xref: /illumos-gate/usr/src/uts/intel/io/intel_nhm/dimm_topo.c (revision eb9a1df2aeb866bf1de4494433b6d7e5fa07b3ae)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2010 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 /*
28  * Copyright (c) 2018, Joyent, Inc.
29  */
30 
31 #include <sys/types.h>
32 #include <sys/time.h>
33 #include <sys/nvpair.h>
34 #include <sys/cmn_err.h>
35 #include <sys/cred.h>
36 #include <sys/open.h>
37 #include <sys/ddi.h>
38 #include <sys/sunddi.h>
39 #include <sys/conf.h>
40 #include <sys/modctl.h>
41 #include <sys/cyclic.h>
42 #include <sys/errorq.h>
43 #include <sys/stat.h>
44 #include <sys/cpuvar.h>
45 #include <sys/mc_intel.h>
46 #include <sys/mc.h>
47 #include <sys/fm/protocol.h>
48 #include "nhm_log.h"
49 #include "intel_nhm.h"
50 
51 extern nvlist_t *inhm_mc_nvl[MAX_CPU_NODES];
52 extern char closed_page;
53 extern char ecc_enabled;
54 extern char lockstep[MAX_CPU_NODES];
55 extern char mirror_mode[MAX_CPU_NODES];
56 extern char spare_channel[MAX_CPU_NODES];
57 
58 static void
59 inhm_vrank(nvlist_t *vrank, int num, uint64_t dimm_base, uint64_t limit,
60     uint32_t sinterleave, uint32_t cinterleave, uint32_t rinterleave,
61     uint32_t sway, uint32_t cway, uint32_t rway)
62 {
63 	char buf[128];
64 
65 	(void) snprintf(buf, sizeof (buf), "dimm-rank-base-%d", num);
66 	(void) nvlist_add_uint64(vrank, buf, dimm_base);
67 	(void) snprintf(buf, sizeof (buf), "dimm-rank-limit-%d", num);
68 	(void) nvlist_add_uint64(vrank, buf, dimm_base + limit);
69 	if (sinterleave > 1) {
70 		(void) snprintf(buf, sizeof (buf), "dimm-socket-interleave-%d",
71 		    num);
72 		(void) nvlist_add_uint32(vrank, buf, sinterleave);
73 		(void) snprintf(buf, sizeof (buf),
74 		    "dimm-socket-interleave-way-%d", num);
75 		(void) nvlist_add_uint32(vrank, buf, sway);
76 	}
77 	if (cinterleave > 1) {
78 		(void) snprintf(buf, sizeof (buf), "dimm-channel-interleave-%d",
79 		    num);
80 		(void) nvlist_add_uint32(vrank, buf, cinterleave);
81 		(void) snprintf(buf, sizeof (buf),
82 		    "dimm-channel-interleave-way-%d", num);
83 		(void) nvlist_add_uint32(vrank, buf, cway);
84 	}
85 	if (rinterleave > 1) {
86 		(void) snprintf(buf, sizeof (buf), "dimm-rank-interleave-%d",
87 		    num);
88 		(void) nvlist_add_uint32(vrank, buf, rinterleave);
89 		(void) snprintf(buf, sizeof (buf),
90 		    "dimm-rank-interleave-way-%d", num);
91 		(void) nvlist_add_uint32(vrank, buf, rway);
92 	}
93 }
94 
95 static void
96 inhm_rank(nvlist_t *newdimm, nhm_dimm_t *nhm_dimm, uint32_t node,
97     uint8_t channel, uint32_t dimm, uint64_t rank_size)
98 {
99 	nvlist_t **newrank;
100 	int num;
101 	int i;
102 	uint64_t dimm_base;
103 	uint64_t vrank_sz;
104 	uint64_t rank_addr;
105 	uint64_t pa;
106 	uint32_t sinterleave, cinterleave, rinterleave;
107 	uint32_t sway, cway, rway;
108 
109 	newrank = kmem_zalloc(sizeof (nvlist_t *) * nhm_dimm->nranks, KM_SLEEP);
110 	for (i = 0; i < nhm_dimm->nranks; i++) {
111 		(void) nvlist_alloc(&newrank[i], NV_UNIQUE_NAME, KM_SLEEP);
112 		rank_addr = 0;
113 		num = 0;
114 		while (rank_addr < rank_size) {
115 			pa = dimm_to_addr(node, channel, dimm * 4 + i,
116 			    rank_addr, &dimm_base, &vrank_sz, &sinterleave,
117 			    &cinterleave, &rinterleave, &sway, &cway, &rway);
118 			if (pa == -1 || vrank_sz == 0)
119 				break;
120 			inhm_vrank(newrank[i], num, dimm_base,
121 			    vrank_sz * sinterleave * cinterleave * rinterleave,
122 			    sinterleave, cinterleave, rinterleave, sway, cway,
123 			    rway);
124 			rank_addr += vrank_sz;
125 			num++;
126 		}
127 
128 	}
129 	(void) nvlist_add_nvlist_array(newdimm, MCINTEL_NVLIST_RANKS, newrank,
130 	    nhm_dimm->nranks);
131 	for (i = 0; i < nhm_dimm->nranks; i++)
132 		nvlist_free(newrank[i]);
133 	kmem_free(newrank, sizeof (nvlist_t *) * nhm_dimm->nranks);
134 }
135 
136 static nvlist_t *
137 inhm_dimm(nhm_dimm_t *nhm_dimm, uint32_t node, uint8_t channel, uint32_t dimm)
138 {
139 	nvlist_t *newdimm;
140 	uint8_t t;
141 	char sbuf[65];
142 
143 	(void) nvlist_alloc(&newdimm, NV_UNIQUE_NAME, KM_SLEEP);
144 	(void) nvlist_add_uint32(newdimm, "dimm-number", dimm);
145 
146 	if (nhm_dimm->dimm_size >= 1024*1024*1024) {
147 		(void) snprintf(sbuf, sizeof (sbuf), "%dG",
148 		    (int)(nhm_dimm->dimm_size / (1024*1024*1024)));
149 	} else {
150 		(void) snprintf(sbuf, sizeof (sbuf), "%dM",
151 		    (int)(nhm_dimm->dimm_size / (1024*1024)));
152 	}
153 	(void) nvlist_add_string(newdimm, "dimm-size", sbuf);
154 	(void) nvlist_add_uint64(newdimm, "size", nhm_dimm->dimm_size);
155 	(void) nvlist_add_uint32(newdimm, "nbanks", (uint32_t)nhm_dimm->nbanks);
156 	(void) nvlist_add_uint32(newdimm, "ncolumn",
157 	    (uint32_t)nhm_dimm->ncolumn);
158 	(void) nvlist_add_uint32(newdimm, "nrow", (uint32_t)nhm_dimm->nrow);
159 	(void) nvlist_add_uint32(newdimm, "width", (uint32_t)nhm_dimm->width);
160 	(void) nvlist_add_uint32(newdimm, "ranks", (uint32_t)nhm_dimm->nranks);
161 	inhm_rank(newdimm, nhm_dimm, node, channel, dimm,
162 	    nhm_dimm->dimm_size / nhm_dimm->nranks);
163 	if (nhm_dimm->manufacturer[0]) {
164 		t = sizeof (nhm_dimm->manufacturer);
165 		(void) strncpy(sbuf, nhm_dimm->manufacturer, t);
166 		sbuf[t] = 0;
167 		(void) nvlist_add_string(newdimm, "manufacturer", sbuf);
168 	}
169 	if (nhm_dimm->serial_number[0]) {
170 		t = sizeof (nhm_dimm->serial_number);
171 		(void) strncpy(sbuf, nhm_dimm->serial_number, t);
172 		sbuf[t] = 0;
173 		(void) nvlist_add_string(newdimm, FM_FMRI_HC_SERIAL_ID, sbuf);
174 	}
175 	if (nhm_dimm->part_number[0]) {
176 		t = sizeof (nhm_dimm->part_number);
177 		(void) strncpy(sbuf, nhm_dimm->part_number, t);
178 		sbuf[t] = 0;
179 		(void) nvlist_add_string(newdimm, FM_FMRI_HC_PART, sbuf);
180 	}
181 	if (nhm_dimm->revision[0]) {
182 		t = sizeof (nhm_dimm->revision);
183 		(void) strncpy(sbuf, nhm_dimm->revision, t);
184 		sbuf[t] = 0;
185 		(void) nvlist_add_string(newdimm, FM_FMRI_HC_REVISION, sbuf);
186 	}
187 	t = sizeof (nhm_dimm->label);
188 	(void) strncpy(sbuf, nhm_dimm->label, t);
189 	sbuf[t] = 0;
190 	(void) nvlist_add_string(newdimm, FM_FAULT_FRU_LABEL, sbuf);
191 	return (newdimm);
192 }
193 
194 static void
195 inhm_dimmlist(uint32_t node, nvlist_t *nvl)
196 {
197 	nvlist_t **dimmlist;
198 	nvlist_t **newchannel;
199 	int nchannels = CHANNELS_PER_MEMORY_CONTROLLER;
200 	int nd;
201 	uint8_t i, j;
202 	nhm_dimm_t **dimmpp;
203 	nhm_dimm_t *dimmp;
204 
205 	dimmlist =  kmem_zalloc(sizeof (nvlist_t *) * MAX_DIMMS_PER_CHANNEL,
206 	    KM_SLEEP);
207 	newchannel = kmem_zalloc(sizeof (nvlist_t *) * nchannels, KM_SLEEP);
208 	dimmpp = &nhm_dimms[node * CHANNELS_PER_MEMORY_CONTROLLER *
209 	    MAX_DIMMS_PER_CHANNEL];
210 	(void) nvlist_add_string(nvl, "memory-policy",
211 	    closed_page ? "closed-page" : "open-page");
212 	(void) nvlist_add_string(nvl, "memory-ecc",
213 	    ecc_enabled ? lockstep[node] ? "x8" : "x4" : "no");
214 	for (i = 0; i < nchannels; i++) {
215 		(void) nvlist_alloc(&newchannel[i], NV_UNIQUE_NAME, KM_SLEEP);
216 		(void) nvlist_add_string(newchannel[i], "channel-mode",
217 		    CHANNEL_DISABLED(MC_STATUS_RD(node), i) ? "disabled" :
218 		    i != 2 && lockstep[node] ? "lockstep" :
219 		    i != 2 && mirror_mode[node] ?
220 		    REDUNDANCY_LOSS(MC_RAS_STATUS_RD(node)) ?
221 		    "redundancy-loss" : "mirror" :
222 		    i == 2 && spare_channel[node] &&
223 		    !REDUNDANCY_LOSS(MC_RAS_STATUS_RD(node)) ? "spare" :
224 		    "independent");
225 		nd = 0;
226 		for (j = 0; j < MAX_DIMMS_PER_CHANNEL; j++) {
227 			dimmp = *dimmpp;
228 			if (dimmp != NULL) {
229 				dimmlist[nd] = inhm_dimm(dimmp, node, i,
230 				    (uint32_t)j);
231 				nd++;
232 			}
233 			dimmpp++;
234 		}
235 		if (nd) {
236 			(void) nvlist_add_nvlist_array(newchannel[i],
237 			    "memory-dimms", dimmlist, nd);
238 			for (j = 0; j < nd; j++)
239 				nvlist_free(dimmlist[j]);
240 		}
241 	}
242 	(void) nvlist_add_nvlist_array(nvl, MCINTEL_NVLIST_MC, newchannel,
243 	    nchannels);
244 	for (i = 0; i < nchannels; i++)
245 		nvlist_free(newchannel[i]);
246 	kmem_free(dimmlist, sizeof (nvlist_t *) * MAX_DIMMS_PER_CHANNEL);
247 	kmem_free(newchannel, sizeof (nvlist_t *) * nchannels);
248 }
249 
250 char *
251 inhm_mc_name()
252 {
253 	return (NHM_INTERCONNECT);
254 }
255 
256 void
257 inhm_create_nvl(int chip)
258 {
259 	nvlist_t *nvl;
260 
261 	(void) nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP);
262 	(void) nvlist_add_uint8(nvl, MCINTEL_NVLIST_VERSTR,
263 	    MCINTEL_NVLIST_VERS);
264 	(void) nvlist_add_string(nvl, MCINTEL_NVLIST_MEM, inhm_mc_name());
265 	(void) nvlist_add_uint8(nvl, MCINTEL_NVLIST_NMEM, 1);
266 	(void) nvlist_add_uint8(nvl, MCINTEL_NVLIST_NRANKS, 4);
267 	inhm_dimmlist(chip, nvl);
268 
269 	nvlist_free(inhm_mc_nvl[chip]);
270 	inhm_mc_nvl[chip] = nvl;
271 }
272