xref: /illumos-gate/usr/src/uts/intel/io/dktp/disk/cmdk.c (revision c8531848467a8747b65b91ab83c4b57f4c000848)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 #include <sys/scsi/scsi.h>
29 #include <sys/dktp/cm.h>
30 #include <sys/dktp/quetypes.h>
31 #include <sys/dktp/queue.h>
32 #include <sys/dktp/fctypes.h>
33 #include <sys/dktp/flowctrl.h>
34 #include <sys/dktp/cmdev.h>
35 #include <sys/dkio.h>
36 #include <sys/dktp/tgdk.h>
37 #include <sys/dktp/dadk.h>
38 #include <sys/dktp/bbh.h>
39 #include <sys/dktp/altsctr.h>
40 #include <sys/dktp/cmdk.h>
41 
42 #include <sys/stat.h>
43 #include <sys/vtoc.h>
44 #include <sys/file.h>
45 #include <sys/dktp/dadkio.h>
46 #include <sys/aio_req.h>
47 
48 #include <sys/cmlb.h>
49 
50 /*
51  * Local Static Data
52  */
53 #ifdef CMDK_DEBUG
54 #define	DENT	0x0001
55 #define	DIO	0x0002
56 
57 static	int	cmdk_debug = DIO;
58 #endif
59 
60 #ifndef	TRUE
61 #define	TRUE	1
62 #endif
63 
64 #ifndef	FALSE
65 #define	FALSE	0
66 #endif
67 
68 /*
69  * NDKMAP is the base number for accessing the fdisk partitions.
70  * c?d?p0 --> cmdk@?,?:q
71  */
72 #define	PARTITION0_INDEX	(NDKMAP + 0)
73 
74 #define	DKTP_DATA		(dkp->dk_tgobjp)->tg_data
75 #define	DKTP_EXT		(dkp->dk_tgobjp)->tg_ext
76 
77 static void *cmdk_state;
78 
79 /*
80  * the cmdk_attach_mutex protects cmdk_max_instance in multi-threaded
81  * attach situations
82  */
83 static kmutex_t cmdk_attach_mutex;
84 static int cmdk_max_instance = 0;
85 
86 /*
87  * Panic dumpsys state
88  * There is only a single flag that is not mutex locked since
89  * the system is prevented from thread switching and cmdk_dump
90  * will only be called in a single threaded operation.
91  */
92 static int	cmdk_indump;
93 
94 /*
95  * Local Function Prototypes
96  */
97 static int cmdk_create_obj(dev_info_t *dip, struct cmdk *dkp);
98 static void cmdk_destroy_obj(dev_info_t *dip, struct cmdk *dkp);
99 static void cmdkmin(struct buf *bp);
100 static int cmdkrw(dev_t dev, struct uio *uio, int flag);
101 static int cmdkarw(dev_t dev, struct aio_req *aio, int flag);
102 
103 /*
104  * Bad Block Handling Functions Prototypes
105  */
106 static void cmdk_bbh_reopen(struct cmdk *dkp);
107 static opaque_t cmdk_bbh_gethandle(opaque_t bbh_data, struct buf *bp);
108 static bbh_cookie_t cmdk_bbh_htoc(opaque_t bbh_data, opaque_t handle);
109 static void cmdk_bbh_freehandle(opaque_t bbh_data, opaque_t handle);
110 static void cmdk_bbh_close(struct cmdk *dkp);
111 static void cmdk_bbh_setalts_idx(struct cmdk *dkp);
112 static int cmdk_bbh_bsearch(struct alts_ent *buf, int cnt, daddr32_t key);
113 
114 static struct bbh_objops cmdk_bbh_ops = {
115 	nulldev,
116 	nulldev,
117 	cmdk_bbh_gethandle,
118 	cmdk_bbh_htoc,
119 	cmdk_bbh_freehandle,
120 	0, 0
121 };
122 
123 static int cmdkopen(dev_t *dev_p, int flag, int otyp, cred_t *credp);
124 static int cmdkclose(dev_t dev, int flag, int otyp, cred_t *credp);
125 static int cmdkstrategy(struct buf *bp);
126 static int cmdkdump(dev_t dev, caddr_t addr, daddr_t blkno, int nblk);
127 static int cmdkioctl(dev_t, int, intptr_t, int, cred_t *, int *);
128 static int cmdkread(dev_t dev, struct uio *uio, cred_t *credp);
129 static int cmdkwrite(dev_t dev, struct uio *uio, cred_t *credp);
130 static int cmdk_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op,
131     int mod_flags, char *name, caddr_t valuep, int *lengthp);
132 static int cmdkaread(dev_t dev, struct aio_req *aio, cred_t *credp);
133 static int cmdkawrite(dev_t dev, struct aio_req *aio, cred_t *credp);
134 
135 /*
136  * Device driver ops vector
137  */
138 
139 static struct cb_ops cmdk_cb_ops = {
140 	cmdkopen, 		/* open */
141 	cmdkclose, 		/* close */
142 	cmdkstrategy, 		/* strategy */
143 	nodev, 			/* print */
144 	cmdkdump, 		/* dump */
145 	cmdkread, 		/* read */
146 	cmdkwrite, 		/* write */
147 	cmdkioctl, 		/* ioctl */
148 	nodev, 			/* devmap */
149 	nodev, 			/* mmap */
150 	nodev, 			/* segmap */
151 	nochpoll, 		/* poll */
152 	cmdk_prop_op, 		/* cb_prop_op */
153 	0, 			/* streamtab  */
154 	D_64BIT | D_MP | D_NEW,	/* Driver comaptibility flag */
155 	CB_REV,			/* cb_rev */
156 	cmdkaread,		/* async read */
157 	cmdkawrite		/* async write */
158 };
159 
160 static int cmdkinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg,
161     void **result);
162 static int cmdkprobe(dev_info_t *dip);
163 static int cmdkattach(dev_info_t *dip, ddi_attach_cmd_t cmd);
164 static int cmdkdetach(dev_info_t *dip, ddi_detach_cmd_t cmd);
165 
166 static void cmdk_setup_pm(dev_info_t *dip, struct cmdk *dkp);
167 static int cmdkresume(dev_info_t *dip);
168 static int cmdksuspend(dev_info_t *dip);
169 static int cmdkpower(dev_info_t *dip, int component, int level);
170 
171 struct dev_ops cmdk_ops = {
172 	DEVO_REV, 		/* devo_rev, */
173 	0, 			/* refcnt  */
174 	cmdkinfo,		/* info */
175 	nulldev, 		/* identify */
176 	cmdkprobe, 		/* probe */
177 	cmdkattach, 		/* attach */
178 	cmdkdetach,		/* detach */
179 	nodev, 			/* reset */
180 	&cmdk_cb_ops, 		/* driver operations */
181 	(struct bus_ops *)0,	/* bus operations */
182 	cmdkpower		/* power */
183 };
184 
185 /*
186  * This is the loadable module wrapper.
187  */
188 #include <sys/modctl.h>
189 
190 extern struct mod_ops mod_driverops;
191 
192 static struct modldrv modldrv = {
193 	&mod_driverops, 	/* Type of module. This one is a driver */
194 	"Common Direct Access Disk %I%",
195 	&cmdk_ops, 				/* driver ops 		*/
196 };
197 
198 static struct modlinkage modlinkage = {
199 	MODREV_1, (void *)&modldrv, NULL
200 };
201 
202 /* Function prototypes for cmlb callbacks */
203 
204 static int cmdk_lb_rdwr(dev_info_t *dip, uchar_t cmd, void *bufaddr,
205     diskaddr_t start, size_t length, void *tg_cookie);
206 
207 static int cmdk_lb_getinfo(dev_info_t *dip, int cmd,  void *arg,
208     void *tg_cookie);
209 
210 static void cmdk_devid_setup(struct cmdk *dkp);
211 static int cmdk_devid_modser(struct cmdk *dkp);
212 static int cmdk_get_modser(struct cmdk *dkp, int ioccmd, char *buf, int len);
213 static int cmdk_devid_fabricate(struct cmdk *dkp);
214 static int cmdk_devid_read(struct cmdk *dkp);
215 
216 static cmlb_tg_ops_t cmdk_lb_ops = {
217 	TG_DK_OPS_VERSION_1,
218 	cmdk_lb_rdwr,
219 	cmdk_lb_getinfo
220 };
221 
222 static boolean_t
223 cmdk_isopen(struct cmdk *dkp, dev_t dev)
224 {
225 	int		part, otyp;
226 	ulong_t		partbit;
227 
228 	ASSERT(MUTEX_HELD((&dkp->dk_mutex)));
229 
230 	part = CMDKPART(dev);
231 	partbit = 1 << part;
232 
233 	/* account for close */
234 	if (dkp->dk_open_lyr[part] != 0)
235 		return (B_TRUE);
236 	for (otyp = 0; otyp < OTYPCNT; otyp++)
237 		if (dkp->dk_open_reg[otyp] & partbit)
238 			return (B_TRUE);
239 	return (B_FALSE);
240 }
241 
242 int
243 _init(void)
244 {
245 	int 	rval;
246 
247 	if (rval = ddi_soft_state_init(&cmdk_state, sizeof (struct cmdk), 7))
248 		return (rval);
249 
250 	mutex_init(&cmdk_attach_mutex, NULL, MUTEX_DRIVER, NULL);
251 	if ((rval = mod_install(&modlinkage)) != 0) {
252 		mutex_destroy(&cmdk_attach_mutex);
253 		ddi_soft_state_fini(&cmdk_state);
254 	}
255 	return (rval);
256 }
257 
258 int
259 _fini(void)
260 {
261 	return (EBUSY);
262 
263 	/*
264 	 * This has been commented out until cmdk is a true
265 	 * unloadable module. Right now x86's are panicking on
266 	 * a diskless reconfig boot.
267 	 */
268 
269 #if 0 	/* bugid 1186679 */
270 	int	rval;
271 
272 	rval = mod_remove(&modlinkage);
273 	if (rval != 0)
274 		return (rval);
275 
276 	mutex_destroy(&cmdk_attach_mutex);
277 	ddi_soft_state_fini(&cmdk_state);
278 
279 	return (0);
280 #endif
281 }
282 
283 int
284 _info(struct modinfo *modinfop)
285 {
286 	return (mod_info(&modlinkage, modinfop));
287 }
288 
289 /*
290  * Autoconfiguration Routines
291  */
292 static int
293 cmdkprobe(dev_info_t *dip)
294 {
295 	int 	instance;
296 	int	status;
297 	struct	cmdk	*dkp;
298 
299 	instance = ddi_get_instance(dip);
300 
301 	if (ddi_get_soft_state(cmdk_state, instance))
302 		return (DDI_PROBE_PARTIAL);
303 
304 	if ((ddi_soft_state_zalloc(cmdk_state, instance) != DDI_SUCCESS) ||
305 	    ((dkp = ddi_get_soft_state(cmdk_state, instance)) == NULL))
306 		return (DDI_PROBE_PARTIAL);
307 
308 	mutex_init(&dkp->dk_mutex, NULL, MUTEX_DRIVER, NULL);
309 	rw_init(&dkp->dk_bbh_mutex, NULL, RW_DRIVER, NULL);
310 	dkp->dk_dip = dip;
311 	mutex_enter(&dkp->dk_mutex);
312 
313 	dkp->dk_dev = makedevice(ddi_driver_major(dip),
314 	    ddi_get_instance(dip) << CMDK_UNITSHF);
315 
316 	/* linkage to dadk and strategy */
317 	if (cmdk_create_obj(dip, dkp) != DDI_SUCCESS) {
318 		mutex_exit(&dkp->dk_mutex);
319 		mutex_destroy(&dkp->dk_mutex);
320 		rw_destroy(&dkp->dk_bbh_mutex);
321 		ddi_soft_state_free(cmdk_state, instance);
322 		return (DDI_PROBE_PARTIAL);
323 	}
324 
325 	status = dadk_probe(DKTP_DATA, KM_NOSLEEP);
326 	if (status != DDI_PROBE_SUCCESS) {
327 		cmdk_destroy_obj(dip, dkp);	/* dadk/strategy linkage  */
328 		mutex_exit(&dkp->dk_mutex);
329 		mutex_destroy(&dkp->dk_mutex);
330 		rw_destroy(&dkp->dk_bbh_mutex);
331 		ddi_soft_state_free(cmdk_state, instance);
332 		return (status);
333 	}
334 
335 	mutex_exit(&dkp->dk_mutex);
336 #ifdef CMDK_DEBUG
337 	if (cmdk_debug & DENT)
338 		PRF("cmdkprobe: instance= %d name= `%s`\n",
339 		    instance, ddi_get_name_addr(dip));
340 #endif
341 	return (status);
342 }
343 
344 static int
345 cmdkattach(dev_info_t *dip, ddi_attach_cmd_t cmd)
346 {
347 	int 		instance;
348 	struct		cmdk *dkp;
349 	char 		*node_type;
350 
351 	switch (cmd) {
352 	case DDI_ATTACH:
353 		break;
354 	case DDI_RESUME:
355 		return (cmdkresume(dip));
356 	default:
357 		return (DDI_FAILURE);
358 	}
359 
360 	instance = ddi_get_instance(dip);
361 	if (!(dkp = ddi_get_soft_state(cmdk_state, instance)))
362 		return (DDI_FAILURE);
363 
364 	dkp->dk_pm_level = CMDK_SPINDLE_UNINIT;
365 	mutex_init(&dkp->dk_mutex, NULL, MUTEX_DRIVER, NULL);
366 
367 	mutex_enter(&dkp->dk_mutex);
368 
369 	/* dadk_attach is an empty function that only returns SUCCESS */
370 	(void) dadk_attach(DKTP_DATA);
371 
372 	node_type = (DKTP_EXT->tg_nodetype);
373 
374 	/*
375 	 * this open allows cmlb to read the device
376 	 * and determine the label types
377 	 * so that cmlb can create minor nodes for device
378 	 */
379 
380 	/* open the target disk	 */
381 	if (dadk_open(DKTP_DATA, 0) != DDI_SUCCESS)
382 		goto fail2;
383 
384 	/* mark as having opened target */
385 	dkp->dk_flag |= CMDK_TGDK_OPEN;
386 
387 	cmlb_alloc_handle((cmlb_handle_t *)&dkp->dk_cmlbhandle);
388 
389 	if (cmlb_attach(dip,
390 	    &cmdk_lb_ops,
391 	    DTYPE_DIRECT,		/* device_type */
392 	    0,				/* removable */
393 	    0,				/* hot pluggable XXX */
394 	    node_type,
395 	    CMLB_CREATE_ALTSLICE_VTOC_16_DTYPE_DIRECT,	/* alter_behaviour */
396 	    dkp->dk_cmlbhandle,
397 	    0) != 0)
398 		goto fail1;
399 
400 	/* Calling validate will create minor nodes according to disk label */
401 	(void) cmlb_validate(dkp->dk_cmlbhandle, 0, 0);
402 
403 	/* set bbh (Bad Block Handling) */
404 	cmdk_bbh_reopen(dkp);
405 
406 	/* setup devid string */
407 	cmdk_devid_setup(dkp);
408 
409 	mutex_enter(&cmdk_attach_mutex);
410 	if (instance > cmdk_max_instance)
411 		cmdk_max_instance = instance;
412 	mutex_exit(&cmdk_attach_mutex);
413 
414 	mutex_exit(&dkp->dk_mutex);
415 
416 	/*
417 	 * Add a zero-length attribute to tell the world we support
418 	 * kernel ioctls (for layered drivers)
419 	 */
420 	(void) ddi_prop_create(DDI_DEV_T_NONE, dip, DDI_PROP_CANSLEEP,
421 	    DDI_KERNEL_IOCTL, NULL, 0);
422 	ddi_report_dev(dip);
423 
424 	/*
425 	 * Initialize power management
426 	 */
427 	mutex_init(&dkp->dk_pm_mutex, NULL, MUTEX_DRIVER, NULL);
428 	cv_init(&dkp->dk_suspend_cv,   NULL, CV_DRIVER, NULL);
429 	cmdk_setup_pm(dip, dkp);
430 
431 	return (DDI_SUCCESS);
432 
433 fail1:
434 	cmlb_free_handle(&dkp->dk_cmlbhandle);
435 	(void) dadk_close(DKTP_DATA);
436 fail2:
437 	cmdk_destroy_obj(dip, dkp);
438 	rw_destroy(&dkp->dk_bbh_mutex);
439 	mutex_exit(&dkp->dk_mutex);
440 	mutex_destroy(&dkp->dk_mutex);
441 	ddi_soft_state_free(cmdk_state, instance);
442 	return (DDI_FAILURE);
443 }
444 
445 
446 static int
447 cmdkdetach(dev_info_t *dip, ddi_detach_cmd_t cmd)
448 {
449 	struct cmdk	*dkp;
450 	int 		instance;
451 	int		max_instance;
452 
453 	switch (cmd) {
454 	case DDI_DETACH:
455 		/* return (DDI_FAILURE); */
456 		break;
457 	case DDI_SUSPEND:
458 		return (cmdksuspend(dip));
459 	default:
460 #ifdef CMDK_DEBUG
461 		if (cmdk_debug & DIO) {
462 			PRF("cmdkdetach: cmd = %d unknown\n", cmd);
463 		}
464 #endif
465 		return (DDI_FAILURE);
466 	}
467 
468 	mutex_enter(&cmdk_attach_mutex);
469 	max_instance = cmdk_max_instance;
470 	mutex_exit(&cmdk_attach_mutex);
471 
472 	/* check if any instance of driver is open */
473 	for (instance = 0; instance < max_instance; instance++) {
474 		dkp = ddi_get_soft_state(cmdk_state, instance);
475 		if (!dkp)
476 			continue;
477 		if (dkp->dk_flag & CMDK_OPEN)
478 			return (DDI_FAILURE);
479 	}
480 
481 	instance = ddi_get_instance(dip);
482 	if (!(dkp = ddi_get_soft_state(cmdk_state, instance)))
483 		return (DDI_SUCCESS);
484 
485 	mutex_enter(&dkp->dk_mutex);
486 
487 	/*
488 	 * The cmdk_part_info call at the end of cmdkattach may have
489 	 * caused cmdk_reopen to do a TGDK_OPEN, make sure we close on
490 	 * detach for case when cmdkopen/cmdkclose never occurs.
491 	 */
492 	if (dkp->dk_flag & CMDK_TGDK_OPEN) {
493 		dkp->dk_flag &= ~CMDK_TGDK_OPEN;
494 		(void) dadk_close(DKTP_DATA);
495 	}
496 
497 	cmlb_detach(dkp->dk_cmlbhandle, 0);
498 	cmlb_free_handle(&dkp->dk_cmlbhandle);
499 	ddi_prop_remove_all(dip);
500 
501 	cmdk_destroy_obj(dip, dkp);	/* dadk/strategy linkage  */
502 	mutex_exit(&dkp->dk_mutex);
503 	mutex_destroy(&dkp->dk_mutex);
504 	rw_destroy(&dkp->dk_bbh_mutex);
505 	mutex_destroy(&dkp->dk_pm_mutex);
506 	cv_destroy(&dkp->dk_suspend_cv);
507 	ddi_soft_state_free(cmdk_state, instance);
508 
509 	return (DDI_SUCCESS);
510 }
511 
512 static int
513 cmdkinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
514 {
515 	dev_t		dev = (dev_t)arg;
516 	int 		instance;
517 	struct	cmdk	*dkp;
518 
519 #ifdef lint
520 	dip = dip;	/* no one ever uses this */
521 #endif
522 #ifdef CMDK_DEBUG
523 	if (cmdk_debug & DENT)
524 		PRF("cmdkinfo: call\n");
525 #endif
526 	instance = CMDKUNIT(dev);
527 
528 	switch (infocmd) {
529 		case DDI_INFO_DEVT2DEVINFO:
530 			if (!(dkp = ddi_get_soft_state(cmdk_state, instance)))
531 				return (DDI_FAILURE);
532 			*result = (void *) dkp->dk_dip;
533 			break;
534 		case DDI_INFO_DEVT2INSTANCE:
535 			*result = (void *)(intptr_t)instance;
536 			break;
537 		default:
538 			return (DDI_FAILURE);
539 	}
540 	return (DDI_SUCCESS);
541 }
542 
543 /*
544  * Initialize the power management components
545  */
546 static void
547 cmdk_setup_pm(dev_info_t *dip, struct cmdk *dkp)
548 {
549 	char *pm_comp[] = { "NAME=cmdk", "0=off", "1=on", NULL };
550 
551 	/*
552 	 * Since the cmdk device does not the 'reg' property,
553 	 * cpr will not call its DDI_SUSPEND/DDI_RESUME entries.
554 	 * The following code is to tell cpr that this device
555 	 * DOES need to be suspended and resumed.
556 	 */
557 	(void) ddi_prop_update_string(DDI_DEV_T_NONE, dip,
558 	    "pm-hardware-state", "needs-suspend-resume");
559 
560 	if (ddi_prop_update_string_array(DDI_DEV_T_NONE, dip,
561 	    "pm-components", pm_comp, 3) == DDI_PROP_SUCCESS) {
562 		if (pm_raise_power(dip, 0, CMDK_SPINDLE_ON) == DDI_SUCCESS) {
563 			mutex_enter(&dkp->dk_pm_mutex);
564 			dkp->dk_pm_level = CMDK_SPINDLE_ON;
565 			dkp->dk_pm_is_enabled = 1;
566 			mutex_exit(&dkp->dk_pm_mutex);
567 		} else {
568 			mutex_enter(&dkp->dk_pm_mutex);
569 			dkp->dk_pm_level = CMDK_SPINDLE_OFF;
570 			dkp->dk_pm_is_enabled = 0;
571 			mutex_exit(&dkp->dk_pm_mutex);
572 		}
573 	} else {
574 		mutex_enter(&dkp->dk_pm_mutex);
575 		dkp->dk_pm_level = CMDK_SPINDLE_UNINIT;
576 		dkp->dk_pm_is_enabled = 0;
577 		mutex_exit(&dkp->dk_pm_mutex);
578 	}
579 }
580 
581 /*
582  * suspend routine, it will be run when get the command
583  * DDI_SUSPEND at detach(9E) from system power management
584  */
585 static int
586 cmdksuspend(dev_info_t *dip)
587 {
588 	struct cmdk	*dkp;
589 	int		instance;
590 	clock_t		count = 0;
591 
592 	instance = ddi_get_instance(dip);
593 	if (!(dkp = ddi_get_soft_state(cmdk_state, instance)))
594 		return (DDI_FAILURE);
595 	mutex_enter(&dkp->dk_mutex);
596 	if (dkp->dk_flag & CMDK_SUSPEND) {
597 		mutex_exit(&dkp->dk_mutex);
598 		return (DDI_SUCCESS);
599 	}
600 	dkp->dk_flag |= CMDK_SUSPEND;
601 
602 	/* need to wait a while */
603 	while (dadk_getcmds(DKTP_DATA) != 0) {
604 		delay(drv_usectohz(1000000));
605 		if (count > 60) {
606 			dkp->dk_flag &= ~CMDK_SUSPEND;
607 			cv_broadcast(&dkp->dk_suspend_cv);
608 			mutex_exit(&dkp->dk_mutex);
609 			return (DDI_FAILURE);
610 		}
611 		count++;
612 	}
613 	mutex_exit(&dkp->dk_mutex);
614 	return (DDI_SUCCESS);
615 }
616 
617 /*
618  * resume routine, it will be run when get the command
619  * DDI_RESUME at attach(9E) from system power management
620  */
621 static int
622 cmdkresume(dev_info_t *dip)
623 {
624 	struct cmdk	*dkp;
625 	int		instance;
626 
627 	instance = ddi_get_instance(dip);
628 	if (!(dkp = ddi_get_soft_state(cmdk_state, instance)))
629 		return (DDI_FAILURE);
630 	mutex_enter(&dkp->dk_mutex);
631 	if (!(dkp->dk_flag & CMDK_SUSPEND)) {
632 		mutex_exit(&dkp->dk_mutex);
633 		return (DDI_FAILURE);
634 	}
635 	dkp->dk_pm_level = CMDK_SPINDLE_ON;
636 	dkp->dk_flag &= ~CMDK_SUSPEND;
637 	cv_broadcast(&dkp->dk_suspend_cv);
638 	mutex_exit(&dkp->dk_mutex);
639 	return (DDI_SUCCESS);
640 
641 }
642 
643 /*
644  * power management entry point, it was used to
645  * change power management component.
646  * Actually, the real hard drive suspend/resume
647  * was handled in ata, so this function is not
648  * doing any real work other than verifying that
649  * the disk is idle.
650  */
651 static int
652 cmdkpower(dev_info_t *dip, int component, int level)
653 {
654 	struct cmdk	*dkp;
655 	int		instance;
656 
657 	instance = ddi_get_instance(dip);
658 	if (!(dkp = ddi_get_soft_state(cmdk_state, instance)) ||
659 	    component != 0 || level > CMDK_SPINDLE_ON ||
660 	    level < CMDK_SPINDLE_OFF) {
661 		return (DDI_FAILURE);
662 	}
663 
664 	mutex_enter(&dkp->dk_pm_mutex);
665 	if (dkp->dk_pm_is_enabled && dkp->dk_pm_level == level) {
666 		mutex_exit(&dkp->dk_pm_mutex);
667 		return (DDI_SUCCESS);
668 	}
669 	mutex_exit(&dkp->dk_pm_mutex);
670 
671 	if ((level == CMDK_SPINDLE_OFF) &&
672 	    (dadk_getcmds(DKTP_DATA) != 0)) {
673 		return (DDI_FAILURE);
674 	}
675 
676 	mutex_enter(&dkp->dk_pm_mutex);
677 	dkp->dk_pm_level = level;
678 	mutex_exit(&dkp->dk_pm_mutex);
679 	return (DDI_SUCCESS);
680 }
681 
682 static int
683 cmdk_prop_op(dev_t dev, dev_info_t *dip, ddi_prop_op_t prop_op, int mod_flags,
684     char *name, caddr_t valuep, int *lengthp)
685 {
686 	struct	cmdk	*dkp;
687 	diskaddr_t	p_lblksrt;
688 	diskaddr_t	p_lblkcnt;
689 
690 #ifdef CMDK_DEBUG
691 	if (cmdk_debug & DENT)
692 		PRF("cmdk_prop_op: call\n");
693 #endif
694 
695 	dkp = ddi_get_soft_state(cmdk_state, ddi_get_instance(dip));
696 
697 	/*
698 	 * Our dynamic properties are all device specific and size oriented.
699 	 * Requests issued under conditions where size is valid are passed
700 	 * to ddi_prop_op_nblocks with the size information, otherwise the
701 	 * request is passed to ddi_prop_op. Size depends on valid label.
702 	 */
703 	if ((dev != DDI_DEV_T_ANY) && (dkp != NULL)) {
704 		if (!cmlb_partinfo(
705 		    dkp->dk_cmlbhandle,
706 		    CMDKPART(dev),
707 		    &p_lblkcnt,
708 		    &p_lblksrt,
709 		    NULL,
710 		    NULL,
711 		    0))
712 			return (ddi_prop_op_nblocks(dev, dip,
713 			    prop_op, mod_flags,
714 			    name, valuep, lengthp,
715 			    (uint64_t)p_lblkcnt));
716 	}
717 
718 	return (ddi_prop_op(dev, dip,
719 	    prop_op, mod_flags,
720 	    name, valuep, lengthp));
721 }
722 
723 /*
724  * dump routine
725  */
726 static int
727 cmdkdump(dev_t dev, caddr_t addr, daddr_t blkno, int nblk)
728 {
729 	int 		instance;
730 	struct	cmdk	*dkp;
731 	diskaddr_t	p_lblksrt;
732 	diskaddr_t	p_lblkcnt;
733 	struct	buf	local;
734 	struct	buf	*bp;
735 
736 #ifdef CMDK_DEBUG
737 	if (cmdk_debug & DENT)
738 		PRF("cmdkdump: call\n");
739 #endif
740 	instance = CMDKUNIT(dev);
741 	if (!(dkp = ddi_get_soft_state(cmdk_state, instance)) || (blkno < 0))
742 		return (ENXIO);
743 
744 	if (cmlb_partinfo(
745 	    dkp->dk_cmlbhandle,
746 	    CMDKPART(dev),
747 	    &p_lblkcnt,
748 	    &p_lblksrt,
749 	    NULL,
750 	    NULL,
751 	    0)) {
752 		return (ENXIO);
753 	}
754 
755 	if ((blkno+nblk) > p_lblkcnt)
756 		return (EINVAL);
757 
758 	cmdk_indump = 1;	/* Tell disk targets we are panic dumpping */
759 
760 	bp = &local;
761 	bzero(bp, sizeof (*bp));
762 	bp->b_flags = B_BUSY;
763 	bp->b_un.b_addr = addr;
764 	bp->b_bcount = nblk << SCTRSHFT;
765 	SET_BP_SEC(bp, ((ulong_t)(p_lblksrt + blkno)));
766 
767 	(void) dadk_dump(DKTP_DATA, bp);
768 	return (bp->b_error);
769 }
770 
771 /*
772  * Copy in the dadkio_rwcmd according to the user's data model.  If needed,
773  * convert it for our internal use.
774  */
775 static int
776 rwcmd_copyin(struct dadkio_rwcmd *rwcmdp, caddr_t inaddr, int flag)
777 {
778 	switch (ddi_model_convert_from(flag)) {
779 		case DDI_MODEL_ILP32: {
780 			struct dadkio_rwcmd32 cmd32;
781 
782 			if (ddi_copyin(inaddr, &cmd32,
783 			    sizeof (struct dadkio_rwcmd32), flag)) {
784 				return (EFAULT);
785 			}
786 
787 			rwcmdp->cmd = cmd32.cmd;
788 			rwcmdp->flags = cmd32.flags;
789 			rwcmdp->blkaddr = (daddr_t)cmd32.blkaddr;
790 			rwcmdp->buflen = cmd32.buflen;
791 			rwcmdp->bufaddr = (caddr_t)(intptr_t)cmd32.bufaddr;
792 			/*
793 			 * Note: we do not convert the 'status' field,
794 			 * as it should not contain valid data at this
795 			 * point.
796 			 */
797 			bzero(&rwcmdp->status, sizeof (rwcmdp->status));
798 			break;
799 		}
800 		case DDI_MODEL_NONE: {
801 			if (ddi_copyin(inaddr, rwcmdp,
802 			    sizeof (struct dadkio_rwcmd), flag)) {
803 				return (EFAULT);
804 			}
805 		}
806 	}
807 	return (0);
808 }
809 
810 /*
811  * If necessary, convert the internal rwcmdp and status to the appropriate
812  * data model and copy it out to the user.
813  */
814 static int
815 rwcmd_copyout(struct dadkio_rwcmd *rwcmdp, caddr_t outaddr, int flag)
816 {
817 	switch (ddi_model_convert_from(flag)) {
818 		case DDI_MODEL_ILP32: {
819 			struct dadkio_rwcmd32 cmd32;
820 
821 			cmd32.cmd = rwcmdp->cmd;
822 			cmd32.flags = rwcmdp->flags;
823 			cmd32.blkaddr = rwcmdp->blkaddr;
824 			cmd32.buflen = rwcmdp->buflen;
825 			ASSERT64(((uintptr_t)rwcmdp->bufaddr >> 32) == 0);
826 			cmd32.bufaddr = (caddr32_t)(uintptr_t)rwcmdp->bufaddr;
827 
828 			cmd32.status.status = rwcmdp->status.status;
829 			cmd32.status.resid = rwcmdp->status.resid;
830 			cmd32.status.failed_blk_is_valid =
831 			    rwcmdp->status.failed_blk_is_valid;
832 			cmd32.status.failed_blk = rwcmdp->status.failed_blk;
833 			cmd32.status.fru_code_is_valid =
834 			    rwcmdp->status.fru_code_is_valid;
835 			cmd32.status.fru_code = rwcmdp->status.fru_code;
836 
837 			bcopy(rwcmdp->status.add_error_info,
838 			    cmd32.status.add_error_info, DADKIO_ERROR_INFO_LEN);
839 
840 			if (ddi_copyout(&cmd32, outaddr,
841 			    sizeof (struct dadkio_rwcmd32), flag))
842 				return (EFAULT);
843 			break;
844 		}
845 		case DDI_MODEL_NONE: {
846 			if (ddi_copyout(rwcmdp, outaddr,
847 			    sizeof (struct dadkio_rwcmd), flag))
848 			return (EFAULT);
849 		}
850 	}
851 	return (0);
852 }
853 
854 /*
855  * ioctl routine
856  */
857 static int
858 cmdkioctl(dev_t dev, int cmd, intptr_t arg, int flag, cred_t *credp, int *rvalp)
859 {
860 	int 		instance;
861 	struct scsi_device *devp;
862 	struct cmdk	*dkp;
863 	char 		data[NBPSCTR];
864 
865 	instance = CMDKUNIT(dev);
866 	if (!(dkp = ddi_get_soft_state(cmdk_state, instance)))
867 		return (ENXIO);
868 
869 	mutex_enter(&dkp->dk_mutex);
870 	while (dkp->dk_flag & CMDK_SUSPEND) {
871 		cv_wait(&dkp->dk_suspend_cv, &dkp->dk_mutex);
872 	}
873 	mutex_exit(&dkp->dk_mutex);
874 
875 	bzero(data, sizeof (data));
876 
877 	switch (cmd) {
878 
879 	case DKIOCGMEDIAINFO: {
880 		struct dk_minfo	media_info;
881 		struct  tgdk_geom phyg;
882 
883 		/* dadk_getphygeom always returns success */
884 		(void) dadk_getphygeom(DKTP_DATA, &phyg);
885 
886 		media_info.dki_lbsize = phyg.g_secsiz;
887 		media_info.dki_capacity = phyg.g_cap;
888 		media_info.dki_media_type = DK_FIXED_DISK;
889 
890 		if (ddi_copyout(&media_info, (void *)arg,
891 		    sizeof (struct dk_minfo), flag)) {
892 			return (EFAULT);
893 		} else {
894 			return (0);
895 		}
896 	}
897 
898 	case DKIOCINFO: {
899 		struct dk_cinfo *info = (struct dk_cinfo *)data;
900 
901 		/* controller information */
902 		info->dki_ctype = (DKTP_EXT->tg_ctype);
903 		info->dki_cnum = ddi_get_instance(ddi_get_parent(dkp->dk_dip));
904 		(void) strcpy(info->dki_cname,
905 		    ddi_get_name(ddi_get_parent(dkp->dk_dip)));
906 
907 		/* Unit Information */
908 		info->dki_unit = ddi_get_instance(dkp->dk_dip);
909 		devp = ddi_get_driver_private(dkp->dk_dip);
910 		info->dki_slave = (CMDEV_TARG(devp)<<3) | CMDEV_LUN(devp);
911 		(void) strcpy(info->dki_dname, ddi_driver_name(dkp->dk_dip));
912 		info->dki_flags = DKI_FMTVOL;
913 		info->dki_partition = CMDKPART(dev);
914 
915 		info->dki_maxtransfer = maxphys / DEV_BSIZE;
916 		info->dki_addr = 1;
917 		info->dki_space = 0;
918 		info->dki_prio = 0;
919 		info->dki_vec = 0;
920 
921 		if (ddi_copyout(data, (void *)arg, sizeof (*info), flag))
922 			return (EFAULT);
923 		else
924 			return (0);
925 	}
926 
927 	case DKIOCSTATE: {
928 		int	state;
929 		int	rval;
930 		diskaddr_t	p_lblksrt;
931 		diskaddr_t	p_lblkcnt;
932 
933 		if (ddi_copyin((void *)arg, &state, sizeof (int), flag))
934 			return (EFAULT);
935 
936 		/* dadk_check_media blocks until state changes */
937 		if (rval = dadk_check_media(DKTP_DATA, &state))
938 			return (rval);
939 
940 		if (state == DKIO_INSERTED) {
941 
942 			if (cmlb_validate(dkp->dk_cmlbhandle, 0, 0) != 0)
943 				return (ENXIO);
944 
945 			if (cmlb_partinfo(dkp->dk_cmlbhandle, CMDKPART(dev),
946 			    &p_lblkcnt, &p_lblksrt, NULL, NULL, 0))
947 				return (ENXIO);
948 
949 			if (p_lblkcnt <= 0)
950 				return (ENXIO);
951 		}
952 
953 		if (ddi_copyout(&state, (caddr_t)arg, sizeof (int), flag))
954 			return (EFAULT);
955 
956 		return (0);
957 	}
958 
959 	/*
960 	 * is media removable?
961 	 */
962 	case DKIOCREMOVABLE: {
963 		int i;
964 
965 		i = (DKTP_EXT->tg_rmb) ? 1 : 0;
966 
967 		if (ddi_copyout(&i, (caddr_t)arg, sizeof (int), flag))
968 			return (EFAULT);
969 
970 		return (0);
971 	}
972 
973 	case DKIOCADDBAD:
974 		/*
975 		 * This is not an update mechanism to add bad blocks
976 		 * to the bad block structures stored on disk.
977 		 *
978 		 * addbadsec(1M) will update the bad block data on disk
979 		 * and use this ioctl to force the driver to re-initialize
980 		 * the list of bad blocks in the driver.
981 		 */
982 
983 		/* start BBH */
984 		cmdk_bbh_reopen(dkp);
985 		return (0);
986 
987 	case DKIOCG_PHYGEOM:
988 	case DKIOCG_VIRTGEOM:
989 	case DKIOCGGEOM:
990 	case DKIOCSGEOM:
991 	case DKIOCGAPART:
992 	case DKIOCSAPART:
993 	case DKIOCGVTOC:
994 	case DKIOCSVTOC:
995 	case DKIOCPARTINFO:
996 	case DKIOCGMBOOT:
997 	case DKIOCSMBOOT:
998 	case DKIOCGETEFI:
999 	case DKIOCSETEFI:
1000 	case DKIOCPARTITION:
1001 	{
1002 		int rc;
1003 
1004 		rc = cmlb_ioctl(dkp->dk_cmlbhandle, dev, cmd, arg, flag,
1005 		    credp, rvalp, 0);
1006 		if (cmd == DKIOCSVTOC)
1007 			cmdk_devid_setup(dkp);
1008 		return (rc);
1009 	}
1010 
1011 	case DIOCTL_RWCMD: {
1012 		struct	dadkio_rwcmd *rwcmdp;
1013 		int	status;
1014 
1015 		rwcmdp = kmem_alloc(sizeof (struct dadkio_rwcmd), KM_SLEEP);
1016 
1017 		status = rwcmd_copyin(rwcmdp, (caddr_t)arg, flag);
1018 
1019 		if (status == 0) {
1020 			bzero(&(rwcmdp->status), sizeof (struct dadkio_status));
1021 			status = dadk_ioctl(DKTP_DATA,
1022 			    dev,
1023 			    cmd,
1024 			    (uintptr_t)rwcmdp,
1025 			    flag,
1026 			    credp,
1027 			    rvalp);
1028 		}
1029 		if (status == 0)
1030 			status = rwcmd_copyout(rwcmdp, (caddr_t)arg, flag);
1031 
1032 		kmem_free(rwcmdp, sizeof (struct dadkio_rwcmd));
1033 		return (status);
1034 	}
1035 
1036 	default:
1037 		return (dadk_ioctl(DKTP_DATA,
1038 		    dev,
1039 		    cmd,
1040 		    arg,
1041 		    flag,
1042 		    credp,
1043 		    rvalp));
1044 	}
1045 }
1046 
1047 /*ARGSUSED1*/
1048 static int
1049 cmdkclose(dev_t dev, int flag, int otyp, cred_t *credp)
1050 {
1051 	int		part;
1052 	ulong_t		partbit;
1053 	int 		instance;
1054 	struct cmdk	*dkp;
1055 	int		lastclose = 1;
1056 	int		i;
1057 
1058 	instance = CMDKUNIT(dev);
1059 	if (!(dkp = ddi_get_soft_state(cmdk_state, instance)) ||
1060 	    (otyp >= OTYPCNT))
1061 		return (ENXIO);
1062 
1063 	mutex_enter(&dkp->dk_mutex);
1064 
1065 	/* check if device has been opened */
1066 	ASSERT(cmdk_isopen(dkp, dev));
1067 	if (!(dkp->dk_flag & CMDK_OPEN)) {
1068 		mutex_exit(&dkp->dk_mutex);
1069 		return (ENXIO);
1070 	}
1071 
1072 	while (dkp->dk_flag & CMDK_SUSPEND) {
1073 		cv_wait(&dkp->dk_suspend_cv, &dkp->dk_mutex);
1074 	}
1075 
1076 	part = CMDKPART(dev);
1077 	partbit = 1 << part;
1078 
1079 	/* account for close */
1080 	if (otyp == OTYP_LYR) {
1081 		ASSERT(dkp->dk_open_lyr[part] > 0);
1082 		if (dkp->dk_open_lyr[part])
1083 			dkp->dk_open_lyr[part]--;
1084 	} else {
1085 		ASSERT((dkp->dk_open_reg[otyp] & partbit) != 0);
1086 		dkp->dk_open_reg[otyp] &= ~partbit;
1087 	}
1088 	dkp->dk_open_exl &= ~partbit;
1089 
1090 	for (i = 0; i < CMDK_MAXPART; i++)
1091 		if (dkp->dk_open_lyr[i] != 0) {
1092 			lastclose = 0;
1093 			break;
1094 		}
1095 
1096 	if (lastclose)
1097 		for (i = 0; i < OTYPCNT; i++)
1098 			if (dkp->dk_open_reg[i] != 0) {
1099 				lastclose = 0;
1100 				break;
1101 			}
1102 
1103 	mutex_exit(&dkp->dk_mutex);
1104 
1105 	if (lastclose)
1106 		cmlb_invalidate(dkp->dk_cmlbhandle, 0);
1107 
1108 	return (DDI_SUCCESS);
1109 }
1110 
1111 /*ARGSUSED3*/
1112 static int
1113 cmdkopen(dev_t *dev_p, int flag, int otyp, cred_t *credp)
1114 {
1115 	dev_t		dev = *dev_p;
1116 	int 		part;
1117 	ulong_t		partbit;
1118 	int 		instance;
1119 	struct	cmdk	*dkp;
1120 	diskaddr_t	p_lblksrt;
1121 	diskaddr_t	p_lblkcnt;
1122 	int		i;
1123 	int		nodelay;
1124 
1125 	instance = CMDKUNIT(dev);
1126 	if (!(dkp = ddi_get_soft_state(cmdk_state, instance)))
1127 		return (ENXIO);
1128 
1129 	if (otyp >= OTYPCNT)
1130 		return (EINVAL);
1131 
1132 	mutex_enter(&dkp->dk_mutex);
1133 	while (dkp->dk_flag & CMDK_SUSPEND) {
1134 		cv_wait(&dkp->dk_suspend_cv, &dkp->dk_mutex);
1135 	}
1136 	mutex_exit(&dkp->dk_mutex);
1137 
1138 	part = CMDKPART(dev);
1139 	partbit = 1 << part;
1140 	nodelay = (flag & (FNDELAY | FNONBLOCK));
1141 
1142 	mutex_enter(&dkp->dk_mutex);
1143 
1144 	if (cmlb_validate(dkp->dk_cmlbhandle, 0, 0) != 0) {
1145 
1146 		/* fail if not doing non block open */
1147 		if (!nodelay) {
1148 			mutex_exit(&dkp->dk_mutex);
1149 			return (ENXIO);
1150 		}
1151 	} else if (cmlb_partinfo(dkp->dk_cmlbhandle, part, &p_lblkcnt,
1152 	    &p_lblksrt, NULL, NULL, 0) == 0) {
1153 
1154 		if (p_lblkcnt <= 0 && (!nodelay || otyp != OTYP_CHR)) {
1155 			mutex_exit(&dkp->dk_mutex);
1156 			return (ENXIO);
1157 		}
1158 	} else {
1159 		/* fail if not doing non block open */
1160 		if (!nodelay) {
1161 			mutex_exit(&dkp->dk_mutex);
1162 			return (ENXIO);
1163 		}
1164 	}
1165 
1166 	if ((DKTP_EXT->tg_rdonly) && (flag & FWRITE)) {
1167 		mutex_exit(&dkp->dk_mutex);
1168 		return (EROFS);
1169 	}
1170 
1171 	/* check for part already opend exclusively */
1172 	if (dkp->dk_open_exl & partbit)
1173 		goto excl_open_fail;
1174 
1175 	/* check if we can establish exclusive open */
1176 	if (flag & FEXCL) {
1177 		if (dkp->dk_open_lyr[part])
1178 			goto excl_open_fail;
1179 		for (i = 0; i < OTYPCNT; i++) {
1180 			if (dkp->dk_open_reg[i] & partbit)
1181 				goto excl_open_fail;
1182 		}
1183 	}
1184 
1185 	/* open will succeed, account for open */
1186 	dkp->dk_flag |= CMDK_OPEN;
1187 	if (otyp == OTYP_LYR)
1188 		dkp->dk_open_lyr[part]++;
1189 	else
1190 		dkp->dk_open_reg[otyp] |= partbit;
1191 	if (flag & FEXCL)
1192 		dkp->dk_open_exl |= partbit;
1193 
1194 	mutex_exit(&dkp->dk_mutex);
1195 	return (DDI_SUCCESS);
1196 
1197 excl_open_fail:
1198 	mutex_exit(&dkp->dk_mutex);
1199 	return (EBUSY);
1200 }
1201 
1202 /*
1203  * read routine
1204  */
1205 /*ARGSUSED2*/
1206 static int
1207 cmdkread(dev_t dev, struct uio *uio, cred_t *credp)
1208 {
1209 	return (cmdkrw(dev, uio, B_READ));
1210 }
1211 
1212 /*
1213  * async read routine
1214  */
1215 /*ARGSUSED2*/
1216 static int
1217 cmdkaread(dev_t dev, struct aio_req *aio, cred_t *credp)
1218 {
1219 	return (cmdkarw(dev, aio, B_READ));
1220 }
1221 
1222 /*
1223  * write routine
1224  */
1225 /*ARGSUSED2*/
1226 static int
1227 cmdkwrite(dev_t dev, struct uio *uio, cred_t *credp)
1228 {
1229 	return (cmdkrw(dev, uio, B_WRITE));
1230 }
1231 
1232 /*
1233  * async write routine
1234  */
1235 /*ARGSUSED2*/
1236 static int
1237 cmdkawrite(dev_t dev, struct aio_req *aio, cred_t *credp)
1238 {
1239 	return (cmdkarw(dev, aio, B_WRITE));
1240 }
1241 
1242 static void
1243 cmdkmin(struct buf *bp)
1244 {
1245 	if (bp->b_bcount > DK_MAXRECSIZE)
1246 		bp->b_bcount = DK_MAXRECSIZE;
1247 }
1248 
1249 static int
1250 cmdkrw(dev_t dev, struct uio *uio, int flag)
1251 {
1252 	int 		instance;
1253 	struct	cmdk	*dkp;
1254 
1255 	instance = CMDKUNIT(dev);
1256 	if (!(dkp = ddi_get_soft_state(cmdk_state, instance)))
1257 		return (ENXIO);
1258 
1259 	mutex_enter(&dkp->dk_mutex);
1260 	while (dkp->dk_flag & CMDK_SUSPEND) {
1261 		cv_wait(&dkp->dk_suspend_cv, &dkp->dk_mutex);
1262 	}
1263 	mutex_exit(&dkp->dk_mutex);
1264 
1265 	return (physio(cmdkstrategy, (struct buf *)0, dev, flag, cmdkmin, uio));
1266 }
1267 
1268 static int
1269 cmdkarw(dev_t dev, struct aio_req *aio, int flag)
1270 {
1271 	int 		instance;
1272 	struct	cmdk	*dkp;
1273 
1274 	instance = CMDKUNIT(dev);
1275 	if (!(dkp = ddi_get_soft_state(cmdk_state, instance)))
1276 		return (ENXIO);
1277 
1278 	mutex_enter(&dkp->dk_mutex);
1279 	while (dkp->dk_flag & CMDK_SUSPEND) {
1280 		cv_wait(&dkp->dk_suspend_cv, &dkp->dk_mutex);
1281 	}
1282 	mutex_exit(&dkp->dk_mutex);
1283 
1284 	return (aphysio(cmdkstrategy, anocancel, dev, flag, cmdkmin, aio));
1285 }
1286 
1287 /*
1288  * strategy routine
1289  */
1290 static int
1291 cmdkstrategy(struct buf *bp)
1292 {
1293 	int 		instance;
1294 	struct	cmdk 	*dkp;
1295 	long		d_cnt;
1296 	diskaddr_t	p_lblksrt;
1297 	diskaddr_t	p_lblkcnt;
1298 
1299 	instance = CMDKUNIT(bp->b_edev);
1300 	if (cmdk_indump || !(dkp = ddi_get_soft_state(cmdk_state, instance)) ||
1301 	    (dkblock(bp) < 0)) {
1302 		bp->b_resid = bp->b_bcount;
1303 		SETBPERR(bp, ENXIO);
1304 		biodone(bp);
1305 		return (0);
1306 	}
1307 
1308 	mutex_enter(&dkp->dk_mutex);
1309 	ASSERT(cmdk_isopen(dkp, bp->b_edev));
1310 	while (dkp->dk_flag & CMDK_SUSPEND) {
1311 		cv_wait(&dkp->dk_suspend_cv, &dkp->dk_mutex);
1312 	}
1313 	mutex_exit(&dkp->dk_mutex);
1314 
1315 	bp->b_flags &= ~(B_DONE|B_ERROR);
1316 	bp->b_resid = 0;
1317 	bp->av_back = NULL;
1318 
1319 	/*
1320 	 * only re-read the vtoc if necessary (force == FALSE)
1321 	 */
1322 	if (cmlb_partinfo(dkp->dk_cmlbhandle, CMDKPART(bp->b_edev),
1323 	    &p_lblkcnt, &p_lblksrt, NULL, NULL, 0)) {
1324 		SETBPERR(bp, ENXIO);
1325 	}
1326 
1327 	if ((bp->b_bcount & (NBPSCTR-1)) || (dkblock(bp) > p_lblkcnt))
1328 		SETBPERR(bp, ENXIO);
1329 
1330 	if ((bp->b_flags & B_ERROR) || (dkblock(bp) == p_lblkcnt)) {
1331 		bp->b_resid = bp->b_bcount;
1332 		biodone(bp);
1333 		return (0);
1334 	}
1335 
1336 	d_cnt = bp->b_bcount >> SCTRSHFT;
1337 	if ((dkblock(bp) + d_cnt) > p_lblkcnt) {
1338 		bp->b_resid = ((dkblock(bp) + d_cnt) - p_lblkcnt) << SCTRSHFT;
1339 		bp->b_bcount -= bp->b_resid;
1340 	}
1341 
1342 	SET_BP_SEC(bp, ((ulong_t)(p_lblksrt + dkblock(bp))));
1343 	if (dadk_strategy(DKTP_DATA, bp) != DDI_SUCCESS) {
1344 		bp->b_resid += bp->b_bcount;
1345 		biodone(bp);
1346 	}
1347 	return (0);
1348 }
1349 
1350 static int
1351 cmdk_create_obj(dev_info_t *dip, struct cmdk *dkp)
1352 {
1353 	struct scsi_device *devp;
1354 	opaque_t	queobjp = NULL;
1355 	opaque_t	flcobjp = NULL;
1356 	char		que_keyvalp[64];
1357 	int		que_keylen;
1358 	char		flc_keyvalp[64];
1359 	int		flc_keylen;
1360 
1361 	ASSERT(mutex_owned(&dkp->dk_mutex));
1362 
1363 	/* Create linkage to queueing routines based on property */
1364 	que_keylen = sizeof (que_keyvalp);
1365 	if (ddi_prop_op(DDI_DEV_T_NONE, dip, PROP_LEN_AND_VAL_BUF,
1366 	    DDI_PROP_CANSLEEP, "queue", que_keyvalp, &que_keylen) !=
1367 	    DDI_PROP_SUCCESS) {
1368 		cmn_err(CE_WARN, "cmdk_create_obj: queue property undefined");
1369 		return (DDI_FAILURE);
1370 	}
1371 	que_keyvalp[que_keylen] = (char)0;
1372 
1373 	if (strcmp(que_keyvalp, "qfifo") == 0) {
1374 		queobjp = (opaque_t)qfifo_create();
1375 	} else if (strcmp(que_keyvalp, "qsort") == 0) {
1376 		queobjp = (opaque_t)qsort_create();
1377 	} else {
1378 		return (DDI_FAILURE);
1379 	}
1380 
1381 	/* Create linkage to dequeueing routines based on property */
1382 	flc_keylen = sizeof (flc_keyvalp);
1383 	if (ddi_prop_op(DDI_DEV_T_NONE, dip, PROP_LEN_AND_VAL_BUF,
1384 	    DDI_PROP_CANSLEEP, "flow_control", flc_keyvalp, &flc_keylen) !=
1385 	    DDI_PROP_SUCCESS) {
1386 		cmn_err(CE_WARN,
1387 		    "cmdk_create_obj: flow-control property undefined");
1388 		return (DDI_FAILURE);
1389 	}
1390 
1391 	flc_keyvalp[flc_keylen] = (char)0;
1392 
1393 	if (strcmp(flc_keyvalp, "dsngl") == 0) {
1394 		flcobjp = (opaque_t)dsngl_create();
1395 	} else if (strcmp(flc_keyvalp, "dmult") == 0) {
1396 		flcobjp = (opaque_t)dmult_create();
1397 	} else {
1398 		return (DDI_FAILURE);
1399 	}
1400 
1401 	/* populate bbh_obj object stored in dkp */
1402 	dkp->dk_bbh_obj.bbh_data = dkp;
1403 	dkp->dk_bbh_obj.bbh_ops = &cmdk_bbh_ops;
1404 
1405 	/* create linkage to dadk */
1406 	dkp->dk_tgobjp = (opaque_t)dadk_create();
1407 
1408 	devp = ddi_get_driver_private(dip);
1409 	(void) dadk_init(DKTP_DATA, devp, flcobjp, queobjp, &dkp->dk_bbh_obj,
1410 	    NULL);
1411 
1412 	return (DDI_SUCCESS);
1413 }
1414 
1415 static void
1416 cmdk_destroy_obj(dev_info_t *dip, struct cmdk *dkp)
1417 {
1418 	char		que_keyvalp[64];
1419 	int		que_keylen;
1420 	char		flc_keyvalp[64];
1421 	int		flc_keylen;
1422 
1423 	ASSERT(mutex_owned(&dkp->dk_mutex));
1424 
1425 	(void) dadk_free((dkp->dk_tgobjp));
1426 	dkp->dk_tgobjp = NULL;
1427 
1428 	que_keylen = sizeof (que_keyvalp);
1429 	if (ddi_prop_op(DDI_DEV_T_NONE, dip, PROP_LEN_AND_VAL_BUF,
1430 	    DDI_PROP_CANSLEEP, "queue", que_keyvalp, &que_keylen) !=
1431 	    DDI_PROP_SUCCESS) {
1432 		cmn_err(CE_WARN, "cmdk_destroy_obj: queue property undefined");
1433 		return;
1434 	}
1435 	que_keyvalp[que_keylen] = (char)0;
1436 
1437 	flc_keylen = sizeof (flc_keyvalp);
1438 	if (ddi_prop_op(DDI_DEV_T_NONE, dip, PROP_LEN_AND_VAL_BUF,
1439 	    DDI_PROP_CANSLEEP, "flow_control", flc_keyvalp, &flc_keylen) !=
1440 	    DDI_PROP_SUCCESS) {
1441 		cmn_err(CE_WARN,
1442 		    "cmdk_destroy_obj: flow-control property undefined");
1443 		return;
1444 	}
1445 	flc_keyvalp[flc_keylen] = (char)0;
1446 }
1447 /*ARGSUSED5*/
1448 static int
1449 cmdk_lb_rdwr(dev_info_t *dip, uchar_t cmd, void *bufaddr,
1450     diskaddr_t start, size_t count, void *tg_cookie)
1451 {
1452 	struct cmdk	*dkp;
1453 	opaque_t	handle;
1454 	int		rc = 0;
1455 	char		*bufa;
1456 
1457 	dkp = ddi_get_soft_state(cmdk_state, ddi_get_instance(dip));
1458 	if (dkp == NULL)
1459 		return (ENXIO);
1460 
1461 	if (cmd != TG_READ && cmd != TG_WRITE)
1462 		return (EINVAL);
1463 
1464 	/* count must be multiple of 512 */
1465 	count = (count + NBPSCTR - 1) & -NBPSCTR;
1466 	handle = dadk_iob_alloc(DKTP_DATA, start, count, KM_SLEEP);
1467 	if (!handle)
1468 		return (ENOMEM);
1469 
1470 	if (cmd == TG_READ) {
1471 		bufa = dadk_iob_xfer(DKTP_DATA, handle, B_READ);
1472 		if (!bufa)
1473 			rc = EIO;
1474 		else
1475 			bcopy(bufa, bufaddr, count);
1476 	} else {
1477 		bufa = dadk_iob_htoc(DKTP_DATA, handle);
1478 		bcopy(bufaddr, bufa, count);
1479 		bufa = dadk_iob_xfer(DKTP_DATA, handle, B_WRITE);
1480 		if (!bufa)
1481 			rc = EIO;
1482 	}
1483 	(void) dadk_iob_free(DKTP_DATA, handle);
1484 
1485 	return (rc);
1486 }
1487 
1488 /*ARGSUSED3*/
1489 static int
1490 cmdk_lb_getinfo(dev_info_t *dip, int cmd, void *arg, void *tg_cookie)
1491 {
1492 
1493 	struct cmdk		*dkp;
1494 	struct tgdk_geom	phyg;
1495 
1496 
1497 	dkp = ddi_get_soft_state(cmdk_state, ddi_get_instance(dip));
1498 	if (dkp == NULL)
1499 		return (ENXIO);
1500 
1501 	switch (cmd) {
1502 	case TG_GETPHYGEOM: {
1503 		cmlb_geom_t *phygeomp = (cmlb_geom_t *)arg;
1504 
1505 		/* dadk_getphygeom always returns success */
1506 		(void) dadk_getphygeom(DKTP_DATA, &phyg);
1507 
1508 		phygeomp->g_capacity	= phyg.g_cap;
1509 		phygeomp->g_nsect	= phyg.g_sec;
1510 		phygeomp->g_nhead	= phyg.g_head;
1511 		phygeomp->g_acyl	= phyg.g_acyl;
1512 		phygeomp->g_ncyl	= phyg.g_cyl;
1513 		phygeomp->g_secsize	= phyg.g_secsiz;
1514 		phygeomp->g_intrlv	= 1;
1515 		phygeomp->g_rpm		= 3600;
1516 
1517 		return (0);
1518 	}
1519 
1520 	case TG_GETVIRTGEOM: {
1521 		cmlb_geom_t *virtgeomp = (cmlb_geom_t *)arg;
1522 		diskaddr_t		capacity;
1523 
1524 		(void) dadk_getgeom(DKTP_DATA, &phyg);
1525 		capacity = phyg.g_cap;
1526 
1527 		/*
1528 		 * If the controller returned us something that doesn't
1529 		 * really fit into an Int 13/function 8 geometry
1530 		 * result, just fail the ioctl.  See PSARC 1998/313.
1531 		 */
1532 		if (capacity < 0 || capacity >= 63 * 254 * 1024)
1533 			return (EINVAL);
1534 
1535 		virtgeomp->g_capacity	= capacity;
1536 		virtgeomp->g_nsect	= 63;
1537 		virtgeomp->g_nhead	= 254;
1538 		virtgeomp->g_ncyl	= capacity / (63 * 254);
1539 		virtgeomp->g_acyl	= 0;
1540 		virtgeomp->g_secsize	= 512;
1541 		virtgeomp->g_intrlv	= 1;
1542 		virtgeomp->g_rpm	= 3600;
1543 
1544 		return (0);
1545 	}
1546 
1547 	case TG_GETCAPACITY:
1548 	case TG_GETBLOCKSIZE:
1549 	{
1550 
1551 		/* dadk_getphygeom always returns success */
1552 		(void) dadk_getphygeom(DKTP_DATA, &phyg);
1553 		if (cmd == TG_GETCAPACITY)
1554 			*(diskaddr_t *)arg = phyg.g_cap;
1555 		else
1556 			*(uint32_t *)arg = (uint32_t)phyg.g_secsiz;
1557 
1558 		return (0);
1559 	}
1560 
1561 	case TG_GETATTR: {
1562 		tg_attribute_t *tgattribute = (tg_attribute_t *)arg;
1563 		if ((DKTP_EXT->tg_rdonly))
1564 			tgattribute->media_is_writable = FALSE;
1565 		else
1566 			tgattribute->media_is_writable = TRUE;
1567 
1568 		return (0);
1569 	}
1570 
1571 	default:
1572 		return (ENOTTY);
1573 	}
1574 }
1575 
1576 
1577 
1578 
1579 
1580 /*
1581  * Create and register the devid.
1582  * There are 4 different ways we can get a device id:
1583  *    1. Already have one - nothing to do
1584  *    2. Build one from the drive's model and serial numbers
1585  *    3. Read one from the disk (first sector of last track)
1586  *    4. Fabricate one and write it on the disk.
1587  * If any of these succeeds, register the deviceid
1588  */
1589 static void
1590 cmdk_devid_setup(struct cmdk *dkp)
1591 {
1592 	int	rc;
1593 
1594 	/* Try options until one succeeds, or all have failed */
1595 
1596 	/* 1. All done if already registered */
1597 	if (dkp->dk_devid != NULL)
1598 		return;
1599 
1600 	/* 2. Build a devid from the model and serial number */
1601 	rc = cmdk_devid_modser(dkp);
1602 	if (rc != DDI_SUCCESS) {
1603 		/* 3. Read devid from the disk, if present */
1604 		rc = cmdk_devid_read(dkp);
1605 
1606 		/* 4. otherwise make one up and write it on the disk */
1607 		if (rc != DDI_SUCCESS)
1608 			rc = cmdk_devid_fabricate(dkp);
1609 	}
1610 
1611 	/* If we managed to get a devid any of the above ways, register it */
1612 	if (rc == DDI_SUCCESS)
1613 		(void) ddi_devid_register(dkp->dk_dip, dkp->dk_devid);
1614 
1615 }
1616 
1617 /*
1618  * Build a devid from the model and serial number
1619  * Return DDI_SUCCESS or DDI_FAILURE.
1620  */
1621 static int
1622 cmdk_devid_modser(struct cmdk *dkp)
1623 {
1624 	int	rc = DDI_FAILURE;
1625 	char	*hwid;
1626 	int	modlen;
1627 	int	serlen;
1628 
1629 	/*
1630 	 * device ID is a concatenation of model number, '=', serial number.
1631 	 */
1632 	hwid = kmem_alloc(CMDK_HWIDLEN, KM_SLEEP);
1633 	modlen = cmdk_get_modser(dkp, DIOCTL_GETMODEL, hwid, CMDK_HWIDLEN);
1634 	if (modlen == 0) {
1635 		rc = DDI_FAILURE;
1636 		goto err;
1637 	}
1638 	hwid[modlen++] = '=';
1639 	serlen = cmdk_get_modser(dkp, DIOCTL_GETSERIAL,
1640 	    hwid + modlen, CMDK_HWIDLEN - modlen);
1641 	if (serlen == 0) {
1642 		rc = DDI_FAILURE;
1643 		goto err;
1644 	}
1645 	hwid[modlen + serlen] = 0;
1646 
1647 	/* Initialize the device ID, trailing NULL not included */
1648 	rc = ddi_devid_init(dkp->dk_dip, DEVID_ATA_SERIAL, modlen + serlen,
1649 	    hwid, (ddi_devid_t *)&dkp->dk_devid);
1650 	if (rc != DDI_SUCCESS) {
1651 		rc = DDI_FAILURE;
1652 		goto err;
1653 	}
1654 
1655 	rc = DDI_SUCCESS;
1656 
1657 err:
1658 	kmem_free(hwid, CMDK_HWIDLEN);
1659 	return (rc);
1660 }
1661 
1662 static int
1663 cmdk_get_modser(struct cmdk *dkp, int ioccmd, char *buf, int len)
1664 {
1665 	dadk_ioc_string_t strarg;
1666 	int		rval;
1667 	char		*s;
1668 	char		ch;
1669 	boolean_t	ret;
1670 	int		i;
1671 	int		tb;
1672 
1673 	strarg.is_buf = buf;
1674 	strarg.is_size = len;
1675 	if (dadk_ioctl(DKTP_DATA,
1676 	    dkp->dk_dev,
1677 	    ioccmd,
1678 	    (uintptr_t)&strarg,
1679 	    FNATIVE | FKIOCTL,
1680 	    NULL,
1681 	    &rval) != 0)
1682 		return (0);
1683 
1684 	/*
1685 	 * valid model/serial string must contain a non-zero non-space
1686 	 * trim trailing spaces/NULL
1687 	 */
1688 	ret = B_FALSE;
1689 	s = buf;
1690 	for (i = 0; i < strarg.is_size; i++) {
1691 		ch = *s++;
1692 		if (ch != ' ' && ch != '\0')
1693 			tb = i + 1;
1694 		if (ch != ' ' && ch != '\0' && ch != '0')
1695 			ret = B_TRUE;
1696 	}
1697 
1698 	if (ret == B_FALSE)
1699 		return (0);
1700 
1701 	return (tb);
1702 }
1703 
1704 /*
1705  * Read a devid from on the first block of the last track of
1706  * the last cylinder.  Make sure what we read is a valid devid.
1707  * Return DDI_SUCCESS or DDI_FAILURE.
1708  */
1709 static int
1710 cmdk_devid_read(struct cmdk *dkp)
1711 {
1712 	diskaddr_t	blk;
1713 	struct dk_devid *dkdevidp;
1714 	uint_t		*ip;
1715 	int		chksum;
1716 	int		i, sz;
1717 	tgdk_iob_handle	handle;
1718 	int		rc = DDI_FAILURE;
1719 
1720 	if (cmlb_get_devid_block(dkp->dk_cmlbhandle, &blk, 0))
1721 		goto err;
1722 
1723 	/* read the devid */
1724 	handle = dadk_iob_alloc(DKTP_DATA, blk, NBPSCTR, KM_SLEEP);
1725 	if (handle == NULL)
1726 		goto err;
1727 
1728 	dkdevidp = (struct dk_devid *)dadk_iob_xfer(DKTP_DATA, handle, B_READ);
1729 	if (dkdevidp == NULL)
1730 		goto err;
1731 
1732 	/* Validate the revision */
1733 	if ((dkdevidp->dkd_rev_hi != DK_DEVID_REV_MSB) ||
1734 	    (dkdevidp->dkd_rev_lo != DK_DEVID_REV_LSB))
1735 		goto err;
1736 
1737 	/* Calculate the checksum */
1738 	chksum = 0;
1739 	ip = (uint_t *)dkdevidp;
1740 	for (i = 0; i < ((NBPSCTR - sizeof (int))/sizeof (int)); i++)
1741 		chksum ^= ip[i];
1742 	if (DKD_GETCHKSUM(dkdevidp) != chksum)
1743 		goto err;
1744 
1745 	/* Validate the device id */
1746 	if (ddi_devid_valid((ddi_devid_t)dkdevidp->dkd_devid) != DDI_SUCCESS)
1747 		goto err;
1748 
1749 	/* keep a copy of the device id */
1750 	sz = ddi_devid_sizeof((ddi_devid_t)dkdevidp->dkd_devid);
1751 	dkp->dk_devid = kmem_alloc(sz, KM_SLEEP);
1752 	bcopy(dkdevidp->dkd_devid, dkp->dk_devid, sz);
1753 
1754 	rc = DDI_SUCCESS;
1755 
1756 err:
1757 	if (handle != NULL)
1758 		(void) dadk_iob_free(DKTP_DATA, handle);
1759 	return (rc);
1760 }
1761 
1762 /*
1763  * Create a devid and write it on the first block of the last track of
1764  * the last cylinder.
1765  * Return DDI_SUCCESS or DDI_FAILURE.
1766  */
1767 static int
1768 cmdk_devid_fabricate(struct cmdk *dkp)
1769 {
1770 	ddi_devid_t	devid = NULL;	/* devid made by ddi_devid_init  */
1771 	struct dk_devid	*dkdevidp;	/* devid struct stored on disk */
1772 	diskaddr_t	blk;
1773 	tgdk_iob_handle	handle = NULL;
1774 	uint_t		*ip, chksum;
1775 	int		i;
1776 	int		rc;
1777 
1778 	rc = ddi_devid_init(dkp->dk_dip, DEVID_FAB, 0, NULL, &devid);
1779 	if (rc != DDI_SUCCESS)
1780 		goto err;
1781 
1782 	if (cmlb_get_devid_block(dkp->dk_cmlbhandle, &blk, 0)) {
1783 		/* no device id block address */
1784 		return (DDI_FAILURE);
1785 	}
1786 
1787 	handle = dadk_iob_alloc(DKTP_DATA, blk, NBPSCTR, KM_SLEEP);
1788 	if (!handle)
1789 		goto err;
1790 
1791 	/* Locate the buffer */
1792 	dkdevidp = (struct dk_devid *)dadk_iob_htoc(DKTP_DATA, handle);
1793 
1794 	/* Fill in the revision */
1795 	bzero(dkdevidp, NBPSCTR);
1796 	dkdevidp->dkd_rev_hi = DK_DEVID_REV_MSB;
1797 	dkdevidp->dkd_rev_lo = DK_DEVID_REV_LSB;
1798 
1799 	/* Copy in the device id */
1800 	i = ddi_devid_sizeof(devid);
1801 	if (i > DK_DEVID_SIZE)
1802 		goto err;
1803 	bcopy(devid, dkdevidp->dkd_devid, i);
1804 
1805 	/* Calculate the chksum */
1806 	chksum = 0;
1807 	ip = (uint_t *)dkdevidp;
1808 	for (i = 0; i < ((NBPSCTR - sizeof (int))/sizeof (int)); i++)
1809 		chksum ^= ip[i];
1810 
1811 	/* Fill in the checksum */
1812 	DKD_FORMCHKSUM(chksum, dkdevidp);
1813 
1814 	/* write the devid */
1815 	(void) dadk_iob_xfer(DKTP_DATA, handle, B_WRITE);
1816 
1817 	dkp->dk_devid = devid;
1818 
1819 	rc = DDI_SUCCESS;
1820 
1821 err:
1822 	if (handle != NULL)
1823 		(void) dadk_iob_free(DKTP_DATA, handle);
1824 
1825 	if (rc != DDI_SUCCESS && devid != NULL)
1826 		ddi_devid_free(devid);
1827 
1828 	return (rc);
1829 }
1830 
1831 static void
1832 cmdk_bbh_free_alts(struct cmdk *dkp)
1833 {
1834 	if (dkp->dk_alts_hdl) {
1835 		(void) dadk_iob_free(DKTP_DATA, dkp->dk_alts_hdl);
1836 		kmem_free(dkp->dk_slc_cnt,
1837 		    NDKMAP * (sizeof (uint32_t) + sizeof (struct alts_ent *)));
1838 		dkp->dk_alts_hdl = NULL;
1839 	}
1840 }
1841 
1842 static void
1843 cmdk_bbh_reopen(struct cmdk *dkp)
1844 {
1845 	tgdk_iob_handle 	handle = NULL;
1846 	diskaddr_t		slcb, slcn, slce;
1847 	struct	alts_parttbl	*ap;
1848 	struct	alts_ent	*enttblp;
1849 	uint32_t		altused;
1850 	uint32_t		altbase;
1851 	uint32_t		altlast;
1852 	int			alts;
1853 	uint16_t		vtoctag;
1854 	int			i, j;
1855 
1856 	/* find slice with V_ALTSCTR tag */
1857 	for (alts = 0; alts < NDKMAP; alts++) {
1858 		if (cmlb_partinfo(
1859 		    dkp->dk_cmlbhandle,
1860 		    alts,
1861 		    &slcn,
1862 		    &slcb,
1863 		    NULL,
1864 		    &vtoctag,
1865 		    0)) {
1866 			goto empty;	/* no partition table exists */
1867 		}
1868 
1869 		if (vtoctag == V_ALTSCTR && slcn > 1)
1870 			break;
1871 	}
1872 	if (alts >= NDKMAP) {
1873 		goto empty;	/* no V_ALTSCTR slice defined */
1874 	}
1875 
1876 	/* read in ALTS label block */
1877 	handle = dadk_iob_alloc(DKTP_DATA, slcb, NBPSCTR, KM_SLEEP);
1878 	if (!handle) {
1879 		goto empty;
1880 	}
1881 
1882 	ap = (struct alts_parttbl *)dadk_iob_xfer(DKTP_DATA, handle, B_READ);
1883 	if (!ap || (ap->alts_sanity != ALTS_SANITY)) {
1884 		goto empty;
1885 	}
1886 
1887 	altused = ap->alts_ent_used;	/* number of BB entries */
1888 	altbase = ap->alts_ent_base;	/* blk offset from begin slice */
1889 	altlast = ap->alts_ent_end;	/* blk offset to last block */
1890 	/* ((altused * sizeof (struct alts_ent) + NBPSCTR - 1) & ~NBPSCTR) */
1891 
1892 	if (altused == 0 ||
1893 	    altbase < 1 ||
1894 	    altbase > altlast ||
1895 	    altlast >= slcn) {
1896 		goto empty;
1897 	}
1898 	(void) dadk_iob_free(DKTP_DATA, handle);
1899 
1900 	/* read in ALTS remapping table */
1901 	handle = dadk_iob_alloc(DKTP_DATA,
1902 	    slcb + altbase,
1903 	    (altlast - altbase + 1) << SCTRSHFT, KM_SLEEP);
1904 	if (!handle) {
1905 		goto empty;
1906 	}
1907 
1908 	enttblp = (struct alts_ent *)dadk_iob_xfer(DKTP_DATA, handle, B_READ);
1909 	if (!enttblp) {
1910 		goto empty;
1911 	}
1912 
1913 	rw_enter(&dkp->dk_bbh_mutex, RW_WRITER);
1914 
1915 	/* allocate space for dk_slc_cnt and dk_slc_ent tables */
1916 	if (dkp->dk_slc_cnt == NULL) {
1917 		dkp->dk_slc_cnt = kmem_alloc(NDKMAP *
1918 		    (sizeof (long) + sizeof (struct alts_ent *)), KM_SLEEP);
1919 	}
1920 	dkp->dk_slc_ent = (struct alts_ent **)(dkp->dk_slc_cnt + NDKMAP);
1921 
1922 	/* free previous BB table (if any) */
1923 	if (dkp->dk_alts_hdl) {
1924 		(void) dadk_iob_free(DKTP_DATA, dkp->dk_alts_hdl);
1925 		dkp->dk_alts_hdl = NULL;
1926 		dkp->dk_altused = 0;
1927 	}
1928 
1929 	/* save linkage to new BB table */
1930 	dkp->dk_alts_hdl = handle;
1931 	dkp->dk_altused = altused;
1932 
1933 	/*
1934 	 * build indexes to BB table by slice
1935 	 * effectively we have
1936 	 *	struct alts_ent *enttblp[altused];
1937 	 *
1938 	 *	uint32_t	dk_slc_cnt[NDKMAP];
1939 	 *	struct alts_ent *dk_slc_ent[NDKMAP];
1940 	 */
1941 	for (i = 0; i < NDKMAP; i++) {
1942 		if (cmlb_partinfo(
1943 		    dkp->dk_cmlbhandle,
1944 		    i,
1945 		    &slcn,
1946 		    &slcb,
1947 		    NULL,
1948 		    NULL,
1949 		    0)) {
1950 			goto empty1;
1951 		}
1952 
1953 		dkp->dk_slc_cnt[i] = 0;
1954 		if (slcn == 0)
1955 			continue;	/* slice is not allocated */
1956 
1957 		/* last block in slice */
1958 		slce = slcb + slcn - 1;
1959 
1960 		/* find first remap entry in after beginnning of slice */
1961 		for (j = 0; j < altused; j++) {
1962 			if (enttblp[j].bad_start + enttblp[j].bad_end >= slcb)
1963 				break;
1964 		}
1965 		dkp->dk_slc_ent[i] = enttblp + j;
1966 
1967 		/* count remap entrys until end of slice */
1968 		for (; j < altused && enttblp[j].bad_start <= slce; j++) {
1969 			dkp->dk_slc_cnt[i] += 1;
1970 		}
1971 	}
1972 
1973 	rw_exit(&dkp->dk_bbh_mutex);
1974 	return;
1975 
1976 empty:
1977 	rw_enter(&dkp->dk_bbh_mutex, RW_WRITER);
1978 empty1:
1979 	if (handle && handle != dkp->dk_alts_hdl)
1980 		(void) dadk_iob_free(DKTP_DATA, handle);
1981 
1982 	if (dkp->dk_alts_hdl) {
1983 		(void) dadk_iob_free(DKTP_DATA, dkp->dk_alts_hdl);
1984 		dkp->dk_alts_hdl = NULL;
1985 	}
1986 
1987 	rw_exit(&dkp->dk_bbh_mutex);
1988 }
1989 
1990 /*ARGSUSED*/
1991 static bbh_cookie_t
1992 cmdk_bbh_htoc(opaque_t bbh_data, opaque_t handle)
1993 {
1994 	struct	bbh_handle *hp;
1995 	bbh_cookie_t ckp;
1996 
1997 	hp = (struct  bbh_handle *)handle;
1998 	ckp = hp->h_cktab + hp->h_idx;
1999 	hp->h_idx++;
2000 	return (ckp);
2001 }
2002 
2003 /*ARGSUSED*/
2004 static void
2005 cmdk_bbh_freehandle(opaque_t bbh_data, opaque_t handle)
2006 {
2007 	struct	bbh_handle *hp;
2008 
2009 	hp = (struct  bbh_handle *)handle;
2010 	kmem_free(handle, (sizeof (struct bbh_handle) +
2011 	    (hp->h_totck * (sizeof (struct bbh_cookie)))));
2012 }
2013 
2014 
2015 /*
2016  *	cmdk_bbh_gethandle remaps the bad sectors to alternates.
2017  *	There are 7 different cases when the comparison is made
2018  *	between the bad sector cluster and the disk section.
2019  *
2020  *	bad sector cluster	gggggggggggbbbbbbbggggggggggg
2021  *	case 1:			   ddddd
2022  *	case 2:				   -d-----
2023  *	case 3:					     ddddd
2024  *	case 4:			         dddddddddddd
2025  *	case 5:			      ddddddd-----
2026  *	case 6:			           ---ddddddd
2027  *	case 7:			           ddddddd
2028  *
2029  *	where:  g = good sector,	b = bad sector
2030  *		d = sector in disk section
2031  *		- = disk section may be extended to cover those disk area
2032  */
2033 
2034 static opaque_t
2035 cmdk_bbh_gethandle(opaque_t bbh_data, struct buf *bp)
2036 {
2037 	struct cmdk		*dkp = (struct cmdk *)bbh_data;
2038 	struct bbh_handle	*hp;
2039 	struct bbh_cookie	*ckp;
2040 	struct alts_ent		*altp;
2041 	uint32_t		alts_used;
2042 	uint32_t		part = CMDKPART(bp->b_edev);
2043 	daddr32_t		lastsec;
2044 	long			d_count;
2045 	int			i;
2046 	int			idx;
2047 	int			cnt;
2048 
2049 	if (part >= V_NUMPAR)
2050 		return (NULL);
2051 
2052 	/*
2053 	 * This if statement is atomic and it will succeed
2054 	 * if there are no bad blocks (almost always)
2055 	 *
2056 	 * so this if is performed outside of the rw_enter for speed
2057 	 * and then repeated inside the rw_enter for safety
2058 	 */
2059 	if (!dkp->dk_alts_hdl) {
2060 		return (NULL);
2061 	}
2062 
2063 	rw_enter(&dkp->dk_bbh_mutex, RW_READER);
2064 
2065 	if (dkp->dk_alts_hdl == NULL) {
2066 		rw_exit(&dkp->dk_bbh_mutex);
2067 		return (NULL);
2068 	}
2069 
2070 	alts_used = dkp->dk_slc_cnt[part];
2071 	if (alts_used == 0) {
2072 		rw_exit(&dkp->dk_bbh_mutex);
2073 		return (NULL);
2074 	}
2075 	altp = dkp->dk_slc_ent[part];
2076 
2077 	/*
2078 	 * binary search for the largest bad sector index in the alternate
2079 	 * entry table which overlaps or larger than the starting d_sec
2080 	 */
2081 	i = cmdk_bbh_bsearch(altp, alts_used, GET_BP_SEC(bp));
2082 	/* if starting sector is > the largest bad sector, return */
2083 	if (i == -1) {
2084 		rw_exit(&dkp->dk_bbh_mutex);
2085 		return (NULL);
2086 	}
2087 	/* i is the starting index.  Set altp to the starting entry addr */
2088 	altp += i;
2089 
2090 	d_count = bp->b_bcount >> SCTRSHFT;
2091 	lastsec = GET_BP_SEC(bp) + d_count - 1;
2092 
2093 	/* calculate the number of bad sectors */
2094 	for (idx = i, cnt = 0; idx < alts_used; idx++, altp++, cnt++) {
2095 		if (lastsec < altp->bad_start)
2096 			break;
2097 	}
2098 
2099 	if (!cnt) {
2100 		rw_exit(&dkp->dk_bbh_mutex);
2101 		return (NULL);
2102 	}
2103 
2104 	/* calculate the maximum number of reserved cookies */
2105 	cnt <<= 1;
2106 	cnt++;
2107 
2108 	/* allocate the handle */
2109 	hp = (struct bbh_handle *)kmem_zalloc((sizeof (*hp) +
2110 	    (cnt * sizeof (*ckp))), KM_SLEEP);
2111 
2112 	hp->h_idx = 0;
2113 	hp->h_totck = cnt;
2114 	ckp = hp->h_cktab = (struct bbh_cookie *)(hp + 1);
2115 	ckp[0].ck_sector = GET_BP_SEC(bp);
2116 	ckp[0].ck_seclen = d_count;
2117 
2118 	altp = dkp->dk_slc_ent[part];
2119 	altp += i;
2120 	for (idx = 0; i < alts_used; i++, altp++) {
2121 		/* CASE 1: */
2122 		if (lastsec < altp->bad_start)
2123 			break;
2124 
2125 		/* CASE 3: */
2126 		if (ckp[idx].ck_sector > altp->bad_end)
2127 			continue;
2128 
2129 		/* CASE 2 and 7: */
2130 		if ((ckp[idx].ck_sector >= altp->bad_start) &&
2131 		    (lastsec <= altp->bad_end)) {
2132 			ckp[idx].ck_sector = altp->good_start +
2133 			    ckp[idx].ck_sector - altp->bad_start;
2134 			break;
2135 		}
2136 
2137 		/* at least one bad sector in our section.  break it. */
2138 		/* CASE 5: */
2139 		if ((lastsec >= altp->bad_start) &&
2140 		    (lastsec <= altp->bad_end)) {
2141 			ckp[idx+1].ck_seclen = lastsec - altp->bad_start + 1;
2142 			ckp[idx].ck_seclen -= ckp[idx+1].ck_seclen;
2143 			ckp[idx+1].ck_sector = altp->good_start;
2144 			break;
2145 		}
2146 		/* CASE 6: */
2147 		if ((ckp[idx].ck_sector <= altp->bad_end) &&
2148 		    (ckp[idx].ck_sector >= altp->bad_start)) {
2149 			ckp[idx+1].ck_seclen = ckp[idx].ck_seclen;
2150 			ckp[idx].ck_seclen = altp->bad_end -
2151 			    ckp[idx].ck_sector + 1;
2152 			ckp[idx+1].ck_seclen -= ckp[idx].ck_seclen;
2153 			ckp[idx].ck_sector = altp->good_start +
2154 			    ckp[idx].ck_sector - altp->bad_start;
2155 			idx++;
2156 			ckp[idx].ck_sector = altp->bad_end + 1;
2157 			continue;	/* check rest of section */
2158 		}
2159 
2160 		/* CASE 4: */
2161 		ckp[idx].ck_seclen = altp->bad_start - ckp[idx].ck_sector;
2162 		ckp[idx+1].ck_sector = altp->good_start;
2163 		ckp[idx+1].ck_seclen = altp->bad_end - altp->bad_start + 1;
2164 		idx += 2;
2165 		ckp[idx].ck_sector = altp->bad_end + 1;
2166 		ckp[idx].ck_seclen = lastsec - altp->bad_end;
2167 	}
2168 
2169 	rw_exit(&dkp->dk_bbh_mutex);
2170 	return ((opaque_t)hp);
2171 }
2172 
2173 static int
2174 cmdk_bbh_bsearch(struct alts_ent *buf, int cnt, daddr32_t key)
2175 {
2176 	int	i;
2177 	int	ind;
2178 	int	interval;
2179 	int	mystatus = -1;
2180 
2181 	if (!cnt)
2182 		return (mystatus);
2183 
2184 	ind = 1; /* compiler complains about possible uninitialized var	*/
2185 	for (i = 1; i <= cnt; i <<= 1)
2186 		ind = i;
2187 
2188 	for (interval = ind; interval; ) {
2189 		if ((key >= buf[ind-1].bad_start) &&
2190 		    (key <= buf[ind-1].bad_end)) {
2191 			return (ind-1);
2192 		} else {
2193 			interval >>= 1;
2194 			if (key < buf[ind-1].bad_start) {
2195 				/* record the largest bad sector index */
2196 				mystatus = ind-1;
2197 				if (!interval)
2198 					break;
2199 				ind = ind - interval;
2200 			} else {
2201 				/*
2202 				 * if key is larger than the last element
2203 				 * then break
2204 				 */
2205 				if ((ind == cnt) || !interval)
2206 					break;
2207 				if ((ind+interval) <= cnt)
2208 					ind += interval;
2209 			}
2210 		}
2211 	}
2212 	return (mystatus);
2213 }
2214