensedata->es_valid = cdb_sensedata->Valid; 2107 sts_sensedata->es_segnum = cdb_sensedata->SegmentNumber; 2108 sts_sensedata->es_key = cdb_sensedata->SenseKey; 2109 sts_sensedata->es_ili = cdb_sensedata->IncorrectLength; 2110 sts_sensedata->es_eom = cdb_sensedata->EndOfMedia; 2111 sts_sensedata->es_filmk = cdb_sensedata->FileMark; 2112 sts_sensedata->es_info_1 = (err_blkno >> 24) & 0xFF; 2113 sts_sensedata->es_info_2 = (err_blkno >> 16) & 0xFF; 2114 sts_sensedata->es_info_3 = (err_blkno >> 8) & 0xFF; 2115 sts_sensedata->es_info_4 = err_blkno & 0xFF; 2116 sts_sensedata->es_add_len = 2117 cdb_sensedata->AdditionalSenseLength; 2118 sts_sensedata->es_cmd_info[0] = 2119 cdb_sensedata->CommandSpecificInformation[0]; 2120 sts_sensedata->es_cmd_info[1] = 2121 cdb_sensedata->CommandSpecificInformation[1]; 2122 sts_sensedata->es_cmd_info[2] = 2123 cdb_sensedata->CommandSpecificInformation[2]; 2124 sts_sensedata->es_cmd_info[3] = 2125 cdb_sensedata->CommandSpecificInformation[3]; 2126 sts_sensedata->es_add_code = 2127 cdb_sensedata->AdditionalSenseCode; 2128 sts_sensedata->es_qual_code = 2129 cdb_sensedata->AdditionalSenseCodeQualifier; 2130 sts_sensedata->es_fru_code = 2131 cdb_sensedata->FieldReplaceableUnitCode; 2132 } else { /* 64-bit LBA */ 2133 struct scsi_descr_sense_hdr *dsp; 2134 struct scsi_information_sense_descr *isd; 2135 2136 dsp = (struct scsi_descr_sense_hdr *) 2137 &arq_status->sts_sensedata; 2138 dsp->ds_class = CLASS_EXTENDED_SENSE; 2139 dsp->ds_code = CODE_FMT_DESCR_CURRENT; 2140 dsp->ds_key = cdb_sensedata->SenseKey; 2141 dsp->ds_add_code = cdb_sensedata->AdditionalSenseCode; 2142 dsp->ds_qual_code = 2143 cdb_sensedata->AdditionalSenseCodeQualifier; 2144 dsp->ds_addl_sense_length = 2145 sizeof (struct scsi_information_sense_descr); 2146 2147 isd = (struct scsi_information_sense_descr *)(dsp+1); 2148 isd->isd_descr_type = DESCR_INFORMATION; 2149 isd->isd_valid = 1; 2150 isd->isd_information[0] = (err_blkno >> 56) & 0xFF; 2151 isd->isd_information[1] = (err_blkno >> 48) & 0xFF; 2152 isd->isd_information[2] = (err_blkno >> 40) & 0xFF; 2153 isd->isd_information[3] = (err_blkno >> 32) & 0xFF; 2154 isd->isd_information[4] = (err_blkno >> 24) & 0xFF; 2155 isd->isd_information[5] = (err_blkno >> 16) & 0xFF; 2156 isd->isd_information[6] = (err_blkno >> 8) & 0xFF; 2157 isd->isd_information[7] = (err_blkno) & 0xFF; 2158 } 2159 } 2160 } 2161 2162 2163 static int 2164 arcmsr_seek_cmd2abort(struct ACB *acb, struct scsi_pkt *abortpkt) 2165 { 2166 struct CCB *ccb; 2167 uint32_t intmask_org = 0; 2168 int i = 0; 2169 2170 acb->num_aborts++; 2171 2172 if (abortpkt != NULL) { 2173 /* 2174 * We don't support abort of a single packet. All 2175 * callers in our kernel always do a global abort, so 2176 * there is no point in having code to support it 2177 * here. 2178 */ 2179 return (DDI_FAILURE); 2180 } 2181 2182 /* 2183 * if abortpkt is NULL, the upper layer needs us 2184 * to abort all commands 2185 */ 2186 if (acb->ccboutstandingcount != 0) { 2187 /* disable all outbound interrupt */ 2188 intmask_org = arcmsr_disable_allintr(acb); 2189 /* clear and abort all outbound posted Q */ 2190 arcmsr_done4abort_postqueue(acb); 2191 /* talk to iop 331 outstanding command aborted */ 2192 (void) arcmsr_abort_host_command(acb); 2193 2194 for (i = 0; i < ARCMSR_MAX_FREECCB_NUM; i++) { 2195 ccb = acb->pccb_pool[i]; 2196 if (ccb->ccb_state == ARCMSR_CCB_START) { 2197 /* 2198 * this ccb will complete at 2199 * hwinterrupt 2200 */ 2201 /* ccb->ccb_state = ARCMSR_CCB_ABORTED; */ 2202 ccb->pkt->pkt_reason = CMD_ABORTED; 2203 ccb->pkt->pkt_statistics |= STAT_ABORTED; 2204 arcmsr_ccb_complete(ccb, 1); 2205 } 2206 } 2207 /* 2208 * enable outbound Post Queue, outbound 2209 * doorbell Interrupt 2210 */ 2211 arcmsr_enable_allintr(acb, intmask_org); 2212 } 2213 return (DDI_SUCCESS); 2214 } 2215 2216 2217 /* 2218 * Autoconfiguration support 2219 */ 2220 static int 2221 arcmsr_parse_devname(char *devnm, int *tgt, int *lun) { 2222 2223 char devbuf[SCSI_MAXNAMELEN]; 2224 char *addr; 2225 char *p, *tp, *lp; 2226 long num; 2227 2228 /* Parse dev name and address */ 2229 (void) strlcpy(devbuf, devnm, sizeof (devbuf)); 2230 addr = ""; 2231 for (p = devbuf; *p != '\0'; p++) { 2232 if (*p == '@') { 2233 addr = p + 1; 2234 *p = '\0'; 2235 } else if (*p == ':') { 2236 *p = '\0'; 2237 break; 2238 } 2239 } 2240 2241 /* Parse target and lun */ 2242 for (p = tp = addr, lp = NULL; *p != '\0'; p++) { 2243 if (*p == ',') { 2244 lp = p + 1; 2245 *p = '\0'; 2246 break; 2247 } 2248 } 2249 if ((tgt != NULL) && (tp != NULL)) { 2250 if (ddi_strtol(tp, NULL, 0x10, &num) != 0) 2251 return (-1); 2252 *tgt = (int)num; 2253 } 2254 if ((lun != NULL) && (lp != NULL)) { 2255 if (ddi_strtol(lp, NULL, 0x10, &num) != 0) 2256 return (-1); 2257 *lun = (int)num; 2258 } 2259 return (0); 2260 } 2261 2262 static int 2263 arcmsr_name_node(dev_info_t *dip, char *name, int len) 2264 { 2265 int tgt, lun; 2266 2267 tgt = ddi_prop_get_int(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS, "target", 2268 -1); 2269 if (tgt == -1) 2270 return (DDI_FAILURE); 2271 lun = ddi_prop_get_int(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS, "lun", 2272 -1); 2273 if (lun == -1) 2274 return (DDI_FAILURE); 2275 (void) snprintf(name, len, "%x,%x", tgt, lun); 2276 return (DDI_SUCCESS); 2277 } 2278 2279 static dev_info_t * 2280 arcmsr_find_child(struct ACB *acb, uint16_t tgt, uint8_t lun) 2281 { 2282 dev_info_t *child = NULL; 2283 char addr[SCSI_MAXNAMELEN]; 2284 char tmp[SCSI_MAXNAMELEN]; 2285 2286 (void) sprintf(addr, "%x,%x", tgt, lun); 2287 2288 for (child = ddi_get_child(acb->dev_info); 2289 child; 2290 child = ddi_get_next_sibling(child)) { 2291 /* We don't care about non-persistent node */ 2292 if (ndi_dev_is_persistent_node(child) == 0) 2293 continue; 2294 if (arcmsr_name_node(child, tmp, SCSI_MAXNAMELEN) != 2295 DDI_SUCCESS) 2296 continue; 2297 if (strcmp(addr, tmp) == 0) 2298 break; 2299 } 2300 return (child); 2301 } 2302 2303 static int 2304 arcmsr_config_child(struct ACB *acb, struct scsi_device *sd, dev_info_t **dipp) 2305 { 2306 char *nodename = NULL; 2307 char **compatible = NULL; 2308 int ncompatible = 0; 2309 dev_info_t *ldip = NULL; 2310 int tgt = sd->sd_address.a_target; 2311 int lun = sd->sd_address.a_lun; 2312 int dtype = sd->sd_inq->inq_dtype & DTYPE_MASK; 2313 int rval; 2314 2315 scsi_hba_nodename_compatible_get(sd->sd_inq, NULL, dtype, 2316 NULL, &nodename, &compatible, &ncompatible); 2317 if (nodename == NULL) { 2318 arcmsr_warn(acb, "found no comptible driver for T%dL%d", 2319 tgt, lun); 2320 rval = NDI_FAILURE; 2321 goto finish; 2322 } 2323 /* Create dev node */ 2324 rval = ndi_devi_alloc(acb->dev_info, nodename, DEVI_SID_NODEID, &ldip); 2325 if (rval == NDI_SUCCESS) { 2326 if (ndi_prop_update_int(DDI_DEV_T_NONE, ldip, "target", tgt) != 2327 DDI_PROP_SUCCESS) { 2328 arcmsr_warn(acb, 2329 "unable to create target property for T%dL%d", 2330 tgt, lun); 2331 rval = NDI_FAILURE; 2332 goto finish; 2333 } 2334 if (ndi_prop_update_int(DDI_DEV_T_NONE, ldip, "lun", lun) != 2335 DDI_PROP_SUCCESS) { 2336 arcmsr_warn(acb, 2337 "unable to create lun property for T%dL%d", 2338 tgt, lun); 2339 rval = NDI_FAILURE; 2340 goto finish; 2341 } 2342 if (ndi_prop_update_string_array(DDI_DEV_T_NONE, ldip, 2343 "compatible", compatible, ncompatible) != 2344 DDI_PROP_SUCCESS) { 2345 arcmsr_warn(acb, 2346 "unable to create compatible property for T%dL%d", 2347 tgt, lun); 2348 rval = NDI_FAILURE; 2349 goto finish; 2350 } 2351 rval = ndi_devi_online(ldip, NDI_ONLINE_ATTACH); 2352 if (rval != NDI_SUCCESS) { 2353 arcmsr_warn(acb, "unable to online T%dL%d", tgt, lun); 2354 ndi_prop_remove_all(ldip); 2355 (void) ndi_devi_free(ldip); 2356 } else { 2357 arcmsr_log(acb, CE_NOTE, "T%dL%d onlined", tgt, lun); 2358 } 2359 } 2360 finish: 2361 if (dipp) 2362 *dipp = ldip; 2363 2364 scsi_hba_nodename_compatible_free(nodename, compatible); 2365 return (rval); 2366 } 2367 2368 static int 2369 arcmsr_config_lun(struct ACB *acb, uint16_t tgt, uint8_t lun, dev_info_t **ldip) 2370 { 2371 struct scsi_device sd; 2372 dev_info_t *child; 2373 int rval; 2374 2375 if ((child = arcmsr_find_child(acb, tgt, lun)) != NULL) { 2376 if (ldip) { 2377 *ldip = child; 2378 } 2379 return (NDI_SUCCESS); 2380 } 2381 bzero(&sd, sizeof (struct scsi_device)); 2382 sd.sd_address.a_hba_tran = acb->scsi_hba_transport; 2383 sd.sd_address.a_target = tgt; 2384 sd.sd_address.a_lun = lun; 2385 2386 rval = scsi_hba_probe(&sd, NULL); 2387 if (rval == SCSIPROBE_EXISTS) 2388 rval = arcmsr_config_child(acb, &sd, ldip); 2389 scsi_unprobe(&sd); 2390 return (rval); 2391 } 2392 2393 2394 static int 2395 arcmsr_add_intr(struct ACB *acb, int intr_type) 2396 { 2397 int rc, count; 2398 dev_info_t *dev_info; 2399 const char *type_str; 2400 2401 switch (intr_type) { 2402 case DDI_INTR_TYPE_MSI: 2403 type_str = "MSI"; 2404 break; 2405 case DDI_INTR_TYPE_MSIX: 2406 type_str = "MSIX"; 2407 break; 2408 case DDI_INTR_TYPE_FIXED: 2409 type_str = "FIXED"; 2410 break; 2411 default: 2412 type_str = "unknown"; 2413 break; 2414 } 2415 2416 dev_info = acb->dev_info; 2417 /* Determine number of supported interrupts */ 2418 rc = ddi_intr_get_nintrs(dev_info, intr_type, &count); 2419 if ((rc != DDI_SUCCESS) || (count == 0)) { 2420 arcmsr_warn(acb, 2421 "no interrupts of type %s, rc=0x%x, count=%d", 2422 type_str, rc, count); 2423 return (DDI_FAILURE); 2424 } 2425 acb->intr_size = sizeof (ddi_intr_handle_t) * count; 2426 acb->phandle = kmem_zalloc(acb->intr_size, KM_SLEEP); 2427 rc = ddi_intr_alloc(dev_info, acb->phandle, intr_type, 0, 2428 count, &acb->intr_count, DDI_INTR_ALLOC_NORMAL); 2429 if ((rc != DDI_SUCCESS) || (acb->intr_count == 0)) { 2430 arcmsr_warn(acb, "ddi_intr_alloc(%s) failed 0x%x", 2431 type_str, rc); 2432 return (DDI_FAILURE); 2433 } 2434 if (acb->intr_count < count) { 2435 arcmsr_log(acb, CE_NOTE, "Got %d interrupts, but requested %d", 2436 acb->intr_count, count); 2437 } 2438 /* 2439 * Get priority for first msi, assume remaining are all the same 2440 */ 2441 if (ddi_intr_get_pri(acb->phandle[0], &acb->intr_pri) != DDI_SUCCESS) { 2442 arcmsr_warn(acb, "ddi_intr_get_pri failed"); 2443 return (DDI_FAILURE); 2444 } 2445 if (acb->intr_pri >= ddi_intr_get_hilevel_pri()) { 2446 arcmsr_warn(acb, "high level interrupt not supported"); 2447 return (DDI_FAILURE); 2448 } 2449 2450 for (int x = 0; x < acb->intr_count; x++) { 2451 if (ddi_intr_add_handler(acb->phandle[x], arcmsr_intr_handler, 2452 (caddr_t)acb, NULL) != DDI_SUCCESS) { 2453 arcmsr_warn(acb, "ddi_intr_add_handler(%s) failed", 2454 type_str); 2455 return (DDI_FAILURE); 2456 } 2457 } 2458 (void) ddi_intr_get_cap(acb->phandle[0], &acb->intr_cap); 2459 if (acb->intr_cap & DDI_INTR_FLAG_BLOCK) { 2460 /* Call ddi_intr_block_enable() for MSI */ 2461 (void) ddi_intr_block_enable(acb->phandle, acb->intr_count); 2462 } else { 2463 /* Call ddi_intr_enable() for MSI non block enable */ 2464 for (int x = 0; x < acb->intr_count; x++) { 2465 (void) ddi_intr_enable(acb->phandle[x]); 2466 } 2467 } 2468 return (DDI_SUCCESS); 2469 } 2470 2471 static void 2472 arcmsr_remove_intr(struct ACB *acb) 2473 { 2474 int x; 2475 2476 if (acb->phandle == NULL) 2477 return; 2478 2479 /* Disable all interrupts */ 2480 if (acb->intr_cap & DDI_INTR_FLAG_BLOCK) { 2481 /* Call ddi_intr_block_disable() */ 2482 (void) ddi_intr_block_disable(acb->phandle, acb->intr_count); 2483 } else { 2484 for (x = 0; x < acb->intr_count; x++) { 2485 (void) ddi_intr_disable(acb->phandle[x]); 2486 } 2487 } 2488 /* Call ddi_intr_remove_handler() */ 2489 for (x = 0; x < acb->intr_count; x++) { 2490 (void) ddi_intr_remove_handler(acb->phandle[x]); 2491 (void) ddi_intr_free(acb->phandle[x]); 2492 } 2493 kmem_free(acb->phandle, acb->intr_size); 2494 acb->phandle = NULL; 2495 } 2496 2497 static void 2498 arcmsr_mutex_init(struct ACB *acb) 2499 { 2500 mutex_init(&acb->isr_mutex, NULL, MUTEX_DRIVER, NULL); 2501 mutex_init(&acb->acb_mutex, NULL, MUTEX_DRIVER, NULL); 2502 mutex_init(&acb->postq_mutex, NULL, MUTEX_DRIVER, NULL); 2503 mutex_init(&acb->workingQ_mutex, NULL, MUTEX_DRIVER, NULL); 2504 mutex_init(&acb->ioctl_mutex, NULL, MUTEX_DRIVER, NULL); 2505 } 2506 2507 static void 2508 arcmsr_mutex_destroy(struct ACB *acb) 2509 { 2510 mutex_destroy(&acb->isr_mutex); 2511 mutex_destroy(&acb->acb_mutex); 2512 mutex_destroy(&acb->postq_mutex); 2513 mutex_destroy(&acb->workingQ_mutex); 2514 mutex_destroy(&acb->ioctl_mutex); 2515 } 2516 2517 static int 2518 arcmsr_initialize(struct ACB *acb) 2519 { 2520 struct CCB *pccb_tmp; 2521 size_t allocated_length; 2522 uint16_t wval; 2523 uint_t intmask_org, count; 2524 caddr_t arcmsr_ccbs_area; 2525 uint32_t wlval, cdb_phyaddr, offset, realccb_size; 2526 int32_t dma_sync_size; 2527 int i, id, lun, instance; 2528 2529 instance = ddi_get_instance(acb->dev_info); 2530 wlval = pci_config_get32(acb->pci_acc_handle, 0); 2531 wval = (uint16_t)((wlval >> 16) & 0xffff); 2532 realccb_size = P2ROUNDUP(sizeof (struct CCB), 32); 2533 switch (wval) { 2534 case PCI_DEVICE_ID_ARECA_1880: 2535 { 2536 uint32_t *iop_mu_regs_map0; 2537 2538 acb->adapter_type = ACB_ADAPTER_TYPE_C; /* lsi */ 2539 dma_sync_size = ARCMSR_MAX_FREECCB_NUM * realccb_size + 0x20; 2540 if (ddi_regs_map_setup(acb->dev_info, 2, 2541 (caddr_t *)&iop_mu_regs_map0, 0, 2542 sizeof (struct HBC_msgUnit), &acb->dev_acc_attr, 2543 &acb->reg_mu_acc_handle0) != DDI_SUCCESS) { 2544 arcmsr_warn(acb, "unable to map registers"); 2545 return (DDI_FAILURE); 2546 } 2547 2548 if ((i = ddi_dma_alloc_handle(acb->dev_info, &arcmsr_ccb_attr, 2549 DDI_DMA_SLEEP, NULL, &acb->ccbs_pool_handle)) != 2550 DDI_SUCCESS) { 2551 ddi_regs_map_free(&acb->reg_mu_acc_handle0); 2552 arcmsr_warn(acb, "ddi_dma_alloc_handle failed"); 2553 return (DDI_FAILURE); 2554 } 2555 2556 if (ddi_dma_mem_alloc(acb->ccbs_pool_handle, dma_sync_size, 2557 &acb->dev_acc_attr, DDI_DMA_RDWR | DDI_DMA_CONSISTENT, 2558 DDI_DMA_SLEEP, NULL, (caddr_t *)&arcmsr_ccbs_area, 2559 &allocated_length, &acb->ccbs_acc_handle) != DDI_SUCCESS) { 2560 arcmsr_warn(acb, "ddi_dma_mem_alloc failed"); 2561 ddi_dma_free_handle(&acb->ccbs_pool_handle); 2562 ddi_regs_map_free(&acb->reg_mu_acc_handle0); 2563 return (DDI_FAILURE); 2564 } 2565 2566 if (ddi_dma_addr_bind_handle(acb->ccbs_pool_handle, NULL, 2567 (caddr_t)arcmsr_ccbs_area, dma_sync_size, DDI_DMA_RDWR | 2568 DDI_DMA_CONSISTENT, DDI_DMA_SLEEP, NULL, &acb->ccb_cookie, 2569 &count) != DDI_DMA_MAPPED) { 2570 arcmsr_warn(acb, "ddi_dma_addr_bind_handle failed"); 2571 ddi_dma_mem_free(&acb->ccbs_acc_handle); 2572 ddi_dma_free_handle(&acb->ccbs_pool_handle); 2573 ddi_regs_map_free(&acb->reg_mu_acc_handle0); 2574 return (DDI_FAILURE); 2575 } 2576 bzero(arcmsr_ccbs_area, dma_sync_size); 2577 offset = (uint32_t)(P2ROUNDUP(PtrToNum(arcmsr_ccbs_area), 32) 2578 - PtrToNum(arcmsr_ccbs_area)); 2579 arcmsr_ccbs_area = arcmsr_ccbs_area + offset; 2580 /* ioport base */ 2581 acb->pmu = (struct msgUnit *)(intptr_t)iop_mu_regs_map0; 2582 break; 2583 } 2584 2585 case PCI_DEVICE_ID_ARECA_1201: 2586 { 2587 uint32_t *iop_mu_regs_map0; 2588 uint32_t *iop_mu_regs_map1; 2589 struct HBB_msgUnit *phbbmu; 2590 2591 acb->adapter_type = ACB_ADAPTER_TYPE_B; /* marvell */ 2592 dma_sync_size = 2593 (ARCMSR_MAX_FREECCB_NUM * realccb_size + 0x20) + 2594 sizeof (struct HBB_msgUnit); 2595 /* Allocate memory for the ccb */ 2596 if ((i = ddi_dma_alloc_handle(acb->dev_info, &arcmsr_ccb_attr, 2597 DDI_DMA_SLEEP, NULL, &acb->ccbs_pool_handle)) != 2598 DDI_SUCCESS) { 2599 arcmsr_warn(acb, "ddi_dma_alloc_handle failed"); 2600 return (DDI_FAILURE); 2601 } 2602 2603 if (ddi_dma_mem_alloc(acb->ccbs_pool_handle, dma_sync_size, 2604 &acb->dev_acc_attr, DDI_DMA_RDWR | DDI_DMA_CONSISTENT, 2605 DDI_DMA_SLEEP, NULL, (caddr_t *)&arcmsr_ccbs_area, 2606 &allocated_length, &acb->ccbs_acc_handle) != DDI_SUCCESS) { 2607 arcmsr_warn(acb, "ddi_dma_mem_alloc failed"); 2608 ddi_dma_free_handle(&acb->ccbs_pool_handle); 2609 return (DDI_FAILURE); 2610 } 2611 2612 if (ddi_dma_addr_bind_handle(acb->ccbs_pool_handle, NULL, 2613 (caddr_t)arcmsr_ccbs_area, dma_sync_size, 2614 DDI_DMA_RDWR | DDI_DMA_CONSISTENT, DDI_DMA_SLEEP, 2615 NULL, &acb->ccb_cookie, &count) != DDI_DMA_MAPPED) { 2616 arcmsr_warn(acb, "ddi_dma_addr_bind_handle failed"); 2617 ddi_dma_mem_free(&acb->ccbs_acc_handle); 2618 ddi_dma_free_handle(&acb->ccbs_pool_handle); 2619 return (DDI_FAILURE); 2620 } 2621 bzero(arcmsr_ccbs_area, dma_sync_size); 2622 offset = (uint32_t)(P2ROUNDUP(PtrToNum(arcmsr_ccbs_area), 32) 2623 - PtrToNum(arcmsr_ccbs_area)); 2624 arcmsr_ccbs_area = arcmsr_ccbs_area + offset; 2625 acb->pmu = (struct msgUnit *) 2626 NumToPtr(PtrToNum(arcmsr_ccbs_area) + 2627 (realccb_size*ARCMSR_MAX_FREECCB_NUM)); 2628 phbbmu = (struct HBB_msgUnit *)acb->pmu; 2629 2630 /* setup device register */ 2631 if (ddi_regs_map_setup(acb->dev_info, 1, 2632 (caddr_t *)&iop_mu_regs_map0, 0, 2633 sizeof (struct HBB_DOORBELL), &acb->dev_acc_attr, 2634 &acb->reg_mu_acc_handle0) != DDI_SUCCESS) { 2635 arcmsr_warn(acb, "unable to map base0 registers"); 2636 (void) ddi_dma_unbind_handle(acb->ccbs_pool_handle); 2637 ddi_dma_mem_free(&acb->ccbs_acc_handle); 2638 ddi_dma_free_handle(&acb->ccbs_pool_handle); 2639 return (DDI_FAILURE); 2640 } 2641 2642 /* ARCMSR_DRV2IOP_DOORBELL */ 2643 phbbmu->hbb_doorbell = (struct HBB_DOORBELL *)iop_mu_regs_map0; 2644 if (ddi_regs_map_setup(acb->dev_info, 2, 2645 (caddr_t *)&iop_mu_regs_map1, 0, 2646 sizeof (struct HBB_RWBUFFER), &acb->dev_acc_attr, 2647 &acb->reg_mu_acc_handle1) != DDI_SUCCESS) { 2648 arcmsr_warn(acb, "unable to map base1 registers"); 2649 ddi_regs_map_free(&acb->reg_mu_acc_handle0); 2650 (void) ddi_dma_unbind_handle(acb->ccbs_pool_handle); 2651 ddi_dma_mem_free(&acb->ccbs_acc_handle); 2652 ddi_dma_free_handle(&acb->ccbs_pool_handle); 2653 return (DDI_FAILURE); 2654 } 2655 2656 /* ARCMSR_MSGCODE_RWBUFFER */ 2657 phbbmu->hbb_rwbuffer = (struct HBB_RWBUFFER *)iop_mu_regs_map1; 2658 break; 2659 } 2660 2661 case PCI_DEVICE_ID_ARECA_1110: 2662 case PCI_DEVICE_ID_ARECA_1120: 2663 case PCI_DEVICE_ID_ARECA_1130: 2664 case PCI_DEVICE_ID_ARECA_1160: 2665 case PCI_DEVICE_ID_ARECA_1170: 2666 case PCI_DEVICE_ID_ARECA_1210: 2667 case PCI_DEVICE_ID_ARECA_1220: 2668 case PCI_DEVICE_ID_ARECA_1230: 2669 case PCI_DEVICE_ID_ARECA_1231: 2670 case PCI_DEVICE_ID_ARECA_1260: 2671 case PCI_DEVICE_ID_ARECA_1261: 2672 case PCI_DEVICE_ID_ARECA_1270: 2673 case PCI_DEVICE_ID_ARECA_1280: 2674 case PCI_DEVICE_ID_ARECA_1212: 2675 case PCI_DEVICE_ID_ARECA_1222: 2676 case PCI_DEVICE_ID_ARECA_1380: 2677 case PCI_DEVICE_ID_ARECA_1381: 2678 case PCI_DEVICE_ID_ARECA_1680: 2679 case PCI_DEVICE_ID_ARECA_1681: 2680 { 2681 uint32_t *iop_mu_regs_map0; 2682 2683 acb->adapter_type = ACB_ADAPTER_TYPE_A; /* intel */ 2684 dma_sync_size = ARCMSR_MAX_FREECCB_NUM * realccb_size + 0x20; 2685 if (ddi_regs_map_setup(acb->dev_info, 1, 2686 (caddr_t *)&iop_mu_regs_map0, 0, 2687 sizeof (struct HBA_msgUnit), &acb->dev_acc_attr, 2688 &acb->reg_mu_acc_handle0) != DDI_SUCCESS) { 2689 arcmsr_warn(acb, "unable to map registers"); 2690 return (DDI_FAILURE); 2691 } 2692 2693 if ((i = ddi_dma_alloc_handle(acb->dev_info, &arcmsr_ccb_attr, 2694 DDI_DMA_SLEEP, NULL, &acb->ccbs_pool_handle)) != 2695 DDI_SUCCESS) { 2696 arcmsr_warn(acb, "ddi_dma_alloc_handle failed"); 2697 ddi_regs_map_free(&acb->reg_mu_acc_handle0); 2698 return (DDI_FAILURE); 2699 } 2700 2701 if (ddi_dma_mem_alloc(acb->ccbs_pool_handle, dma_sync_size, 2702 &acb->dev_acc_attr, DDI_DMA_RDWR | DDI_DMA_CONSISTENT, 2703 DDI_DMA_SLEEP, NULL, (caddr_t *)&arcmsr_ccbs_area, 2704 &allocated_length, &acb->ccbs_acc_handle) != DDI_SUCCESS) { 2705 arcmsr_warn(acb, "ddi_dma_mem_alloc failed", instance); 2706 ddi_dma_free_handle(&acb->ccbs_pool_handle); 2707 ddi_regs_map_free(&acb->reg_mu_acc_handle0); 2708 return (DDI_FAILURE); 2709 } 2710 2711 if (ddi_dma_addr_bind_handle(acb->ccbs_pool_handle, NULL, 2712 (caddr_t)arcmsr_ccbs_area, dma_sync_size, DDI_DMA_RDWR | 2713 DDI_DMA_CONSISTENT, DDI_DMA_SLEEP, NULL, &acb->ccb_cookie, 2714 &count) != DDI_DMA_MAPPED) { 2715 arcmsr_warn(acb, "ddi_dma_addr_bind_handle failed"); 2716 ddi_dma_mem_free(&acb->ccbs_acc_handle); 2717 ddi_dma_free_handle(&acb->ccbs_pool_handle); 2718 ddi_regs_map_free(&acb->reg_mu_acc_handle0); 2719 return (DDI_FAILURE); 2720 } 2721 bzero(arcmsr_ccbs_area, dma_sync_size); 2722 offset = (uint32_t)(P2ROUNDUP(PtrToNum(arcmsr_ccbs_area), 32) 2723 - PtrToNum(arcmsr_ccbs_area)); 2724 arcmsr_ccbs_area = arcmsr_ccbs_area + offset; 2725 /* ioport base */ 2726 acb->pmu = (struct msgUnit *)(intptr_t)iop_mu_regs_map0; 2727 break; 2728 } 2729 2730 default: 2731 arcmsr_warn(acb, "Unknown RAID adapter type!"); 2732 return (DDI_FAILURE); 2733 } 2734 arcmsr_init_list_head(&acb->ccb_complete_list); 2735 /* here we can not access pci configuration again */ 2736 acb->acb_flags |= (ACB_F_MESSAGE_WQBUFFER_CLEARED | 2737 ACB_F_MESSAGE_RQBUFFER_CLEARED | ACB_F_MESSAGE_WQBUFFER_READ); 2738 acb->acb_flags &= ~ACB_F_SCSISTOPADAPTER; 2739 /* physical address of acb->pccb_pool */ 2740 cdb_phyaddr = acb->ccb_cookie.dmac_address + offset; 2741 2742 pccb_tmp = (struct CCB *)(intptr_t)arcmsr_ccbs_area; 2743 2744 for (i = 0; i < ARCMSR_MAX_FREECCB_NUM; i++) { 2745 pccb_tmp->cdb_phyaddr_pattern = 2746 (acb->adapter_type == ACB_ADAPTER_TYPE_C) ? 2747 cdb_phyaddr : (cdb_phyaddr >> 5); 2748 pccb_tmp->acb = acb; 2749 acb->ccbworkingQ[i] = acb->pccb_pool[i] = pccb_tmp; 2750 cdb_phyaddr = cdb_phyaddr + realccb_size; 2751 pccb_tmp = (struct CCB *)NumToPtr(PtrToNum(pccb_tmp) + 2752 realccb_size); 2753 } 2754 acb->vir2phy_offset = PtrToNum(pccb_tmp) - cdb_phyaddr; 2755 2756 /* disable all outbound interrupt */ 2757 intmask_org = arcmsr_disable_allintr(acb); 2758 2759 if (!arcmsr_iop_confirm(acb)) { 2760 arcmsr_warn(acb, "arcmsr_iop_confirm error", instance); 2761 ddi_dma_mem_free(&acb->ccbs_acc_handle); 2762 ddi_dma_free_handle(&acb->ccbs_pool_handle); 2763 return (DDI_FAILURE); 2764 } 2765 2766 for (id = 0; id < ARCMSR_MAX_TARGETID; id++) { 2767 for (lun = 0; lun < ARCMSR_MAX_TARGETLUN; lun++) { 2768 acb->devstate[id][lun] = ARECA_RAID_GONE; 2769 } 2770 } 2771 2772 /* enable outbound Post Queue, outbound doorbell Interrupt */ 2773 arcmsr_enable_allintr(acb, intmask_org); 2774 2775 return (0); 2776 } 2777 2778 static int 2779 arcmsr_do_ddi_attach(dev_info_t *dev_info, int instance) 2780 { 2781 scsi_hba_tran_t *hba_trans; 2782 ddi_device_acc_attr_t dev_acc_attr; 2783 struct ACB *acb; 2784 uint16_t wval; 2785 int raid6 = 1; 2786 char *type; 2787 int intr_types; 2788 2789 2790 /* 2791 * Soft State Structure 2792 * The driver should allocate the per-device-instance 2793 * soft state structure, being careful to clean up properly if 2794 * an error occurs. Allocate data structure. 2795 */ 2796 if (ddi_soft_state_zalloc(arcmsr_soft_state, instance) != DDI_SUCCESS) { 2797 arcmsr_warn(NULL, "ddi_soft_state_zalloc failed"); 2798 return (DDI_FAILURE); 2799 } 2800 2801 acb = ddi_get_soft_state(arcmsr_soft_state, instance); 2802 ASSERT(acb); 2803 2804 arcmsr_mutex_init(acb); 2805 2806 /* acb is already zalloc()d so we don't need to bzero() it */ 2807 dev_acc_attr.devacc_attr_version = DDI_DEVICE_ATTR_V0; 2808 dev_acc_attr.devacc_attr_dataorder = DDI_STRICTORDER_ACC; 2809 dev_acc_attr.devacc_attr_endian_flags = DDI_STRUCTURE_LE_ACC; 2810 2811 acb->dev_info = dev_info; 2812 acb->dev_acc_attr = dev_acc_attr; 2813 2814 /* 2815 * The driver, if providing DMA, should also check that its hardware is 2816 * installed in a DMA-capable slot 2817 */ 2818 if (ddi_slaveonly(dev_info) == DDI_SUCCESS) { 2819 arcmsr_warn(acb, "hardware is not installed in" 2820 " a DMA-capable slot"); 2821 goto error_level_0; 2822 } 2823 if (pci_config_setup(dev_info, &acb->pci_acc_handle) != DDI_SUCCESS) { 2824 arcmsr_warn(acb, "pci_config_setup() failed, attach failed"); 2825 goto error_level_0; 2826 } 2827 2828 wval = pci_config_get16(acb->pci_acc_handle, PCI_CONF_VENID); 2829 if (wval != PCI_VENDOR_ID_ARECA) { 2830 arcmsr_warn(acb, 2831 "'vendorid (0x%04x) does not match 0x%04x " 2832 "(PCI_VENDOR_ID_ARECA)", 2833 wval, PCI_VENDOR_ID_ARECA); 2834 goto error_level_0; 2835 } 2836 2837 wval = pci_config_get16(acb->pci_acc_handle, PCI_CONF_DEVID); 2838 switch (wval) { 2839 case PCI_DEVICE_ID_ARECA_1110: 2840 case PCI_DEVICE_ID_ARECA_1210: 2841 case PCI_DEVICE_ID_ARECA_1201: 2842 raid6 = 0; 2843 /*FALLTHRU*/ 2844 case PCI_DEVICE_ID_ARECA_1120: 2845 case PCI_DEVICE_ID_ARECA_1130: 2846 case PCI_DEVICE_ID_ARECA_1160: 2847 case PCI_DEVICE_ID_ARECA_1170: 2848 case PCI_DEVICE_ID_ARECA_1220: 2849 case PCI_DEVICE_ID_ARECA_1230: 2850 case PCI_DEVICE_ID_ARECA_1260: 2851 case PCI_DEVICE_ID_ARECA_1270: 2852 case PCI_DEVICE_ID_ARECA_1280: 2853 type = "SATA 3G"; 2854 break; 2855 case PCI_DEVICE_ID_ARECA_1380: 2856 case PCI_DEVICE_ID_ARECA_1381: 2857 case PCI_DEVICE_ID_ARECA_1680: 2858 case PCI_DEVICE_ID_ARECA_1681: 2859 type = "SAS 3G"; 2860 break; 2861 case PCI_DEVICE_ID_ARECA_1880: 2862 type = "SAS 6G"; 2863 break; 2864 default: 2865 type = "X-TYPE"; 2866 arcmsr_warn(acb, "Unknown Host Adapter RAID Controller!"); 2867 goto error_level_0; 2868 } 2869 2870 arcmsr_log(acb, CE_CONT, "Areca %s Host Adapter RAID Controller%s\n", 2871 type, raid6 ? " (RAID6 capable)" : ""); 2872 2873 /* we disable iop interrupt here */ 2874 if (arcmsr_initialize(acb) == DDI_FAILURE) { 2875 arcmsr_warn(acb, "arcmsr_initialize failed"); 2876 goto error_level_1; 2877 } 2878 2879 /* Allocate a transport structure */ 2880 hba_trans = scsi_hba_tran_alloc(dev_info, SCSI_HBA_CANSLEEP); 2881 if (hba_trans == NULL) { 2882 arcmsr_warn(acb, "scsi_hba_tran_alloc failed"); 2883 goto error_level_2; 2884 } 2885 acb->scsi_hba_transport = hba_trans; 2886 acb->dev_info = dev_info; 2887 /* init scsi host adapter transport entry */ 2888 hba_trans->tran_hba_private = acb; 2889 hba_trans->tran_tgt_private = NULL; 2890 /* 2891 * If no per-target initialization is required, the HBA can leave 2892 * tran_tgt_init set to NULL. 2893 */ 2894 hba_trans->tran_tgt_init = arcmsr_tran_tgt_init; 2895 hba_trans->tran_tgt_probe = scsi_hba_probe; 2896 hba_trans->tran_tgt_free = NULL; 2897 hba_trans->tran_start = arcmsr_tran_start; 2898 hba_trans->tran_abort = arcmsr_tran_abort; 2899 hba_trans->tran_reset = arcmsr_tran_reset; 2900 hba_trans->tran_getcap = arcmsr_tran_getcap; 2901 hba_trans->tran_setcap = arcmsr_tran_setcap; 2902 hba_trans->tran_init_pkt = arcmsr_tran_init_pkt; 2903 hba_trans->tran_destroy_pkt = arcmsr_tran_destroy_pkt; 2904 hba_trans->tran_dmafree = arcmsr_tran_dmafree; 2905 hba_trans->tran_sync_pkt = arcmsr_tran_sync_pkt; 2906 2907 hba_trans->tran_reset_notify = NULL; 2908 hba_trans->tran_get_bus_addr = NULL; 2909 hba_trans->tran_get_name = NULL; 2910 hba_trans->tran_quiesce = NULL; 2911 hba_trans->tran_unquiesce = NULL; 2912 hba_trans->tran_bus_reset = NULL; 2913 hba_trans->tran_bus_config = arcmsr_tran_bus_config; 2914 hba_trans->tran_add_eventcall = NULL; 2915 hba_trans->tran_get_eventcookie = NULL; 2916 hba_trans->tran_post_event = NULL; 2917 hba_trans->tran_remove_eventcall = NULL; 2918 2919 /* iop init and enable interrupt here */ 2920 arcmsr_iop_init(acb); 2921 2922 /* Get supported interrupt types */ 2923 if (ddi_intr_get_supported_types(dev_info, &intr_types) != 2924 DDI_SUCCESS) { 2925 arcmsr_warn(acb, "ddi_intr_get_supported_types failed"); 2926 goto error_level_3; 2927 } 2928 if (intr_types & DDI_INTR_TYPE_FIXED) { 2929 if (arcmsr_add_intr(acb, DDI_INTR_TYPE_FIXED) != DDI_SUCCESS) 2930 goto error_level_5; 2931 } else if (intr_types & DDI_INTR_TYPE_MSI) { 2932 if (arcmsr_add_intr(acb, DDI_INTR_TYPE_FIXED) != DDI_SUCCESS) 2933 goto error_level_5; 2934 } 2935 2936 /* 2937 * The driver should attach this instance of the device, and 2938 * perform error cleanup if necessary 2939 */ 2940 if (scsi_hba_attach_setup(dev_info, &arcmsr_dma_attr, 2941 hba_trans, SCSI_HBA_TRAN_CLONE) != DDI_SUCCESS) { 2942 arcmsr_warn(acb, "scsi_hba_attach_setup failed"); 2943 goto error_level_5; 2944 } 2945 2946 /* Create a taskq for dealing with dr events */ 2947 if ((acb->taskq = ddi_taskq_create(dev_info, "arcmsr_dr_taskq", 1, 2948 TASKQ_DEFAULTPRI, 0)) == NULL) { 2949 arcmsr_warn(acb, "ddi_taskq_create failed"); 2950 goto error_level_8; 2951 } 2952 2953 acb->timeout_count = 0; 2954 /* active ccbs "timeout" watchdog */ 2955 acb->timeout_id = timeout(arcmsr_ccbs_timeout, (caddr_t)acb, 2956 (ARCMSR_TIMEOUT_WATCH * drv_usectohz(1000000))); 2957 acb->timeout_sc_id = timeout(arcmsr_devMap_monitor, (caddr_t)acb, 2958 (ARCMSR_DEV_MAP_WATCH * drv_usectohz(1000000))); 2959 2960 /* report device info */ 2961 ddi_report_dev(dev_info); 2962 2963 return (DDI_SUCCESS); 2964 2965 error_level_8: 2966 2967 error_level_7: 2968 error_level_6: 2969 (void) scsi_hba_detach(dev_info); 2970 2971 error_level_5: 2972 arcmsr_remove_intr(acb); 2973 2974 error_level_3: 2975 error_level_4: 2976 if (acb->scsi_hba_transport) 2977 scsi_hba_tran_free(acb->scsi_hba_transport); 2978 2979 error_level_2: 2980 if (acb->ccbs_acc_handle) 2981 ddi_dma_mem_free(&acb->ccbs_acc_handle); 2982 if (acb->ccbs_pool_handle) 2983 ddi_dma_free_handle(&acb->ccbs_pool_handle); 2984 2985 error_level_1: 2986 if (acb->pci_acc_handle) 2987 pci_config_teardown(&acb->pci_acc_handle); 2988 arcmsr_mutex_destroy(acb); 2989 ddi_soft_state_free(arcmsr_soft_state, instance); 2990 2991 error_level_0: 2992 return (DDI_FAILURE); 2993 } 2994 2995 2996 static void 2997 arcmsr_vlog(struct ACB *acb, int level, char *fmt, va_list ap) 2998 { 2999 char buf[256]; 3000 3001 if (acb != NULL) { 3002 (void) snprintf(buf, sizeof (buf), "%s%d: %s", 3003 ddi_driver_name(acb->dev_info), 3004 ddi_get_instance(acb->dev_info), fmt); 3005 fmt = buf; 3006 } 3007 vcmn_err(level, fmt, ap); 3008 } 3009 3010 static void 3011 arcmsr_log(struct ACB *acb, int level, char *fmt, ...) 3012 { 3013 va_list ap; 3014 3015 va_start(ap, fmt); 3016 arcmsr_vlog(acb, level, fmt, ap); 3017 va_end(ap); 3018 } 3019 3020 static void 3021 arcmsr_warn(struct ACB *acb, char *fmt, ...) 3022 { 3023 va_list ap; 3024 3025 va_start(ap, fmt); 3026 arcmsr_vlog(acb, CE_WARN, fmt, ap); 3027 va_end(ap); 3028 } 3029 3030 static void 3031 arcmsr_init_list_head(struct list_head *list) 3032 { 3033 list->next = list; 3034 list->prev = list; 3035 } 3036 3037 static void 3038 arcmsr_x_list_del(struct list_head *prev, struct list_head *next) 3039 { 3040 next->prev = prev; 3041 prev->next = next; 3042 } 3043 3044 static void 3045 arcmsr_x_list_add(struct list_head *new_one, struct list_head *prev, 3046 struct list_head *next) 3047 { 3048 next->prev = new_one; 3049 new_one->next = next; 3050 new_one->prev = prev; 3051 prev->next = new_one; 3052 } 3053 3054 static void 3055 arcmsr_list_add_tail(kmutex_t *list_lock, struct list_head *new_one, 3056 struct list_head *head) 3057 { 3058 mutex_enter(list_lock); 3059 arcmsr_x_list_add(new_one, head->prev, head); 3060 mutex_exit(list_lock); 3061 } 3062 3063 static struct list_head * 3064 arcmsr_list_get_first(kmutex_t *list_lock, struct list_head *head) 3065 { 3066 struct list_head *one = NULL; 3067 3068 mutex_enter(list_lock); 3069 if (head->next == head) { 3070 mutex_exit(list_lock); 3071 return (NULL); 3072 } 3073 one = head->next; 3074 arcmsr_x_list_del(one->prev, one->next); 3075 arcmsr_init_list_head(one); 3076 mutex_exit(list_lock); 3077 return (one); 3078 } 3079 3080 static struct CCB * 3081 arcmsr_get_complete_ccb_from_list(struct ACB *acb) 3082 { 3083 struct list_head *first_complete_ccb_list = NULL; 3084 struct CCB *ccb; 3085 3086 first_complete_ccb_list = 3087 arcmsr_list_get_first(&acb->ccb_complete_list_mutex, 3088 &acb->ccb_complete_list); 3089 if (first_complete_ccb_list == NULL) { 3090 return (NULL); 3091 } 3092 ccb = (void *)((caddr_t)(first_complete_ccb_list) - 3093 offsetof(struct CCB, complete_queue_pointer)); 3094 return (ccb); 3095 } 3096 3097 static struct CCB * 3098 arcmsr_get_freeccb(struct ACB *acb) 3099 { 3100 struct CCB *ccb; 3101 int ccb_get_index, ccb_put_index; 3102 3103 mutex_enter(&acb->workingQ_mutex); 3104 ccb_put_index = acb->ccb_put_index; 3105 ccb_get_index = acb->ccb_get_index; 3106 ccb = acb->ccbworkingQ[ccb_get_index]; 3107 ccb_get_index++; 3108 if (ccb_get_index >= ARCMSR_MAX_FREECCB_NUM) 3109 ccb_get_index = ccb_get_index - ARCMSR_MAX_FREECCB_NUM; 3110 if (ccb_put_index != ccb_get_index) { 3111 acb->ccb_get_index = ccb_get_index; 3112 arcmsr_init_list_head(&ccb->complete_queue_pointer); 3113 ccb->ccb_state = ARCMSR_CCB_UNBUILD; 3114 } else { 3115 ccb = NULL; 3116 } 3117 mutex_exit(&acb->workingQ_mutex); 3118 return (ccb); 3119 } 3120 3121 3122 static void 3123 arcmsr_free_ccb(struct CCB *ccb) 3124 { 3125 struct ACB *acb = ccb->acb; 3126 3127 if (ccb->ccb_state == ARCMSR_CCB_FREE) { 3128 return; 3129 } 3130 mutex_enter(&acb->workingQ_mutex); 3131 ccb->ccb_state = ARCMSR_CCB_FREE; 3132 ccb->pkt = NULL; 3133 ccb->pkt_dma_handle = NULL; 3134 ccb->ccb_flags = 0; 3135 acb->ccbworkingQ[acb->ccb_put_index] = ccb; 3136 acb->ccb_put_index++; 3137 if (acb->ccb_put_index >= ARCMSR_MAX_FREECCB_NUM) 3138 acb->ccb_put_index = 3139 acb->ccb_put_index - ARCMSR_MAX_FREECCB_NUM; 3140 mutex_exit(&acb->workingQ_mutex); 3141 } 3142 3143 3144 static void 3145 arcmsr_ccbs_timeout(void* arg) 3146 { 3147 struct ACB *acb = (struct ACB *)arg; 3148 struct CCB *ccb; 3149 int i, instance, timeout_count = 0; 3150 uint32_t intmask_org; 3151 time_t current_time = ddi_get_time(); 3152 3153 intmask_org = arcmsr_disable_allintr(acb); 3154 mutex_enter(&acb->isr_mutex); 3155 if (acb->ccboutstandingcount != 0) { 3156 /* check each ccb */ 3157 i = ddi_dma_sync(acb->ccbs_pool_handle, 0, 0, 3158 DDI_DMA_SYNC_FORKERNEL); 3159 if (i != DDI_SUCCESS) { 3160 if ((acb->timeout_id != 0) && 3161 ((acb->acb_flags & ACB_F_SCSISTOPADAPTER) == 0)) { 3162 /* do pkt timeout check each 60 secs */ 3163 acb->timeout_id = timeout(arcmsr_ccbs_timeout, 3164 (void*)acb, (ARCMSR_TIMEOUT_WATCH * 3165 drv_usectohz(1000000))); 3166 } 3167 mutex_exit(&acb->isr_mutex); 3168 arcmsr_enable_allintr(acb, intmask_org); 3169 return; 3170 } 3171 instance = ddi_get_instance(acb->dev_info); 3172 for (i = 0; i < ARCMSR_MAX_FREECCB_NUM; i++) { 3173 ccb = acb->pccb_pool[i]; 3174 if (ccb->acb != acb) { 3175 break; 3176 } 3177 if (ccb->ccb_state == ARCMSR_CCB_FREE) { 3178 continue; 3179 } 3180 if (ccb->pkt == NULL) { 3181 continue; 3182 } 3183 if (ccb->pkt->pkt_time == 0) { 3184 continue; 3185 } 3186 if (ccb->ccb_time >= current_time) { 3187 continue; 3188 } 3189 int id = ccb->pkt->pkt_address.a_target; 3190 int lun = ccb->pkt->pkt_address.a_lun; 3191 if (ccb->ccb_state == ARCMSR_CCB_START) { 3192 uint8_t *cdb = (uint8_t *)&ccb->arcmsr_cdb.Cdb; 3193 3194 timeout_count++; 3195 arcmsr_warn(acb, 3196 "scsi target %d lun %d cmd=0x%x " 3197 "command timeout, ccb=0x%p", 3198 instance, id, lun, *cdb, (void *)ccb); 3199 ccb->ccb_state = ARCMSR_CCB_TIMEOUT; 3200 ccb->pkt->pkt_reason = CMD_TIMEOUT; 3201 ccb->pkt->pkt_statistics = STAT_TIMEOUT; 3202 /* acb->devstate[id][lun] = ARECA_RAID_GONE; */ 3203 arcmsr_ccb_complete(ccb, 1); 3204 continue; 3205 } else if ((ccb->ccb_state & ARCMSR_CCB_CAN_BE_FREE) == 3206 ARCMSR_CCB_CAN_BE_FREE) { 3207 arcmsr_free_ccb(ccb); 3208 } 3209 } 3210 } 3211 if ((acb->timeout_id != 0) && 3212 ((acb->acb_flags & ACB_F_SCSISTOPADAPTER) == 0)) { 3213 /* do pkt timeout check each 60 secs */ 3214 acb->timeout_id = timeout(arcmsr_ccbs_timeout, 3215 (void*)acb, (ARCMSR_TIMEOUT_WATCH * drv_usectohz(1000000))); 3216 } 3217 mutex_exit(&acb->isr_mutex); 3218 arcmsr_enable_allintr(acb, intmask_org); 3219 } 3220 3221 static void 3222 arcmsr_abort_dr_ccbs(struct ACB *acb, uint16_t target, uint8_t lun) 3223 { 3224 struct CCB *ccb; 3225 uint32_t intmask_org; 3226 int i; 3227 3228 /* disable all outbound interrupts */ 3229 intmask_org = arcmsr_disable_allintr(acb); 3230 for (i = 0; i < ARCMSR_MAX_FREECCB_NUM; i++) { 3231 ccb = acb->pccb_pool[i]; 3232 if (ccb->ccb_state == ARCMSR_CCB_START) { 3233 if ((target == ccb->pkt->pkt_address.a_target) && 3234 (lun == ccb->pkt->pkt_address.a_lun)) { 3235 ccb->ccb_state = ARCMSR_CCB_ABORTED; 3236 ccb->pkt->pkt_reason = CMD_ABORTED; 3237 ccb->pkt->pkt_statistics |= STAT_ABORTED; 3238 arcmsr_ccb_complete(ccb, 1); 3239 arcmsr_log(acb, CE_NOTE, 3240 "abort T%dL%d ccb", target, lun); 3241 } 3242 } 3243 } 3244 /* enable outbound Post Queue, outbound doorbell Interrupt */ 3245 arcmsr_enable_allintr(acb, intmask_org); 3246 } 3247 3248 static int 3249 arcmsr_scsi_device_probe(struct ACB *acb, uint16_t tgt, uint8_t lun) 3250 { 3251 struct scsi_device sd; 3252 dev_info_t *child; 3253 int rval; 3254 3255 bzero(&sd, sizeof (struct scsi_device)); 3256 sd.sd_address.a_hba_tran = acb->scsi_hba_transport; 3257 sd.sd_address.a_target = (uint16_t)tgt; 3258 sd.sd_address.a_lun = (uint8_t)lun; 3259 if ((child = arcmsr_find_child(acb, tgt, lun)) != NULL) { 3260 rval = scsi_hba_probe(&sd, NULL); 3261 if (rval == SCSIPROBE_EXISTS) { 3262 rval = ndi_devi_online(child, NDI_ONLINE_ATTACH); 3263 if (rval != NDI_SUCCESS) { 3264 arcmsr_warn(acb, "unable to online T%dL%d", 3265 tgt, lun); 3266 } else { 3267 arcmsr_log(acb, CE_NOTE, "T%dL%d onlined", 3268 tgt, lun); 3269 } 3270 } 3271 } else { 3272 rval = scsi_hba_probe(&sd, NULL); 3273 if (rval == SCSIPROBE_EXISTS) 3274 rval = arcmsr_config_child(acb, &sd, NULL); 3275 } 3276 scsi_unprobe(&sd); 3277 return (rval); 3278 } 3279 3280 static void 3281 arcmsr_dr_handle(struct ACB *acb) 3282 { 3283 char *acb_dev_map = (char *)acb->device_map; 3284 char *devicemap; 3285 char temp; 3286 uint16_t target; 3287 uint8_t lun; 3288 char diff; 3289 int circ = 0; 3290 dev_info_t *dip; 3291 ddi_acc_handle_t reg; 3292 3293 switch (acb->adapter_type) { 3294 case ACB_ADAPTER_TYPE_A: 3295 { 3296 struct HBA_msgUnit *phbamu; 3297 3298 phbamu = (struct HBA_msgUnit *)acb->pmu; 3299 devicemap = (char *)&phbamu->msgcode_rwbuffer[21]; 3300 reg = acb->reg_mu_acc_handle0; 3301 break; 3302 } 3303 3304 case ACB_ADAPTER_TYPE_B: 3305 { 3306 struct HBB_msgUnit *phbbmu; 3307 3308 phbbmu = (struct HBB_msgUnit *)acb->pmu; 3309 devicemap = (char *) 3310 &phbbmu->hbb_rwbuffer->msgcode_rwbuffer[21]; 3311 reg = acb->reg_mu_acc_handle1; 3312 break; 3313 } 3314 3315 case ACB_ADAPTER_TYPE_C: 3316 { 3317 struct HBC_msgUnit *phbcmu; 3318 3319 phbcmu = (struct HBC_msgUnit *)acb->pmu; 3320 devicemap = (char *)&phbcmu->msgcode_rwbuffer[21]; 3321 reg = acb->reg_mu_acc_handle0; 3322 break; 3323 } 3324 3325 } 3326 3327 for (target = 0; target < ARCMSR_MAX_TARGETID - 1; target++) { 3328 temp = CHIP_REG_READ8(reg, devicemap); 3329 diff = (*acb_dev_map)^ temp; 3330 if (diff != 0) { 3331 *acb_dev_map = temp; 3332 for (lun = 0; lun < ARCMSR_MAX_TARGETLUN; lun++) { 3333 if ((temp & 0x01) == 1 && (diff & 0x01) == 1) { 3334 ndi_devi_enter(acb->dev_info, &circ); 3335 acb->devstate[target][lun] = 3336 ARECA_RAID_GOOD; 3337 (void) arcmsr_scsi_device_probe(acb, 3338 target, lun); 3339 ndi_devi_exit(acb->dev_info, circ); 3340 arcmsr_log(acb, CE_NOTE, 3341 "T%dL%d on-line", target, lun); 3342 } else if ((temp & 0x01) == 0 && 3343 (diff & 0x01) == 1) { 3344 dip = arcmsr_find_child(acb, target, 3345 lun); 3346 if (dip != NULL) { 3347 acb->devstate[target][lun] = 3348 ARECA_RAID_GONE; 3349 if (mutex_owned(&acb-> 3350 isr_mutex)) { 3351 arcmsr_abort_dr_ccbs( 3352 acb, target, lun); 3353 (void) 3354 ndi_devi_offline( 3355 dip, 3356 NDI_DEVI_REMOVE | 3357 NDI_DEVI_OFFLINE); 3358 } else { 3359 mutex_enter(&acb-> 3360 isr_mutex); 3361 arcmsr_abort_dr_ccbs( 3362 acb, target, lun); 3363 (void) 3364 ndi_devi_offline( 3365 dip, 3366 NDI_DEVI_REMOVE | 3367 NDI_DEVI_OFFLINE); 3368 mutex_exit(&acb-> 3369 isr_mutex); 3370 } 3371 } 3372 arcmsr_log(acb, CE_NOTE, 3373 "T%dL%d off-line", target, lun); 3374 } 3375 temp >>= 1; 3376 diff >>= 1; 3377 } 3378 } 3379 devicemap++; 3380 acb_dev_map++; 3381 } 3382 } 3383 3384 3385 static void 3386 arcmsr_devMap_monitor(void* arg) 3387 { 3388 3389 struct ACB *acb = (struct ACB *)arg; 3390 switch (acb->adapter_type) { 3391 case ACB_ADAPTER_TYPE_A: 3392 { 3393 struct HBA_msgUnit *phbamu; 3394 3395 phbamu = (struct HBA_msgUnit *)acb->pmu; 3396 CHIP_REG_WRITE32(acb->reg_mu_acc_handle0, 3397 &phbamu->inbound_msgaddr0, 3398 ARCMSR_INBOUND_MESG0_GET_CONFIG); 3399 break; 3400 } 3401 3402 case ACB_ADAPTER_TYPE_B: 3403 { 3404 struct HBB_msgUnit *phbbmu; 3405 3406 phbbmu = (struct HBB_msgUnit *)acb->pmu; 3407 CHIP_REG_WRITE32(acb->reg_mu_acc_handle0, 3408 &phbbmu->hbb_doorbell->drv2iop_doorbell, 3409 ARCMSR_MESSAGE_GET_CONFIG); 3410 break; 3411 } 3412 3413 case ACB_ADAPTER_TYPE_C: 3414 { 3415 struct HBC_msgUnit *phbcmu; 3416 3417 phbcmu = (struct HBC_msgUnit *)acb->pmu; 3418 CHIP_REG_WRITE32(acb->reg_mu_acc_handle0, 3419 &phbcmu->inbound_msgaddr0, 3420 ARCMSR_INBOUND_MESG0_GET_CONFIG); 3421 CHIP_REG_WRITE32(acb->reg_mu_acc_handle0, 3422 &phbcmu->inbound_doorbell, 3423 ARCMSR_HBCMU_DRV2IOP_MESSAGE_CMD_DONE); 3424 break; 3425 } 3426 3427 } 3428 3429 if ((acb->timeout_id != 0) && 3430 ((acb->acb_flags & ACB_F_SCSISTOPADAPTER) == 0)) { 3431 /* do pkt timeout check each 5 secs */ 3432 acb->timeout_id = timeout(arcmsr_devMap_monitor, (void*)acb, 3433 (ARCMSR_DEV_MAP_WATCH * drv_usectohz(1000000))); 3434 } 3435 } 3436 3437 3438 static uint32_t 3439 arcmsr_disable_allintr(struct ACB *acb) { 3440 3441 uint32_t intmask_org; 3442 3443 switch (acb->adapter_type) { 3444 case ACB_ADAPTER_TYPE_A: 3445 { 3446 struct HBA_msgUnit *phbamu; 3447 3448 phbamu = (struct HBA_msgUnit *)acb->pmu; 3449 /* disable all outbound interrupt */ 3450 intmask_org = CHIP_REG_READ32(acb->reg_mu_acc_handle0, 3451 &phbamu->outbound_intmask); 3452 CHIP_REG_WRITE32(acb->reg_mu_acc_handle0, 3453 &phbamu->outbound_intmask, 3454 intmask_org|ARCMSR_MU_OUTBOUND_ALL_INTMASKENABLE); 3455 break; 3456 } 3457 3458 case ACB_ADAPTER_TYPE_B: 3459 { 3460 struct HBB_msgUnit *phbbmu; 3461 3462 phbbmu = (struct HBB_msgUnit *)acb->pmu; 3463 /* disable all outbound interrupt */ 3464 intmask_org = CHIP_REG_READ32(acb->reg_mu_acc_handle0, 3465 &phbbmu->hbb_doorbell->iop2drv_doorbell_mask); 3466 /* disable all interrupts */ 3467 CHIP_REG_WRITE32(acb->reg_mu_acc_handle0, 3468 &phbbmu->hbb_doorbell->iop2drv_doorbell_mask, 0); 3469 break; 3470 } 3471 3472 case ACB_ADAPTER_TYPE_C: 3473 { 3474 struct HBC_msgUnit *phbcmu; 3475 3476 phbcmu = (struct HBC_msgUnit *)acb->pmu; 3477 /* disable all outbound interrupt */ 3478 intmask_org = CHIP_REG_READ32(acb->reg_mu_acc_handle0, 3479 &phbcmu->host_int_mask); /* disable outbound message0 int */ 3480 CHIP_REG_WRITE32(acb->reg_mu_acc_handle0, 3481 &phbcmu->host_int_mask, 3482 intmask_org|ARCMSR_HBCMU_ALL_INTMASKENABLE); 3483 break; 3484 } 3485 3486 } 3487 return (intmask_org); 3488 } 3489 3490 3491 static void 3492 arcmsr_enable_allintr(struct ACB *acb, uint32_t intmask_org) { 3493 3494 int mask; 3495 3496 switch (acb->adapter_type) { 3497 case ACB_ADAPTER_TYPE_A: 3498 { 3499 struct HBA_msgUnit *phbamu; 3500 3501 phbamu = (struct HBA_msgUnit *)acb->pmu; 3502 /* 3503 * enable outbound Post Queue, outbound doorbell message0 3504 * Interrupt 3505 */ 3506 mask = ~(ARCMSR_MU_OUTBOUND_POSTQUEUE_INTMASKENABLE | 3507 ARCMSR_MU_OUTBOUND_DOORBELL_INTMASKENABLE | 3508 ARCMSR_MU_OUTBOUND_MESSAGE0_INTMASKENABLE); 3509 CHIP_REG_WRITE32(acb->reg_mu_acc_handle0, 3510 &phbamu->outbound_intmask, intmask_org & mask); 3511 acb->outbound_int_enable = ~(intmask_org & mask) & 0x000000ff; 3512 break; 3513 } 3514 3515 case ACB_ADAPTER_TYPE_B: 3516 { 3517 struct HBB_msgUnit *phbbmu; 3518 3519 phbbmu = (struct HBB_msgUnit *)acb->pmu; 3520 mask = (ARCMSR_IOP2DRV_DATA_WRITE_OK | 3521 ARCMSR_IOP2DRV_DATA_READ_OK | ARCMSR_IOP2DRV_CDB_DONE | 3522 ARCMSR_IOP2DRV_MESSAGE_CMD_DONE); 3523 /* 1=interrupt enable, 0=interrupt disable */ 3524 CHIP_REG_WRITE32(acb->reg_mu_acc_handle0, 3525 &phbbmu->hbb_doorbell->iop2drv_doorbell_mask, 3526 intmask_org | mask); 3527 acb->outbound_int_enable = (intmask_org | mask) & 0x0000000f; 3528 break; 3529 } 3530 3531 case ACB_ADAPTER_TYPE_C: 3532 { 3533 struct HBC_msgUnit *phbcmu; 3534 3535 phbcmu = (struct HBC_msgUnit *)acb->pmu; 3536 /* enable outbound Post Queue,outbound doorbell Interrupt */ 3537 mask = ~(ARCMSR_HBCMU_UTILITY_A_ISR_MASK | 3538 ARCMSR_HBCMU_OUTBOUND_DOORBELL_ISR_MASK | 3539 ARCMSR_HBCMU_OUTBOUND_POSTQUEUE_ISR_MASK); 3540 CHIP_REG_WRITE32(acb->reg_mu_acc_handle0, 3541 &phbcmu->host_int_mask, intmask_org & mask); 3542 acb->outbound_int_enable = ~(intmask_org & mask) & 0x0000000f; 3543 break; 3544 } 3545 3546 } 3547 } 3548 3549 3550 static void 3551 arcmsr_iop_parking(struct ACB *acb) 3552 { 3553 /* stop adapter background rebuild */ 3554 if (acb->acb_flags & ACB_F_MSG_START_BGRB) { 3555 uint32_t intmask_org; 3556 3557 acb->acb_flags &= ~ACB_F_MSG_START_BGRB; 3558 /* disable all outbound interrupt */ 3559 intmask_org = arcmsr_disable_allintr(acb); 3560 switch (acb->adapter_type) { 3561 case ACB_ADAPTER_TYPE_A: 3562 arcmsr_stop_hba_bgrb(acb); 3563 arcmsr_flush_hba_cache(acb); 3564 break; 3565 3566 case ACB_ADAPTER_TYPE_B: 3567 arcmsr_stop_hbb_bgrb(acb); 3568 arcmsr_flush_hbb_cache(acb); 3569 break; 3570 3571 case ACB_ADAPTER_TYPE_C: 3572 arcmsr_stop_hbc_bgrb(acb); 3573 arcmsr_flush_hbc_cache(acb); 3574 break; 3575 } 3576 /* 3577 * enable outbound Post Queue 3578 * enable outbound doorbell Interrupt 3579 */ 3580 arcmsr_enable_allintr(acb, intmask_org); 3581 } 3582 } 3583 3584 3585 static uint8_t 3586 arcmsr_hba_wait_msgint_ready(struct ACB *acb) 3587 { 3588 uint32_t i; 3589 uint8_t retries = 0x00; 3590 struct HBA_msgUnit *phbamu; 3591 3592 3593 phbamu = (struct HBA_msgUnit *)acb->pmu; 3594 3595 do { 3596 for (i = 0; i < 100; i++) { 3597 if (CHIP_REG_READ32(acb->reg_mu_acc_handle0, 3598 &phbamu->outbound_intstatus) & 3599 ARCMSR_MU_OUTBOUND_MESSAGE0_INT) { 3600 /* clear interrupt */ 3601 CHIP_REG_WRITE32(acb->reg_mu_acc_handle0, 3602 &phbamu->outbound_intstatus, 3603 ARCMSR_MU_OUTBOUND_MESSAGE0_INT); 3604 return (TRUE); 3605 } 3606 drv_usecwait(10000); 3607 if (ddi_in_panic()) { 3608 /* clear interrupts */ 3609 CHIP_REG_WRITE32(acb->reg_mu_acc_handle0, 3610 &phbamu->outbound_intstatus, 3611 ARCMSR_MU_OUTBOUND_MESSAGE0_INT); 3612 return (TRUE); 3613 } 3614 } /* max 1 second */ 3615 } while (retries++ < 20); /* max 20 seconds */ 3616 return (FALSE); 3617 } 3618 3619 3620 static uint8_t 3621 arcmsr_hbb_wait_msgint_ready(struct ACB *acb) 3622 { 3623 struct HBB_msgUnit *phbbmu; 3624 uint32_t i; 3625 uint8_t retries = 0x00; 3626 3627 phbbmu = (struct HBB_msgUnit *)acb->pmu; 3628 3629 do { 3630 for (i = 0; i < 100; i++) { 3631 if (CHIP_REG_READ32(acb->reg_mu_acc_handle0, 3632 &phbbmu->hbb_doorbell->iop2drv_doorbell) & 3633 ARCMSR_IOP2DRV_MESSAGE_CMD_DONE) { 3634 /* clear interrupt */ 3635 CHIP_REG_WRITE32(acb->reg_mu_acc_handle0, 3636 &phbbmu->hbb_doorbell->iop2drv_doorbell, 3637 ARCMSR_MESSAGE_INT_CLEAR_PATTERN); 3638 CHIP_REG_WRITE32(acb->reg_mu_acc_handle0, 3639 &phbbmu->hbb_doorbell->drv2iop_doorbell, 3640 ARCMSR_DRV2IOP_END_OF_INTERRUPT); 3641 return (TRUE); 3642 } 3643 drv_usecwait(10000); 3644 if (ddi_in_panic()) { 3645 /* clear interrupts */ 3646 CHIP_REG_WRITE32(acb->reg_mu_acc_handle0, 3647 &phbbmu->hbb_doorbell->iop2drv_doorbell, 3648 ARCMSR_MESSAGE_INT_CLEAR_PATTERN); 3649 CHIP_REG_WRITE32(acb->reg_mu_acc_handle0, 3650 &phbbmu->hbb_doorbell->drv2iop_doorbell, 3651 ARCMSR_DRV2IOP_END_OF_INTERRUPT); 3652 return (TRUE); 3653 } 3654 } /* max 1 second */ 3655 } while (retries++ < 20); /* max 20 seconds */ 3656 3657 return (FALSE); 3658 } 3659 3660 3661 static uint8_t 3662 arcmsr_hbc_wait_msgint_ready(struct ACB *acb) 3663 { 3664 uint32_t i; 3665 uint8_t retries = 0x00; 3666 struct HBC_msgUnit *phbcmu; 3667 uint32_t c = ARCMSR_HBCMU_IOP2DRV_MESSAGE_CMD_DONE_DOORBELL_CLEAR; 3668 3669 3670 phbcmu = (struct HBC_msgUnit *)acb->pmu; 3671 3672 do { 3673 for (i = 0; i < 100; i++) { 3674 if (CHIP_REG_READ32(acb->reg_mu_acc_handle0, 3675 &phbcmu->outbound_doorbell) & 3676 ARCMSR_HBCMU_IOP2DRV_MESSAGE_CMD_DONE) { 3677 /* clear interrupt */ 3678 CHIP_REG_WRITE32(acb->reg_mu_acc_handle0, 3679 &phbcmu->outbound_doorbell_clear, c); 3680 return (TRUE); 3681 } 3682 drv_usecwait(10000); 3683 if (ddi_in_panic()) { 3684 /* clear interrupts */ 3685 CHIP_REG_WRITE32(acb->reg_mu_acc_handle0, 3686 &phbcmu->outbound_doorbell_clear, c); 3687 return (TRUE); 3688 } 3689 } /* max 1 second */ 3690 } while (retries++ < 20); /* max 20 seconds */ 3691 return (FALSE); 3692 } 3693 3694 static void 3695 arcmsr_flush_hba_cache(struct ACB *acb) { 3696 3697 struct HBA_msgUnit *phbamu; 3698 int retry_count = 30; 3699 3700 /* enlarge wait flush adapter cache time: 10 minutes */ 3701 3702 phbamu = (struct HBA_msgUnit *)acb->pmu; 3703 3704 CHIP_REG_WRITE32(acb->reg_mu_acc_handle0, &phbamu->inbound_msgaddr0, 3705 ARCMSR_INBOUND_MESG0_FLUSH_CACHE); 3706 do { 3707 if (arcmsr_hba_wait_msgint_ready(acb)) { 3708 break; 3709 } else { 3710 retry_count--; 3711 } 3712 } while (retry_count != 0); 3713 } 3714 3715 3716 3717 static void 3718 arcmsr_flush_hbb_cache(struct ACB *acb) { 3719 3720 struct HBB_msgUnit *phbbmu; 3721 int retry_count = 30; 3722 3723 /* enlarge wait flush adapter cache time: 10 minutes */ 3724 3725 phbbmu = (struct HBB_msgUnit *)acb->pmu; 3726 CHIP_REG_WRITE32(acb->reg_mu_acc_handle0, 3727 &phbbmu->hbb_doorbell->drv2iop_doorbell, 3728 ARCMSR_MESSAGE_FLUSH_CACHE); 3729 do { 3730 if (arcmsr_hbb_wait_msgint_ready(acb)) { 3731 break; 3732 } else { 3733 retry_count--; 3734 } 3735 } while (retry_count != 0); 3736 } 3737 3738 3739 static void 3740 arcmsr_flush_hbc_cache(struct ACB *acb) 3741 { 3742 struct HBC_msgUnit *phbcmu; 3743 int retry_count = 30; 3744 3745 /* enlarge wait flush adapter cache time: 10 minutes */ 3746 3747 phbcmu = (struct HBC_msgUnit *)acb->pmu; 3748 3749 CHIP_REG_WRITE32(acb->reg_mu_acc_handle0, &phbcmu->inbound_msgaddr0, 3750 ARCMSR_INBOUND_MESG0_FLUSH_CACHE); 3751 CHIP_REG_WRITE32(acb->reg_mu_acc_handle0, &phbcmu->inbound_doorbell, 3752 ARCMSR_HBCMU_DRV2IOP_MESSAGE_CMD_DONE); 3753 do { 3754 if (arcmsr_hbc_wait_msgint_ready(acb)) { 3755 break; 3756 } else { 3757 retry_count--; 3758 } 3759 } while (retry_count != 0); 3760 } 3761 3762 3763 3764 static uint8_t 3765 arcmsr_abort_hba_allcmd(struct ACB *acb) 3766 { 3767 struct HBA_msgUnit *phbamu = (struct HBA_msgUnit *)acb->pmu; 3768 3769 CHIP_REG_WRITE32(acb->reg_mu_acc_handle0, &phbamu->inbound_msgaddr0, 3770 ARCMSR_INBOUND_MESG0_ABORT_CMD); 3771 3772 if (!arcmsr_hba_wait_msgint_ready(acb)) { 3773 arcmsr_warn(acb, 3774 "timeout while waiting for 'abort all " 3775 "outstanding commands'"); 3776 return (0xff); 3777 } 3778 return (0x00); 3779 } 3780 3781 3782 3783 static uint8_t 3784 arcmsr_abort_hbb_allcmd(struct ACB *acb) 3785 { 3786 struct HBB_msgUnit *phbbmu = (struct HBB_msgUnit *)acb->pmu; 3787 3788 CHIP_REG_WRITE32(acb->reg_mu_acc_handle0, 3789 &phbbmu->hbb_doorbell->drv2iop_doorbell, ARCMSR_MESSAGE_ABORT_CMD); 3790 3791 if (!arcmsr_hbb_wait_msgint_ready(acb)) { 3792 arcmsr_warn(acb, 3793 "timeout while waiting for 'abort all " 3794 "outstanding commands'"); 3795 return (0x00); 3796 } 3797 return (0x00); 3798 } 3799 3800 3801 static uint8_t 3802 arcmsr_abort_hbc_allcmd(struct ACB *acb) 3803 { 3804 struct HBC_msgUnit *phbcmu = (struct HBC_msgUnit *)acb->pmu; 3805 3806 CHIP_REG_WRITE32(acb->reg_mu_acc_handle0, &phbcmu->inbound_msgaddr0, 3807 ARCMSR_INBOUND_MESG0_ABORT_CMD); 3808 CHIP_REG_WRITE32(acb->reg_mu_acc_handle0, &phbcmu->inbound_doorbell, 3809 ARCMSR_HBCMU_DRV2IOP_MESSAGE_CMD_DONE); 3810 3811 if (!arcmsr_hbc_wait_msgint_ready(acb)) { 3812 arcmsr_warn(acb, 3813 "timeout while waiting for 'abort all " 3814 "outstanding commands'"); 3815 return (0xff); 3816 } 3817 return (0x00); 3818 } 3819 3820 3821 static void 3822 arcmsr_done4abort_postqueue(struct ACB *acb) 3823 { 3824 3825 struct CCB *ccb; 3826 uint32_t flag_ccb; 3827 int i = 0; 3828 boolean_t error; 3829 3830 switch (acb->adapter_type) { 3831 case ACB_ADAPTER_TYPE_A: 3832 { 3833 struct HBA_msgUnit *phbamu; 3834 uint32_t outbound_intstatus; 3835 3836 phbamu = (struct HBA_msgUnit *)acb->pmu; 3837 /* clear and abort all outbound posted Q */ 3838 outbound_intstatus = CHIP_REG_READ32(acb->reg_mu_acc_handle0, 3839 &phbamu->outbound_intstatus) & acb->outbound_int_enable; 3840 /* clear interrupt */ 3841 CHIP_REG_WRITE32(acb->reg_mu_acc_handle0, 3842 &phbamu->outbound_intstatus, outbound_intstatus); 3843 while (((flag_ccb = CHIP_REG_READ32(acb->reg_mu_acc_handle0, 3844 &phbamu->outbound_queueport)) != 0xFFFFFFFF) && 3845 (i++ < ARCMSR_MAX_OUTSTANDING_CMD)) { 3846 /* frame must be 32 bytes aligned */ 3847 /* the CDB is the first field of the CCB */ 3848 ccb = NumToPtr((acb->vir2phy_offset + (flag_ccb << 5))); 3849 /* check if command done with no error */ 3850 error = (flag_ccb & ARCMSR_CCBREPLY_FLAG_ERROR_MODE0) ? 3851 B_TRUE : B_FALSE; 3852 arcmsr_drain_donequeue(acb, ccb, error); 3853 } 3854 break; 3855 } 3856 3857 case ACB_ADAPTER_TYPE_B: 3858 { 3859 struct HBB_msgUnit *phbbmu; 3860 3861 phbbmu = (struct HBB_msgUnit *)acb->pmu; 3862 /* clear all outbound posted Q */ 3863 /* clear doorbell interrupt */ 3864 CHIP_REG_WRITE32(acb->reg_mu_acc_handle0, 3865 &phbbmu->hbb_doorbell->iop2drv_doorbell, 3866 ARCMSR_DOORBELL_INT_CLEAR_PATTERN); 3867 for (i = 0; i < ARCMSR_MAX_HBB_POSTQUEUE; i++) { 3868 if ((flag_ccb = phbbmu->done_qbuffer[i]) != 0) { 3869 phbbmu->done_qbuffer[i] = 0; 3870 /* frame must be 32 bytes aligned */ 3871 ccb = NumToPtr((acb->vir2phy_offset + 3872 (flag_ccb << 5))); 3873 /* check if command done with no error */ 3874 error = 3875 (flag_ccb & 3876 ARCMSR_CCBREPLY_FLAG_ERROR_MODE0) ? 3877 B_TRUE : B_FALSE; 3878 arcmsr_drain_donequeue(acb, ccb, error); 3879 } 3880 phbbmu->post_qbuffer[i] = 0; 3881 } /* drain reply FIFO */ 3882 phbbmu->doneq_index = 0; 3883 phbbmu->postq_index = 0; 3884 break; 3885 } 3886 3887 case ACB_ADAPTER_TYPE_C: 3888 { 3889 struct HBC_msgUnit *phbcmu; 3890 uint32_t ccb_cdb_phy; 3891 3892 phbcmu = (struct HBC_msgUnit *)acb->pmu; 3893 while ((CHIP_REG_READ32(acb->reg_mu_acc_handle0, 3894 &phbcmu->host_int_status) & 3895 ARCMSR_HBCMU_OUTBOUND_POSTQUEUE_ISR) && 3896 (i++ < ARCMSR_MAX_OUTSTANDING_CMD)) { 3897 /* need to do */ 3898 flag_ccb = CHIP_REG_READ32(acb->reg_mu_acc_handle0, 3899 &phbcmu->outbound_queueport_low); 3900 /* frame must be 32 bytes aligned */ 3901 ccb_cdb_phy = (flag_ccb & 0xFFFFFFF0); 3902 ccb = NumToPtr((acb->vir2phy_offset + ccb_cdb_phy)); 3903 error = (flag_ccb & ARCMSR_CCBREPLY_FLAG_ERROR_MODE1)? 3904 B_TRUE : B_FALSE; 3905 arcmsr_drain_donequeue(acb, ccb, error); 3906 } 3907 break; 3908 } 3909 3910 } 3911 } 3912 /* 3913 * Routine Description: try to get echo from iop. 3914 * Arguments: 3915 * Return Value: Nothing. 3916 */ 3917 static uint8_t 3918 arcmsr_get_echo_from_iop(struct ACB *acb) 3919 { 3920 uint32_t intmask_org; 3921 uint8_t rtnval = 0; 3922 3923 if (acb->adapter_type == ACB_ADAPTER_TYPE_A) { 3924 struct HBA_msgUnit *phbamu; 3925 3926 phbamu = (struct HBA_msgUnit *)acb->pmu; 3927 intmask_org = arcmsr_disable_allintr(acb); 3928 CHIP_REG_WRITE32(acb->reg_mu_acc_handle0, 3929 &phbamu->inbound_msgaddr0, 3930 ARCMSR_INBOUND_MESG0_GET_CONFIG); 3931 if (!arcmsr_hba_wait_msgint_ready(acb)) { 3932 arcmsr_warn(acb, "try to get echo from iop," 3933 "... timeout ..."); 3934 acb->acb_flags |= ACB_F_BUS_HANG_ON; 3935 rtnval = 0xFF; 3936 } 3937 /* enable all outbound interrupt */ 3938 arcmsr_enable_allintr(acb, intmask_org); 3939 } 3940 return (rtnval); 3941 } 3942 3943 /* 3944 * Routine Description: Reset 80331 iop. 3945 * Arguments: 3946 * Return Value: Nothing. 3947 */ 3948 static uint8_t 3949 arcmsr_iop_reset(struct ACB *acb) 3950 { 3951 struct CCB *ccb; 3952 uint32_t intmask_org; 3953 uint8_t rtnval = 0; 3954 int i = 0; 3955 3956 if (acb->ccboutstandingcount > 0) { 3957 /* disable all outbound interrupt */ 3958 intmask_org = arcmsr_disable_allintr(acb); 3959 /* clear and abort all outbound posted Q */ 3960 arcmsr_done4abort_postqueue(acb); 3961 /* talk to iop 331 outstanding command aborted */ 3962 rtnval = (acb->acb_flags & ACB_F_BUS_HANG_ON) ? 3963 0xFF : arcmsr_abort_host_command(acb); 3964 3965 for (i = 0; i < ARCMSR_MAX_FREECCB_NUM; i++) { 3966 ccb = acb->pccb_pool[i]; 3967 if (ccb->ccb_state == ARCMSR_CCB_START) { 3968 /* ccb->ccb_state = ARCMSR_CCB_RESET; */ 3969 ccb->pkt->pkt_reason = CMD_RESET; 3970 ccb->pkt->pkt_statistics |= STAT_BUS_RESET; 3971 arcmsr_ccb_complete(ccb, 1); 3972 } 3973 } 3974 atomic_and_32(&acb->ccboutstandingcount, 0); 3975 /* enable all outbound interrupt */ 3976 arcmsr_enable_allintr(acb, intmask_org); 3977 } else { 3978 rtnval = arcmsr_get_echo_from_iop(acb); 3979 } 3980 return (rtnval); 3981 } 3982 3983 3984 static struct QBUFFER * 3985 arcmsr_get_iop_rqbuffer(struct ACB *acb) 3986 { 3987 struct QBUFFER *qb; 3988 3989 switch (acb->adapter_type) { 3990 case ACB_ADAPTER_TYPE_A: 3991 { 3992 struct HBA_msgUnit *phbamu; 3993 3994 phbamu = (struct HBA_msgUnit *)acb->pmu; 3995 qb = (struct QBUFFER *)&phbamu->message_rbuffer; 3996 break; 3997 } 3998 3999 case ACB_ADAPTER_TYPE_B: 4000 { 4001 struct HBB_msgUnit *phbbmu; 4002 4003 phbbmu = (struct HBB_msgUnit *)acb->pmu; 4004 qb = (struct QBUFFER *)&phbbmu->hbb_rwbuffer->message_rbuffer; 4005 break; 4006 } 4007 4008 case ACB_ADAPTER_TYPE_C: 4009 { 4010 struct HBC_msgUnit *phbcmu; 4011 4012 phbcmu = (struct HBC_msgUnit *)acb->pmu; 4013 qb = (struct QBUFFER *)&phbcmu->message_rbuffer; 4014 break; 4015 } 4016 4017 } 4018 return (qb); 4019 } 4020 4021 4022 static struct QBUFFER * 4023 arcmsr_get_iop_wqbuffer(struct ACB *acb) 4024 { 4025 struct QBUFFER *qbuffer = NULL; 4026 4027 switch (acb->adapter_type) { 4028 case ACB_ADAPTER_TYPE_A: 4029 { 4030 struct HBA_msgUnit *phbamu; 4031 4032 phbamu = (struct HBA_msgUnit *)acb->pmu; 4033 qbuffer = (struct QBUFFER *)&phbamu->message_wbuffer; 4034 break; 4035 } 4036 4037 case ACB_ADAPTER_TYPE_B: 4038 { 4039 struct HBB_msgUnit *phbbmu; 4040 4041 phbbmu = (struct HBB_msgUnit *)acb->pmu; 4042 qbuffer = (struct QBUFFER *) 4043 &phbbmu->hbb_rwbuffer->message_wbuffer; 4044 break; 4045 } 4046 4047 case ACB_ADAPTER_TYPE_C: 4048 { 4049 struct HBC_msgUnit *phbcmu; 4050 4051 phbcmu = (struct HBC_msgUnit *)acb->pmu; 4052 qbuffer = (struct QBUFFER *)&phbcmu->message_wbuffer; 4053 break; 4054 } 4055 4056 } 4057 return (qbuffer); 4058 } 4059 4060 4061 4062 static void 4063 arcmsr_iop_message_read(struct ACB *acb) 4064 { 4065 switch (acb->adapter_type) { 4066 case ACB_ADAPTER_TYPE_A: 4067 { 4068 struct HBA_msgUnit *phbamu; 4069 4070 phbamu = (struct HBA_msgUnit *)acb->pmu; 4071 /* let IOP know the data has been read */ 4072 CHIP_REG_WRITE32(acb->reg_mu_acc_handle0, 4073 &phbamu->inbound_doorbell, 4074 ARCMSR_INBOUND_DRIVER_DATA_READ_OK); 4075 break; 4076 } 4077 4078 case ACB_ADAPTER_TYPE_B: 4079 { 4080 struct HBB_msgUnit *phbbmu; 4081 4082 phbbmu = (struct HBB_msgUnit *)acb->pmu; 4083 /* let IOP know the data has been read */ 4084 CHIP_REG_WRITE32(acb->reg_mu_acc_handle0, 4085 &phbbmu->hbb_doorbell->drv2iop_doorbell, 4086 ARCMSR_DRV2IOP_DATA_READ_OK); 4087 break; 4088 } 4089 4090 case ACB_ADAPTER_TYPE_C: 4091 { 4092 struct HBC_msgUnit *phbcmu; 4093 4094 phbcmu = (struct HBC_msgUnit *)acb->pmu; 4095 /* let IOP know data has been read */ 4096 CHIP_REG_WRITE32(acb->reg_mu_acc_handle0, 4097 &phbcmu->inbound_doorbell, 4098 ARCMSR_HBCMU_DRV2IOP_DATA_READ_OK); 4099 break; 4100 } 4101 4102 } 4103 } 4104 4105 4106 4107 static void 4108 arcmsr_iop_message_wrote(struct ACB *acb) 4109 { 4110 switch (acb->adapter_type) { 4111 case ACB_ADAPTER_TYPE_A: { 4112 struct HBA_msgUnit *phbamu; 4113 4114 phbamu = (struct HBA_msgUnit *)acb->pmu; 4115 /* 4116 * push inbound doorbell tell iop, driver data write ok 4117 * and wait reply on next hwinterrupt for next Qbuffer post 4118 */ 4119 CHIP_REG_WRITE32(acb->reg_mu_acc_handle0, 4120 &phbamu->inbound_doorbell, 4121 ARCMSR_INBOUND_DRIVER_DATA_WRITE_OK); 4122 break; 4123 } 4124 4125 case ACB_ADAPTER_TYPE_B: 4126 { 4127 struct HBB_msgUnit *phbbmu; 4128 4129 phbbmu = (struct HBB_msgUnit *)acb->pmu; 4130 /* 4131 * push inbound doorbell tell iop, driver data was writen 4132 * successfully, then await reply on next hwinterrupt for 4133 * next Qbuffer post 4134 */ 4135 CHIP_REG_WRITE32(acb->reg_mu_acc_handle0, 4136 &phbbmu->hbb_doorbell->drv2iop_doorbell, 4137 ARCMSR_DRV2IOP_DATA_WRITE_OK); 4138 break; 4139 } 4140 4141 case ACB_ADAPTER_TYPE_C: 4142 { 4143 struct HBC_msgUnit *phbcmu; 4144 4145 phbcmu = (struct HBC_msgUnit *)acb->pmu; 4146 /* 4147 * push inbound doorbell tell iop, driver data write ok 4148 * and wait reply on next hwinterrupt for next Qbuffer post 4149 */ 4150 CHIP_REG_WRITE32(acb->reg_mu_acc_handle0, 4151 &phbcmu->inbound_doorbell, 4152 ARCMSR_HBCMU_DRV2IOP_DATA_WRITE_OK); 4153 break; 4154 } 4155 4156 } 4157 } 4158 4159 4160 4161 static void 4162 arcmsr_post_ioctldata2iop(struct ACB *acb) 4163 { 4164 uint8_t *pQbuffer; 4165 struct QBUFFER *pwbuffer; 4166 uint8_t *iop_data; 4167 int32_t allxfer_len = 0; 4168 4169 pwbuffer = arcmsr_get_iop_wqbuffer(acb); 4170 iop_data = (uint8_t *)pwbuffer->data; 4171 if (acb->acb_flags & ACB_F_MESSAGE_WQBUFFER_READ) { 4172 acb->acb_flags &= (~ACB_F_MESSAGE_WQBUFFER_READ); 4173 while ((acb->wqbuf_firstidx != acb->wqbuf_lastidx) && 4174 (allxfer_len < 124)) { 4175 pQbuffer = &acb->wqbuffer[acb->wqbuf_firstidx]; 4176 (void) memcpy(iop_data, pQbuffer, 1); 4177 acb->wqbuf_firstidx++; 4178 /* if last index number set it to 0 */ 4179 acb->wqbuf_firstidx %= ARCMSR_MAX_QBUFFER; 4180 iop_data++; 4181 allxfer_len++; 4182 } 4183 pwbuffer->data_len = allxfer_len; 4184 /* 4185 * push inbound doorbell and wait reply at hwinterrupt 4186 * routine for next Qbuffer post 4187 */ 4188 arcmsr_iop_message_wrote(acb); 4189 } 4190 } 4191 4192 4193 4194 static void 4195 arcmsr_stop_hba_bgrb(struct ACB *acb) 4196 { 4197 struct HBA_msgUnit *phbamu; 4198 4199 phbamu = (struct HBA_msgUnit *)acb->pmu; 4200 4201 acb->acb_flags &= ~ACB_F_MSG_START_BGRB; 4202 CHIP_REG_WRITE32(acb->reg_mu_acc_handle0, 4203 &phbamu->inbound_msgaddr0, ARCMSR_INBOUND_MESG0_STOP_BGRB); 4204 if (!arcmsr_hba_wait_msgint_ready(acb)) 4205 arcmsr_warn(acb, 4206 "timeout while waiting for background rebuild completion"); 4207 } 4208 4209 4210 static void 4211 arcmsr_stop_hbb_bgrb(struct ACB *acb) 4212 { 4213 struct HBB_msgUnit *phbbmu; 4214 4215 phbbmu = (struct HBB_msgUnit *)acb->pmu; 4216 4217 acb->acb_flags &= ~ACB_F_MSG_START_BGRB; 4218 CHIP_REG_WRITE32(acb->reg_mu_acc_handle0, 4219 &phbbmu->hbb_doorbell->drv2iop_doorbell, ARCMSR_MESSAGE_STOP_BGRB); 4220 4221 if (!arcmsr_hbb_wait_msgint_ready(acb)) 4222 arcmsr_warn(acb, 4223 "timeout while waiting for background rebuild completion"); 4224 } 4225 4226 4227 static void 4228 arcmsr_stop_hbc_bgrb(struct ACB *acb) 4229 { 4230 struct HBC_msgUnit *phbcmu; 4231 4232 phbcmu = (struct HBC_msgUnit *)acb->pmu; 4233 4234 acb->acb_flags &= ~ACB_F_MSG_START_BGRB; 4235 CHIP_REG_WRITE32(acb->reg_mu_acc_handle0, 4236 &phbcmu->inbound_msgaddr0, ARCMSR_INBOUND_MESG0_STOP_BGRB); 4237 CHIP_REG_WRITE32(acb->reg_mu_acc_handle0, 4238 &phbcmu->inbound_doorbell, ARCMSR_HBCMU_DRV2IOP_MESSAGE_CMD_DONE); 4239 if (!arcmsr_hbc_wait_msgint_ready(acb)) 4240 arcmsr_warn(acb, 4241 "timeout while waiting for background rebuild completion"); 4242 } 4243 4244 4245 static int 4246 arcmsr_iop_message_xfer(struct ACB *acb, struct scsi_pkt *pkt) 4247 { 4248 struct CMD_MESSAGE_FIELD *pcmdmessagefld; 4249 struct CCB *ccb = pkt->pkt_ha_private; 4250 struct buf *bp = ccb->bp; 4251 uint8_t *pQbuffer; 4252 int retvalue = 0, transfer_len = 0; 4253 char *buffer; 4254 uint32_t controlcode; 4255 4256 4257 /* 4 bytes: Areca io control code */ 4258 controlcode = 4259 (uint32_t)pkt->pkt_cdbp[5] << 24 | 4260 (uint32_t)pkt->pkt_cdbp[6] << 16 | 4261 (uint32_t)pkt->pkt_cdbp[7] << 8 | 4262 (uint32_t)pkt->pkt_cdbp[8]; 4263 4264 if (bp->b_flags & (B_PHYS | B_PAGEIO)) 4265 bp_mapin(bp); 4266 4267 buffer = bp->b_un.b_addr; 4268 transfer_len = bp->b_bcount; 4269 if (transfer_len > sizeof (struct CMD_MESSAGE_FIELD)) { 4270 retvalue = ARCMSR_MESSAGE_FAIL; 4271 goto message_out; 4272 } 4273 4274 pcmdmessagefld = (struct CMD_MESSAGE_FIELD *)(intptr_t)buffer; 4275 switch (controlcode) { 4276 case ARCMSR_MESSAGE_READ_RQBUFFER: 4277 { 4278 unsigned long *ver_addr; 4279 uint8_t *ptmpQbuffer; 4280 int32_t allxfer_len = 0; 4281 4282 ver_addr = kmem_zalloc(MSGDATABUFLEN, KM_SLEEP); 4283 4284 ptmpQbuffer = (uint8_t *)ver_addr; 4285 while ((acb->rqbuf_firstidx != acb->rqbuf_lastidx) && 4286 (allxfer_len < (MSGDATABUFLEN - 1))) { 4287 pQbuffer = &acb->rqbuffer[acb->rqbuf_firstidx]; 4288 (void) memcpy(ptmpQbuffer, pQbuffer, 1); 4289 acb->rqbuf_firstidx++; 4290 acb->rqbuf_firstidx %= ARCMSR_MAX_QBUFFER; 4291 ptmpQbuffer++; 4292 allxfer_len++; 4293 } 4294 4295 if (acb->acb_flags & ACB_F_IOPDATA_OVERFLOW) { 4296 struct QBUFFER *prbuffer; 4297 uint8_t *iop_data; 4298 int32_t iop_len; 4299 4300 acb->acb_flags &= ~ACB_F_IOPDATA_OVERFLOW; 4301 prbuffer = arcmsr_get_iop_rqbuffer(acb); 4302 iop_data = (uint8_t *)prbuffer->data; 4303 iop_len = (int32_t)prbuffer->data_len; 4304 4305 while (iop_len > 0) { 4306 pQbuffer = &acb->rqbuffer[acb->rqbuf_lastidx]; 4307 (void) memcpy(pQbuffer, iop_data, 1); 4308 acb->rqbuf_lastidx++; 4309 acb->rqbuf_lastidx %= ARCMSR_MAX_QBUFFER; 4310 iop_data++; 4311 iop_len--; 4312 } 4313 arcmsr_iop_message_read(acb); 4314 } 4315 4316 (void) memcpy(pcmdmessagefld->messagedatabuffer, 4317 (uint8_t *)ver_addr, allxfer_len); 4318 pcmdmessagefld->cmdmessage.Length = allxfer_len; 4319 pcmdmessagefld->cmdmessage.ReturnCode = 4320 ARCMSR_MESSAGE_RETURNCODE_OK; 4321 kmem_free(ver_addr, MSGDATABUFLEN); 4322 break; 4323 } 4324 4325 case ARCMSR_MESSAGE_WRITE_WQBUFFER: 4326 { 4327 uint8_t *ver_addr; 4328 int32_t my_empty_len, user_len, wqbuf_firstidx, 4329 wqbuf_lastidx; 4330 uint8_t *ptmpuserbuffer; 4331 4332 ver_addr = kmem_zalloc(MSGDATABUFLEN, KM_SLEEP); 4333 4334 ptmpuserbuffer = ver_addr; 4335 user_len = min(pcmdmessagefld->cmdmessage.Length, 4336 MSGDATABUFLEN); 4337 (void) memcpy(ptmpuserbuffer, 4338 pcmdmessagefld->messagedatabuffer, user_len); 4339 wqbuf_lastidx = acb->wqbuf_lastidx; 4340 wqbuf_firstidx = acb->wqbuf_firstidx; 4341 if (wqbuf_lastidx != wqbuf_firstidx) { 4342 struct scsi_arq_status *arq_status; 4343 4344 arcmsr_post_ioctldata2iop(acb); 4345 arq_status = (struct scsi_arq_status *) 4346 (intptr_t)(pkt->pkt_scbp); 4347 bzero((caddr_t)arq_status, 4348 sizeof (struct scsi_arq_status)); 4349 arq_status->sts_rqpkt_reason = CMD_CMPLT; 4350 arq_status->sts_rqpkt_state = (STATE_GOT_BUS | 4351 STATE_GOT_TARGET | STATE_SENT_CMD | 4352 STATE_XFERRED_DATA | STATE_GOT_STATUS); 4353 4354 arq_status->sts_rqpkt_statistics = 4355 pkt->pkt_statistics; 4356 arq_status->sts_rqpkt_resid = 0; 4357 if (&arq_status->sts_sensedata != NULL) { 4358 struct scsi_extended_sense *sts_sensedata; 4359 4360 sts_sensedata = &arq_status->sts_sensedata; 4361 4362 /* has error report sensedata */ 4363 sts_sensedata->es_code = 0x0; 4364 sts_sensedata->es_valid = 0x01; 4365 sts_sensedata->es_key = KEY_ILLEGAL_REQUEST; 4366 /* AdditionalSenseLength */ 4367 sts_sensedata->es_add_len = 0x0A; 4368 /* AdditionalSenseCode */ 4369 sts_sensedata->es_add_code = 0x20; 4370 } 4371 retvalue = ARCMSR_MESSAGE_FAIL; 4372 } else { 4373 my_empty_len = (wqbuf_firstidx-wqbuf_lastidx - 1) & 4374 (ARCMSR_MAX_QBUFFER - 1); 4375 if (my_empty_len >= user_len) { 4376 while (user_len > 0) { 4377 pQbuffer = &acb->wqbuffer[ 4378 acb->wqbuf_lastidx]; 4379 (void) memcpy(pQbuffer, 4380 ptmpuserbuffer, 1); 4381 acb->wqbuf_lastidx++; 4382 acb->wqbuf_lastidx %= 4383 ARCMSR_MAX_QBUFFER; 4384 ptmpuserbuffer++; 4385 user_len--; 4386 } 4387 if (acb->acb_flags & 4388 ACB_F_MESSAGE_WQBUFFER_CLEARED) { 4389 acb->acb_flags &= 4390 ~ACB_F_MESSAGE_WQBUFFER_CLEARED; 4391 arcmsr_post_ioctldata2iop(acb); 4392 } 4393 } else { 4394 struct scsi_arq_status *arq_status; 4395 4396 /* has error report sensedata */ 4397 arq_status = (struct scsi_arq_status *) 4398 (intptr_t)(pkt->pkt_scbp); 4399 bzero((caddr_t)arq_status, 4400 sizeof (struct scsi_arq_status)); 4401 arq_status->sts_rqpkt_reason = CMD_CMPLT; 4402 arq_status->sts_rqpkt_state = 4403 (STATE_GOT_BUS | 4404 STATE_GOT_TARGET |STATE_SENT_CMD | 4405 STATE_XFERRED_DATA | STATE_GOT_STATUS); 4406 arq_status->sts_rqpkt_statistics = 4407 pkt->pkt_statistics; 4408 arq_status->sts_rqpkt_resid = 0; 4409 if (&arq_status->sts_sensedata != NULL) { 4410 struct scsi_extended_sense * 4411 sts_sensedata; 4412 4413 sts_sensedata = 4414 &arq_status->sts_sensedata; 4415 4416 /* has error report sensedata */ 4417 sts_sensedata->es_code = 0x0; 4418 sts_sensedata->es_valid = 0x01; 4419 sts_sensedata->es_key = 4420 KEY_ILLEGAL_REQUEST; 4421 /* AdditionalSenseLength */ 4422 sts_sensedata->es_add_len = 0x0A; 4423 /* AdditionalSenseCode */ 4424 sts_sensedata->es_add_code = 0x20; 4425 } 4426 retvalue = ARCMSR_MESSAGE_FAIL; 4427 } 4428 } 4429 kmem_free(ver_addr, MSGDATABUFLEN); 4430 break; 4431 } 4432 4433 case ARCMSR_MESSAGE_CLEAR_RQBUFFER: 4434 pQbuffer = acb->rqbuffer; 4435 4436 if (acb->acb_flags & ACB_F_IOPDATA_OVERFLOW) { 4437 acb->acb_flags &= ~ACB_F_IOPDATA_OVERFLOW; 4438 arcmsr_iop_message_read(acb); 4439 } 4440 acb->acb_flags |= ACB_F_MESSAGE_RQBUFFER_CLEARED; 4441 acb->rqbuf_firstidx = 0; 4442 acb->rqbuf_lastidx = 0; 4443 (void) memset(pQbuffer, 0, ARCMSR_MAX_QBUFFER); 4444 pcmdmessagefld->cmdmessage.ReturnCode = 4445 ARCMSR_MESSAGE_RETURNCODE_OK; 4446 break; 4447 case ARCMSR_MESSAGE_CLEAR_WQBUFFER: 4448 pQbuffer = acb->wqbuffer; 4449 4450 if (acb->acb_flags & ACB_F_IOPDATA_OVERFLOW) { 4451 acb->acb_flags &= ~ACB_F_IOPDATA_OVERFLOW; 4452 arcmsr_iop_message_read(acb); 4453 } 4454 acb->acb_flags |= (ACB_F_MESSAGE_WQBUFFER_CLEARED | 4455 ACB_F_MESSAGE_WQBUFFER_READ); 4456 acb->wqbuf_firstidx = 0; 4457 acb->wqbuf_lastidx = 0; 4458 (void) memset(pQbuffer, 0, ARCMSR_MAX_QBUFFER); 4459 pcmdmessagefld->cmdmessage.ReturnCode = 4460 ARCMSR_MESSAGE_RETURNCODE_OK; 4461 break; 4462 case ARCMSR_MESSAGE_CLEAR_ALLQBUFFER: 4463 4464 if (acb->acb_flags & ACB_F_IOPDATA_OVERFLOW) { 4465 acb->acb_flags &= ~ACB_F_IOPDATA_OVERFLOW; 4466 arcmsr_iop_message_read(acb); 4467 } 4468 acb->acb_flags |= (ACB_F_MESSAGE_WQBUFFER_CLEARED | 4469 ACB_F_MESSAGE_RQBUFFER_CLEARED | 4470 ACB_F_MESSAGE_WQBUFFER_READ); 4471 acb->rqbuf_firstidx = 0; 4472 acb->rqbuf_lastidx = 0; 4473 acb->wqbuf_firstidx = 0; 4474 acb->wqbuf_lastidx = 0; 4475 pQbuffer = acb->rqbuffer; 4476 (void) memset(pQbuffer, 0, sizeof (struct QBUFFER)); 4477 pQbuffer = acb->wqbuffer; 4478 (void) memset(pQbuffer, 0, sizeof (struct QBUFFER)); 4479 pcmdmessagefld->cmdmessage.ReturnCode = 4480 ARCMSR_MESSAGE_RETURNCODE_OK; 4481 break; 4482 4483 case ARCMSR_MESSAGE_REQUEST_RETURN_CODE_3F: 4484 pcmdmessagefld->cmdmessage.ReturnCode = 4485 ARCMSR_MESSAGE_RETURNCODE_3F; 4486 break; 4487 /* 4488 * Not supported - ARCMSR_MESSAGE_SAY_HELLO 4489 */ 4490 case ARCMSR_MESSAGE_SAY_GOODBYE: 4491 arcmsr_iop_parking(acb); 4492 break; 4493 case ARCMSR_MESSAGE_FLUSH_ADAPTER_CACHE: 4494 switch (acb->adapter_type) { 4495 case ACB_ADAPTER_TYPE_A: 4496 arcmsr_flush_hba_cache(acb); 4497 break; 4498 case ACB_ADAPTER_TYPE_B: 4499 arcmsr_flush_hbb_cache(acb); 4500 break; 4501 case ACB_ADAPTER_TYPE_C: 4502 arcmsr_flush_hbc_cache(acb); 4503 break; 4504 } 4505 break; 4506 default: 4507 retvalue = ARCMSR_MESSAGE_FAIL; 4508 } 4509 4510 message_out: 4511 4512 return (retvalue); 4513 } 4514 4515 4516 4517 4518 static void 4519 arcmsr_pcidev_disattach(struct ACB *acb) 4520 { 4521 struct CCB *ccb; 4522 int i = 0; 4523 4524 /* disable all outbound interrupts */ 4525 (void) arcmsr_disable_allintr(acb); 4526 /* stop adapter background rebuild */ 4527 switch (acb->adapter_type) { 4528 case ACB_ADAPTER_TYPE_A: 4529 arcmsr_stop_hba_bgrb(acb); 4530 arcmsr_flush_hba_cache(acb); 4531 break; 4532 case ACB_ADAPTER_TYPE_B: 4533 arcmsr_stop_hbb_bgrb(acb); 4534 arcmsr_flush_hbb_cache(acb); 4535 break; 4536 case ACB_ADAPTER_TYPE_C: 4537 arcmsr_stop_hbc_bgrb(acb); 4538 arcmsr_flush_hbc_cache(acb); 4539 break; 4540 } 4541 /* abort all outstanding commands */ 4542 acb->acb_flags |= ACB_F_SCSISTOPADAPTER; 4543 acb->acb_flags &= ~ACB_F_IOP_INITED; 4544 4545 if (acb->ccboutstandingcount != 0) { 4546 /* clear and abort all outbound posted Q */ 4547 arcmsr_done4abort_postqueue(acb); 4548 /* talk to iop outstanding command aborted */ 4549 (void) arcmsr_abort_host_command(acb); 4550 4551 for (i = 0; i < ARCMSR_MAX_FREECCB_NUM; i++) { 4552 ccb = acb->pccb_pool[i]; 4553 if (ccb->ccb_state == ARCMSR_CCB_START) { 4554 /* ccb->ccb_state = ARCMSR_CCB_ABORTED; */ 4555 ccb->pkt->pkt_reason = CMD_ABORTED; 4556 ccb->pkt->pkt_statistics |= STAT_ABORTED; 4557 arcmsr_ccb_complete(ccb, 1); 4558 } 4559 } 4560 } 4561 } 4562 4563 /* get firmware miscellaneous data */ 4564 static void 4565 arcmsr_get_hba_config(struct ACB *acb) 4566 { 4567 struct HBA_msgUnit *phbamu; 4568 4569 char *acb_firm_model; 4570 char *acb_firm_version; 4571 char *acb_device_map; 4572 char *iop_firm_model; 4573 char *iop_firm_version; 4574 char *iop_device_map; 4575 int count; 4576 4577 phbamu = (struct HBA_msgUnit *)acb->pmu; 4578 acb_firm_model = acb->firm_model; 4579 acb_firm_version = acb->firm_version; 4580 acb_device_map = acb->device_map; 4581 /* firm_model, 15 */ 4582 iop_firm_model = 4583 (char *)(&phbamu->msgcode_rwbuffer[ARCMSR_FW_MODEL_OFFSET]); 4584 /* firm_version, 17 */ 4585 iop_firm_version = 4586 (char *)(&phbamu->msgcode_rwbuffer[ARCMSR_FW_VERS_OFFSET]); 4587 4588 /* device_map, 21 */ 4589 iop_device_map = 4590 (char *)(&phbamu->msgcode_rwbuffer[ARCMSR_FW_MAP_OFFSET]); 4591 4592 CHIP_REG_WRITE32(acb->reg_mu_acc_handle0, 4593 &phbamu->inbound_msgaddr0, ARCMSR_INBOUND_MESG0_GET_CONFIG); 4594 4595 if (!arcmsr_hba_wait_msgint_ready(acb)) 4596 arcmsr_warn(acb, 4597 "timeout while waiting for adapter firmware " 4598 "miscellaneous data"); 4599 4600 count = 8; 4601 while (count) { 4602 *acb_firm_model = CHIP_REG_READ8(acb->reg_mu_acc_handle0, 4603 iop_firm_model); 4604 acb_firm_model++; 4605 iop_firm_model++; 4606 count--; 4607 } 4608 4609 count = 16; 4610 while (count) { 4611 *acb_firm_version = 4612 CHIP_REG_READ8(acb->reg_mu_acc_handle0, iop_firm_version); 4613 acb_firm_version++; 4614 iop_firm_version++; 4615 count--; 4616 } 4617 4618 count = 16; 4619 while (count) { 4620 *acb_device_map = 4621 CHIP_REG_READ8(acb->reg_mu_acc_handle0, iop_device_map); 4622 acb_device_map++; 4623 iop_device_map++; 4624 count--; 4625 } 4626 4627 arcmsr_log(acb, CE_CONT, "ARECA RAID FIRMWARE VERSION %s\n", 4628 acb->firm_version); 4629 4630 /* firm_request_len, 1 */ 4631 acb->firm_request_len = CHIP_REG_READ32(acb->reg_mu_acc_handle0, 4632 &phbamu->msgcode_rwbuffer[1]); 4633 /* firm_numbers_queue, 2 */ 4634 acb->firm_numbers_queue = CHIP_REG_READ32(acb->reg_mu_acc_handle0, 4635 &phbamu->msgcode_rwbuffer[2]); 4636 /* firm_sdram_size, 3 */ 4637 acb->firm_sdram_size = CHIP_REG_READ32(acb->reg_mu_acc_handle0, 4638 &phbamu->msgcode_rwbuffer[3]); 4639 /* firm_ide_channels, 4 */ 4640 acb->firm_ide_channels = CHIP_REG_READ32(acb->reg_mu_acc_handle0, 4641 &phbamu->msgcode_rwbuffer[4]); 4642 } 4643 4644 /* get firmware miscellaneous data */ 4645 static void 4646 arcmsr_get_hbb_config(struct ACB *acb) 4647 { 4648 struct HBB_msgUnit *phbbmu; 4649 char *acb_firm_model; 4650 char *acb_firm_version; 4651 char *acb_device_map; 4652 char *iop_firm_model; 4653 char *iop_firm_version; 4654 char *iop_device_map; 4655 int count; 4656 4657 phbbmu = (struct HBB_msgUnit *)acb->pmu; 4658 acb_firm_model = acb->firm_model; 4659 acb_firm_version = acb->firm_version; 4660 acb_device_map = acb->device_map; 4661 /* firm_model, 15 */ 4662 iop_firm_model = (char *) 4663 (&phbbmu->hbb_rwbuffer->msgcode_rwbuffer[ARCMSR_FW_MODEL_OFFSET]); 4664 /* firm_version, 17 */ 4665 iop_firm_version = (char *) 4666 (&phbbmu->hbb_rwbuffer->msgcode_rwbuffer[ARCMSR_FW_VERS_OFFSET]); 4667 /* device_map, 21 */ 4668 iop_device_map = (char *) 4669 (&phbbmu->hbb_rwbuffer->msgcode_rwbuffer[ARCMSR_FW_MAP_OFFSET]); 4670 4671 CHIP_REG_WRITE32(acb->reg_mu_acc_handle0, 4672 &phbbmu->hbb_doorbell->drv2iop_doorbell, ARCMSR_MESSAGE_GET_CONFIG); 4673 4674 if (!arcmsr_hbb_wait_msgint_ready(acb)) 4675 arcmsr_warn(acb, 4676 "timeout while waiting for adapter firmware " 4677 "miscellaneous data"); 4678 4679 count = 8; 4680 while (count) { 4681 *acb_firm_model = 4682 CHIP_REG_READ8(acb->reg_mu_acc_handle1, iop_firm_model); 4683 acb_firm_model++; 4684 iop_firm_model++; 4685 count--; 4686 } 4687 count = 16; 4688 while (count) { 4689 *acb_firm_version = 4690 CHIP_REG_READ8(acb->reg_mu_acc_handle1, iop_firm_version); 4691 acb_firm_version++; 4692 iop_firm_version++; 4693 count--; 4694 } 4695 count = 16; 4696 while (count) { 4697 *acb_device_map = 4698 CHIP_REG_READ8(acb->reg_mu_acc_handle1, iop_device_map); 4699 acb_device_map++; 4700 iop_device_map++; 4701 count--; 4702 } 4703 4704 arcmsr_log(acb, CE_CONT, "ARECA RAID FIRMWARE VERSION %s\n", 4705 acb->firm_version); 4706 4707 /* firm_request_len, 1 */ 4708 acb->firm_request_len = CHIP_REG_READ32(acb->reg_mu_acc_handle1, 4709 &phbbmu->hbb_rwbuffer->msgcode_rwbuffer[1]); 4710 /* firm_numbers_queue, 2 */ 4711 acb->firm_numbers_queue = CHIP_REG_READ32(acb->reg_mu_acc_handle1, 4712 &phbbmu->hbb_rwbuffer->msgcode_rwbuffer[2]); 4713 /* firm_sdram_size, 3 */ 4714 acb->firm_sdram_size = CHIP_REG_READ32(acb->reg_mu_acc_handle1, 4715 &phbbmu->hbb_rwbuffer->msgcode_rwbuffer[3]); 4716 /* firm_ide_channels, 4 */ 4717 acb->firm_ide_channels = CHIP_REG_READ32(acb->reg_mu_acc_handle1, 4718 &phbbmu->hbb_rwbuffer->msgcode_rwbuffer[4]); 4719 } 4720 4721 4722 /* get firmware miscellaneous data */ 4723 static void 4724 arcmsr_get_hbc_config(struct ACB *acb) 4725 { 4726 struct HBC_msgUnit *phbcmu; 4727 4728 char *acb_firm_model; 4729 char *acb_firm_version; 4730 char *acb_device_map; 4731 char *iop_firm_model; 4732 char *iop_firm_version; 4733 char *iop_device_map; 4734 int count; 4735 4736 phbcmu = (struct HBC_msgUnit *)acb->pmu; 4737 acb_firm_model = acb->firm_model; 4738 acb_firm_version = acb->firm_version; 4739 acb_device_map = acb->device_map; 4740 /* firm_model, 15 */ 4741 iop_firm_model = 4742 (char *)(&phbcmu->msgcode_rwbuffer[ARCMSR_FW_MODEL_OFFSET]); 4743 /* firm_version, 17 */ 4744 iop_firm_version = 4745 (char *)(&phbcmu->msgcode_rwbuffer[ARCMSR_FW_VERS_OFFSET]); 4746 /* device_map, 21 */ 4747 iop_device_map = 4748 (char *)(&phbcmu->msgcode_rwbuffer[ARCMSR_FW_MAP_OFFSET]); 4749 /* post "get config" instruction */ 4750 CHIP_REG_WRITE32(acb->reg_mu_acc_handle0, 4751 &phbcmu->inbound_msgaddr0, ARCMSR_INBOUND_MESG0_GET_CONFIG); 4752 CHIP_REG_WRITE32(acb->reg_mu_acc_handle0, 4753 &phbcmu->inbound_doorbell, ARCMSR_HBCMU_DRV2IOP_MESSAGE_CMD_DONE); 4754 if (!arcmsr_hbc_wait_msgint_ready(acb)) 4755 arcmsr_warn(acb, 4756 "timeout while waiting for adapter firmware " 4757 "miscellaneous data"); 4758 count = 8; 4759 while (count) { 4760 *acb_firm_model = 4761 CHIP_REG_READ8(acb->reg_mu_acc_handle0, iop_firm_model); 4762 acb_firm_model++; 4763 iop_firm_model++; 4764 count--; 4765 } 4766 4767 count = 16; 4768 while (count) { 4769 *acb_firm_version = 4770 CHIP_REG_READ8(acb->reg_mu_acc_handle0, iop_firm_version); 4771 acb_firm_version++; 4772 iop_firm_version++; 4773 count--; 4774 } 4775 4776 count = 16; 4777 while (count) { 4778 *acb_device_map = 4779 CHIP_REG_READ8(acb->reg_mu_acc_handle0, iop_device_map); 4780 acb_device_map++; 4781 iop_device_map++; 4782 count--; 4783 } 4784 4785 arcmsr_log(acb, CE_CONT, "ARECA RAID FIRMWARE VERSION %s\n", 4786 acb->firm_version); 4787 4788 /* firm_request_len, 1, 04-07 */ 4789 acb->firm_request_len = CHIP_REG_READ32(acb->reg_mu_acc_handle0, 4790 &phbcmu->msgcode_rwbuffer[1]); 4791 /* firm_numbers_queue, 2, 08-11 */ 4792 acb->firm_numbers_queue = CHIP_REG_READ32(acb->reg_mu_acc_handle0, 4793 &phbcmu->msgcode_rwbuffer[2]); 4794 /* firm_sdram_size, 3, 12-15 */ 4795 acb->firm_sdram_size = CHIP_REG_READ32(acb->reg_mu_acc_handle0, 4796 &phbcmu->msgcode_rwbuffer[3]); 4797 /* firm_ide_channels, 4, 16-19 */ 4798 acb->firm_ide_channels = CHIP_REG_READ32(acb->reg_mu_acc_handle0, 4799 &phbcmu->msgcode_rwbuffer[4]); 4800 /* firm_cfg_version, 25, 100-103 */ 4801 acb->firm_cfg_version = CHIP_REG_READ32(acb->reg_mu_acc_handle0, 4802 &phbcmu->msgcode_rwbuffer[25]); 4803 } 4804 4805 4806 /* start background rebuild */ 4807 static void 4808 arcmsr_start_hba_bgrb(struct ACB *acb) { 4809 4810 struct HBA_msgUnit *phbamu; 4811 4812 phbamu = (struct HBA_msgUnit *)acb->pmu; 4813 4814 acb->acb_flags |= ACB_F_MSG_START_BGRB; 4815 CHIP_REG_WRITE32(acb->reg_mu_acc_handle0, 4816 &phbamu->inbound_msgaddr0, ARCMSR_INBOUND_MESG0_START_BGRB); 4817 4818 if (!arcmsr_hba_wait_msgint_ready(acb)) 4819 arcmsr_warn(acb, 4820 "timeout while waiting for background rebuild to start"); 4821 } 4822 4823 4824 static void 4825 arcmsr_start_hbb_bgrb(struct ACB *acb) { 4826 4827 struct HBB_msgUnit *phbbmu; 4828 4829 phbbmu = (struct HBB_msgUnit *)acb->pmu; 4830 4831 acb->acb_flags |= ACB_F_MSG_START_BGRB; 4832 CHIP_REG_WRITE32(acb->reg_mu_acc_handle0, 4833 &phbbmu->hbb_doorbell->drv2iop_doorbell, 4834 ARCMSR_MESSAGE_START_BGRB); 4835 4836 if (!arcmsr_hbb_wait_msgint_ready(acb)) 4837 arcmsr_warn(acb, 4838 "timeout while waiting for background rebuild to start"); 4839 } 4840 4841 4842 static void 4843 arcmsr_start_hbc_bgrb(struct ACB *acb) { 4844 4845 struct HBC_msgUnit *phbcmu; 4846 4847 phbcmu = (struct HBC_msgUnit *)acb->pmu; 4848 4849 acb->acb_flags |= ACB_F_MSG_START_BGRB; 4850 CHIP_REG_WRITE32(acb->reg_mu_acc_handle0, 4851 &phbcmu->inbound_msgaddr0, ARCMSR_INBOUND_MESG0_START_BGRB); 4852 CHIP_REG_WRITE32(acb->reg_mu_acc_handle0, 4853 &phbcmu->inbound_doorbell, ARCMSR_HBCMU_DRV2IOP_MESSAGE_CMD_DONE); 4854 if (!arcmsr_hbc_wait_msgint_ready(acb)) 4855 arcmsr_warn(acb, 4856 "timeout while waiting for background rebuild to start"); 4857 } 4858 4859 static void 4860 arcmsr_polling_hba_ccbdone(struct ACB *acb, struct CCB *poll_ccb) 4861 { 4862 struct HBA_msgUnit *phbamu; 4863 struct CCB *ccb; 4864 boolean_t error; 4865 uint32_t flag_ccb, outbound_intstatus, intmask_org; 4866 boolean_t poll_ccb_done = B_FALSE; 4867 uint32_t poll_count = 0; 4868 4869 4870 phbamu = (struct HBA_msgUnit *)acb->pmu; 4871 4872 polling_ccb_retry: 4873 /* TODO: Use correct offset and size for syncing? */ 4874 if (ddi_dma_sync(acb->ccbs_pool_handle, 0, 0, 4875 DDI_DMA_SYNC_FORKERNEL) != DDI_SUCCESS) 4876 return; 4877 intmask_org = arcmsr_disable_allintr(acb); 4878 4879 for (;;) { 4880 if ((flag_ccb = CHIP_REG_READ32(acb->reg_mu_acc_handle0, 4881 &phbamu->outbound_queueport)) == 0xFFFFFFFF) { 4882 if (poll_ccb_done) { 4883 /* chip FIFO no ccb for completion already */ 4884 break; 4885 } else { 4886 drv_usecwait(25000); 4887 if ((poll_count > 100) && (poll_ccb != NULL)) { 4888 break; 4889 } 4890 if (acb->ccboutstandingcount == 0) { 4891 break; 4892 } 4893 poll_count++; 4894 outbound_intstatus = 4895 CHIP_REG_READ32(acb->reg_mu_acc_handle0, 4896 &phbamu->outbound_intstatus) & 4897 acb->outbound_int_enable; 4898 4899 CHIP_REG_WRITE32(acb->reg_mu_acc_handle0, 4900 &phbamu->outbound_intstatus, 4901 outbound_intstatus); /* clear interrupt */ 4902 } 4903 } 4904 4905 /* frame must be 32 bytes aligned */ 4906 ccb = NumToPtr((acb->vir2phy_offset + (flag_ccb << 5))); 4907 4908 /* check if command done with no error */ 4909 error = (flag_ccb & ARCMSR_CCBREPLY_FLAG_ERROR_MODE0) ? 4910 B_TRUE : B_FALSE; 4911 if (poll_ccb != NULL) 4912 poll_ccb_done = (ccb == poll_ccb) ? B_TRUE : B_FALSE; 4913 4914 if (ccb->acb != acb) { 4915 arcmsr_warn(acb, "ccb got a wrong acb!"); 4916 continue; 4917 } 4918 if (ccb->ccb_state != ARCMSR_CCB_START) { 4919 if (ccb->ccb_state & ARCMSR_ABNORMAL_MASK) { 4920 ccb->ccb_state |= ARCMSR_CCB_BACK; 4921 ccb->pkt->pkt_reason = CMD_ABORTED; 4922 ccb->pkt->pkt_statistics |= STAT_ABORTED; 4923 arcmsr_ccb_complete(ccb, 1); 4924 continue; 4925 } 4926 arcmsr_report_ccb_state(acb, ccb, error); 4927 arcmsr_warn(acb, 4928 "polling op got unexpected ccb command done"); 4929 continue; 4930 } 4931 arcmsr_report_ccb_state(acb, ccb, error); 4932 } /* drain reply FIFO */ 4933 arcmsr_enable_allintr(acb, intmask_org); 4934 } 4935 4936 4937 static void 4938 arcmsr_polling_hbb_ccbdone(struct ACB *acb, struct CCB *poll_ccb) 4939 { 4940 struct HBB_msgUnit *phbbmu; 4941 struct CCB *ccb; 4942 uint32_t flag_ccb, intmask_org; 4943 boolean_t error; 4944 uint32_t poll_count = 0; 4945 int index; 4946 boolean_t poll_ccb_done = B_FALSE; 4947 4948 4949 phbbmu = (struct HBB_msgUnit *)acb->pmu; 4950 4951 4952 polling_ccb_retry: 4953 /* Use correct offset and size for syncing */ 4954 if (ddi_dma_sync(acb->ccbs_pool_handle, 0, 0, 4955 DDI_DMA_SYNC_FORKERNEL) != DDI_SUCCESS) 4956 return; 4957 4958 intmask_org = arcmsr_disable_allintr(acb); 4959 4960 for (;;) { 4961 index = phbbmu->doneq_index; 4962 if ((flag_ccb = phbbmu->done_qbuffer[index]) == 0) { 4963 if (poll_ccb_done) { 4964 /* chip FIFO no ccb for completion already */ 4965 break; 4966 } else { 4967 drv_usecwait(25000); 4968 if ((poll_count > 100) && (poll_ccb != NULL)) 4969 break; 4970 if (acb->ccboutstandingcount == 0) 4971 break; 4972 poll_count++; 4973 /* clear doorbell interrupt */ 4974 CHIP_REG_WRITE32(acb->reg_mu_acc_handle0, 4975 &phbbmu->hbb_doorbell->iop2drv_doorbell, 4976 ARCMSR_DOORBELL_INT_CLEAR_PATTERN); 4977 } 4978 } 4979 4980 phbbmu->done_qbuffer[index] = 0; 4981 index++; 4982 /* if last index number set it to 0 */ 4983 index %= ARCMSR_MAX_HBB_POSTQUEUE; 4984 phbbmu->doneq_index = index; 4985 /* check if command done with no error */ 4986 /* frame must be 32 bytes aligned */ 4987 ccb = NumToPtr((acb->vir2phy_offset + (flag_ccb << 5))); 4988 4989 /* check if command done with no error */ 4990 error = (flag_ccb & ARCMSR_CCBREPLY_FLAG_ERROR_MODE0) ? 4991 B_TRUE : B_FALSE; 4992 4993 if (poll_ccb != NULL) 4994 poll_ccb_done = (ccb == poll_ccb) ? B_TRUE : B_FALSE; 4995 if (ccb->acb != acb) { 4996 arcmsr_warn(acb, "ccb got a wrong acb!"); 4997 continue; 4998 } 4999 if (ccb->ccb_state != ARCMSR_CCB_START) { 5000 if (ccb->ccb_state & ARCMSR_ABNORMAL_MASK) { 5001 ccb->ccb_state |= ARCMSR_CCB_BACK; 5002 ccb->pkt->pkt_reason = CMD_ABORTED; 5003 ccb->pkt->pkt_statistics |= STAT_ABORTED; 5004 arcmsr_ccb_complete(ccb, 1); 5005 continue; 5006 } 5007 arcmsr_report_ccb_state(acb, ccb, error); 5008 arcmsr_warn(acb, 5009 "polling op got unexpect ccb command done"); 5010 continue; 5011 } 5012 arcmsr_report_ccb_state(acb, ccb, error); 5013 } /* drain reply FIFO */ 5014 arcmsr_enable_allintr(acb, intmask_org); 5015 } 5016 5017 5018 static void 5019 arcmsr_polling_hbc_ccbdone(struct ACB *acb, struct CCB *poll_ccb) 5020 { 5021 5022 struct HBC_msgUnit *phbcmu; 5023 struct CCB *ccb; 5024 boolean_t error; 5025 uint32_t ccb_cdb_phy; 5026 uint32_t flag_ccb, intmask_org; 5027 boolean_t poll_ccb_done = B_FALSE; 5028 uint32_t poll_count = 0; 5029 5030 5031 phbcmu = (struct HBC_msgUnit *)acb->pmu; 5032 5033 polling_ccb_retry: 5034 5035 /* Use correct offset and size for syncing */ 5036 if (ddi_dma_sync(acb->ccbs_pool_handle, 0, 0, 5037 DDI_DMA_SYNC_FORKERNEL) != DDI_SUCCESS) 5038 return; 5039 5040 intmask_org = arcmsr_disable_allintr(acb); 5041 5042 for (;;) { 5043 if (!(CHIP_REG_READ32(acb->reg_mu_acc_handle0, 5044 &phbcmu->host_int_status) & 5045 ARCMSR_HBCMU_OUTBOUND_POSTQUEUE_ISR)) { 5046 5047 if (poll_ccb_done) { 5048 /* chip FIFO no ccb for completion already */ 5049 break; 5050 } else { 5051 drv_usecwait(25000); 5052 if ((poll_count > 100) && (poll_ccb != NULL)) { 5053 break; 5054 } 5055 if (acb->ccboutstandingcount == 0) { 5056 break; 5057 } 5058 poll_count++; 5059 } 5060 } 5061 flag_ccb = CHIP_REG_READ32(acb->reg_mu_acc_handle0, 5062 &phbcmu->outbound_queueport_low); 5063 /* frame must be 32 bytes aligned */ 5064 ccb_cdb_phy = (flag_ccb & 0xFFFFFFF0); 5065 /* the CDB is the first field of the CCB */ 5066 ccb = NumToPtr((acb->vir2phy_offset + ccb_cdb_phy)); 5067 5068 /* check if command done with no error */ 5069 error = (flag_ccb & ARCMSR_CCBREPLY_FLAG_ERROR_MODE1) ? 5070 B_TRUE : B_FALSE; 5071 if (poll_ccb != NULL) 5072 poll_ccb_done = (ccb == poll_ccb) ? B_TRUE : B_FALSE; 5073 5074 if (ccb->acb != acb) { 5075 arcmsr_warn(acb, "ccb got a wrong acb!"); 5076 continue; 5077 } 5078 if (ccb->ccb_state != ARCMSR_CCB_START) { 5079 if (ccb->ccb_state & ARCMSR_ABNORMAL_MASK) { 5080 ccb->ccb_state |= ARCMSR_CCB_BACK; 5081 ccb->pkt->pkt_reason = CMD_ABORTED; 5082 ccb->pkt->pkt_statistics |= STAT_ABORTED; 5083 arcmsr_ccb_complete(ccb, 1); 5084 continue; 5085 } 5086 arcmsr_report_ccb_state(acb, ccb, error); 5087 arcmsr_warn(acb, 5088 "polling op got unexpected ccb command done"); 5089 continue; 5090 } 5091 arcmsr_report_ccb_state(acb, ccb, error); 5092 } /* drain reply FIFO */ 5093 arcmsr_enable_allintr(acb, intmask_org); 5094 } 5095 5096 5097 /* 5098 * Function: arcmsr_hba_hardware_reset() 5099 * Bug Fix for Intel IOP cause firmware hang on. 5100 * and kernel panic 5101 */ 5102 static void 5103 arcmsr_hba_hardware_reset(struct ACB *acb) 5104 { 5105 struct HBA_msgUnit *phbamu; 5106 uint8_t value[64]; 5107 int i; 5108 5109 phbamu = (struct HBA_msgUnit *)acb->pmu; 5110 /* backup pci config data */ 5111 for (i = 0; i < 64; i++) { 5112 value[i] = pci_config_get8(acb->pci_acc_handle, i); 5113 } 5114 /* hardware reset signal */ 5115 if ((PCI_DEVICE_ID_ARECA_1680 == 5116 pci_config_get16(acb->pci_acc_handle, PCI_CONF_DEVID))) { 5117 CHIP_REG_WRITE32(acb->reg_mu_acc_handle0, 5118 &phbamu->reserved1[0], 0x00000003); 5119 } else { 5120 pci_config_put8(acb->pci_acc_handle, 0x84, 0x20); 5121 } 5122 drv_usecwait(1000000); 5123 /* write back pci config data */ 5124 for (i = 0; i < 64; i++) { 5125 pci_config_put8(acb->pci_acc_handle, i, value[i]); 5126 } 5127 drv_usecwait(1000000); 5128 } 5129 5130 /* 5131 * Function: arcmsr_abort_host_command 5132 */ 5133 static uint8_t 5134 arcmsr_abort_host_command(struct ACB *acb) 5135 { 5136 uint8_t rtnval = 0; 5137 5138 switch (acb->adapter_type) { 5139 case ACB_ADAPTER_TYPE_A: 5140 rtnval = arcmsr_abort_hba_allcmd(acb); 5141 break; 5142 case ACB_ADAPTER_TYPE_B: 5143 rtnval = arcmsr_abort_hbb_allcmd(acb); 5144 break; 5145 case ACB_ADAPTER_TYPE_C: 5146 rtnval = arcmsr_abort_hbc_allcmd(acb); 5147 break; 5148 } 5149 return (rtnval); 5150 } 5151 5152 /* 5153 * Function: arcmsr_handle_iop_bus_hold 5154 */ 5155 static void 5156 arcmsr_handle_iop_bus_hold(struct ACB *acb) 5157 { 5158 5159 switch (acb->adapter_type) { 5160 case ACB_ADAPTER_TYPE_A: 5161 { 5162 struct HBA_msgUnit *phbamu; 5163 int retry_count = 0; 5164 5165 acb->timeout_count = 0; 5166 phbamu = (struct HBA_msgUnit *)acb->pmu; 5167 arcmsr_hba_hardware_reset(acb); 5168 acb->acb_flags &= ~ACB_F_IOP_INITED; 5169 sleep_again: 5170 drv_usecwait(1000000); 5171 if ((CHIP_REG_READ32(acb->reg_mu_acc_handle0, 5172 &phbamu->outbound_msgaddr1) & 5173 ARCMSR_OUTBOUND_MESG1_FIRMWARE_OK) == 0) { 5174 if (retry_count > 60) { 5175 arcmsr_warn(acb, 5176 "waiting for hardware" 5177 "bus reset return, RETRY TERMINATED!!"); 5178 return; 5179 } 5180 retry_count++; 5181 goto sleep_again; 5182 } 5183 arcmsr_iop_init(acb); 5184 break; 5185 } 5186 5187 } 5188 } 5189 5190 static void 5191 arcmsr_iop2drv_data_wrote_handle(struct ACB *acb) { 5192 5193 struct QBUFFER *prbuffer; 5194 uint8_t *pQbuffer; 5195 uint8_t *iop_data; 5196 int my_empty_len, iop_len; 5197 int rqbuf_firstidx, rqbuf_lastidx; 5198 5199 /* check this iop data if overflow my rqbuffer */ 5200 rqbuf_lastidx = acb->rqbuf_lastidx; 5201 rqbuf_firstidx = acb->rqbuf_firstidx; 5202 prbuffer = arcmsr_get_iop_rqbuffer(acb); 5203 iop_data = (uint8_t *)prbuffer->data; 5204 iop_len = prbuffer->data_len; 5205 my_empty_len = (rqbuf_firstidx-rqbuf_lastidx - 1) & 5206 (ARCMSR_MAX_QBUFFER - 1); 5207 5208 if (my_empty_len >= iop_len) { 5209 while (iop_len > 0) { 5210 pQbuffer = &acb->rqbuffer[rqbuf_lastidx]; 5211 (void) memcpy(pQbuffer, iop_data, 1); 5212 rqbuf_lastidx++; 5213 /* if last index number set it to 0 */ 5214 rqbuf_lastidx %= ARCMSR_MAX_QBUFFER; 5215 iop_data++; 5216 iop_len--; 5217 } 5218 acb->rqbuf_lastidx = rqbuf_lastidx; 5219 arcmsr_iop_message_read(acb); 5220 /* signature, let IOP know data has been read */ 5221 } else { 5222 acb->acb_flags |= ACB_F_IOPDATA_OVERFLOW; 5223 } 5224 } 5225 5226 5227 5228 static void 5229 arcmsr_iop2drv_data_read_handle(struct ACB *acb) { 5230 5231 acb->acb_flags |= ACB_F_MESSAGE_WQBUFFER_READ; 5232 /* 5233 * check if there are any mail packages from user space program 5234 * in my post bag, now is the time to send them into Areca's firmware 5235 */ 5236 5237 if (acb->wqbuf_firstidx != acb->wqbuf_lastidx) { 5238 5239 uint8_t *pQbuffer; 5240 struct QBUFFER *pwbuffer; 5241 uint8_t *iop_data; 5242 int allxfer_len = 0; 5243 5244 acb->acb_flags &= (~ACB_F_MESSAGE_WQBUFFER_READ); 5245 pwbuffer = arcmsr_get_iop_wqbuffer(acb); 5246 iop_data = (uint8_t *)pwbuffer->data; 5247 5248 while ((acb->wqbuf_firstidx != acb->wqbuf_lastidx) && 5249 (allxfer_len < 124)) { 5250 pQbuffer = &acb->wqbuffer[acb->wqbuf_firstidx]; 5251 (void) memcpy(iop_data, pQbuffer, 1); 5252 acb->wqbuf_firstidx++; 5253 /* if last index number set it to 0 */ 5254 acb->wqbuf_firstidx %= ARCMSR_MAX_QBUFFER; 5255 iop_data++; 5256 allxfer_len++; 5257 } 5258 pwbuffer->data_len = allxfer_len; 5259 /* 5260 * push inbound doorbell, tell iop driver data write ok 5261 * await reply on next hwinterrupt for next Qbuffer post 5262 */ 5263 arcmsr_iop_message_wrote(acb); 5264 } 5265 5266 if (acb->wqbuf_firstidx == acb->wqbuf_lastidx) 5267 acb->acb_flags |= ACB_F_MESSAGE_WQBUFFER_CLEARED; 5268 } 5269 5270 5271 static void 5272 arcmsr_hba_doorbell_isr(struct ACB *acb) 5273 { 5274 uint32_t outbound_doorbell; 5275 struct HBA_msgUnit *phbamu; 5276 5277 phbamu = (struct HBA_msgUnit *)acb->pmu; 5278 5279 /* 5280 * Maybe here we need to check wrqbuffer_lock is locked or not 5281 * DOORBELL: ding! dong! 5282 * check if there are any mail need to pack from firmware 5283 */ 5284 5285 outbound_doorbell = CHIP_REG_READ32(acb->reg_mu_acc_handle0, 5286 &phbamu->outbound_doorbell); 5287 /* clear doorbell interrupt */ 5288 CHIP_REG_WRITE32(acb->reg_mu_acc_handle0, 5289 &phbamu->outbound_doorbell, outbound_doorbell); 5290 5291 if (outbound_doorbell & ARCMSR_OUTBOUND_IOP331_DATA_WRITE_OK) 5292 arcmsr_iop2drv_data_wrote_handle(acb); 5293 5294 5295 if (outbound_doorbell & ARCMSR_OUTBOUND_IOP331_DATA_READ_OK) 5296 arcmsr_iop2drv_data_read_handle(acb); 5297 } 5298 5299 5300 5301 static void 5302 arcmsr_hbc_doorbell_isr(struct ACB *acb) 5303 { 5304 uint32_t outbound_doorbell; 5305 struct HBC_msgUnit *phbcmu; 5306 5307 phbcmu = (struct HBC_msgUnit *)acb->pmu; 5308 5309 /* 5310 * Maybe here we need to check wrqbuffer_lock is locked or not 5311 * DOORBELL: ding! dong! 5312 * check if there are any mail need to pick from firmware 5313 */ 5314 5315 outbound_doorbell = CHIP_REG_READ32(acb->reg_mu_acc_handle0, 5316 &phbcmu->outbound_doorbell); 5317 CHIP_REG_WRITE32(acb->reg_mu_acc_handle0, 5318 &phbcmu->outbound_doorbell_clear, 5319 outbound_doorbell); /* clear interrupt */ 5320 if (outbound_doorbell & ARCMSR_HBCMU_IOP2DRV_DATA_WRITE_OK) { 5321 arcmsr_iop2drv_data_wrote_handle(acb); 5322 } 5323 if (outbound_doorbell & ARCMSR_HBCMU_IOP2DRV_DATA_READ_OK) { 5324 arcmsr_iop2drv_data_read_handle(acb); 5325 } 5326 if (outbound_doorbell & ARCMSR_HBCMU_IOP2DRV_MESSAGE_CMD_DONE) { 5327 /* messenger of "driver to iop commands" */ 5328 arcmsr_hbc_message_isr(acb); 5329 } 5330 } 5331 5332 5333 static void 5334 arcmsr_hba_message_isr(struct ACB *acb) 5335 { 5336 struct HBA_msgUnit *phbamu = (struct HBA_msgUnit *)acb->pmu; 5337 uint32_t *signature = (&phbamu->msgcode_rwbuffer[0]); 5338 uint32_t outbound_message; 5339 5340 CHIP_REG_WRITE32(acb->reg_mu_acc_handle0, 5341 &phbamu->outbound_intstatus, ARCMSR_MU_OUTBOUND_MESSAGE0_INT); 5342 5343 outbound_message = CHIP_REG_READ32(acb->reg_mu_acc_handle0, signature); 5344 if (outbound_message == ARCMSR_SIGNATURE_GET_CONFIG) 5345 if ((ddi_taskq_dispatch(acb->taskq, 5346 (void (*)(void *))arcmsr_dr_handle, 5347 acb, DDI_NOSLEEP)) != DDI_SUCCESS) { 5348 arcmsr_warn(acb, "DR task start failed"); 5349 } 5350 } 5351 5352 static void 5353 arcmsr_hbb_message_isr(struct ACB *acb) 5354 { 5355 struct HBB_msgUnit *phbbmu = (struct HBB_msgUnit *)acb->pmu; 5356 uint32_t *signature = (&phbbmu->hbb_rwbuffer->msgcode_rwbuffer[0]); 5357 uint32_t outbound_message; 5358 5359 /* clear interrupts */ 5360 CHIP_REG_WRITE32(acb->reg_mu_acc_handle0, 5361 &phbbmu->hbb_doorbell->iop2drv_doorbell, 5362 ARCMSR_MESSAGE_INT_CLEAR_PATTERN); 5363 CHIP_REG_WRITE32(acb->reg_mu_acc_handle0, 5364 &phbbmu->hbb_doorbell->drv2iop_doorbell, 5365 ARCMSR_DRV2IOP_END_OF_INTERRUPT); 5366 5367 outbound_message = CHIP_REG_READ32(acb->reg_mu_acc_handle0, signature); 5368 if (outbound_message == ARCMSR_SIGNATURE_GET_CONFIG) 5369 if ((ddi_taskq_dispatch(acb->taskq, 5370 (void (*)(void *))arcmsr_dr_handle, 5371 acb, DDI_NOSLEEP)) != DDI_SUCCESS) { 5372 arcmsr_warn(acb, "DR task start failed"); 5373 } 5374 } 5375 5376 static void 5377 arcmsr_hbc_message_isr(struct ACB *acb) 5378 { 5379 struct HBC_msgUnit *phbcmu = (struct HBC_msgUnit *)acb->pmu; 5380 uint32_t *signature = (&phbcmu->msgcode_rwbuffer[0]); 5381 uint32_t outbound_message; 5382 5383 CHIP_REG_WRITE32(acb->reg_mu_acc_handle0, 5384 &phbcmu->outbound_doorbell_clear, 5385 ARCMSR_HBCMU_IOP2DRV_MESSAGE_CMD_DONE_DOORBELL_CLEAR); 5386 5387 outbound_message = CHIP_REG_READ32(acb->reg_mu_acc_handle0, signature); 5388 if (outbound_message == ARCMSR_SIGNATURE_GET_CONFIG) 5389 if ((ddi_taskq_dispatch(acb->taskq, 5390 (void (*)(void *))arcmsr_dr_handle, 5391 acb, DDI_NOSLEEP)) != DDI_SUCCESS) { 5392 arcmsr_warn(acb, "DR task start failed"); 5393 } 5394 } 5395 5396 5397 static void 5398 arcmsr_hba_postqueue_isr(struct ACB *acb) 5399 { 5400 5401 struct HBA_msgUnit *phbamu; 5402 struct CCB *ccb; 5403 uint32_t flag_ccb; 5404 boolean_t error; 5405 5406 phbamu = (struct HBA_msgUnit *)acb->pmu; 5407 5408 /* areca cdb command done */ 5409 /* Use correct offset and size for syncing */ 5410 (void) ddi_dma_sync(acb->ccbs_pool_handle, 0, 0, 5411 DDI_DMA_SYNC_FORKERNEL); 5412 5413 while ((flag_ccb = CHIP_REG_READ32(acb->reg_mu_acc_handle0, 5414 &phbamu->outbound_queueport)) != 0xFFFFFFFF) { 5415 /* frame must be 32 bytes aligned */ 5416 ccb = NumToPtr((acb->vir2phy_offset+(flag_ccb << 5))); 5417 /* check if command done with no error */ 5418 error = (flag_ccb & ARCMSR_CCBREPLY_FLAG_ERROR_MODE0) ? 5419 B_TRUE : B_FALSE; 5420 arcmsr_drain_donequeue(acb, ccb, error); 5421 } /* drain reply FIFO */ 5422 } 5423 5424 5425 static void 5426 arcmsr_hbb_postqueue_isr(struct ACB *acb) 5427 { 5428 struct HBB_msgUnit *phbbmu; 5429 struct CCB *ccb; 5430 uint32_t flag_ccb; 5431 boolean_t error; 5432 int index; 5433 5434 phbbmu = (struct HBB_msgUnit *)acb->pmu; 5435 5436 /* areca cdb command done */ 5437 index = phbbmu->doneq_index; 5438 if (ddi_dma_sync(acb->ccbs_pool_handle, 0, 0, 5439 DDI_DMA_SYNC_FORKERNEL) != DDI_SUCCESS) 5440 return; 5441 while ((flag_ccb = phbbmu->done_qbuffer[index]) != 0) { 5442 phbbmu->done_qbuffer[index] = 0; 5443 /* frame must be 32 bytes aligned */ 5444 5445 /* the CDB is the first field of the CCB */ 5446 ccb = NumToPtr((acb->vir2phy_offset + (flag_ccb << 5))); 5447 5448 /* check if command done with no error */ 5449 error = (flag_ccb & ARCMSR_CCBREPLY_FLAG_ERROR_MODE0) ? 5450 B_TRUE : B_FALSE; 5451 arcmsr_drain_donequeue(acb, ccb, error); 5452 index++; 5453 /* if last index number set it to 0 */ 5454 index %= ARCMSR_MAX_HBB_POSTQUEUE; 5455 phbbmu->doneq_index = index; 5456 } /* drain reply FIFO */ 5457 } 5458 5459 5460 static void 5461 arcmsr_hbc_postqueue_isr(struct ACB *acb) 5462 { 5463 5464 struct HBC_msgUnit *phbcmu; 5465 struct CCB *ccb; 5466 uint32_t flag_ccb, ccb_cdb_phy, throttling = 0; 5467 boolean_t error; 5468 5469 phbcmu = (struct HBC_msgUnit *)acb->pmu; 5470 /* areca cdb command done */ 5471 /* Use correct offset and size for syncing */ 5472 (void) ddi_dma_sync(acb->ccbs_pool_handle, 0, 0, 5473 DDI_DMA_SYNC_FORKERNEL); 5474 5475 while (CHIP_REG_READ32(acb->reg_mu_acc_handle0, 5476 &phbcmu->host_int_status) & 5477 ARCMSR_HBCMU_OUTBOUND_POSTQUEUE_ISR) { 5478 /* check if command done with no error */ 5479 flag_ccb = CHIP_REG_READ32(acb->reg_mu_acc_handle0, 5480 &phbcmu->outbound_queueport_low); 5481 /* frame must be 32 bytes aligned */ 5482 ccb_cdb_phy = (flag_ccb & 0xFFFFFFF0); 5483 5484 /* the CDB is the first field of the CCB */ 5485 ccb = NumToPtr((acb->vir2phy_offset + ccb_cdb_phy)); 5486 5487 error = (flag_ccb & ARCMSR_CCBREPLY_FLAG_ERROR_MODE1) ? 5488 B_TRUE : B_FALSE; 5489 /* check if command done with no error */ 5490 arcmsr_drain_donequeue(acb, ccb, error); 5491 if (throttling == ARCMSR_HBC_ISR_THROTTLING_LEVEL) { 5492 CHIP_REG_WRITE32(acb->reg_mu_acc_handle0, 5493 &phbcmu->inbound_doorbell, 5494 ARCMSR_HBCMU_DRV2IOP_POSTQUEUE_THROTTLING); 5495 break; 5496 } 5497 throttling++; 5498 } /* drain reply FIFO */ 5499 } 5500 5501 5502 static uint_t 5503 arcmsr_handle_hba_isr(struct ACB *acb) { 5504 5505 uint32_t outbound_intstatus; 5506 struct HBA_msgUnit *phbamu; 5507 5508 phbamu = (struct HBA_msgUnit *)acb->pmu; 5509 5510 outbound_intstatus = CHIP_REG_READ32(acb->reg_mu_acc_handle0, 5511 &phbamu->outbound_intstatus) & acb->outbound_int_enable; 5512 5513 if (outbound_intstatus == 0) /* it must be a shared irq */ 5514 return (DDI_INTR_UNCLAIMED); 5515 5516 CHIP_REG_WRITE32(acb->reg_mu_acc_handle0, &phbamu->outbound_intstatus, 5517 outbound_intstatus); /* clear interrupt */ 5518 5519 /* MU doorbell interrupts */ 5520 5521 if (outbound_intstatus & ARCMSR_MU_OUTBOUND_DOORBELL_INT) 5522 arcmsr_hba_doorbell_isr(acb); 5523 5524 /* MU post queue interrupts */ 5525 if (outbound_intstatus & ARCMSR_MU_OUTBOUND_POSTQUEUE_INT) 5526 arcmsr_hba_postqueue_isr(acb); 5527 5528 if (outbound_intstatus & ARCMSR_MU_OUTBOUND_MESSAGE0_INT) { 5529 arcmsr_hba_message_isr(acb); 5530 } 5531 5532 return (DDI_INTR_CLAIMED); 5533 } 5534 5535 5536 static uint_t 5537 arcmsr_handle_hbb_isr(struct ACB *acb) { 5538 5539 uint32_t outbound_doorbell; 5540 struct HBB_msgUnit *phbbmu; 5541 5542 5543 phbbmu = (struct HBB_msgUnit *)acb->pmu; 5544 5545 outbound_doorbell = CHIP_REG_READ32(acb->reg_mu_acc_handle0, 5546 &phbbmu->hbb_doorbell->iop2drv_doorbell) & acb->outbound_int_enable; 5547 5548 if (outbound_doorbell == 0) /* it must be a shared irq */ 5549 return (DDI_INTR_UNCLAIMED); 5550 5551 /* clear doorbell interrupt */ 5552 CHIP_REG_WRITE32(acb->reg_mu_acc_handle0, 5553 &phbbmu->hbb_doorbell->iop2drv_doorbell, ~outbound_doorbell); 5554 /* wait a cycle */ 5555 (void) CHIP_REG_READ32(acb->reg_mu_acc_handle0, 5556 &phbbmu->hbb_doorbell->iop2drv_doorbell); 5557 CHIP_REG_WRITE32(acb->reg_mu_acc_handle0, 5558 &phbbmu->hbb_doorbell->drv2iop_doorbell, 5559 ARCMSR_DRV2IOP_END_OF_INTERRUPT); 5560 5561 /* MU ioctl transfer doorbell interrupts */ 5562 if (outbound_doorbell & ARCMSR_IOP2DRV_DATA_WRITE_OK) 5563 arcmsr_iop2drv_data_wrote_handle(acb); 5564 5565 if (outbound_doorbell & ARCMSR_IOP2DRV_DATA_READ_OK) 5566 arcmsr_iop2drv_data_read_handle(acb); 5567 5568 /* MU post queue interrupts */ 5569 if (outbound_doorbell & ARCMSR_IOP2DRV_CDB_DONE) 5570 arcmsr_hbb_postqueue_isr(acb); 5571 5572 /* MU message interrupt */ 5573 5574 if (outbound_doorbell & ARCMSR_IOP2DRV_MESSAGE_CMD_DONE) { 5575 arcmsr_hbb_message_isr(acb); 5576 } 5577 5578 return (DDI_INTR_CLAIMED); 5579 } 5580 5581 static uint_t 5582 arcmsr_handle_hbc_isr(struct ACB *acb) 5583 { 5584 uint32_t host_interrupt_status; 5585 struct HBC_msgUnit *phbcmu; 5586 5587 phbcmu = (struct HBC_msgUnit *)acb->pmu; 5588 /* check outbound intstatus */ 5589 host_interrupt_status= 5590 CHIP_REG_READ32(acb->reg_mu_acc_handle0, &phbcmu->host_int_status); 5591 if (host_interrupt_status == 0) /* it must be share irq */ 5592 return (DDI_INTR_UNCLAIMED); 5593 /* MU ioctl transfer doorbell interrupts */ 5594 if (host_interrupt_status & ARCMSR_HBCMU_OUTBOUND_DOORBELL_ISR) { 5595 /* messenger of "ioctl message read write" */ 5596 arcmsr_hbc_doorbell_isr(acb); 5597 } 5598 /* MU post queue interrupts */ 5599 if (host_interrupt_status & ARCMSR_HBCMU_OUTBOUND_POSTQUEUE_ISR) { 5600 /* messenger of "scsi commands" */ 5601 arcmsr_hbc_postqueue_isr(acb); 5602 } 5603 return (DDI_INTR_CLAIMED); 5604 } 5605 5606 static uint_t 5607 arcmsr_intr_handler(caddr_t arg, caddr_t arg2) 5608 { 5609 struct ACB *acb = (void *)arg; 5610 struct CCB *ccb; 5611 uint_t retrn = DDI_INTR_UNCLAIMED; 5612 _NOTE(ARGUNUSED(arg2)) 5613 5614 mutex_enter(&acb->isr_mutex); 5615 switch (acb->adapter_type) { 5616 case ACB_ADAPTER_TYPE_A: 5617 retrn = arcmsr_handle_hba_isr(acb); 5618 break; 5619 5620 case ACB_ADAPTER_TYPE_B: 5621 retrn = arcmsr_handle_hbb_isr(acb); 5622 break; 5623 5624 case ACB_ADAPTER_TYPE_C: 5625 retrn = arcmsr_handle_hbc_isr(acb); 5626 break; 5627 5628 default: 5629 /* We should never be here */ 5630 ASSERT(0); 5631 break; 5632 } 5633 mutex_exit(&acb->isr_mutex); 5634 while ((ccb = arcmsr_get_complete_ccb_from_list(acb)) != NULL) { 5635 arcmsr_ccb_complete(ccb, 1); 5636 } 5637 return (retrn); 5638 } 5639 5640 5641 static void 5642 arcmsr_wait_firmware_ready(struct ACB *acb) { 5643 5644 uint32_t firmware_state; 5645 5646 firmware_state = 0; 5647 5648 switch (acb->adapter_type) { 5649 case ACB_ADAPTER_TYPE_A: 5650 { 5651 struct HBA_msgUnit *phbamu; 5652 phbamu = (struct HBA_msgUnit *)acb->pmu; 5653 do { 5654 firmware_state = 5655 CHIP_REG_READ32(acb->reg_mu_acc_handle0, 5656 &phbamu->outbound_msgaddr1); 5657 } while ((firmware_state & ARCMSR_OUTBOUND_MESG1_FIRMWARE_OK) 5658 == 0); 5659 break; 5660 } 5661 5662 case ACB_ADAPTER_TYPE_B: 5663 { 5664 struct HBB_msgUnit *phbbmu; 5665 phbbmu = (struct HBB_msgUnit *)acb->pmu; 5666 do { 5667 firmware_state = 5668 CHIP_REG_READ32(acb->reg_mu_acc_handle0, 5669 &phbbmu->hbb_doorbell->iop2drv_doorbell); 5670 } while ((firmware_state & ARCMSR_MESSAGE_FIRMWARE_OK) == 0); 5671 CHIP_REG_WRITE32(acb->reg_mu_acc_handle0, 5672 &phbbmu->hbb_doorbell->drv2iop_doorbell, 5673 ARCMSR_DRV2IOP_END_OF_INTERRUPT); 5674 break; 5675 } 5676 5677 case ACB_ADAPTER_TYPE_C: 5678 { 5679 struct HBC_msgUnit *phbcmu; 5680 phbcmu = (struct HBC_msgUnit *)acb->pmu; 5681 do { 5682 firmware_state = 5683 CHIP_REG_READ32(acb->reg_mu_acc_handle0, 5684 &phbcmu->outbound_msgaddr1); 5685 } while ((firmware_state & ARCMSR_HBCMU_MESSAGE_FIRMWARE_OK) 5686 == 0); 5687 break; 5688 } 5689 5690 } 5691 } 5692 5693 static void 5694 arcmsr_clear_doorbell_queue_buffer(struct ACB *acb) 5695 { 5696 switch (acb->adapter_type) { 5697 case ACB_ADAPTER_TYPE_A: { 5698 struct HBA_msgUnit *phbamu; 5699 uint32_t outbound_doorbell; 5700 5701 phbamu = (struct HBA_msgUnit *)acb->pmu; 5702 /* empty doorbell Qbuffer if door bell rung */ 5703 outbound_doorbell = CHIP_REG_READ32(acb->reg_mu_acc_handle0, 5704 &phbamu->outbound_doorbell); 5705 /* clear doorbell interrupt */ 5706 CHIP_REG_WRITE32(acb->reg_mu_acc_handle0, 5707 &phbamu->outbound_doorbell, outbound_doorbell); 5708 CHIP_REG_WRITE32(acb->reg_mu_acc_handle0, 5709 &phbamu->inbound_doorbell, 5710 ARCMSR_INBOUND_DRIVER_DATA_READ_OK); 5711 break; 5712 } 5713 5714 case ACB_ADAPTER_TYPE_B: { 5715 struct HBB_msgUnit *phbbmu; 5716 5717 phbbmu = (struct HBB_msgUnit *)acb->pmu; 5718 /* clear interrupt and message state */ 5719 CHIP_REG_WRITE32(acb->reg_mu_acc_handle0, 5720 &phbbmu->hbb_doorbell->iop2drv_doorbell, 5721 ARCMSR_MESSAGE_INT_CLEAR_PATTERN); 5722 CHIP_REG_WRITE32(acb->reg_mu_acc_handle0, 5723 &phbbmu->hbb_doorbell->drv2iop_doorbell, 5724 ARCMSR_DRV2IOP_DATA_READ_OK); 5725 /* let IOP know data has been read */ 5726 break; 5727 } 5728 5729 case ACB_ADAPTER_TYPE_C: { 5730 struct HBC_msgUnit *phbcmu; 5731 uint32_t outbound_doorbell; 5732 5733 phbcmu = (struct HBC_msgUnit *)acb->pmu; 5734 /* empty doorbell Qbuffer if door bell ringed */ 5735 outbound_doorbell = CHIP_REG_READ32(acb->reg_mu_acc_handle0, 5736 &phbcmu->outbound_doorbell); 5737 /* clear outbound doobell isr */ 5738 CHIP_REG_WRITE32(acb->reg_mu_acc_handle0, 5739 &phbcmu->outbound_doorbell_clear, outbound_doorbell); 5740 /* let IOP know data has been read */ 5741 CHIP_REG_WRITE32(acb->reg_mu_acc_handle0, 5742 &phbcmu->inbound_doorbell, 5743 ARCMSR_HBCMU_DRV2IOP_DATA_READ_OK); 5744 break; 5745 } 5746 5747 } 5748 } 5749 5750 5751 static uint32_t 5752 arcmsr_iop_confirm(struct ACB *acb) { 5753 5754 uint64_t cdb_phyaddr; 5755 uint32_t cdb_phyaddr_hi32; 5756 5757 /* 5758 * here we need to tell iop 331 about our freeccb.HighPart 5759 * if freeccb.HighPart is non-zero 5760 */ 5761 cdb_phyaddr = acb->ccb_cookie.dmac_laddress; 5762 cdb_phyaddr_hi32 = (uint32_t)((cdb_phyaddr >> 16) >> 16); 5763 acb->cdb_phyaddr_hi32 = cdb_phyaddr_hi32; 5764 switch (acb->adapter_type) { 5765 case ACB_ADAPTER_TYPE_A: 5766 if (cdb_phyaddr_hi32 != 0) { 5767 struct HBA_msgUnit *phbamu; 5768 5769 phbamu = (struct HBA_msgUnit *)acb->pmu; 5770 CHIP_REG_WRITE32(acb->reg_mu_acc_handle0, 5771 &phbamu->msgcode_rwbuffer[0], 5772 ARCMSR_SIGNATURE_SET_CONFIG); 5773 CHIP_REG_WRITE32(acb->reg_mu_acc_handle0, 5774 &phbamu->msgcode_rwbuffer[1], cdb_phyaddr_hi32); 5775 CHIP_REG_WRITE32(acb->reg_mu_acc_handle0, 5776 &phbamu->inbound_msgaddr0, 5777 ARCMSR_INBOUND_MESG0_SET_CONFIG); 5778 if (!arcmsr_hba_wait_msgint_ready(acb)) { 5779 arcmsr_warn(acb, 5780 "timeout setting ccb " 5781 "high physical address"); 5782 return (FALSE); 5783 } 5784 } 5785 break; 5786 5787 /* if adapter is type B, set window of "post command queue" */ 5788 case ACB_ADAPTER_TYPE_B: { 5789 uint32_t post_queue_phyaddr; 5790 struct HBB_msgUnit *phbbmu; 5791 5792 phbbmu = (struct HBB_msgUnit *)acb->pmu; 5793 phbbmu->postq_index = 0; 5794 phbbmu->doneq_index = 0; 5795 CHIP_REG_WRITE32(acb->reg_mu_acc_handle0, 5796 &phbbmu->hbb_doorbell->drv2iop_doorbell, 5797 ARCMSR_MESSAGE_SET_POST_WINDOW); 5798 5799 if (!arcmsr_hbb_wait_msgint_ready(acb)) { 5800 arcmsr_warn(acb, "timeout setting post command " 5801 "queue window"); 5802 return (FALSE); 5803 } 5804 5805 post_queue_phyaddr = (uint32_t)cdb_phyaddr + 5806 ARCMSR_MAX_FREECCB_NUM * P2ROUNDUP(sizeof (struct CCB), 32) 5807 + offsetof(struct HBB_msgUnit, post_qbuffer); 5808 /* driver "set config" signature */ 5809 CHIP_REG_WRITE32(acb->reg_mu_acc_handle1, 5810 &phbbmu->hbb_rwbuffer->msgcode_rwbuffer[0], 5811 ARCMSR_SIGNATURE_SET_CONFIG); 5812 /* normal should be zero */ 5813 CHIP_REG_WRITE32(acb->reg_mu_acc_handle1, 5814 &phbbmu->hbb_rwbuffer->msgcode_rwbuffer[1], 5815 cdb_phyaddr_hi32); 5816 /* postQ size (256+8)*4 */ 5817 CHIP_REG_WRITE32(acb->reg_mu_acc_handle1, 5818 &phbbmu->hbb_rwbuffer->msgcode_rwbuffer[2], 5819 post_queue_phyaddr); 5820 /* doneQ size (256+8)*4 */ 5821 CHIP_REG_WRITE32(acb->reg_mu_acc_handle1, 5822 &phbbmu->hbb_rwbuffer->msgcode_rwbuffer[3], 5823 post_queue_phyaddr+1056); 5824 /* ccb maxQ size must be --> [(256+8)*4] */ 5825 CHIP_REG_WRITE32(acb->reg_mu_acc_handle1, 5826 &phbbmu->hbb_rwbuffer->msgcode_rwbuffer[4], 1056); 5827 CHIP_REG_WRITE32(acb->reg_mu_acc_handle0, 5828 &phbbmu->hbb_doorbell->drv2iop_doorbell, 5829 ARCMSR_MESSAGE_SET_CONFIG); 5830 5831 if (!arcmsr_hbb_wait_msgint_ready(acb)) { 5832 arcmsr_warn(acb, 5833 "timeout setting command queue window"); 5834 return (FALSE); 5835 } 5836 CHIP_REG_WRITE32(acb->reg_mu_acc_handle0, 5837 &phbbmu->hbb_doorbell->drv2iop_doorbell, 5838 ARCMSR_MESSAGE_START_DRIVER_MODE); 5839 5840 if (!arcmsr_hbb_wait_msgint_ready(acb)) { 5841 arcmsr_warn(acb, "timeout in 'start driver mode'"); 5842 return (FALSE); 5843 } 5844 break; 5845 } 5846 5847 case ACB_ADAPTER_TYPE_C: 5848 if (cdb_phyaddr_hi32 != 0) { 5849 struct HBC_msgUnit *phbcmu; 5850 5851 phbcmu = (struct HBC_msgUnit *)acb->pmu; 5852 CHIP_REG_WRITE32(acb->reg_mu_acc_handle0, 5853 &phbcmu->msgcode_rwbuffer[0], 5854 ARCMSR_SIGNATURE_SET_CONFIG); 5855 CHIP_REG_WRITE32(acb->reg_mu_acc_handle0, 5856 &phbcmu->msgcode_rwbuffer[1], cdb_phyaddr_hi32); 5857 CHIP_REG_WRITE32(acb->reg_mu_acc_handle0, 5858 &phbcmu->inbound_msgaddr0, 5859 ARCMSR_INBOUND_MESG0_SET_CONFIG); 5860 CHIP_REG_WRITE32(acb->reg_mu_acc_handle0, 5861 &phbcmu->inbound_doorbell, 5862 ARCMSR_HBCMU_DRV2IOP_MESSAGE_CMD_DONE); 5863 if (!arcmsr_hbc_wait_msgint_ready(acb)) { 5864 arcmsr_warn(acb, "'set ccb " 5865 "high part physical address' timeout"); 5866 return (FALSE); 5867 } 5868 } 5869 break; 5870 } 5871 return (TRUE); 5872 } 5873 5874 5875 /* 5876 * ONLY used for Adapter type B 5877 */ 5878 static void 5879 arcmsr_enable_eoi_mode(struct ACB *acb) 5880 { 5881 struct HBB_msgUnit *phbbmu; 5882 5883 phbbmu = (struct HBB_msgUnit *)acb->pmu; 5884 5885 CHIP_REG_WRITE32(acb->reg_mu_acc_handle0, 5886 &phbbmu->hbb_doorbell->drv2iop_doorbell, 5887 ARCMSR_MESSAGE_ACTIVE_EOI_MODE); 5888 5889 if (!arcmsr_hbb_wait_msgint_ready(acb)) 5890 arcmsr_warn(acb, "'iop enable eoi mode' timeout"); 5891 } 5892 5893 /* start background rebuild */ 5894 static void 5895 arcmsr_iop_init(struct ACB *acb) 5896 { 5897 uint32_t intmask_org; 5898 5899 /* disable all outbound interrupt */ 5900 intmask_org = arcmsr_disable_allintr(acb); 5901 arcmsr_wait_firmware_ready(acb); 5902 (void) arcmsr_iop_confirm(acb); 5903 5904 /* start background rebuild */ 5905 switch (acb->adapter_type) { 5906 case ACB_ADAPTER_TYPE_A: 5907 arcmsr_get_hba_config(acb); 5908 arcmsr_start_hba_bgrb(acb); 5909 break; 5910 case ACB_ADAPTER_TYPE_B: 5911 arcmsr_get_hbb_config(acb); 5912 arcmsr_start_hbb_bgrb(acb); 5913 break; 5914 case ACB_ADAPTER_TYPE_C: 5915 arcmsr_get_hbc_config(acb); 5916 arcmsr_start_hbc_bgrb(acb); 5917 break; 5918 } 5919 /* empty doorbell Qbuffer if door bell rang */ 5920 arcmsr_clear_doorbell_queue_buffer(acb); 5921 5922 if (acb->adapter_type == ACB_ADAPTER_TYPE_B) 5923 arcmsr_enable_eoi_mode(acb); 5924 5925 /* enable outbound Post Queue, outbound doorbell Interrupt */ 5926 arcmsr_enable_allintr(acb, intmask_org); 5927 acb->acb_flags |= ACB_F_IOP_INITED; 5928 } 5929