xref: /illumos-gate/usr/src/uts/intel/io/mc-amd/mcamd_drv.c (revision 257873cfc1dd3337766407f80397db60a56f2f5a)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #include <sys/conf.h>
28 #include <sys/ddi.h>
29 #include <sys/ddifm.h>
30 #include <sys/sunddi.h>
31 #include <sys/sunndi.h>
32 #include <sys/stat.h>
33 #include <sys/modctl.h>
34 #include <sys/types.h>
35 #include <sys/cpuvar.h>
36 #include <sys/cmn_err.h>
37 #include <sys/kmem.h>
38 #include <sys/cred.h>
39 #include <sys/ksynch.h>
40 #include <sys/rwlock.h>
41 #include <sys/pghw.h>
42 #include <sys/open.h>
43 #include <sys/policy.h>
44 #include <sys/x86_archext.h>
45 #include <sys/cpu_module.h>
46 #include <qsort.h>
47 #include <sys/pci_cfgspace.h>
48 #include <sys/mc.h>
49 #include <sys/mc_amd.h>
50 #include <mcamd.h>
51 #include <mcamd_dimmcfg.h>
52 #include <mcamd_pcicfg.h>
53 #include <mcamd_api.h>
54 #include <sys/fm/cpu/AMD.h>
55 
56 /*
57  * Set to prevent mc-amd from attaching.
58  */
59 int mc_no_attach = 0;
60 
61 /*
62  * Of the 754/939/940 packages, only socket 940 supports quadrank registered
63  * dimms.  Unfortunately, no memory-controller register indicates the
64  * presence of quadrank dimm support or presence (i.e., in terms of number
65  * of slots per cpu, and chip-select lines per slot,  The following may be set
66  * in /etc/system to indicate the presence of quadrank support on a motherboard.
67  *
68  * There is no need to set this for F(1207) and S1g1.
69  */
70 int mc_quadranksupport = 0;
71 
72 mc_t *mc_list, *mc_last;
73 krwlock_t mc_lock;
74 int mc_hold_attached = 1;
75 
76 #define	MAX(m, n) ((m) >= (n) ? (m) : (n))
77 #define	MIN(m, n) ((m) <= (n) ? (m) : (n))
78 
79 /*
80  * The following tuneable is used to determine the DRAM scrubbing rate.
81  * The values range from 0x00-0x16 as described in the BKDG.  Zero
82  * disables DRAM scrubbing.  Values above zero indicate rates in descending
83  * order.
84  *
85  * The default value below is used on several Sun systems.  In the future
86  * this code should assign values dynamically based on memory sizing.
87  */
88 uint32_t mc_scrub_rate_dram = 0xd;	/* 64B every 163.8 us; 1GB per 45 min */
89 
90 enum {
91 	MC_SCRUB_BIOSDEFAULT,	/* retain system default value */
92 	MC_SCRUB_FIXED,		/* assign mc_scrub_rate_* values */
93 	MC_SCRUB_MAX		/* assign max of system and tunables */
94 } mc_scrub_policy = MC_SCRUB_MAX;
95 
96 static void
97 mc_snapshot_destroy(mc_t *mc)
98 {
99 	ASSERT(RW_LOCK_HELD(&mc_lock));
100 
101 	if (mc->mc_snapshot == NULL)
102 		return;
103 
104 	kmem_free(mc->mc_snapshot, mc->mc_snapshotsz);
105 	mc->mc_snapshot = NULL;
106 	mc->mc_snapshotsz = 0;
107 	mc->mc_snapshotgen++;
108 }
109 
110 static int
111 mc_snapshot_update(mc_t *mc)
112 {
113 	ASSERT(RW_LOCK_HELD(&mc_lock));
114 
115 	if (mc->mc_snapshot != NULL)
116 		return (0);
117 
118 	if (nvlist_pack(mc->mc_nvl, &mc->mc_snapshot, &mc->mc_snapshotsz,
119 	    NV_ENCODE_XDR, KM_SLEEP) != 0)
120 		return (-1);
121 
122 	return (0);
123 }
124 
125 static mc_t *
126 mc_lookup_by_chipid(int chipid)
127 {
128 	mc_t *mc;
129 
130 	ASSERT(RW_LOCK_HELD(&mc_lock));
131 
132 	for (mc = mc_list; mc != NULL; mc = mc->mc_next) {
133 		if (mc->mc_props.mcp_num  == chipid)
134 			return (mc);
135 	}
136 
137 	return (NULL);
138 }
139 
140 /*
141  * Read config register pairs into the two arrays provided on the given
142  * handle and at offsets as follows:
143  *
144  *	Index	Array r1 offset			Array r2 offset
145  *	0	r1addr				r2addr
146  *	1	r1addr + incr			r2addr + incr
147  *	2	r1addr + 2 * incr		r2addr + 2 * incr
148  *	...
149  *	n - 1	r1addr + (n - 1) * incr		r2addr + (n - 1) * incr
150  *
151  * The number of registers to read into the r1 array is r1n; the number
152  * for the r2 array is r2n.
153  */
154 static void
155 mc_prop_read_pair(mc_pcicfg_hdl_t cfghdl, uint32_t *r1, off_t r1addr,
156     int r1n, uint32_t *r2, off_t r2addr, int r2n, off_t incr)
157 {
158 	int i;
159 
160 	for (i = 0; i < MAX(r1n, r2n); i++, r1addr += incr, r2addr += incr) {
161 		if (i < r1n)
162 			r1[i] = mc_pcicfg_get32(cfghdl, r1addr);
163 		if (i < r2n)
164 			r2[i] = mc_pcicfg_get32(cfghdl, r2addr);
165 	}
166 }
167 
168 #define	NSKT	6
169 
170 static void
171 mc_nvl_add_socket(nvlist_t *nvl, mc_t *mc)
172 {
173 	const char *s = "Unknown";
174 	int i;
175 
176 	static const struct {
177 		uint32_t type;
178 		const char *name;
179 	} sktnames[NSKT] = {
180 		{ X86_SOCKET_754, "Socket 754" },
181 		{ X86_SOCKET_939, "Socket 939" },
182 		{ X86_SOCKET_940, "Socket 940" },
183 		{ X86_SOCKET_AM2, "Socket AM2" },
184 		{ X86_SOCKET_F1207, "Socket F(1207)" },
185 		{ X86_SOCKET_S1g1, "Socket S1g1" },
186 	};
187 
188 	for (i = 0; i < NSKT; i++) {
189 		if (mc->mc_socket == sktnames[i].type) {
190 			s = sktnames[i].name;
191 			break;
192 		}
193 	}
194 
195 	(void) nvlist_add_string(nvl, "socket", s);
196 }
197 
198 static uint32_t
199 mc_ecc_enabled(mc_t *mc)
200 {
201 	uint32_t rev = mc->mc_props.mcp_rev;
202 	union mcreg_nbcfg nbcfg;
203 
204 	MCREG_VAL32(&nbcfg) = mc->mc_cfgregs.mcr_nbcfg;
205 
206 	return (MC_REV_MATCH(rev, MC_F_REVS_BCDE) ?
207 	    MCREG_FIELD_F_preF(&nbcfg, EccEn) :
208 	    MCREG_FIELD_F_revFG(&nbcfg, EccEn));
209 }
210 
211 static uint32_t
212 mc_ck_enabled(mc_t *mc)
213 {
214 	uint32_t rev = mc->mc_props.mcp_rev;
215 	union mcreg_nbcfg nbcfg;
216 
217 	MCREG_VAL32(&nbcfg) = mc->mc_cfgregs.mcr_nbcfg;
218 
219 	return (MC_REV_MATCH(rev, MC_F_REVS_BCDE) ?
220 	    MCREG_FIELD_F_preF(&nbcfg, ChipKillEccEn) :
221 	    MCREG_FIELD_F_revFG(&nbcfg, ChipKillEccEn));
222 }
223 
224 static void
225 mc_nvl_add_ecctype(nvlist_t *nvl, mc_t *mc)
226 {
227 	(void) nvlist_add_string(nvl, "ecc-type", mc_ecc_enabled(mc) ?
228 	    (mc_ck_enabled(mc) ? "ChipKill 128/16" : "Normal 64/8") : "None");
229 }
230 
231 static void
232 mc_nvl_add_prop(nvlist_t *nvl, void *node, mcamd_propcode_t code, int reqval)
233 {
234 	int valfound;
235 	uint64_t value;
236 	const char *name = mcamd_get_propname(code);
237 
238 	valfound = mcamd_get_numprop(NULL, (mcamd_node_t *)node, code, &value);
239 
240 	ASSERT(name != NULL && valfound);
241 	if (name != NULL && valfound && (!reqval || value != MC_INVALNUM))
242 		(void) nvlist_add_uint64(nvl, name, value);
243 }
244 
245 static void
246 mc_nvl_add_cslist(nvlist_t *mcnvl, mc_t *mc)
247 {
248 	mc_cs_t *mccs = mc->mc_cslist;
249 	nvlist_t *cslist[MC_CHIP_NCS];
250 	int nelem, i;
251 
252 	for (nelem = 0; mccs != NULL; mccs = mccs->mccs_next, nelem++) {
253 		nvlist_t **csp = &cslist[nelem];
254 		char csname[MCDCFG_CSNAMELEN];
255 
256 		(void) nvlist_alloc(csp, NV_UNIQUE_NAME, KM_SLEEP);
257 		mc_nvl_add_prop(*csp, mccs, MCAMD_PROP_NUM, 0);
258 		mc_nvl_add_prop(*csp, mccs, MCAMD_PROP_BASE_ADDR, 0);
259 		mc_nvl_add_prop(*csp, mccs, MCAMD_PROP_MASK, 0);
260 		mc_nvl_add_prop(*csp, mccs, MCAMD_PROP_SIZE, 0);
261 
262 		/*
263 		 * It is possible for an mc_cs_t not to have associated
264 		 * DIMM info if mcdcfg_lookup failed.
265 		 */
266 		if (mccs->mccs_csl[0] != NULL) {
267 			mc_nvl_add_prop(*csp, mccs, MCAMD_PROP_CSDIMM1, 1);
268 			mcdcfg_csname(mc->mc_socket, mccs->mccs_csl[0], csname,
269 			    sizeof (csname));
270 			(void) nvlist_add_string(*csp, "dimm1-csname", csname);
271 		}
272 
273 		if (mccs->mccs_csl[1] != NULL) {
274 			mc_nvl_add_prop(*csp, mccs, MCAMD_PROP_CSDIMM2, 1);
275 			mcdcfg_csname(mc->mc_socket, mccs->mccs_csl[1], csname,
276 			    sizeof (csname));
277 			(void) nvlist_add_string(*csp, "dimm2-csname", csname);
278 		}
279 	}
280 
281 	/* Add cslist nvlist array even if zero members */
282 	(void) nvlist_add_nvlist_array(mcnvl, "cslist", cslist, nelem);
283 	for (i = 0; i < nelem; i++)
284 		nvlist_free(cslist[i]);
285 }
286 
287 static void
288 mc_nvl_add_dimmlist(nvlist_t *mcnvl, mc_t *mc)
289 {
290 	nvlist_t *dimmlist[MC_CHIP_NDIMM];
291 	mc_dimm_t *mcd;
292 	int nelem, i;
293 
294 	for (nelem = 0, mcd = mc->mc_dimmlist; mcd != NULL;
295 	    mcd = mcd->mcd_next, nelem++) {
296 		nvlist_t **dimmp = &dimmlist[nelem];
297 		uint64_t csnums[MC_CHIP_DIMMRANKMAX];
298 		char csname[4][MCDCFG_CSNAMELEN];
299 		char *csnamep[4];
300 		int ncs = 0;
301 
302 		(void) nvlist_alloc(dimmp, NV_UNIQUE_NAME, KM_SLEEP);
303 
304 		mc_nvl_add_prop(*dimmp, mcd, MCAMD_PROP_NUM, 1);
305 		mc_nvl_add_prop(*dimmp, mcd, MCAMD_PROP_SIZE, 1);
306 
307 		for (i = 0; i < MC_CHIP_DIMMRANKMAX; i++) {
308 			if (mcd->mcd_cs[i] != NULL) {
309 				csnums[ncs] =
310 				    mcd->mcd_cs[i]->mccs_props.csp_num;
311 				mcdcfg_csname(mc->mc_socket, mcd->mcd_csl[i],
312 				    csname[ncs], MCDCFG_CSNAMELEN);
313 				csnamep[ncs] = csname[ncs];
314 				ncs++;
315 			}
316 		}
317 
318 		(void) nvlist_add_uint64_array(*dimmp, "csnums", csnums, ncs);
319 		(void) nvlist_add_string_array(*dimmp, "csnames", csnamep, ncs);
320 	}
321 
322 	/* Add dimmlist nvlist array even if zero members */
323 	(void) nvlist_add_nvlist_array(mcnvl, "dimmlist", dimmlist, nelem);
324 	for (i = 0; i < nelem; i++)
325 		nvlist_free(dimmlist[i]);
326 }
327 
328 static void
329 mc_nvl_add_htconfig(nvlist_t *mcnvl, mc_t *mc)
330 {
331 	mc_cfgregs_t *mcr = &mc->mc_cfgregs;
332 	union mcreg_htroute *htrp = (union mcreg_htroute *)&mcr->mcr_htroute[0];
333 	union mcreg_nodeid *nip = (union mcreg_nodeid *)&mcr->mcr_htnodeid;
334 	union mcreg_unitid *uip = (union mcreg_unitid *)&mcr->mcr_htunitid;
335 	int ndcnt = HT_COHERENTNODES(nip);
336 	uint32_t BCRte[MC_CHIP_MAXNODES];
337 	uint32_t RPRte[MC_CHIP_MAXNODES];
338 	uint32_t RQRte[MC_CHIP_MAXNODES];
339 	nvlist_t *nvl;
340 	int i;
341 
342 	(void) nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP);
343 
344 	(void) nvlist_add_uint32(nvl, "NodeId", MCREG_FIELD_CMN(nip, NodeId));
345 	(void) nvlist_add_uint32(nvl, "CoherentNodes", HT_COHERENTNODES(nip));
346 	(void) nvlist_add_uint32(nvl, "SbNode", MCREG_FIELD_CMN(nip, SbNode));
347 	(void) nvlist_add_uint32(nvl, "LkNode", MCREG_FIELD_CMN(nip, LkNode));
348 	(void) nvlist_add_uint32(nvl, "SystemCoreCount",
349 	    HT_SYSTEMCORECOUNT(nip));
350 
351 	(void) nvlist_add_uint32(nvl, "C0Unit", MCREG_FIELD_CMN(uip, C0Unit));
352 	(void) nvlist_add_uint32(nvl, "C1Unit", MCREG_FIELD_CMN(uip, C1Unit));
353 	(void) nvlist_add_uint32(nvl, "McUnit", MCREG_FIELD_CMN(uip, McUnit));
354 	(void) nvlist_add_uint32(nvl, "HbUnit", MCREG_FIELD_CMN(uip, HbUnit));
355 	(void) nvlist_add_uint32(nvl, "SbLink", MCREG_FIELD_CMN(uip, SbLink));
356 
357 	if (ndcnt <= MC_CHIP_MAXNODES) {
358 		for (i = 0; i < ndcnt; i++, htrp++) {
359 			BCRte[i] = MCREG_FIELD_CMN(htrp, BCRte);
360 			RPRte[i] = MCREG_FIELD_CMN(htrp, RPRte);
361 			RQRte[i] = MCREG_FIELD_CMN(htrp, RQRte);
362 		}
363 
364 		(void) nvlist_add_uint32_array(nvl, "BroadcastRoutes",
365 		    &BCRte[0], ndcnt);
366 		(void) nvlist_add_uint32_array(nvl, "ResponseRoutes",
367 		    &RPRte[0], ndcnt);
368 		(void) nvlist_add_uint32_array(nvl, "RequestRoutes",
369 		    &RQRte[0], ndcnt);
370 	}
371 
372 	(void) nvlist_add_nvlist(mcnvl, "htconfig", nvl);
373 	nvlist_free(nvl);
374 }
375 
376 static nvlist_t *
377 mc_nvl_create(mc_t *mc)
378 {
379 	nvlist_t *mcnvl;
380 
381 	(void) nvlist_alloc(&mcnvl, NV_UNIQUE_NAME, KM_SLEEP);
382 
383 	/*
384 	 * Since this nvlist is used in populating the topo tree changes
385 	 * made here may propogate through to changed property names etc
386 	 * in the topo tree.  Some properties in the topo tree will be
387 	 * contracted via ARC, so be careful what you change here.
388 	 */
389 	(void) nvlist_add_uint8(mcnvl, MC_NVLIST_VERSTR, MC_NVLIST_VERS1);
390 
391 	mc_nvl_add_prop(mcnvl, mc, MCAMD_PROP_NUM, 0);
392 	mc_nvl_add_prop(mcnvl, mc, MCAMD_PROP_REV, 0);
393 	(void) nvlist_add_string(mcnvl, "revname", mc->mc_revname);
394 	mc_nvl_add_socket(mcnvl, mc);
395 	mc_nvl_add_ecctype(mcnvl, mc);
396 
397 	mc_nvl_add_prop(mcnvl, mc, MCAMD_PROP_BASE_ADDR, 0);
398 	mc_nvl_add_prop(mcnvl, mc, MCAMD_PROP_LIM_ADDR, 0);
399 	mc_nvl_add_prop(mcnvl, mc, MCAMD_PROP_ILEN, 0);
400 	mc_nvl_add_prop(mcnvl, mc, MCAMD_PROP_ILSEL, 0);
401 	mc_nvl_add_prop(mcnvl, mc, MCAMD_PROP_CSINTLVFCTR, 0);
402 	mc_nvl_add_prop(mcnvl, mc, MCAMD_PROP_DRAMHOLE_SIZE, 0);
403 	mc_nvl_add_prop(mcnvl, mc, MCAMD_PROP_ACCESS_WIDTH, 0);
404 	mc_nvl_add_prop(mcnvl, mc, MCAMD_PROP_CSBANKMAPREG, 0);
405 	mc_nvl_add_prop(mcnvl, mc, MCAMD_PROP_BANKSWZL, 0);
406 	mc_nvl_add_prop(mcnvl, mc, MCAMD_PROP_MOD64MUX, 0);
407 	mc_nvl_add_prop(mcnvl, mc, MCAMD_PROP_SPARECS, 1);
408 	mc_nvl_add_prop(mcnvl, mc, MCAMD_PROP_BADCS, 1);
409 
410 	mc_nvl_add_cslist(mcnvl, mc);
411 	mc_nvl_add_dimmlist(mcnvl, mc);
412 	mc_nvl_add_htconfig(mcnvl, mc);
413 
414 	return (mcnvl);
415 }
416 
417 /*
418  * Link a dimm to its associated chip-selects and chip-select lines.
419  * Total the size of all ranks of this dimm.
420  */
421 static void
422 mc_dimm_csadd(mc_t *mc, mc_dimm_t *mcd, mc_cs_t *mccs, const mcdcfg_csl_t *csl)
423 {
424 	int factor = (mc->mc_props.mcp_accwidth == 128) ? 2 : 1;
425 	uint64_t sz = 0;
426 	int i;
427 
428 	/* Skip to first unused rank slot */
429 	for (i = 0; i < MC_CHIP_DIMMRANKMAX; i++) {
430 		if (mcd->mcd_cs[i] == NULL) {
431 			mcd->mcd_cs[i] = mccs;
432 			mcd->mcd_csl[i] = csl;
433 			sz += mccs->mccs_props.csp_size / factor;
434 			break;
435 		} else {
436 			sz += mcd->mcd_cs[i]->mccs_props.csp_size / factor;
437 		}
438 	}
439 
440 	ASSERT(i != MC_CHIP_DIMMRANKMAX);
441 
442 	mcd->mcd_size = sz;
443 }
444 
445 /*
446  * Create a dimm structure and call to link it to its associated chip-selects.
447  */
448 static mc_dimm_t *
449 mc_dimm_create(mc_t *mc, uint_t num)
450 {
451 	mc_dimm_t *mcd = kmem_zalloc(sizeof (mc_dimm_t), KM_SLEEP);
452 
453 	mcd->mcd_hdr.mch_type = MC_NT_DIMM;
454 	mcd->mcd_mc = mc;
455 	mcd->mcd_num = num;
456 
457 	return (mcd);
458 }
459 
460 /*
461  * The chip-select structure includes an array of dimms associated with
462  * that chip-select.  This function fills that array, and also builds
463  * the list of all dimms on this memory controller mc_dimmlist.  The
464  * caller has filled a structure with all there is to know about the
465  * associated dimm(s).
466  */
467 static void
468 mc_csdimms_create(mc_t *mc, mc_cs_t *mccs, mcdcfg_rslt_t *rsltp)
469 {
470 	mc_dimm_t *found[MC_CHIP_DIMMPERCS];
471 	mc_dimm_t *mcd;
472 	int nfound = 0;
473 	int i;
474 
475 	/*
476 	 * Has some other chip-select already created this dimm or dimms?
477 	 * If so then link to the dimm(s) from the mccs_dimm array,
478 	 * record their topo numbers in the csp_dimmnums array, and link
479 	 * the dimm(s) to the additional chip-select.
480 	 */
481 	for (mcd = mc->mc_dimmlist; mcd != NULL; mcd = mcd->mcd_next) {
482 		for (i = 0; i < rsltp->ndimm; i++) {
483 			if (mcd->mcd_num == rsltp->dimm[i].toponum)
484 				found[nfound++] = mcd;
485 		}
486 	}
487 	ASSERT(nfound == 0 || nfound == rsltp->ndimm);
488 
489 	for (i = 0; i < rsltp->ndimm; i++) {
490 		if (nfound == 0) {
491 			mcd = mc_dimm_create(mc, rsltp->dimm[i].toponum);
492 			if (mc->mc_dimmlist == NULL)
493 				mc->mc_dimmlist = mcd;
494 			else
495 				mc->mc_dimmlast->mcd_next = mcd;
496 			mc->mc_dimmlast = mcd;
497 		} else {
498 			mcd = found[i];
499 		}
500 
501 		mccs->mccs_dimm[i] = mcd;
502 		mccs->mccs_csl[i] = rsltp->dimm[i].cslp;
503 		mccs->mccs_props.csp_dimmnums[i] = mcd->mcd_num;
504 		mc_dimm_csadd(mc, mcd, mccs, rsltp->dimm[i].cslp);
505 
506 	}
507 
508 	/* The rank number is constant across all constituent dimm(s) */
509 	mccs->mccs_props.csp_dimmrank = rsltp->dimm[0].cslp->csl_rank;
510 }
511 
512 /*
513  * mc_dimmlist_create is called after we have discovered all enabled
514  * (and spare or testfailed on revs F and G) chip-selects on the
515  * given memory controller.  For each chip-select we must derive
516  * the associated dimms, remembering that a chip-select csbase/csmask
517  * pair may be associated with up to 2 chip-select lines (in 128 bit mode)
518  * and that any one dimm may be associated with 1, 2, or 4 chip-selects
519  * depending on whether it is single, dual or quadrank.
520  */
521 static void
522 mc_dimmlist_create(mc_t *mc)
523 {
524 	union mcreg_dramcfg_hi *drcfghip =
525 	    (union mcreg_dramcfg_hi *)(&mc->mc_cfgregs.mcr_dramcfghi);
526 	mc_props_t *mcp = &mc->mc_props;
527 	uint32_t rev = mcp->mcp_rev;
528 	mc_cs_t *mccs;
529 	int r4 = 0, s4 = 0;
530 
531 	/*
532 	 * Are we dealing with quadrank registered dimms?
533 	 *
534 	 * For socket 940 we can't tell and we'll assume we're not.
535 	 * This can be over-ridden by the admin in /etc/system by setting
536 	 * mc_quadranksupport nonzero.  A possible optimisation in systems
537 	 * that export an SMBIOS table would be to count the number of
538 	 * dimm slots per cpu - more than 4 would indicate no quadrank support
539 	 * and 4 or fewer would indicate that if we see any of the upper
540 	 * chip-selects enabled then a quadrank dimm is present.
541 	 *
542 	 * For socket F(1207) we can check a bit in the dram config high reg.
543 	 *
544 	 * Other socket types do not support registered dimms.
545 	 */
546 	if (mc->mc_socket == X86_SOCKET_940)
547 		r4 = mc_quadranksupport != 0;
548 	else if (mc->mc_socket == X86_SOCKET_F1207)
549 		r4 = MCREG_FIELD_F_revFG(drcfghip, FourRankRDimm);
550 
551 	/*
552 	 * Are we dealing with quadrank SO-DIMMs?  These are supported
553 	 * in AM2 and S1g1 packages only, but in all rev F/G cases we
554 	 * can detect their presence via a bit in the dram config high reg.
555 	 */
556 	if (MC_REV_MATCH(rev, MC_F_REVS_FG))
557 		s4 = MCREG_FIELD_F_revFG(drcfghip, FourRankSODimm);
558 
559 	for (mccs = mc->mc_cslist; mccs != NULL; mccs = mccs->mccs_next) {
560 		mcdcfg_rslt_t rslt;
561 
562 		/*
563 		 * If lookup fails we will not create dimm structures for
564 		 * this chip-select.  In the mc_cs_t we will have both
565 		 * csp_dimmnum members set to MC_INVALNUM and patounum
566 		 * code will see from those that we do not have dimm info
567 		 * for this chip-select.
568 		 */
569 		if (mcdcfg_lookup(rev, mcp->mcp_mod64mux, mcp->mcp_accwidth,
570 		    mccs->mccs_props.csp_num, mc->mc_socket,
571 		    r4, s4, &rslt) < 0)
572 			continue;
573 
574 		mc_csdimms_create(mc, mccs, &rslt);
575 	}
576 }
577 
578 static mc_cs_t *
579 mc_cs_create(mc_t *mc, uint_t num, uint64_t base, uint64_t mask, size_t sz,
580     int csbe, int spare, int testfail)
581 {
582 	mc_cs_t *mccs = kmem_zalloc(sizeof (mc_cs_t), KM_SLEEP);
583 	mccs_props_t *csp = &mccs->mccs_props;
584 	int i;
585 
586 	mccs->mccs_hdr.mch_type = MC_NT_CS;
587 	mccs->mccs_mc = mc;
588 	csp->csp_num = num;
589 	csp->csp_base = base;
590 	csp->csp_mask = mask;
591 	csp->csp_size = sz;
592 	csp->csp_csbe = csbe;
593 	csp->csp_spare = spare;
594 	csp->csp_testfail = testfail;
595 
596 	for (i = 0; i < MC_CHIP_DIMMPERCS; i++)
597 		csp->csp_dimmnums[i] = MC_INVALNUM;
598 
599 	if (spare)
600 		mc->mc_props.mcp_sparecs = num;
601 
602 	return (mccs);
603 }
604 
605 /*
606  * For any cs# of this mc marked TestFail generate an ereport with
607  * resource identifying the associated dimm(s).
608  */
609 static void
610 mc_report_testfails(mc_t *mc)
611 {
612 	mc_unum_t unum;
613 	mc_cs_t *mccs;
614 	int i;
615 
616 	for (mccs = mc->mc_cslist; mccs != NULL; mccs = mccs->mccs_next) {
617 		if (mccs->mccs_props.csp_testfail) {
618 			unum.unum_board = 0;
619 			unum.unum_chip = mc->mc_props.mcp_num;
620 			unum.unum_mc = 0;
621 			unum.unum_chan = MC_INVALNUM;
622 			unum.unum_cs = mccs->mccs_props.csp_num;
623 			unum.unum_rank = mccs->mccs_props.csp_dimmrank;
624 			unum.unum_offset = MCAMD_RC_INVALID_OFFSET;
625 			for (i = 0; i < MC_CHIP_DIMMPERCS; i++)
626 				unum.unum_dimms[i] = MC_INVALNUM;
627 
628 			mcamd_ereport_post(mc, FM_EREPORT_CPU_AMD_MC_TESTFAIL,
629 			    &unum,
630 			    FM_EREPORT_PAYLOAD_FLAGS_CPU_AMD_MC_TESTFAIL);
631 		}
632 	}
633 }
634 
635 /*
636  * Function 0 - HyperTransport Technology Configuration
637  */
638 static void
639 mc_mkprops_htcfg(mc_pcicfg_hdl_t cfghdl, mc_t *mc)
640 {
641 	union mcreg_nodeid nodeid;
642 	off_t offset;
643 	int i;
644 
645 	mc->mc_cfgregs.mcr_htnodeid = MCREG_VAL32(&nodeid) =
646 	    mc_pcicfg_get32(cfghdl, MC_HT_REG_NODEID);
647 
648 	mc->mc_cfgregs.mcr_htunitid = mc_pcicfg_get32(cfghdl, MC_HT_REG_UNITID);
649 
650 	for (i = 0, offset = MC_HT_REG_RTBL_NODE_0;
651 	    i < HT_COHERENTNODES(&nodeid);
652 	    i++, offset += MC_HT_REG_RTBL_INCR)
653 		mc->mc_cfgregs.mcr_htroute[i] = mc_pcicfg_get32(cfghdl, offset);
654 }
655 
656 /*
657  * Function 1 Configuration - Address Map (see BKDG 3.4.4 DRAM Address Map)
658  *
659  * Read the Function 1 Address Map for each potential DRAM node.  The Base
660  * Address for a node gives the starting system address mapped at that node,
661  * and the limit gives the last valid address mapped at that node.  Regions for
662  * different nodes should not overlap, unless node-interleaving is enabled.
663  * The base register also indicates the node-interleaving settings (IntlvEn).
664  * The limit register includes IntlvSel which determines which 4K blocks will
665  * be routed to this node and the destination node ID for addresses that fall
666  * within the [base, limit] range - this must match the pair number.
667  */
668 static void
669 mc_mkprops_addrmap(mc_pcicfg_hdl_t cfghdl, mc_t *mc)
670 {
671 	union mcreg_drambase basereg;
672 	union mcreg_dramlimit limreg;
673 	mc_props_t *mcp = &mc->mc_props;
674 	mc_cfgregs_t *mcr = &mc->mc_cfgregs;
675 	union mcreg_dramhole hole;
676 	int nodeid = mc->mc_props.mcp_num;
677 
678 	mcr->mcr_drambase = MCREG_VAL32(&basereg) = mc_pcicfg_get32(cfghdl,
679 	    MC_AM_REG_DRAMBASE_0 + nodeid * MC_AM_REG_DRAM_INCR);
680 
681 	mcr->mcr_dramlimit = MCREG_VAL32(&limreg) = mc_pcicfg_get32(cfghdl,
682 	    MC_AM_REG_DRAMLIM_0 + nodeid * MC_AM_REG_DRAM_INCR);
683 
684 	/*
685 	 * Derive some "cooked" properties for nodes that have a range of
686 	 * physical addresses that are read or write enabled and for which
687 	 * the DstNode matches the node we are attaching.
688 	 */
689 	if (MCREG_FIELD_CMN(&limreg, DRAMLimiti) != 0 &&
690 	    MCREG_FIELD_CMN(&limreg, DstNode) == nodeid &&
691 	    (MCREG_FIELD_CMN(&basereg, WE) || MCREG_FIELD_CMN(&basereg, RE))) {
692 		mcp->mcp_base = MC_DRAMBASE(&basereg);
693 		mcp->mcp_lim = MC_DRAMLIM(&limreg);
694 		mcp->mcp_ilen = MCREG_FIELD_CMN(&basereg, IntlvEn);
695 		mcp->mcp_ilsel = MCREG_FIELD_CMN(&limreg, IntlvSel);
696 	}
697 
698 	/*
699 	 * The Function 1 DRAM Hole Address Register tells us which node(s)
700 	 * own the DRAM space that is hoisted above 4GB, together with the
701 	 * hole base and offset for this node.  This was introduced in
702 	 * revision E.
703 	 */
704 	if (MC_REV_ATLEAST(mc->mc_props.mcp_rev, MC_F_REV_E)) {
705 		mcr->mcr_dramhole = MCREG_VAL32(&hole) =
706 		    mc_pcicfg_get32(cfghdl, MC_AM_REG_HOLEADDR);
707 
708 		if (MCREG_FIELD_CMN(&hole, DramHoleValid))
709 			mcp->mcp_dramhole_size = MC_DRAMHOLE_SIZE(&hole);
710 	}
711 }
712 
713 /*
714  * Read some function 3 parameters via PCI Mechanism 1 accesses (which
715  * will serialize any NB accesses).
716  */
717 static void
718 mc_getmiscctl(mc_t *mc)
719 {
720 	uint32_t rev = mc->mc_props.mcp_rev;
721 	union mcreg_nbcfg nbcfg;
722 	union mcreg_sparectl sparectl;
723 
724 	mc->mc_cfgregs.mcr_nbcfg = MCREG_VAL32(&nbcfg) =
725 	    mc_pcicfg_get32_nohdl(mc, MC_FUNC_MISCCTL, MC_CTL_REG_NBCFG);
726 
727 	if (MC_REV_MATCH(rev, MC_F_REVS_FG)) {
728 		mc->mc_cfgregs.mcr_sparectl = MCREG_VAL32(&sparectl) =
729 		    mc_pcicfg_get32_nohdl(mc, MC_FUNC_MISCCTL,
730 		    MC_CTL_REG_SPARECTL);
731 
732 		if (MCREG_FIELD_F_revFG(&sparectl, SwapDone)) {
733 			mc->mc_props.mcp_badcs =
734 			    MCREG_FIELD_F_revFG(&sparectl, BadDramCs);
735 		}
736 	}
737 }
738 
739 static int
740 csbasecmp(mc_cs_t **csapp, mc_cs_t **csbpp)
741 {
742 	uint64_t basea = (*csapp)->mccs_props.csp_base;
743 	uint64_t baseb = (*csbpp)->mccs_props.csp_base;
744 
745 	if (basea == baseb)
746 		return (0);
747 	else if (basea < baseb)
748 		return (-1);
749 	else
750 		return (1);
751 }
752 
753 /*
754  * The following are for use in simulating TestFail for a chip-select
755  * without poking at the hardware (which tends to get upset if you do
756  * since the BIOS needs to restart to map a failed cs out).  For internal
757  * testing only!  Note that setting these does not give the full experience -
758  * the select chip-select *is* enabled and can give errors etc and the
759  * patounum logic will get confused.
760  */
761 int testfail_mcnum = -1;
762 int testfail_csnum = -1;
763 
764 /*
765  * Function 2 configuration - DRAM Controller
766  */
767 static void
768 mc_mkprops_dramctl(mc_pcicfg_hdl_t cfghdl, mc_t *mc)
769 {
770 	union mcreg_csbase base[MC_CHIP_NCS];
771 	union mcreg_csmask mask[MC_CHIP_NCS];
772 	union mcreg_dramcfg_lo drcfg_lo;
773 	union mcreg_dramcfg_hi drcfg_hi;
774 	union mcreg_drammisc drmisc;
775 	union mcreg_bankaddrmap baddrmap;
776 	mc_props_t *mcp = &mc->mc_props;
777 	mc_cfgregs_t *mcr = &mc->mc_cfgregs;
778 	int maskdivisor;
779 	int wide = 0;
780 	uint32_t rev = mc->mc_props.mcp_rev;
781 	int i;
782 	mcamd_hdl_t hdl;
783 
784 	mcamd_mkhdl(&hdl);	/* to call into common code */
785 
786 	/*
787 	 * Read Function 2 DRAM Configuration High and Low registers.  The High
788 	 * part is mostly concerned with memory clocks etc and we'll not have
789 	 * any use for that.  The Low component tells us if ECC is enabled,
790 	 * if we're in 64- or 128-bit MC mode, how the upper chip-selects
791 	 * are mapped, which chip-select pairs are using x4 parts, etc.
792 	 */
793 	MCREG_VAL32(&drcfg_lo) = mc_pcicfg_get32(cfghdl, MC_DC_REG_DRAMCFGLO);
794 	MCREG_VAL32(&drcfg_hi) = mc_pcicfg_get32(cfghdl, MC_DC_REG_DRAMCFGHI);
795 	mcr->mcr_dramcfglo = MCREG_VAL32(&drcfg_lo);
796 	mcr->mcr_dramcfghi = MCREG_VAL32(&drcfg_hi);
797 
798 	/*
799 	 * Note the DRAM controller width.  The 64/128 bit is in a different
800 	 * bit position for revision F and G.
801 	 */
802 	if (MC_REV_MATCH(rev, MC_F_REVS_FG)) {
803 		wide = MCREG_FIELD_F_revFG(&drcfg_lo, Width128);
804 	} else {
805 		wide = MCREG_FIELD_F_preF(&drcfg_lo, Width128);
806 	}
807 	mcp->mcp_accwidth = wide ? 128 : 64;
808 
809 	/*
810 	 * Read Function 2 DRAM Controller Miscellaenous Regsiter for those
811 	 * revs that support it.  This include the Mod64Mux indication on
812 	 * these revs - for rev E it is in DRAM config low.
813 	 */
814 	if (MC_REV_MATCH(rev, MC_F_REVS_FG)) {
815 		mcr->mcr_drammisc = MCREG_VAL32(&drmisc) =
816 		    mc_pcicfg_get32(cfghdl, MC_DC_REG_DRAMMISC);
817 		mcp->mcp_mod64mux = MCREG_FIELD_F_revFG(&drmisc, Mod64Mux);
818 	} else if (MC_REV_MATCH(rev, MC_F_REV_E)) {
819 		mcp->mcp_mod64mux = MCREG_FIELD_F_preF(&drcfg_lo, Mod64BitMux);
820 	}
821 
822 	/*
823 	 * Read Function 2 DRAM Bank Address Mapping.  This encodes the
824 	 * type of DIMM module in use for each chip-select pair.
825 	 * Prior ro revision F it also tells us whether BankSwizzle mode
826 	 * is enabled - in rev F that has moved to dram config hi register.
827 	 */
828 	mcp->mcp_csbankmapreg = MCREG_VAL32(&baddrmap) =
829 	    mc_pcicfg_get32(cfghdl, MC_DC_REG_BANKADDRMAP);
830 
831 	/*
832 	 * Determine whether bank swizzle mode is active.  Bank swizzling was
833 	 * introduced as an option in rev E,  but the bit that indicates it
834 	 * is enabled has moved in revs F/G.
835 	 */
836 	if (MC_REV_MATCH(rev, MC_F_REV_E)) {
837 		mcp->mcp_bnkswzl =
838 		    MCREG_FIELD_F_preF(&baddrmap, BankSwizzleMode);
839 	} else if (MC_REV_MATCH(rev, MC_F_REVS_FG)) {
840 		mcp->mcp_bnkswzl = MCREG_FIELD_F_revFG(&drcfg_hi,
841 		    BankSwizzleMode);
842 	}
843 
844 	/*
845 	 * Read the DRAM CS Base and DRAM CS Mask registers.  Revisions prior
846 	 * to F have an equal number of base and mask registers; revision F
847 	 * has twice as many base registers as masks.
848 	 */
849 	maskdivisor = MC_REV_MATCH(rev, MC_F_REVS_FG) ? 2 : 1;
850 
851 	mc_prop_read_pair(cfghdl,
852 	    (uint32_t *)base, MC_DC_REG_CSBASE_0, MC_CHIP_NCS,
853 	    (uint32_t *)mask, MC_DC_REG_CSMASK_0, MC_CHIP_NCS / maskdivisor,
854 	    MC_DC_REG_CS_INCR);
855 
856 	/*
857 	 * Create a cs node for each enabled chip-select as well as
858 	 * any appointed online spare chip-selects and for any that have
859 	 * failed test.
860 	 */
861 	for (i = 0; i < MC_CHIP_NCS; i++) {
862 		mc_cs_t *mccs;
863 		uint64_t csbase, csmask;
864 		size_t sz;
865 		int csbe, spare, testfail;
866 
867 		if (MC_REV_MATCH(rev, MC_F_REVS_FG)) {
868 			csbe = MCREG_FIELD_F_revFG(&base[i], CSEnable);
869 			spare = MCREG_FIELD_F_revFG(&base[i], Spare);
870 			testfail = MCREG_FIELD_F_revFG(&base[i], TestFail);
871 		} else {
872 			csbe = MCREG_FIELD_F_preF(&base[i], CSEnable);
873 			spare = 0;
874 			testfail = 0;
875 		}
876 
877 		/* Testing hook */
878 		if (testfail_mcnum != -1 && testfail_csnum != -1 &&
879 		    mcp->mcp_num == testfail_mcnum && i == testfail_csnum) {
880 			csbe = spare = 0;
881 			testfail = 1;
882 			cmn_err(CE_NOTE, "Pretending MC %d CS %d failed test",
883 			    testfail_mcnum, testfail_csnum);
884 		}
885 
886 		/*
887 		 * If the chip-select is not enabled then skip it unless
888 		 * it is a designated online spare or is marked with TestFail.
889 		 */
890 		if (!csbe && !(spare || testfail))
891 			continue;
892 
893 		/*
894 		 * For an enabled or spare chip-select the Bank Address Mapping
895 		 * register will be valid as will the chip-select mask.  The
896 		 * base will not be valid but we'll read and store it anyway.
897 		 * We will not know whether the spare is already swapped in
898 		 * until MC function 3 attaches.
899 		 */
900 		if (csbe || spare) {
901 			if (mcamd_cs_size(&hdl, (mcamd_node_t *)mc, i, &sz) < 0)
902 				continue;
903 			csbase = MC_CSBASE(&base[i], rev);
904 			csmask = MC_CSMASK(&mask[i / maskdivisor], rev);
905 		} else {
906 			sz = 0;
907 			csbase = csmask = 0;
908 		}
909 
910 		mccs = mc_cs_create(mc, i, csbase, csmask, sz,
911 		    csbe, spare, testfail);
912 
913 		if (mc->mc_cslist == NULL)
914 			mc->mc_cslist = mccs;
915 		else
916 			mc->mc_cslast->mccs_next = mccs;
917 		mc->mc_cslast = mccs;
918 
919 		mccs->mccs_cfgregs.csr_csbase = MCREG_VAL32(&base[i]);
920 		mccs->mccs_cfgregs.csr_csmask =
921 		    MCREG_VAL32(&mask[i / maskdivisor]);
922 
923 		/*
924 		 * Check for cs bank interleaving - some bits clear in the
925 		 * lower mask.  All banks must/will have the same lomask bits
926 		 * if cs interleaving is active.
927 		 */
928 		if (csbe && !mcp->mcp_csintlvfctr) {
929 			int bitno, ibits = 0;
930 			for (bitno = MC_CSMASKLO_LOBIT(rev);
931 			    bitno <= MC_CSMASKLO_HIBIT(rev); bitno++) {
932 				if (!(csmask & (1 << bitno)))
933 					ibits++;
934 			}
935 			mcp->mcp_csintlvfctr = 1 << ibits;
936 		}
937 	}
938 
939 	/*
940 	 * If there is no chip-select interleave on this node determine
941 	 * whether the chip-select ranks are contiguous or if there
942 	 * is a hole.
943 	 */
944 	if (mcp->mcp_csintlvfctr == 1) {
945 		mc_cs_t *csp[MC_CHIP_NCS];
946 		mc_cs_t *mccs;
947 		int ncsbe = 0;
948 
949 		for (mccs = mc->mc_cslist; mccs != NULL;
950 		    mccs = mccs->mccs_next) {
951 			if (mccs->mccs_props.csp_csbe)
952 				csp[ncsbe++] = mccs;
953 		}
954 
955 		if (ncsbe != 0) {
956 			qsort((void *)csp, ncsbe, sizeof (mc_cs_t *),
957 			    (int (*)(const void *, const void *))csbasecmp);
958 
959 			for (i = 1; i < ncsbe; i++) {
960 				if (csp[i]->mccs_props.csp_base !=
961 				    csp[i - 1]->mccs_props.csp_base +
962 				    csp[i - 1]->mccs_props.csp_size)
963 					mc->mc_csdiscontig = 1;
964 			}
965 		}
966 	}
967 
968 
969 	/*
970 	 * Since we do not attach to MC function 3 go ahead and read some
971 	 * config parameters from it now.
972 	 */
973 	mc_getmiscctl(mc);
974 
975 	/*
976 	 * Now that we have discovered all enabled/spare/testfail chip-selects
977 	 * we divine the associated DIMM configuration.
978 	 */
979 	mc_dimmlist_create(mc);
980 }
981 
982 typedef struct mc_bind_map {
983 	const char *bm_bindnm;	 /* attachment binding name */
984 	enum mc_funcnum bm_func; /* PCI config space function number for bind */
985 	const char *bm_model;	 /* value for device node model property */
986 	void (*bm_mkprops)(mc_pcicfg_hdl_t, mc_t *);
987 } mc_bind_map_t;
988 
989 /*
990  * Do not attach to MC function 3 - agpgart already attaches to that.
991  * Function 3 may be a good candidate for a nexus driver to fan it out
992  * into virtual devices by functionality.  We will use pci_mech1_getl
993  * to retrieve the function 3 parameters we require.
994  */
995 
996 static const mc_bind_map_t mc_bind_map[] = {
997 	{ MC_FUNC_HTCONFIG_BINDNM, MC_FUNC_HTCONFIG,
998 	    "AMD Memory Controller (HT Configuration)", mc_mkprops_htcfg },
999 	{ MC_FUNC_ADDRMAP_BINDNM, MC_FUNC_ADDRMAP,
1000 	    "AMD Memory Controller (Address Map)", mc_mkprops_addrmap },
1001 	{ MC_FUNC_DRAMCTL_BINDNM, MC_FUNC_DRAMCTL,
1002 	    "AMD Memory Controller (DRAM Controller & HT Trace)",
1003 	    mc_mkprops_dramctl },
1004 	NULL
1005 };
1006 
1007 /*ARGSUSED*/
1008 static int
1009 mc_open(dev_t *devp, int flag, int otyp, cred_t *credp)
1010 {
1011 	if (otyp != OTYP_CHR)
1012 		return (EINVAL);
1013 
1014 	rw_enter(&mc_lock, RW_READER);
1015 	if (mc_lookup_by_chipid(getminor(*devp)) == NULL) {
1016 		rw_exit(&mc_lock);
1017 		return (EINVAL);
1018 	}
1019 	rw_exit(&mc_lock);
1020 
1021 	return (0);
1022 }
1023 
1024 /*ARGSUSED*/
1025 static int
1026 mc_close(dev_t dev, int flag, int otyp, cred_t *credp)
1027 {
1028 	return (0);
1029 }
1030 
1031 /*
1032  * Enable swap from chip-select csnum to the spare chip-select on this
1033  * memory controller (if any).
1034  */
1035 
1036 int mc_swapdonetime = 30;	/* max number of seconds to wait for SwapDone */
1037 
1038 static int
1039 mc_onlinespare(mc_t *mc, int csnum)
1040 {
1041 	mc_props_t *mcp = &mc->mc_props;
1042 	union mcreg_sparectl sparectl;
1043 	union mcreg_scrubctl scrubctl;
1044 	mc_cs_t *mccs;
1045 	hrtime_t tmax;
1046 	int i = 0;
1047 
1048 	ASSERT(RW_WRITE_HELD(&mc_lock));
1049 
1050 	if (!MC_REV_MATCH(mcp->mcp_rev, MC_F_REVS_FG))
1051 		return (ENOTSUP);	/* MC rev does not offer online spare */
1052 	else if (mcp->mcp_sparecs == MC_INVALNUM)
1053 		return (ENODEV);	/* Supported, but no spare configured */
1054 	else if (mcp->mcp_badcs != MC_INVALNUM)
1055 		return (EBUSY);		/* Spare already swapped in */
1056 	else if (csnum == mcp->mcp_sparecs)
1057 		return (EINVAL);	/* Can't spare the spare! */
1058 
1059 	for (mccs = mc->mc_cslist; mccs != NULL; mccs = mccs->mccs_next) {
1060 		if (mccs->mccs_props.csp_num == csnum)
1061 			break;
1062 	}
1063 	if (mccs == NULL)
1064 		return (EINVAL);	/* nominated bad CS does not exist */
1065 
1066 	/*
1067 	 * If the DRAM Scrubber is not enabled then the swap cannot succeed.
1068 	 */
1069 	MCREG_VAL32(&scrubctl) = mc_pcicfg_get32_nohdl(mc, MC_FUNC_MISCCTL,
1070 	    MC_CTL_REG_SCRUBCTL);
1071 	if (MCREG_FIELD_CMN(&scrubctl, DramScrub) == 0)
1072 		return (ENODEV);	/* DRAM scrubber not enabled */
1073 
1074 	/*
1075 	 * Read Online Spare Comtrol Register again, just in case our
1076 	 * state does not reflect reality.
1077 	 */
1078 	MCREG_VAL32(&sparectl) = mc_pcicfg_get32_nohdl(mc, MC_FUNC_MISCCTL,
1079 	    MC_CTL_REG_SPARECTL);
1080 
1081 	if (MCREG_FIELD_F_revFG(&sparectl, SwapDone))
1082 		return (EBUSY);
1083 
1084 	/* Write to the BadDramCs field */
1085 	MCREG_FIELD_F_revFG(&sparectl, BadDramCs) = csnum;
1086 	mc_pcicfg_put32_nohdl(mc, MC_FUNC_MISCCTL, MC_CTL_REG_SPARECTL,
1087 	    MCREG_VAL32(&sparectl));
1088 
1089 	/* And request that the swap to the spare start */
1090 	MCREG_FIELD_F_revFG(&sparectl, SwapEn) = 1;
1091 	mc_pcicfg_put32_nohdl(mc, MC_FUNC_MISCCTL, MC_CTL_REG_SPARECTL,
1092 	    MCREG_VAL32(&sparectl));
1093 
1094 	/*
1095 	 * Poll for SwapDone - we have disabled notification by interrupt.
1096 	 * Swap takes "several CPU cycles, depending on the DRAM speed, but
1097 	 * is performed in the background" (Family 0Fh Bios Porting Guide).
1098 	 * We're in a slow ioctl path so there is no harm in waiting around
1099 	 * a bit - consumers of the ioctl must be aware that it may take
1100 	 * a moment.  We will poll for up to mc_swapdonetime seconds,
1101 	 * limiting that to 120s.
1102 	 *
1103 	 * The swap is performed by the DRAM scrubber (which must be enabled)
1104 	 * whose scrub rate is accelerated for the duration of the swap.
1105 	 * The maximum swap rate is 40.0ns per 64 bytes, so the maximum
1106 	 * supported cs size of 16GB would take 10.7s at that max rate
1107 	 * of 25000000 scrubs/second.
1108 	 */
1109 	tmax = gethrtime() + MIN(mc_swapdonetime, 120) * 1000000000ULL;
1110 	do {
1111 		if (i++ < 20)
1112 			delay(drv_usectohz(100000));	/* 0.1s for up to 2s */
1113 		else
1114 			delay(drv_usectohz(500000));	/* 0.5s */
1115 
1116 		MCREG_VAL32(&sparectl) = mc_pcicfg_get32_nohdl(mc,
1117 		    MC_FUNC_MISCCTL, MC_CTL_REG_SPARECTL);
1118 	} while (!MCREG_FIELD_F_revFG(&sparectl, SwapDone) &&
1119 	    gethrtime() < tmax);
1120 
1121 	if (!MCREG_FIELD_F_revFG(&sparectl, SwapDone))
1122 		return (ETIME);		/* Operation timed out */
1123 
1124 	mcp->mcp_badcs = csnum;
1125 	mc->mc_cfgregs.mcr_sparectl = MCREG_VAL32(&sparectl);
1126 	mc->mc_spareswaptime = gethrtime();
1127 
1128 	return (0);
1129 }
1130 
1131 /*ARGSUSED*/
1132 static int
1133 mc_ioctl(dev_t dev, int cmd, intptr_t arg, int mode, cred_t *credp, int *rvalp)
1134 {
1135 	int rc = 0;
1136 	mc_t *mc;
1137 
1138 	if (cmd != MC_IOC_SNAPSHOT_INFO && cmd != MC_IOC_SNAPSHOT &&
1139 	    cmd != MC_IOC_ONLINESPARE_EN)
1140 		return (EINVAL);
1141 
1142 	rw_enter(&mc_lock, RW_READER);
1143 
1144 	if ((mc = mc_lookup_by_chipid(getminor(dev))) == NULL) {
1145 		rw_exit(&mc_lock);
1146 		return (EINVAL);
1147 	}
1148 
1149 	switch (cmd) {
1150 	case MC_IOC_SNAPSHOT_INFO: {
1151 		mc_snapshot_info_t mcs;
1152 
1153 		if (mc_snapshot_update(mc) < 0) {
1154 			rw_exit(&mc_lock);
1155 			return (EIO);
1156 		}
1157 
1158 		mcs.mcs_size = mc->mc_snapshotsz;
1159 		mcs.mcs_gen = mc->mc_snapshotgen;
1160 
1161 		if (ddi_copyout(&mcs, (void *)arg, sizeof (mc_snapshot_info_t),
1162 		    mode) < 0)
1163 			rc = EFAULT;
1164 		break;
1165 	}
1166 
1167 	case MC_IOC_SNAPSHOT:
1168 		if (mc_snapshot_update(mc) < 0) {
1169 			rw_exit(&mc_lock);
1170 			return (EIO);
1171 		}
1172 
1173 		if (ddi_copyout(mc->mc_snapshot, (void *)arg, mc->mc_snapshotsz,
1174 		    mode) < 0)
1175 			rc = EFAULT;
1176 		break;
1177 
1178 	case MC_IOC_ONLINESPARE_EN:
1179 		if (drv_priv(credp) != 0) {
1180 			rw_exit(&mc_lock);
1181 			return (EPERM);
1182 		}
1183 
1184 		if (!rw_tryupgrade(&mc_lock)) {
1185 			rw_exit(&mc_lock);
1186 			return (EAGAIN);
1187 		}
1188 
1189 		if ((rc = mc_onlinespare(mc, (int)arg)) == 0) {
1190 			mc_snapshot_destroy(mc);
1191 			nvlist_free(mc->mc_nvl);
1192 			mc->mc_nvl = mc_nvl_create(mc);
1193 		}
1194 
1195 		break;
1196 	}
1197 
1198 	rw_exit(&mc_lock);
1199 
1200 	return (rc);
1201 }
1202 
1203 static struct cb_ops mc_cb_ops = {
1204 	mc_open,
1205 	mc_close,
1206 	nodev,		/* not a block driver */
1207 	nodev,		/* no print routine */
1208 	nodev,		/* no dump routine */
1209 	nodev,		/* no read routine */
1210 	nodev,		/* no write routine */
1211 	mc_ioctl,
1212 	nodev,		/* no devmap routine */
1213 	nodev,		/* no mmap routine */
1214 	nodev,		/* no segmap routine */
1215 	nochpoll,	/* no chpoll routine */
1216 	ddi_prop_op,
1217 	0,		/* not a STREAMS driver */
1218 	D_NEW | D_MP,	/* safe for multi-thread/multi-processor */
1219 };
1220 
1221 /*ARGSUSED*/
1222 static int
1223 mc_getinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
1224 {
1225 	int rc = DDI_SUCCESS;
1226 	mc_t *mc;
1227 
1228 	if (infocmd != DDI_INFO_DEVT2DEVINFO &&
1229 	    infocmd != DDI_INFO_DEVT2INSTANCE) {
1230 		*result = NULL;
1231 		return (DDI_FAILURE);
1232 	}
1233 
1234 	rw_enter(&mc_lock, RW_READER);
1235 
1236 	if ((mc = mc_lookup_by_chipid(getminor((dev_t)arg))) == NULL ||
1237 	    mc->mc_funcs[MC_FUNC_DEVIMAP].mcf_devi == NULL) {
1238 		rc = DDI_FAILURE;
1239 	} else if (infocmd == DDI_INFO_DEVT2DEVINFO) {
1240 		*result = mc->mc_funcs[MC_FUNC_DEVIMAP].mcf_devi;
1241 	} else {
1242 		*result = (void *)(uintptr_t)
1243 		    mc->mc_funcs[MC_FUNC_DEVIMAP].mcf_instance;
1244 	}
1245 
1246 	rw_exit(&mc_lock);
1247 
1248 	return (rc);
1249 }
1250 
1251 /*ARGSUSED2*/
1252 static int
1253 mc_fm_handle(dev_info_t *dip, ddi_fm_error_t *fmerr, const void *arg)
1254 {
1255 	pci_ereport_post(dip, fmerr, NULL);
1256 	return (fmerr->fme_status);
1257 }
1258 
1259 static void
1260 mc_fm_init(dev_info_t *dip)
1261 {
1262 	int fmcap = DDI_FM_EREPORT_CAPABLE | DDI_FM_ERRCB_CAPABLE;
1263 	ddi_fm_init(dip, &fmcap, NULL);
1264 	pci_ereport_setup(dip);
1265 	ddi_fm_handler_register(dip, mc_fm_handle, NULL);
1266 }
1267 
1268 /*ARGSUSED*/
1269 static int
1270 mc_create_cb(cmi_hdl_t whdl, void *arg1, void *arg2, void *arg3)
1271 {
1272 	chipid_t chipid = *((chipid_t *)arg1);
1273 	cmi_hdl_t *hdlp = (cmi_hdl_t *)arg2;
1274 
1275 	if (cmi_hdl_chipid(whdl) == chipid) {
1276 		cmi_hdl_hold(whdl);	/* short-term hold */
1277 		*hdlp = whdl;
1278 		return (CMI_HDL_WALK_DONE);
1279 	} else {
1280 		return (CMI_HDL_WALK_NEXT);
1281 	}
1282 }
1283 
1284 static mc_t *
1285 mc_create(chipid_t chipid)
1286 {
1287 	mc_t *mc;
1288 	cmi_hdl_t hdl = NULL;
1289 
1290 	ASSERT(RW_WRITE_HELD(&mc_lock));
1291 
1292 	/*
1293 	 * Find a handle for one of a chip's CPU.
1294 	 *
1295 	 * We can use one of the chip's CPUs since all cores
1296 	 * of a chip share the same revision and socket type.
1297 	 */
1298 	cmi_hdl_walk(mc_create_cb, (void *)&chipid, (void *)&hdl, NULL);
1299 	if (hdl == NULL)
1300 		return (NULL);	/* no cpu for this chipid found! */
1301 
1302 	mc = kmem_zalloc(sizeof (mc_t), KM_SLEEP);
1303 
1304 	mc->mc_hdr.mch_type = MC_NT_MC;
1305 	mc->mc_props.mcp_num = chipid;
1306 	mc->mc_props.mcp_sparecs = MC_INVALNUM;
1307 	mc->mc_props.mcp_badcs = MC_INVALNUM;
1308 
1309 	mc->mc_props.mcp_rev = cmi_hdl_chiprev(hdl);
1310 	mc->mc_revname = cmi_hdl_chiprevstr(hdl);
1311 	mc->mc_socket = cmi_hdl_getsockettype(hdl);
1312 
1313 	if (mc_list == NULL)
1314 		mc_list = mc;
1315 	if (mc_last != NULL)
1316 		mc_last->mc_next = mc;
1317 
1318 	mc->mc_next = NULL;
1319 	mc_last = mc;
1320 
1321 	cmi_hdl_rele(hdl);
1322 
1323 	return (mc);
1324 }
1325 
1326 /*
1327  * Return the maximum scrubbing rate between r1 and r2, where r2 is extracted
1328  * from the specified 'cfg' register value using 'mask' and 'shift'.  If a
1329  * value is zero, scrubbing is off so return the opposite value.  Otherwise
1330  * the maximum rate is the smallest non-zero value of the two values.
1331  */
1332 static uint32_t
1333 mc_scrubber_max(uint32_t r1, uint32_t cfg, uint32_t mask, uint32_t shift)
1334 {
1335 	uint32_t r2 = (cfg & mask) >> shift;
1336 
1337 	if (r1 != 0 && r2 != 0)
1338 		return (MIN(r1, r2));
1339 
1340 	return (r1 ? r1 : r2);
1341 }
1342 
1343 
1344 /*
1345  * Enable the memory scrubber.  We must use the mc_pcicfg_{get32,put32}_nohdl
1346  * interfaces since we do not bind to function 3.
1347  */
1348 cmi_errno_t
1349 mc_scrubber_enable(mc_t *mc)
1350 {
1351 	mc_props_t *mcp = &mc->mc_props;
1352 	mc_cfgregs_t *mcr = &mc->mc_cfgregs;
1353 	union mcreg_scrubctl scrubctl;
1354 	union mcreg_dramscrublo dalo;
1355 	union mcreg_dramscrubhi dahi;
1356 
1357 	mcr->mcr_scrubctl = MCREG_VAL32(&scrubctl) =
1358 	    mc_pcicfg_get32_nohdl(mc, MC_FUNC_MISCCTL, MC_CTL_REG_SCRUBCTL);
1359 
1360 	mcr->mcr_scrubaddrlo = MCREG_VAL32(&dalo) =
1361 	    mc_pcicfg_get32_nohdl(mc, MC_FUNC_MISCCTL, MC_CTL_REG_SCRUBADDR_LO);
1362 
1363 	mcr->mcr_scrubaddrhi = MCREG_VAL32(&dahi) =
1364 	    mc_pcicfg_get32_nohdl(mc, MC_FUNC_MISCCTL, MC_CTL_REG_SCRUBADDR_HI);
1365 
1366 	if (mc_scrub_policy == MC_SCRUB_BIOSDEFAULT)
1367 		return (MCREG_FIELD_CMN(&scrubctl, DramScrub) !=
1368 		    AMD_NB_SCRUBCTL_RATE_NONE ?
1369 		    CMI_SUCCESS : CMIERR_MC_NOMEMSCRUB);
1370 
1371 	/*
1372 	 * Disable DRAM scrubbing while we fiddle.
1373 	 */
1374 	MCREG_FIELD_CMN(&scrubctl, DramScrub) = AMD_NB_SCRUBCTL_RATE_NONE;
1375 	mc_pcicfg_put32_nohdl(mc, MC_FUNC_MISCCTL, MC_CTL_REG_SCRUBCTL,
1376 	    MCREG_VAL32(&scrubctl));
1377 
1378 	/*
1379 	 * Setup DRAM Scrub Address Low and High registers for the
1380 	 * base address of this node, and to select srubber redirect.
1381 	 */
1382 	MCREG_FIELD_CMN(&dalo, ScrubReDirEn) = 1;
1383 	MCREG_FIELD_CMN(&dalo, ScrubAddrLo) =
1384 	    AMD_NB_SCRUBADDR_MKLO(mcp->mcp_base);
1385 
1386 	MCREG_FIELD_CMN(&dahi, ScrubAddrHi) =
1387 	    AMD_NB_SCRUBADDR_MKHI(mcp->mcp_base);
1388 
1389 	mc_pcicfg_put32_nohdl(mc, MC_FUNC_MISCCTL, MC_CTL_REG_SCRUBADDR_LO,
1390 	    MCREG_VAL32(&dalo));
1391 	mc_pcicfg_put32_nohdl(mc, MC_FUNC_MISCCTL, MC_CTL_REG_SCRUBADDR_HI,
1392 	    MCREG_VAL32(&dahi));
1393 
1394 	if (mc_scrub_rate_dram > AMD_NB_SCRUBCTL_RATE_MAX) {
1395 		cmn_err(CE_WARN, "mc_scrub_rate_dram is too large; "
1396 		    "resetting to 0x%x\n", AMD_NB_SCRUBCTL_RATE_MAX);
1397 		mc_scrub_rate_dram = AMD_NB_SCRUBCTL_RATE_MAX;
1398 	}
1399 
1400 	switch (mc_scrub_policy) {
1401 	case MC_SCRUB_FIXED:
1402 		/* Use the system value checked above */
1403 		break;
1404 
1405 	default:
1406 		cmn_err(CE_WARN, "Unknown mc_scrub_policy value %d - "
1407 		    "using default policy of MC_SCRUB_MAX", mc_scrub_policy);
1408 		/*FALLTHRU*/
1409 
1410 	case MC_SCRUB_MAX:
1411 		mc_scrub_rate_dram = mc_scrubber_max(mc_scrub_rate_dram,
1412 		    mcr->mcr_scrubctl, AMD_NB_SCRUBCTL_DRAM_MASK,
1413 		    AMD_NB_SCRUBCTL_DRAM_SHIFT);
1414 		break;
1415 	}
1416 
1417 #ifdef	OPTERON_ERRATUM_99
1418 	/*
1419 	 * This erratum applies on revisions D and earlier.
1420 	 *
1421 	 * Do not enable the dram scrubber is the chip-select ranges
1422 	 * for the node are not contiguous.
1423 	 */
1424 	if (mc_scrub_rate_dram != AMD_NB_SCRUBCTL_RATE_NONE &&
1425 	    mc->mc_csdiscontig &&
1426 	    !X86_CHIPREV_ATLEAST(rev, X86_CHIPREV_AMD_F_REV_E)) {
1427 		cmn_err(CE_CONT, "?Opteron DRAM scrubber disabled on revision "
1428 		    "%s chip %d because DRAM hole is present on this node",
1429 		    mc->mc_revname, chipid);
1430 		mc_scrub_rate_dram = AMD_NB_SCRUBCTL_RATE_NONE;
1431 	}
1432 #endif
1433 
1434 #ifdef OPTERON_ERRATUM_101
1435 	/*
1436 	 * This erratum applies on revisions D and earlier.
1437 	 *
1438 	 * If the DRAM Base Address register's IntlvEn field indicates that
1439 	 * node interleaving is enabled, we must disable the DRAM scrubber
1440 	 * and return zero to indicate that Solaris should use s/w instead.
1441 	 */
1442 	if (mc_scrub_rate_dram != AMD_NB_SCRUBCTL_RATE_NONE &&
1443 	    mcp->mcp_ilen != 0 &&
1444 	    !X86_CHIPREV_ATLEAST(rev, X86_CHIPREV_AMD_F_REV_E)) {
1445 		cmn_err(CE_CONT, "?Opteron DRAM scrubber disabled on revision "
1446 		    "%s chip %d because DRAM memory is node-interleaved",
1447 		    mc->mc_revname, chipid);
1448 		mc_scrub_rate_dram = AMD_NB_SCRUBCTL_RATE_NONE;
1449 	}
1450 #endif
1451 
1452 	if (mc_scrub_rate_dram != AMD_NB_SCRUBCTL_RATE_NONE) {
1453 		MCREG_FIELD_CMN(&scrubctl, DramScrub) = mc_scrub_rate_dram;
1454 		mc_pcicfg_put32_nohdl(mc, MC_FUNC_MISCCTL, MC_CTL_REG_SCRUBCTL,
1455 		    MCREG_VAL32(&scrubctl));
1456 	}
1457 
1458 	return (mc_scrub_rate_dram != AMD_NB_SCRUBCTL_RATE_NONE ?
1459 	    CMI_SUCCESS : CMIERR_MC_NOMEMSCRUB);
1460 }
1461 
1462 /*ARGSUSED*/
1463 static int
1464 mc_attach_cb(cmi_hdl_t whdl, void *arg1, void *arg2, void *arg3)
1465 {
1466 	mc_t *mc = (mc_t *)arg1;
1467 	mcamd_prop_t chipid = *((mcamd_prop_t *)arg2);
1468 
1469 	if (cmi_hdl_chipid(whdl) == chipid) {
1470 		mcamd_mc_register(whdl, mc);
1471 	}
1472 
1473 	return (CMI_HDL_WALK_NEXT);
1474 }
1475 
1476 static int mc_sw_scrub_disabled = 0;
1477 
1478 static int
1479 mc_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
1480 {
1481 	mc_pcicfg_hdl_t cfghdl;
1482 	const mc_bind_map_t *bm;
1483 	const char *bindnm;
1484 	char *unitstr = NULL;
1485 	enum mc_funcnum func;
1486 	long unitaddr;
1487 	int chipid, rc;
1488 	mc_t *mc;
1489 
1490 	/*
1491 	 * This driver has no hardware state, but does
1492 	 * claim to have a reg property, so it will be
1493 	 * called on suspend.  It is probably better to
1494 	 * make sure it doesn't get called on suspend,
1495 	 * but it is just as easy to make sure we just
1496 	 * return DDI_SUCCESS if called.
1497 	 */
1498 	if (cmd == DDI_RESUME)
1499 		return (DDI_SUCCESS);
1500 
1501 	if (cmd != DDI_ATTACH || mc_no_attach != 0)
1502 		return (DDI_FAILURE);
1503 
1504 	bindnm = ddi_binding_name(dip);
1505 	for (bm = mc_bind_map; bm->bm_bindnm != NULL; bm++) {
1506 		if (strcmp(bindnm, bm->bm_bindnm) == 0) {
1507 			func = bm->bm_func;
1508 			break;
1509 		}
1510 	}
1511 
1512 	if (bm->bm_bindnm == NULL)
1513 		return (DDI_FAILURE);
1514 
1515 	/*
1516 	 * We need the device number, which corresponds to the processor node
1517 	 * number plus 24.  The node number can then be used to associate this
1518 	 * memory controller device with a given processor chip.
1519 	 */
1520 	if (ddi_prop_lookup_string(DDI_DEV_T_ANY, dip,
1521 	    DDI_PROP_DONTPASS, "unit-address", &unitstr) != DDI_PROP_SUCCESS) {
1522 		cmn_err(CE_WARN, "failed to find unit-address for %s", bindnm);
1523 		return (DDI_FAILURE);
1524 	}
1525 
1526 	rc = ddi_strtol(unitstr, NULL, 16, &unitaddr);
1527 	ASSERT(rc == 0 && unitaddr >= MC_AMD_DEV_OFFSET);
1528 
1529 	if (rc != 0 || unitaddr < MC_AMD_DEV_OFFSET) {
1530 		cmn_err(CE_WARN, "failed to parse unit address %s for %s\n",
1531 		    unitstr, bindnm);
1532 		ddi_prop_free(unitstr);
1533 		return (DDI_FAILURE);
1534 	}
1535 	ddi_prop_free(unitstr);
1536 
1537 	chipid = unitaddr - MC_AMD_DEV_OFFSET;
1538 
1539 	rw_enter(&mc_lock, RW_WRITER);
1540 
1541 	for (mc = mc_list; mc != NULL; mc = mc->mc_next) {
1542 		if (mc->mc_props.mcp_num == chipid)
1543 			break;
1544 	}
1545 
1546 	/* Integrate this memory controller device into existing set */
1547 	if (mc == NULL) {
1548 		mc = mc_create(chipid);
1549 
1550 		if (mc == NULL) {
1551 			/*
1552 			 * We don't complain here because this is a legitimate
1553 			 * path for MP systems.  On those machines, we'll attach
1554 			 * before all CPUs have been initialized, and thus the
1555 			 * chip verification in mc_create will fail.  We'll be
1556 			 * reattached later for those CPUs.
1557 			 */
1558 			rw_exit(&mc_lock);
1559 			return (DDI_FAILURE);
1560 		}
1561 	} else {
1562 		mc_snapshot_destroy(mc);
1563 	}
1564 
1565 	/* Beyond this point, we're committed to creating this node */
1566 
1567 	mc_fm_init(dip);
1568 
1569 	ASSERT(mc->mc_funcs[func].mcf_devi == NULL);
1570 	mc->mc_funcs[func].mcf_devi = dip;
1571 	mc->mc_funcs[func].mcf_instance = ddi_get_instance(dip);
1572 
1573 	mc->mc_ref++;
1574 
1575 	/*
1576 	 * Add the common properties to this node, and then add any properties
1577 	 * that are specific to this node based upon its configuration space.
1578 	 */
1579 	(void) ddi_prop_update_string(DDI_DEV_T_NONE,
1580 	    dip, "model", (char *)bm->bm_model);
1581 
1582 	(void) ddi_prop_update_int(DDI_DEV_T_NONE,
1583 	    dip, "chip-id", mc->mc_props.mcp_num);
1584 
1585 	if (bm->bm_mkprops != NULL &&
1586 	    mc_pcicfg_setup(mc, bm->bm_func, &cfghdl) == DDI_SUCCESS) {
1587 		bm->bm_mkprops(cfghdl, mc);
1588 		mc_pcicfg_teardown(cfghdl);
1589 	}
1590 
1591 	/*
1592 	 * If this is the last node to be attached for this memory controller,
1593 	 * then create the minor node, enable scrubbers, and register with
1594 	 * cpu module(s) for this chip.
1595 	 */
1596 	if (func == MC_FUNC_DEVIMAP) {
1597 		mc_props_t *mcp = &mc->mc_props;
1598 		int dram_present = 0;
1599 
1600 		if (ddi_create_minor_node(dip, "mc-amd", S_IFCHR,
1601 		    mcp->mcp_num, "ddi_mem_ctrl",
1602 		    0) != DDI_SUCCESS) {
1603 			cmn_err(CE_WARN, "failed to create minor node for chip "
1604 			    "%d memory controller\n",
1605 			    (chipid_t)mcp->mcp_num);
1606 		}
1607 
1608 		/*
1609 		 * Register the memory controller for every CPU of this chip.
1610 		 *
1611 		 * If there is memory present on this node and ECC is enabled
1612 		 * attempt to enable h/w memory scrubbers for this node.
1613 		 * If we are successful in enabling *any* hardware scrubbers,
1614 		 * disable the software memory scrubber.
1615 		 */
1616 		cmi_hdl_walk(mc_attach_cb, (void *)mc, (void *)&mcp->mcp_num,
1617 		    NULL);
1618 
1619 		if (mcp->mcp_lim != mcp->mcp_base) {
1620 			/*
1621 			 * This node may map non-dram memory alone, so we
1622 			 * must check for an enabled chip-select to be
1623 			 * sure there is dram present.
1624 			 */
1625 			mc_cs_t *mccs;
1626 
1627 			for (mccs = mc->mc_cslist; mccs != NULL;
1628 			    mccs = mccs->mccs_next) {
1629 				if (mccs->mccs_props.csp_csbe) {
1630 					dram_present = 1;
1631 					break;
1632 				}
1633 			}
1634 		}
1635 
1636 		if (dram_present && !mc_ecc_enabled(mc)) {
1637 			/*
1638 			 * On a single chip system there is no point in
1639 			 * scrubbing if there is no ECC on the single node.
1640 			 * On a multichip system, necessarily Opteron using
1641 			 * registered ECC-capable DIMMs, if there is memory
1642 			 * present on a node but no ECC there then we'll assume
1643 			 * ECC is disabled for all nodes and we will not enable
1644 			 * the scrubber and wll also disable the software
1645 			 * memscrub thread.
1646 			 */
1647 			rc = 1;
1648 		} else if (!dram_present) {
1649 			/* No memory on this node - others decide memscrub */
1650 			rc = 0;
1651 		} else {
1652 			/*
1653 			 * There is memory on this node and ECC is enabled.
1654 			 * Call via the cpu module to enable memory scrubbing
1655 			 * on this node - we could call directly but then
1656 			 * we may overlap with a request to enable chip-cache
1657 			 * scrubbing.
1658 			 */
1659 			rc = mc_scrubber_enable(mc);
1660 		}
1661 
1662 		if (rc == CMI_SUCCESS && !mc_sw_scrub_disabled++)
1663 			cmi_mc_sw_memscrub_disable();
1664 
1665 		mc_report_testfails(mc);
1666 	}
1667 
1668 	/*
1669 	 * Update nvlist for as far as we have gotten in attach/init.
1670 	 */
1671 	nvlist_free(mc->mc_nvl);
1672 	mc->mc_nvl = mc_nvl_create(mc);
1673 
1674 	rw_exit(&mc_lock);
1675 	return (DDI_SUCCESS);
1676 }
1677 
1678 /*ARGSUSED*/
1679 static int
1680 mc_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
1681 {
1682 	/*
1683 	 * See the comment about suspend in
1684 	 * mc_attach().
1685 	 */
1686 	if (cmd == DDI_SUSPEND)
1687 		return (DDI_SUCCESS);
1688 	else
1689 		return (DDI_FAILURE);
1690 }
1691 
1692 
1693 static struct dev_ops mc_ops = {
1694 	DEVO_REV,		/* devo_rev */
1695 	0,			/* devo_refcnt */
1696 	mc_getinfo,		/* devo_getinfo */
1697 	nulldev,		/* devo_identify */
1698 	nulldev,		/* devo_probe */
1699 	mc_attach,		/* devo_attach */
1700 	mc_detach,		/* devo_detach */
1701 	nodev,			/* devo_reset */
1702 	&mc_cb_ops,		/* devo_cb_ops */
1703 	NULL,			/* devo_bus_ops */
1704 	NULL,			/* devo_power */
1705 	ddi_quiesce_not_needed,		/* devo_quiesce */
1706 };
1707 
1708 static struct modldrv modldrv = {
1709 	&mod_driverops,
1710 	"Memory Controller for AMD processors",
1711 	&mc_ops
1712 };
1713 
1714 static struct modlinkage modlinkage = {
1715 	MODREV_1,
1716 	(void *)&modldrv,
1717 	NULL
1718 };
1719 
1720 int
1721 _init(void)
1722 {
1723 	/*
1724 	 * Refuse to load if there is no PCI config space support.
1725 	 */
1726 	if (pci_getl_func == NULL)
1727 		return (ENOTSUP);
1728 
1729 	rw_init(&mc_lock, NULL, RW_DRIVER, NULL);
1730 	return (mod_install(&modlinkage));
1731 }
1732 
1733 int
1734 _info(struct modinfo *modinfop)
1735 {
1736 	return (mod_info(&modlinkage, modinfop));
1737 }
1738 
1739 int
1740 _fini(void)
1741 {
1742 	int rc;
1743 
1744 	if ((rc = mod_remove(&modlinkage)) != 0)
1745 		return (rc);
1746 
1747 	rw_destroy(&mc_lock);
1748 	return (0);
1749 }
1750