xref: /illumos-gate/usr/src/uts/intel/io/intel_nb5000/intel_nbdrv.c (revision 2983dda76a6d296fdb560c88114fe41caad1b84f)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #include <sys/types.h>
28 #include <sys/time.h>
29 #include <sys/nvpair.h>
30 #include <sys/cmn_err.h>
31 #include <sys/cred.h>
32 #include <sys/open.h>
33 #include <sys/ddi.h>
34 #include <sys/sunddi.h>
35 #include <sys/conf.h>
36 #include <sys/modctl.h>
37 #include <sys/cyclic.h>
38 #include <sys/errorq.h>
39 #include <sys/stat.h>
40 #include <sys/cpuvar.h>
41 #include <sys/mc_intel.h>
42 #include <sys/mc.h>
43 #include <sys/fm/protocol.h>
44 #include "nb_log.h"
45 #include "nb5000.h"
46 
47 char _depends_on[] = "drv/smbios";
48 
49 nvlist_t *inb_mc_nvl;
50 krwlock_t inb_mc_lock;
51 
52 char *inb_mc_snapshot;
53 uint_t nb_config_gen;
54 uint_t inb_mc_snapshotgen;
55 size_t inb_mc_snapshotsz;
56 static dev_info_t *inb_dip;
57 int nb_allow_detach = 0;
58 int nb_no_smbios;
59 
60 static uint64_t
61 rank_to_base(uint8_t branch, uint8_t rank, uint8_t *interleave, uint64_t *limit,
62     uint64_t *hole_base, uint64_t *hole_size, uint8_t *wayp,
63     uint8_t *branch_interleavep)
64 {
65 	uint8_t i, j;
66 	uint64_t base = 0;
67 	uint64_t lt = 0;
68 	uint64_t h = 0;
69 	uint64_t hs = 0;
70 	uint8_t il = 1;
71 	uint8_t way = 0;
72 	uint8_t branch_interleave = 0;
73 
74 	for (i = 0; i < NB_MEM_RANK_SELECT; i++) {
75 		for (j = 0; j < NB_RANKS_IN_SELECT; j++) {
76 			if (nb_ranks[branch][i].rank[j] == rank) {
77 				base = nb_ranks[branch][i].base;
78 				lt = nb_ranks[branch][i].limit;
79 				il = nb_ranks[branch][i].interleave;
80 				h = nb_ranks[branch][i].hole_base;
81 				hs = nb_ranks[branch][i].hole_size;
82 				way = j;
83 				branch_interleave =
84 				    nb_ranks[branch][i].branch_interleave;
85 				i = NB_MEM_RANK_SELECT;
86 				break;
87 			}
88 		}
89 	}
90 	if (lt == 0) {
91 		for (i = 0; lt == 0 && i < NB_MEM_BRANCH_SELECT; i++) {
92 			if (nb_banks[i].way[branch] &&
93 			    base >= nb_banks[i].base &&
94 			    base < nb_banks[i].base + nb_banks[i].limit) {
95 				lt = nb_banks[i].limit;
96 				break;
97 			}
98 		}
99 	}
100 	*interleave = il;
101 	*limit = lt;
102 	*hole_base = h;
103 	*hole_size = hs;
104 	*wayp = way;
105 	*branch_interleavep = branch_interleave;
106 	return (base);
107 }
108 
109 /*ARGSUSED*/
110 void
111 inb_rank(nvlist_t *newdimm, nb_dimm_t *nb_dimm, uint8_t channel, uint32_t dimm)
112 {
113 	nvlist_t **newrank;
114 	int i;
115 
116 	newrank = kmem_zalloc(sizeof (nvlist_t *) * nb_dimm->nranks, KM_SLEEP);
117 	for (i = 0; i < nb_dimm->nranks; i++) {
118 		uint64_t dimm_base;
119 		uint64_t limit;
120 		uint8_t interleave;
121 		uint8_t way;
122 		uint8_t branch_interleave;
123 		uint64_t hole_base;
124 		uint64_t hole_size;
125 
126 		dimm_base = rank_to_base(channel/nb_channels_per_branch,
127 		    nb_dimm->start_rank + i, &interleave,
128 		    &limit, &hole_base, &hole_size, &way, &branch_interleave);
129 		(void) nvlist_alloc(&newrank[i], NV_UNIQUE_NAME, KM_SLEEP);
130 
131 		(void) nvlist_add_uint64(newrank[i], "dimm-rank-base",
132 		    dimm_base);
133 		if (hole_size) {
134 			(void) nvlist_add_uint64(newrank[i], "dimm-hole",
135 			    hole_base);
136 			(void) nvlist_add_uint64(newrank[i], "dimm-hole-size",
137 			    hole_size);
138 		}
139 		(void) nvlist_add_uint64(newrank[i], "dimm-rank-limit",
140 		    limit);
141 		if (interleave > 1) {
142 			(void) nvlist_add_uint32(newrank[i],
143 			    "dimm-rank-interleave", (uint32_t)interleave);
144 			(void) nvlist_add_uint32(newrank[i],
145 			    "dimm-rank-interleave-way", (uint32_t)way);
146 			if (branch_interleave) {
147 				(void) nvlist_add_uint32(newrank[i],
148 				    "dimm-rank-interleave-branch", (uint32_t)1);
149 			}
150 		}
151 	}
152 	(void) nvlist_add_nvlist_array(newdimm, MCINTEL_NVLIST_RANKS, newrank,
153 	    nb_dimm->nranks);
154 	for (i = 0; i < nb_dimm->nranks; i++)
155 		nvlist_free(newrank[i]);
156 	kmem_free(newrank, sizeof (nvlist_t *) * nb_dimm->nranks);
157 }
158 
159 nvlist_t *
160 inb_dimm(nb_dimm_t *nb_dimm, uint8_t channel, uint32_t dimm)
161 {
162 	nvlist_t *newdimm;
163 	uint8_t t;
164 	char sbuf[65];
165 
166 	(void) nvlist_alloc(&newdimm, NV_UNIQUE_NAME, KM_SLEEP);
167 	(void) nvlist_add_uint32(newdimm, "dimm-number", dimm);
168 
169 	if (nb_dimm->dimm_size >= 1024*1024*1024) {
170 		(void) snprintf(sbuf, sizeof (sbuf), "%dG",
171 		    (int)(nb_dimm->dimm_size / (1024*1024*1024)));
172 	} else {
173 		(void) snprintf(sbuf, sizeof (sbuf), "%dM",
174 		    (int)(nb_dimm->dimm_size / (1024*1024)));
175 	}
176 	(void) nvlist_add_string(newdimm, "dimm-size", sbuf);
177 	(void) nvlist_add_uint64(newdimm, "size", nb_dimm->dimm_size);
178 	(void) nvlist_add_uint32(newdimm, "nbanks", (uint32_t)nb_dimm->nbanks);
179 	(void) nvlist_add_uint32(newdimm, "ncolumn",
180 	    (uint32_t)nb_dimm->ncolumn);
181 	(void) nvlist_add_uint32(newdimm, "nrow", (uint32_t)nb_dimm->nrow);
182 	(void) nvlist_add_uint32(newdimm, "width", (uint32_t)nb_dimm->width);
183 	(void) nvlist_add_int32(newdimm, MCINTEL_NVLIST_1ST_RANK,
184 	    (int32_t)nb_dimm->start_rank);
185 	(void) nvlist_add_uint32(newdimm, "ranks", (uint32_t)nb_dimm->nranks);
186 	inb_rank(newdimm, nb_dimm, channel, dimm);
187 	(void) nvlist_add_uint32(newdimm, "manufacture-id",
188 	    (uint32_t)nb_dimm->manufacture_id);
189 	(void) nvlist_add_uint32(newdimm, "manufacture-location",
190 	    (uint32_t)nb_dimm->manufacture_location);
191 	(void) nvlist_add_uint32(newdimm, "manufacture-week",
192 	    (uint32_t)nb_dimm->manufacture_week);
193 	(void) nvlist_add_uint32(newdimm, "manufacture-year",
194 	    (uint32_t)nb_dimm->manufacture_year + 2000);
195 	/* create Sun Serial number from SPD data */
196 	(void) snprintf(sbuf, sizeof (sbuf), "%04x%02x%02x%02x%08x",
197 	    (uint32_t)nb_dimm->manufacture_id & 0x7fff,
198 	    (uint32_t)nb_dimm->manufacture_location,
199 	    (uint32_t)nb_dimm->manufacture_year,
200 	    (uint32_t)nb_dimm->manufacture_week,
201 	    nb_dimm->serial_number);
202 	(void) nvlist_add_string(newdimm, FM_FMRI_HC_SERIAL_ID, sbuf);
203 	if (nb_dimm->part_number && nb_dimm->part_number[0]) {
204 		t = sizeof (nb_dimm->part_number);
205 		(void) strncpy(sbuf, nb_dimm->part_number, t);
206 		sbuf[t] = 0;
207 		(void) nvlist_add_string(newdimm, FM_FMRI_HC_PART, sbuf);
208 	}
209 	if (nb_dimm->revision && nb_dimm->revision[0]) {
210 		t = sizeof (nb_dimm->revision);
211 		(void) strncpy(sbuf, nb_dimm->revision, t);
212 		sbuf[t] = 0;
213 		(void) nvlist_add_string(newdimm, FM_FMRI_HC_REVISION, sbuf);
214 	}
215 	t = sizeof (nb_dimm->label);
216 	(void) strncpy(sbuf, nb_dimm->label, t);
217 	sbuf[t] = 0;
218 	(void) nvlist_add_string(newdimm, FM_FAULT_FRU_LABEL, sbuf);
219 	return (newdimm);
220 }
221 
222 static void
223 inb_dimmlist(nvlist_t *nvl)
224 {
225 	nvlist_t **dimmlist;
226 	nvlist_t **newchannel;
227 	int nchannels = nb_number_memory_controllers * nb_channels_per_branch;
228 	int nd;
229 	uint8_t i, j;
230 	nb_dimm_t **dimmpp;
231 	nb_dimm_t *dimmp;
232 
233 	dimmlist =  kmem_zalloc(sizeof (nvlist_t *) * nb_dimms_per_channel,
234 	    KM_SLEEP);
235 	newchannel = kmem_zalloc(sizeof (nvlist_t *) * nchannels, KM_SLEEP);
236 	dimmpp = nb_dimms;
237 	for (i = 0; i < nchannels; i++) {
238 		(void) nvlist_alloc(&newchannel[i], NV_UNIQUE_NAME, KM_SLEEP);
239 		nd = 0;
240 		for (j = 0; j < nb_dimms_per_channel; j++) {
241 			dimmp = *dimmpp;
242 			if (dimmp != NULL) {
243 				dimmlist[nd] = inb_dimm(dimmp, i, (uint32_t)j);
244 				nd++;
245 			}
246 			dimmpp++;
247 		}
248 		if (nd) {
249 			(void) nvlist_add_nvlist_array(newchannel[i],
250 			    "memory-dimms", dimmlist, nd);
251 			for (j = 0; j < nd; j++)
252 				nvlist_free(dimmlist[j]);
253 		}
254 	}
255 	(void) nvlist_add_nvlist_array(nvl, MCINTEL_NVLIST_MC, newchannel,
256 	    nchannels);
257 	for (i = 0; i < nchannels; i++)
258 		nvlist_free(newchannel[i]);
259 	kmem_free(dimmlist, sizeof (nvlist_t *) * nb_dimms_per_channel);
260 	kmem_free(newchannel, sizeof (nvlist_t *) * nchannels);
261 }
262 
263 static char *
264 inb_mc_name()
265 {
266 	char *mc;
267 
268 	switch (nb_chipset) {
269 	case INTEL_NB_7300:
270 		mc = "Intel 7300";
271 		break;
272 	case INTEL_NB_5400:
273 		mc = "Intel 5400";
274 		break;
275 	case INTEL_NB_5400A:
276 		mc = "Intel 5400A";
277 		break;
278 	case INTEL_NB_5400B:
279 		mc = "Intel 5400B";
280 		break;
281 	case INTEL_NB_5100:
282 		mc = "Intel 5100";
283 		break;
284 	case INTEL_NB_5000P:
285 		mc = "Intel 5000P";
286 		break;
287 	case INTEL_NB_5000V:
288 		mc = "Intel 5000V";
289 		break;
290 	case INTEL_NB_5000X:
291 		mc = "Intel 5000X";
292 		break;
293 	case INTEL_NB_5000Z:
294 		mc = "Intel 5000Z";
295 		break;
296 	default:
297 		mc = "Intel 5000";
298 		break;
299 	}
300 	return (mc);
301 }
302 
303 static void
304 inb_create_nvl()
305 {
306 	nvlist_t *nvl;
307 
308 	(void) nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP);
309 	(void) nvlist_add_uint8(nvl, MCINTEL_NVLIST_VERSTR,
310 	    MCINTEL_NVLIST_VERS);
311 	(void) nvlist_add_string(nvl, "memory-controller", inb_mc_name());
312 	if (nb_chipset == INTEL_NB_5100)
313 		(void) nvlist_add_uint8(nvl, MCINTEL_NVLIST_NMEM,
314 		    (uint8_t)nb_number_memory_controllers);
315 	inb_dimmlist(nvl);
316 
317 	if (inb_mc_nvl)
318 		nvlist_free(inb_mc_nvl);
319 	inb_mc_nvl = nvl;
320 }
321 
322 static void
323 inb_mc_snapshot_destroy()
324 {
325 	ASSERT(RW_LOCK_HELD(&inb_mc_lock));
326 
327 	if (inb_mc_snapshot == NULL)
328 		return;
329 
330 	kmem_free(inb_mc_snapshot, inb_mc_snapshotsz);
331 	inb_mc_snapshot = NULL;
332 	inb_mc_snapshotsz = 0;
333 	inb_mc_snapshotgen++;
334 }
335 
336 static int
337 inb_mc_snapshot_update()
338 {
339 	ASSERT(RW_LOCK_HELD(&inb_mc_lock));
340 
341 	if (inb_mc_snapshot != NULL)
342 		return (0);
343 
344 	if (nvlist_pack(inb_mc_nvl, &inb_mc_snapshot, &inb_mc_snapshotsz,
345 	    NV_ENCODE_XDR, KM_SLEEP) != 0)
346 		return (-1);
347 
348 	return (0);
349 }
350 
351 /*ARGSUSED*/
352 static int
353 inb_mc_ioctl(dev_t dev, int cmd, intptr_t arg, int mode, cred_t *credp,
354     int *rvalp)
355 {
356 	int rc = 0;
357 	mc_snapshot_info_t mcs;
358 
359 	if (cmd != MC_IOC_SNAPSHOT_INFO && cmd != MC_IOC_SNAPSHOT)
360 		return (EINVAL);
361 
362 	rw_enter(&inb_mc_lock, RW_READER);
363 	if (inb_mc_nvl == NULL || inb_mc_snapshotgen != nb_config_gen) {
364 		if (!rw_tryupgrade(&inb_mc_lock)) {
365 			rw_exit(&inb_mc_lock);
366 			return (EAGAIN);
367 		}
368 		if (inb_mc_nvl)
369 			inb_mc_snapshot_destroy();
370 		inb_create_nvl();
371 		nb_config_gen = inb_mc_snapshotgen;
372 		(void) inb_mc_snapshot_update();
373 	}
374 	switch (cmd) {
375 	case MC_IOC_SNAPSHOT_INFO:
376 		mcs.mcs_size = (uint32_t)inb_mc_snapshotsz;
377 		mcs.mcs_gen = inb_mc_snapshotgen;
378 
379 		if (ddi_copyout(&mcs, (void *)arg, sizeof (mc_snapshot_info_t),
380 		    mode) < 0)
381 			rc = EFAULT;
382 		break;
383 	case MC_IOC_SNAPSHOT:
384 		if (ddi_copyout(inb_mc_snapshot, (void *)arg, inb_mc_snapshotsz,
385 		    mode) < 0)
386 			rc = EFAULT;
387 		break;
388 	}
389 	rw_exit(&inb_mc_lock);
390 	return (rc);
391 }
392 
393 /*ARGSUSED*/
394 static int
395 inb_mc_getinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg,
396     void **result)
397 {
398 	if ((infocmd != DDI_INFO_DEVT2DEVINFO &&
399 	    infocmd != DDI_INFO_DEVT2INSTANCE) || inb_dip == NULL) {
400 		*result = NULL;
401 		return (DDI_FAILURE);
402 	}
403 	if (infocmd == DDI_INFO_DEVT2DEVINFO)
404 		*result = inb_dip;
405 	else
406 		*result = (void *)(uintptr_t)ddi_get_instance(inb_dip);
407 	return (0);
408 }
409 
410 static int
411 inb_mc_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
412 {
413 	if (cmd == DDI_RESUME) {
414 		nb_dev_reinit();
415 		return (DDI_SUCCESS);
416 	}
417 	if (cmd != DDI_ATTACH)
418 		return (DDI_FAILURE);
419 	if (inb_dip == NULL) {
420 		inb_dip = dip;
421 		nb_no_smbios = ddi_prop_get_int(DDI_DEV_T_ANY, dip,
422 		    DDI_PROP_DONTPASS, "no-smbios", 0);
423 		nb_pci_cfg_setup(dip);
424 		(void) ddi_prop_update_string(DDI_DEV_T_NONE, dip, "model",
425 		    inb_mc_name());
426 		if (nb_dev_init()) {
427 			nb_pci_cfg_free();
428 			inb_dip = NULL;
429 			return (DDI_FAILURE);
430 		}
431 		if (ddi_create_minor_node(dip, "mc-intel", S_IFCHR, 0,
432 		    "ddi_mem_ctrl", 0) != DDI_SUCCESS) {
433 			cmn_err(CE_WARN, "failed to create minor node"
434 			    " for memory controller\n");
435 		}
436 		cmi_hdl_walk(inb_mc_register, NULL, NULL, NULL);
437 	}
438 
439 	return (DDI_SUCCESS);
440 }
441 
442 /*ARGSUSED*/
443 static int
444 inb_mc_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
445 {
446 	if (nb_allow_detach && cmd == DDI_DETACH && dip == inb_dip) {
447 		rw_enter(&inb_mc_lock, RW_WRITER);
448 		inb_mc_snapshot_destroy();
449 		rw_exit(&inb_mc_lock);
450 		inb_dip = NULL;
451 		return (DDI_SUCCESS);
452 	} else if (cmd == DDI_SUSPEND || cmd == DDI_PM_SUSPEND) {
453 		return (DDI_SUCCESS);
454 	} else {
455 		return (DDI_FAILURE);
456 	}
457 }
458 
459 /*ARGSUSED*/
460 static int
461 inb_mc_open(dev_t *devp, int flag, int otyp, cred_t *credp)
462 {
463 	if (otyp != OTYP_CHR)
464 		return (EINVAL);
465 
466 	rw_enter(&inb_mc_lock, RW_READER);
467 	if (getminor(*devp) >= 1) {
468 		rw_exit(&inb_mc_lock);
469 		return (EINVAL);
470 	}
471 	rw_exit(&inb_mc_lock);
472 
473 	return (0);
474 }
475 
476 /*ARGSUSED*/
477 static int
478 inb_mc_close(dev_t dev, int flag, int otyp, cred_t *credp)
479 {
480 	return (0);
481 }
482 
483 
484 static struct cb_ops inb_mc_cb_ops = {
485 	inb_mc_open,
486 	inb_mc_close,
487 	nodev,		/* not a block driver */
488 	nodev,		/* no print routine */
489 	nodev,		/* no dump routine */
490 	nodev,		/* no read routine */
491 	nodev,		/* no write routine */
492 	inb_mc_ioctl,
493 	nodev,		/* no devmap routine */
494 	nodev,		/* no mmap routine */
495 	nodev,		/* no segmap routine */
496 	nochpoll,	/* no chpoll routine */
497 	ddi_prop_op,
498 	0,		/* not a STREAMS driver */
499 	D_NEW | D_MP,	/* safe for multi-thread/multi-processor */
500 };
501 
502 static struct dev_ops inb_mc_ops = {
503 	DEVO_REV,		/* devo_rev */
504 	0,			/* devo_refcnt */
505 	inb_mc_getinfo,		/* devo_getinfo */
506 	nulldev,		/* devo_identify */
507 	nulldev,		/* devo_probe */
508 	inb_mc_attach,		/* devo_attach */
509 	inb_mc_detach,		/* devo_detach */
510 	nodev,			/* devo_reset */
511 	&inb_mc_cb_ops,		/* devo_cb_ops */
512 	NULL,			/* devo_bus_ops */
513 	NULL,			/* devo_power */
514 	ddi_quiesce_not_needed,		/* devo_quiesce */
515 };
516 
517 static struct modldrv modldrv = {
518 	&mod_driverops,
519 	"Intel 5000 Memory Controller Hub Module",
520 	&inb_mc_ops
521 };
522 
523 static struct modlinkage modlinkage = {
524 	MODREV_1,
525 	(void *)&modldrv,
526 	NULL
527 };
528 
529 int
530 _init(void)
531 {
532 	int err;
533 
534 	err = nb_init();
535 	if (err == 0 && (err = mod_install(&modlinkage)) == 0)
536 		rw_init(&inb_mc_lock, NULL, RW_DRIVER, NULL);
537 
538 	return (err);
539 }
540 
541 int
542 _info(struct modinfo *modinfop)
543 {
544 	return (mod_info(&modlinkage, modinfop));
545 }
546 
547 int
548 _fini(void)
549 {
550 	int err;
551 
552 	if ((err = mod_remove(&modlinkage)) == 0) {
553 		nb_unload();
554 		rw_destroy(&inb_mc_lock);
555 	}
556 
557 	return (err);
558 }
559