xref: /illumos-gate/usr/src/uts/intel/io/amdzen/zen_umc.c (revision ccac1493decd9d71005b164e6dc843a90409d7b7)
1 /*
2  * This file and its contents are supplied under the terms of the
3  * Common Development and Distribution License ("CDDL"), version 1.0.
4  * You may only use this file in accordance with the terms of version
5  * 1.0 of the CDDL.
6  *
7  * A full copy of the text of the CDDL should have accompanied this
8  * source.  A copy of the CDDL is also available via the Internet at
9  * http://www.illumos.org/license/CDDL.
10  */
11 
12 /*
13  * Copyright 2023 Oxide Computer Company
14  */
15 
16 /*
17  * AMD Zen Unified Memory Controller Driver
18  *
19  * This file forms the core logic around transforming a physical address that
20  * we're used to using into a specific location on a DIMM. This has support for
21  * a wide range of AMD CPUs and APUs ranging from Zen 1 - Zen 4.
22  *
23  * The goal of this driver is to implement the infrastructure and support
24  * necessary to understand how DRAM requests are being routed in the system and
25  * to be able to map those to particular channels and then DIMMs. This is used
26  * as part of RAS (reliability, availability, and serviceability) to enable
27  * aspects around understanding ECC errors, hardware topology, and more. Like
28  * with any software project, there is more to do here. Please see the Future
29  * Work section at the end of this big theory statement for more information.
30  *
31  * -------------------
32  * Driver Organization
33  * -------------------
34  *
35  * This driver is organized into two major pieces:
36  *
37  *   1. Logic to interface with hardware, discover the data fabric, memory
38  *      controller configuration, and transform that into a normalized fashion
39  *      that can be used across all different Zen family CPUs. This is
40  *      implemented generally in this file, and is designed to assume it is in
41  *      the kernel (as it requires access to the SMN, DF PCI registers, and the
42  *      amdzen nexus driver client services).
43  *
44  *   2. Logic that can take the above normalized memory information and perform
45  *      decoding (e.g. physical address to DIMM information). This generally
46  *      lives in common/mc/zen_uc/zen_umc_decode.c. This file is in common/,
47  *      meaning it is designed to be shared by userland and the kernel. Even
48  *      more so, it is designed to operate on a const version of our primary
49  *      data structure (zen_umc_t), not allowing it to be modified. This allows
50  *      us to more easily unit test the decoding logic and utilize it in other
51  *      circumstances such as with the mcdecode utility.
52  *
53  * There is corresponding traditional dev_ops(9S) and cb_ops(9S) logic in the
54  * driver (currently this file) which take care of interfacing with the broader
55  * operating system environment.
56  *
57  * There is only ever one instance of this driver, e.g. it is a singleton in
58  * design pattern parlance. There is a single struct, the zen_umc_t found in the
59  * global (albeit static) variable zen_umc. This structure itself contains a
60  * hierarchical set of structures that describe the system. To make management
61  * of memory simpler, all of the nested structures that we discover from
62  * hardware are allocated in the same structure. The only exception to this rule
63  * is when we cache serialized nvlists for dumping.
64  *
65  * The organization of the structures inside the zen_umc_t, generally mimics the
66  * hardware organization and is structured as follows:
67  *
68  *   +-----------+
69  *   | zen_umc_t |
70  *   +-----------+
71  *        |
72  *        +-------------------------------+
73  *        v                               v
74  *   +--------------+             +--------------+        One instance of the
75  *   | zen_umc_df_t |     ...     | zen_umc_df_t |        zen_umc_df_t per
76  *   +--------------+             +--------------+        discovered DF.
77  *     |||
78  *     |||
79  *     |||    +----------------+         +----------------+  Global DRAM
80  *     ||+--->| df_dram_rule_t |   ...   | df_dram_rule_t |  rules for the
81  *     ||     +----------------+         +----------------+  platform.
82  *     ||
83  *     ||    +--------------------+       +--------------------+  UMC remap
84  *     |+--->| zen_umc_cs_remap_t |  ...  | zen_umc_cs_remap_t |  rule arrays.
85  *     |     +--------------------+       +--------------------+
86  *     |
87  *     v
88  *    +----------------+         +----------------+   One structure per
89  *    | zen_umc_chan_t |   ...   | zen_umc_chan_t |   discovered DDR4/5
90  *    +----------------+         +----------------+   memory channel.
91  *     ||||
92  *     ||||
93  *     ||||    +----------------+       +----------------+   Channel specific
94  *     |||+--->| df_dram_rule_t |  ...  | df_dram_rule_t |   copy of DRAM rules.
95  *     |||     +----------------+       +----------------+   Less than global.
96  *     |||
97  *     |||     +---------------+       +---------------+   Per-Channel DRAM
98  *     ||+---->| chan_offset_t |  ...  | chan_offset_t |   offset that is used
99  *     ||      +---------------+       +---------------+   for normalization.
100  *     ||
101  *     ||      +-----------------+                         Channel-specific
102  *     |+----->| umc_chan_hash_t |                         hashing rules.
103  *     |       +-----------------+
104  *     |
105  *     |       +------------+         +------------+    One structure for
106  *     +------>| umc_dimm_t |   ...   | umc_dimm_t |    each DIMM in the
107  *             +------------+         +------------+    channel. Always two.
108  *                |
109  *                |     +----------+         +----------+   Per chip-select
110  *                +---> | umc_cs_t |   ...   | umc_cs_t |   data. Always two.
111  *                      +----------+         +----------+
112  *
113  * In the data structures themselves you'll often find several pieces of data
114  * that have the term 'raw' in their name. The point of these is to basically
115  * capture the original value that we read from the register before processing
116  * it. These are generally used either for debugging or to help answer future
117  * curiosity with resorting to the udf and usmn tooling, which hopefully aren't
118  * actually installed on systems.
119  *
120  * With the exception of some of the members in the zen_umc_t that are around
121  * management of state for userland ioctls, everything in the structure is
122  * basically write-once and from that point on should be treated as read-only.
123  *
124  * ---------------
125  * Memory Decoding
126  * ---------------
127  *
128  * To understand the process of memory decoding, it's worth going through and
129  * understanding a bunch of the terminology that is used in this process. As an
130  * additional reference when understanding this, you may want to turn to either
131  * an older generation AMD BIOS and Kernel Developer's Guide or the more current
132  * Processor Programming Reference. In addition, the imc driver, which is the
133  * Intel equivalent, also provides an additional bit of reference.
134  *
135  * SYSTEM ADDRESS
136  *
137  *	This is a physical address and is the way that the operating system
138  *	normally thinks of memory. System addresses can refer to many different
139  *	things. For example, you have traditional DRAM, memory-mapped PCIe
140  *	devices, peripherals that the processor exposes such as the xAPIC, data
141  *	from the FCH (Fusion Controller Hub), etc.
142  *
143  * TOM, TOM2, and the DRAM HOLE
144  *
145  *	Physical memory has a complicated layout on x86 in part because of
146  *	support for traditional 16-bit and 32-bit systems. As a result, contrary
147  *	to popular belief, DRAM is not at a consistent address range in the
148  *	processor. AMD processors have a few different ranges. There is a 32-bit
149  *	region that starts at effectively physical address zero and goes to the
150  *	TOM MSR (top of memory -- Core::X86::Msr::TOP_MEM). This indicates a
151  *	limit below 4 GiB, generally around 2 GiB.
152  *
153  *	From there, the next region of DRAM starts at 4 GiB and goes to TOM2
154  *	(top of memory 2 -- Core::X86::Msr::TOM2). The region between TOM and
155  *	4 GiB is called the DRAM hole. Physical addresses in this region are
156  *	used for memory mapped I/O. This breaks up contiguous physical
157  *	addresses being used for DRAM, creating a "hole".
158  *
159  * DATA FABRIC
160  *
161  *	The data fabric (DF) is the primary interface that different parts of
162  *	the system use to communicate with one another. This includes the I/O
163  *	engines (where PCIe traffic goes), CPU caches and their cores, memory
164  *	channels, cross-socket communication, and a whole lot more. The first
165  *	part of decoding addresses and figuring out which DRAM channel an
166  *	address should be directed to all come from the data fabric.
167  *
168  *	The data fabric is comprised of instances. So there is one instance for
169  *	each group of cores, each memory channel, etc. Each instance has its own
170  *	independent set of register information. As the data fabric is a series
171  *	of devices exposed over PCI, if you do a normal PCI configuration space
172  *	read or write that'll end up broadcasting the I/O. Instead, to access a
173  *	particular instance's register information there is an indirect access
174  *	mechanism. The primary way that this driver accesses data fabric
175  *	registers is via these indirect reads.
176  *
177  *	There is one instance of the Data Fabric per socket starting with Zen 2.
178  *	In Zen 1, there was one instance of the data fabric per CCD -- core
179  *	complex die (see cpuid.c's big theory statement for more information).
180  *
181  * DF INSTANCE ID
182  *
183  *	A DF instance ID is an identifier for a single entity or component in a
184  *	data fabric.  The set of instance IDs is unique only with a single data
185  *	fabric. So for example, each memory channel, I/O endpoint (e.g. PCIe
186  *	logic), group of cores, has its own instance ID. Anything within the
187  *	same data fabric (e.g. the same die) can be reached via its instance ID.
188  *	The instance ID is used to indicate which instance to contact when
189  *	performing indirect accesses.
190  *
191  *	Not everything that has an instance ID will be globally routable (e.g.
192  *	between multiple sockets). For things that are, such as the memory
193  *	channels and coherent core initiators, there is a second ID called a
194  *	fabric ID.
195  *
196  * DF FABRIC ID
197  *
198  *	A DF fabric ID is an identifier that combines information to indicate
199  *	both which instance of the data fabric a component is on and a component
200  *	itself. So with this number you can distinguish between a memory channel
201  *	on one of two sockets. A Fabric ID is made up of two parts. The upper
202  *	part indicates which DF we are talking to and is referred to as a Node
203  *	ID. The Node ID is itself broken into two parts: one that identifies a
204  *	socket, and one that identifies a die. The lower part of a fabric ID is
205  *	called a component ID and indicates which component in a particular data
206  *	fabric that we are talking to. While only a subset of the total
207  *	components in the data fabric are routable, for everything that is, its
208  *	component ID matches its instance ID.
209  *
210  *	Put differently, the component portion of a fabric ID and a component's
211  *	instance ID are always the same for routable entities. For things which
212  *	cannot be routed, they only have an instance ID and no fabric ID.
213  *	Because this code is always interacting with data fabric components that
214  *	are routable, sometimes instance ID and the component ID portion of the
215  *	data fabric ID may be used interchangeably.
216  *
217  *	Finally, it's worth calling out that the number of bits that are used to
218  *	indicate the socket, die, and component in a fabric ID changes from
219  *	hardware generation to hardware generation.
220  *
221  *	Inside the code here, the socket and die decomposition information is
222  *	always relative to the node ID. AMD phrases the decomposition
223  *	information in terms of a series of masks and shifts. This is
224  *	information that can be retrieved from the data fabric itself, allowing
225  *	us to avoid hardcoding too much information other than which registers
226  *	actually have which fields. With both masks and shifts, it's important
227  *	to establish which comes first. We follow AMD's convention and always
228  *	apply masks before shifts. With that, let's look at an example of a
229  *	made up bit set:
230  *
231  *	Assumptions (to make this example simple):
232  *	  o The fabric ID is 16 bits
233  *	  o The component ID is 8 bits
234  *	  o The node ID is 8 bits
235  *	  o The socket and die ID are both 4 bits
236  *
237  *	Here, let's say that we have the ID 0x2106. This decomposes into a
238  *	socket 0x2, die 0x1, and component 0x6. Here is how that works in more
239  *	detail:
240  *
241  *	          0x21      0x06
242  *	        |------|  |------|
243  *	        Node ID   Component ID
244  *	Mask:    0xff00    0x00ff
245  *	Shift:   8         0
246  *
247  *	Next we would decompose the Node ID as:
248  *	         0x2        0x1
249  *	       |------|  |------|
250  *	       Sock ID    Die ID
251  *	Mask:   0xf0      0x0f
252  *	Shift:  4         0
253  *
254  *	Composing a fabric ID from its parts would work in a similar way by
255  *	applying masks and shifts.
256  *
257  * NORMAL ADDRESS
258  *
259  *	A normal address is one of the primary address types that AMD uses in
260  *	memory decoding. It takes into account the DRAM hole, interleave
261  *	settings, and is basically the address that is dispatched to the broader
262  *	data fabric towards a particular DRAM channel.
263  *
264  *	Often, phrases like 'normalizing the address' or normalization refer to
265  *	the process of transforming a system address into the channel address.
266  *
267  * INTERLEAVING
268  *
269  *	The idea of interleaving is to take a contiguous range and weave it
270  *	between multiple different actual entities. Generally certain bits in
271  *	the range are used to select one of several smaller regions. For
272  *	example, if you have 8 regions each that are 4 GiB in size, that creates
273  *	a single 32 GiB region. You can use three bits in that 32 GiB space to
274  *	select one of the 8 regions. For a more visual example, see the
275  *	definition of this in uts/intel/io/imc/imc.c.
276  *
277  * CHANNEL
278  *
279  *	A channel is used to refer to a single memory channel. This is sometimes
280  *	called a DRAM channel as well. A channel operates in a specific mode
281  *	based on the JEDEC DRAM standards (e.g. DDR4, LPDDR5, etc.). A
282  *	(LP)DDR4/5 channel may support up to two DIMMs inside the channel. The
283  *	number of slots is platform dependent and from there the number of DIMMs
284  *	installed can vary. Generally speaking, a DRAM channel defines a set
285  *	number of signals, most of which go to all DIMMs in the channel, what
286  *	varies is which "chip-select" is activated which causes a given DIMM to
287  *	pay attention or not.
288  *
289  * DIMM
290  *
291  *	A DIMM refers to a physical hardware component that is installed into a
292  *	computer to provide access to dynamic memory. Originally this stood for
293  *	dual-inline memory module, though the DIMM itself has evolved beyond
294  *	that. A DIMM is organized into various pages, which are addressed by
295  *	a combination of rows, columns, banks, bank groups, and ranks. How this
296  *	fits together changes from generation to generation and is standardized
297  *	in something like DDR4, LPDDR4, DDR5, LPDDR5, etc. These standards
298  *	define the general individual modules that are assembled into a DIMM.
299  *	There are slightly different standards for combined memory modules
300  *	(which is what we use the term DIMM for). Examples of those include
301  *	things like registered DIMMs (RDIMMs).
302  *
303  *	A DDR4 DIMM contains a single channel that is 64-bits wide with 8 check
304  *	bits. A DDR5 DIMM has a notable change in this scheme from earlier DDR
305  *	standards. It breaks a single DDR5 DIMM into two sub-channels. Each
306  *	sub-channel is independently addressed and contains 32-bits of data and
307  *	8-bits of check data.
308  *
309  * ROW AND COLUMN
310  *
311  *	The most basic building block of a DIMM is a die. A DIMM consists of
312  *	multiple dies that are organized together (we'll discuss the
313  *	organization next). A given die is organized into a series of rows and
314  *	columns. First, one selects a row. At which point one is able to select
315  *	a specific column. It is more expensive to change rows than columns,
316  *	leading a given row to contain approximately 1 KiB of data spread across
317  *	its columns. The exact size depends on the device. Each row/column is a
318  *	series of capacitors and transistors. The transistor is used to select
319  *	data from the capacitor and the capacitor actually contains the logical
320  *	0/1 value.
321  *
322  * BANKS AND BANK GROUPS
323  *
324  *	An individual DRAM die is organized in something called a bank. A DIMM
325  *	has a number of banks that sit in series. These are then grouped into
326  *	larger bank groups. Generally speaking, each bank group has the same
327  *	number of banks. Let's take a look at an example of a system with 4
328  *	bank groups, each with 4 banks.
329  *
330  *         +-----------------------+           +-----------------------+
331  *         | Bank Group 0          |           | Bank Group 1          |
332  *         | +--------+ +--------+ |           | +--------+ +--------+ |
333  *         | | Bank 0 | | Bank 1 | |           | | Bank 0 | | Bank 1 | |
334  *         | +--------+ +--------+ |           | +--------+ +--------+ |
335  *         | +--------+ +--------+ |           | +--------+ +--------+ |
336  *         | | Bank 2 | | Bank 3 | |           | | Bank 2 | | Bank 3 | |
337  *         | +--------+ +--------+ |           | +--------+ +--------+ |
338  *         +-----------------------+           +-----------------------+
339  *
340  *         +-----------------------+           +-----------------------+
341  *         | Bank Group 2          |           | Bank Group 3          |
342  *         | +--------+ +--------+ |           | +--------+ +--------+ |
343  *         | | Bank 0 | | Bank 1 | |           | | Bank 0 | | Bank 1 | |
344  *         | +--------+ +--------+ |           | +--------+ +--------+ |
345  *         | +--------+ +--------+ |           | +--------+ +--------+ |
346  *         | | Bank 2 | | Bank 3 | |           | | Bank 2 | | Bank 3 | |
347  *         | +--------+ +--------+ |           | +--------+ +--------+ |
348  *         +-----------------------+           +-----------------------+
349  *
350  *	On a DIMM, only a single bank and bank group can be active at a time for
351  *	reading or writing an 8 byte chunk of data. However, these are still
352  *	pretty important and useful because of the time involved to switch
353  *	between them. It is much cheaper to switch between bank groups than
354  *	between banks and that time can be cheaper than activating a new row.
355  *	This allows memory controllers to pipeline this substantially.
356  *
357  * RANK AND CHIP-SELECT
358  *
359  *	The next level of organization is a rank. A rank is effectively an
360  *	independent copy of all the bank and bank groups on a DIMM. That is,
361  *	there are additional copies of the DIMM's organization, but not the data
362  *	itself. Originally a
363  *	single or dual rank DIMM was built such that one copy of everything was
364  *	on each physical side of the DIMM. As the number of ranks has increased
365  *	this has changed as well. Generally speaking, the contents of the rank
366  *	are equivalent. That is, you have the same number of bank groups, banks,
367  *	and each bank has the same number of rows and columns.
368  *
369  *	Ranks are selected by what's called a chip-select, often abbreviated as
370  *	CS_L in the various DRAM standards. AMD also often abbreviates this as a
371  *	CS (which is not to be confused with the DF class of device called a
372  *	CS). These signals are used to select a rank to activate on a DIMM.
373  *	There are some number of these for each DIMM which is how the memory
374  *	controller chooses which of the DIMMs it's actually going to activate in
375  *	the system.
376  *
377  *	One interesting gotcha here is how AMD organizes things. Each DIMM
378  *	logically is broken into two chip-selects in hardware. Between DIMMs
379  *	with more than 2 ranks and 3D stacked RDIMMs, there are ways to
380  *	potentially activate more bits. Ultimately these are mapped to a series
381  *	of rank multiplication logic internally. These ultimately then control
382  *	some of these extra pins, though the exact method isn't 100% clear at
383  *	this time.
384  *
385  * -----------------------
386  * Rough Hardware Process
387  * -----------------------
388  *
389  * To better understand how everything is implemented and structured, it's worth
390  * briefly describing what happens when hardware wants to read a given physical
391  * address. This is roughly summarized in the following chart. In the left hand
392  * side is the type of address, which is transformed and generally shrinks along
393  * the way. Next to it is the actor that is taking action and the type of
394  * address that it starts with.
395  *
396  * +---------+   +------+
397  * | Virtual |   | CPU  |
398  * | Address |   | Core |
399  * +---------+   +------+
400  *      |           |          The CPU core receives a memory request and then
401  *      |           * . . . .  determines whether this request is DRAM or MMIO
402  *      |           |          (memory-mapped I/O) and then sends it to the data
403  *      v           v          fabric.
404  * +----------+ +--------+
405  * | Physical | | Data   |
406  * | Address  | | Fabric |
407  * +----------+ +--------+
408  *      |           |          The data fabric instance in the CCX/D uses the
409  *      |           * . . . .  programmed DRAM rules to determine what DRAM
410  *      |           |          channel to direct a request to and what the
411  *      |           |          channel-relative address is. It then sends the
412  *      |           |          request through the fabric. Note, the number of
413  *      |           |          DRAM rules varies based on the processor SoC.
414  *      |           |          Server parts like Milan have many more rules than
415  *      |           |          an APU like Cezanne. The DRAM rules tell us both
416  *      v           v          how to find and normalize the physical address.
417  * +---------+  +---------+
418  * | Channel |  | DRAM    |
419  * | Address |  | Channel |
420  * +---------+  +---------+
421  *      |           |          The UMC (unified memory controller) receives the
422  *      |           * . . . .  DRAM request and determines which DIMM to send
423  *      |           |          the request to along with the rank, banks, row,
424  *      |           |          column, etc. It initiates a DRAM transaction and
425  *      |           |          then sends the results back through the data
426  *      v           v          fabric to the CPU core.
427  * +---------+  +--------+
428  * | DIMM    |  | Target |
429  * | Address |  | DIMM   |
430  * +---------+  +--------+
431  *
432  * The above is all generally done in hardware. There are multiple steps
433  * internal to this that we end up mimicking in software. This includes things
434  * like, applying hashing logic, address transformations, and related.
435  * Thankfully the hardware is fairly generic and programmed with enough
436  * information that we can pull out to figure this out. The rest of this theory
437  * statement covers the major parts of this: interleaving, the act of
438  * determining which memory channel to actually go to, and normalization, the
439  * act of removing some portion of the physical address bits to determine the
440  * address relative to a channel.
441  *
442  * ------------------------
443  * Data Fabric Interleaving
444  * ------------------------
445  *
446  * One of the major parts of address decoding is to understand how the
447  * interleaving features work in the data fabric. This is used to allow an
448  * address range to be spread out between multiple memory channels and then,
449  * later on, when normalizing the address. As mentioned above, a system address
450  * matches a rule which has information on interleaving. Interleaving comes in
451  * many different flavors. It can be used to just switch between channels,
452  * sockets, and dies. It can also end up involving some straightforward and some
453  * fairly complex hashing operations.
454  *
455  * Each DRAM rule has instructions on how to perform this interleaving. The way
456  * this works is that the rule first says to start at a given address bit,
457  * generally ranging from bit 8-12. These influence the granularity of the
458  * interleaving going on. From there, the rules determine how many bits to use
459  * from the address to determine the die, socket, and channel. In the simplest
460  * form, these perform a log2 of the actual number of things you're interleaving
461  * across (we'll come back to non-powers of two). So let's work a few common
462  * examples:
463  *
464  *   o 8-channel interleave, 1-die interleave, 2-socket interleave
465  *     Start at bit 9
466  *
467  *	In this case we have 3 bits that determine the channel to use, 0 bits
468  *	for the die, 1 bit for the socket. Here we would then use the following
469  *	bits to determine what the channel, die, and socket IDs are:
470  *
471  *	[12]    - Socket ID
472  *	[11:9]  - Channel ID
473  *
474  *	You'll note that there was no die-interleave, which means the die ID is
475  *	always zero. This is the general thing you expect to see in Zen 2 and 3
476  *	based systems as they only have one die or a Zen 1 APU.
477  *
478  *   o 2-channel interleave, 4-die interleave, 2-socket interleave
479  *     Start at bit 10
480  *
481  *	In this case we have 1 bit for the channel and socket interleave. We
482  *	have 2 bits for the die. This is something you might see on a Zen 1
483  *	system. This results in the following bits:
484  *
485  *      [13]    - Socket ID
486  *      [12:11] - Die ID
487  *      [10]    - Channel ID
488  *
489  *
490  * COD and NPS HASHING
491  *
492  * However, this isn't the only primary extraction rule of the above values. The
493  * other primary method is using a hash. While the exact hash methods vary
494  * between Zen 2/3 and Zen 4 based systems, they follow a general scheme. In the
495  * system there are three interleaving configurations that are either global or
496  * enabled on a per-rule basis. These indicate whether one should perform the
497  * XOR computation using addresses at:
498  *
499  *   o 64 KiB (starting at bit 16)
500  *   o 2 MiB (starting at bit 21)
501  *   o 1 GiB (starting at bit 30)
502  *
503  * In this world, you take the starting address bit defined by the rule and XOR
504  * it with each enabled interleave address. If you have more than one bit to
505  * select (e.g. because you are hashing across more than 2 channels), then you
506  * continue taking subsequent bits from each enabled region. So the second bit
507  * would use 17, 21, and 31 if all three ranges were enabled while the third bit
508  * would use 18, 22, and 32. While these are straightforward, there is a catch.
509  *
510  * While the DRAM rule contains what the starting address bit, you don't
511  * actually use subsequent bits in the same way. Instead subsequent bits are
512  * deterministic and use bits 12 and 13 from the address.  This is not the same
513  * consecutive thing that one might expect. Let's look at a Rome/Milan based
514  * example:
515  *
516  *   o 8-channel "COD" hashing, starting at address 9. All three ranges enabled.
517  *     1-die and 1-socket interleaving.
518  *
519  *      In this model we are using 3 bits for the channel, 0 bits for the socket
520  *      and die.
521  *
522  *	Channel ID[0] = addr[9]  ^ addr[16] ^ addr[21] ^ addr[30]
523  *	Channel ID[1] = addr[12] ^ addr[17] ^ addr[22] ^ addr[31]
524  *	Channel ID[2] = addr[13] ^ addr[18] ^ addr[23] ^ addr[32]
525  *
526  *	So through this scheme we'd have a socket/die of 0, and then the channel
527  *	ID is computed based on that. The number of bits that we use here
528  *	depends on how many channels the hash is going across.
529  *
530  * The Genoa and related variants, termed "NPS", has a few wrinkles. First,
531  * rather than 3 bits being used for the channel, up to 4 bits are. Second,
532  * while the Rome/Milan "COD" hash above does not support socket or die
533  * interleaving, the "NPS" hash actually supports socket interleaving. However,
534  * unlike the straightforward non-hashing scheme, the first bit is used to
535  * determine the socket when enabled as opposed to the last one. In addition, if
536  * we're not performing socket interleaving, then we end up throwing address bit
537  * 14 into the mix here. Let's look at examples:
538  *
539  *   o 4-channel "NPS" hashing, starting at address 8. All three ranges enabled.
540  *     1-die and 1-socket interleaving.
541  *
542  *      In this model we are using 2 bits for the channel, 0 bits for the socket
543  *      and die. Because socket interleaving is not being used, bit 14 ends up
544  *      being added into the first bit of the channel selection. Presumably this
545  *      is to improve the address distribution in some form.
546  *
547  *      Channel ID[0] = addr[8] ^ addr[16] ^ addr[21] ^ addr[30] ^ addr[14]
548  *      Channel ID[1] = addr[12] ^ addr[17] ^ addr[22] ^ addr[31]
549  *
550  *   o 8-channel "NPS" hashing, starting at address 9. All three ranges enabled.
551  *     1-die and 2-socket interleaving.
552  *
553  *      In this model we are using 3 bits for the channel and 1 for the socket.
554  *      The die is always set to 0. Unlike the above, address bit 14 is not used
555  *      because it ends up being required for the 4th address bit.
556  *
557  *	Socket ID[0]  = addr[9]  ^ addr[16] ^ addr[21] ^ addr[30]
558  *	Channel ID[0] = addr[12] ^ addr[17] ^ addr[22] ^ addr[31]
559  *	Channel ID[1] = addr[13] ^ addr[18] ^ addr[23] ^ addr[32]
560  *	Channel ID[2] = addr[14] ^ addr[19] ^ addr[24] ^ addr[33]
561  *
562  *
563  * ZEN 3 6-CHANNEL
564  *
565  * These were the simple cases. Things get more complex when we move to
566  * non-power of 2 based hashes between channels. There are two different sets of
567  * these schemes. The first of these is 6-channel hashing that was added in Zen
568  * 3. The second of these is a more complex and general form that was added in
569  * Zen 4. Let's start with the Zen 3 case. The Zen 3 6-channel hash requires
570  * starting at address bits 11 or 12 and varies its logic somewhat from there.
571  * In the 6-channel world, the socket and die interleaving must be disabled.
572  * Let's walk through an example:
573  *
574  *   o 6-channel Zen 3, starting at address 11. 2M and 1G range enabled.
575  *     1-die and 1-socket interleaving.
576  *
577  *      Regardless of the starting address, we will always use three bits to
578  *      determine a channel address. However, it's worth calling out that the
579  *      64K range is not considered for this at all. Another oddity is that when
580  *      calculating the hash bits the order of the extracted 2M and 1G addresses
581  *      are different.
582  *
583  *	This flow starts by calculating the three hash bits. This is defined
584  *	below. In the following, all bits marked with an '@' are ones that will
585  *	change when starting at address bit 12. In those cases the value will
586  *	increase by 1. Here's how we calculate the hash bits:
587  *
588  *      hash[0] = addr[11@] ^ addr[14@] ^ addr[23] ^ addr[32]
589  *      hash[1] = addr[12@] ^ addr[21] ^ addr[30]
590  *      hash[2] = addr[13@] ^ addr[22] ^ addr[31]
591  *
592  *      With this calculated, we always assign the first bit of the channel
593  *      based on the hash. The other bits are more complicated as we have to
594  *      deal with that gnarly power of two problem. We determine whether or not
595  *      to use the hash bits directly in the channel based on their value. If
596  *      they are not equal to 3, then we use it, otherwise if they are, then we
597  *      need to go back to the physical address and we take its modulus.
598  *      Basically:
599  *
600  *      Channel Id[0] = hash[0]
601  *      if (hash[2:1] == 3)
602  *		Channel ID[2:1] = (addr >> [11@+3]) % 3
603  *      else
604  *		Channel ID[2:1] = hash[2:1]
605  *
606  *
607  * ZEN 4 NON-POWER OF 2
608  *
609  * I hope you like modulus calculations, because things get even more complex
610  * here now in Zen 4 which has many more modulus variations. These function in a
611  * similar way to the older 6-channel hash in Milan. They require one to start
612  * at address bit 8, they require that there is no die interleaving, and they
613  * support socket interleaving. The different channel arrangements end up in one
614  * of two sets of modulus values: a mod % 3 and a mod % 5 based on the number
615  * of channels used. Unlike the Milan form, all three address ranges (64 KiB, 2
616  * MiB, 1 GiB) are allowed to be used.
617  *
618  *   o 6-channel Zen 4, starting at address 8. 64K, 2M, and 1G range enabled.
619  *     1-die and 2-socket interleaving.
620  *
621  *      We start by calculating the following set of hash bits regardless of
622  *      the number of channels that exist. The set of hash bits that is actually
623  *      used in various computations ends up varying based upon the number of
624  *      channels used. In 3-5 configs, only hash[0] is used. 6-10, both hash[0]
625  *      and hash[2] (yes, not hash[1]). The 12 channel config uses all three.
626  *
627  *      hash[0] = addr[8]  ^ addr[16] ^ addr[21] ^ addr[30] ^ addr[14]
628  *      hash[1] = addr[12] ^ addr[17] ^ addr[22] ^ addr[31]
629  *      hash[2] = addr[13] ^ addr[18] ^ addr[23] ^ addr[32]
630  *
631  *      Unlike other schemes where bits directly map here, they instead are used
632  *      to seed the overall value. Depending on whether hash[0] is a 0 or 1, the
633  *      system goes through two different calculations entirely. Though all of
634  *      them end up involving the remainder of the system address going through
635  *      the modulus. In the following, a '3@' indicates the modulus value would
636  *      be swapped to 5 in a different scenario.
637  *
638  *      Channel ID = addr[63:14] % 3@
639  *      if (hash[0] == 1)
640  *		Channel ID = (Channel ID + 1) % 3@
641  *
642  *      Once this base has for the channel ID has been calculated, additional
643  *      portions are added in. As this is the 6-channel form, we say:
644  *
645  *      Channel ID = Channel ID + (hash[2] * 3@)
646  *
647  *      Finally the socket is deterministic and always comes from hash[0].
648  *      Basically:
649  *
650  *      Socket ID = hash[0]
651  *
652  *   o 12-channel Zen 4, starting at address 8. 64K, 2M, and 1G range enabled.
653  *     1-die and 1-socket interleaving.
654  *
655  *       This is a variant of the above. The hash is calculated the same way.
656  *       The base Channel ID is the same and if socket interleaving were enabled
657  *       it would also be hash[0]. What instead differs is how we use hash[1]
658  *       and hash[2]. The following logic is used instead of the final
659  *       calculation above.
660  *
661  *       Channel ID = Channel ID + (hash[2:1] * 3@)
662  *
663  *
664  * POST BIT EXTRACTION
665  *
666  * Now, all of this was done to concoct up a series of indexes used. However,
667  * you'll note that a given DRAM rule actually already has a fabric target. So
668  * what do we do here? We add them together.
669  *
670  * The data fabric has registers that describe which bits in a fabric ID
671  * correspond to a socket, die, and channel. Taking the channel, die, and socket
672  * IDs above, one can construct a fabric ID. From there, we add the two data
673  * fabric IDs together and can then get to the fabric ID of the actual logical
674  * target. This is why all of the socket and die interleaving examples with no
675  * interleaving are OK to result in a zero. The idea here is that the base
676  * fabric ID in the DRAM rule will take care of indicating those other things as
677  * required.
678  *
679  * You'll note the use of the term "logical target" up above. That's because
680  * some platforms have the ability to remap logical targets to physical targets
681  * (identified by the use of the ZEN_UMC_FAM_F_TARG_REMAP flag in the family
682  * data). The way that remapping works changes based on the hardware generation.
683  * This was first added in Milan (Zen 3) CPUs. In that model, you would use the
684  * socket and component information from the target ID to identify which
685  * remapping rules to use. On Genoa (Zen 4) CPUs, you would instead use
686  * information in the rule itself to determine which of the remap rule sets to
687  * use and then uses the component ID to select which rewrite rule to use.
688  *
689  * Finally, there's one small wrinkle with this whole scheme that we haven't
690  * discussed: what actually is the address that we plug into this calculation.
691  * While you might think it actually is just the system address itself, that
692  * isn't actually always the case. Sometimes rather than using the address
693  * itself, it gets normalized based on the DRAM rule, which involves subtracting
694  * out the base address and potentially subtracting out the size of the DRAM
695  * hole (if the address is above the hole and hoisting is active for that
696  * range). When this is performed appears to tie to the DF generation. After Zen
697  * 3, it is always the default (e.g. Zen 4 and things from DF gen 3.5). At and
698  * before Zen 3, it only occurs if we are doing a non-power of 2 based hashing.
699  *
700  * --------------------------------------------
701  * Data Fabric Interleave Address Normalization
702  * --------------------------------------------
703  *
704  * While you may have thought that we were actually done with the normalization
705  * fun in the last section, there's still a bit more here that we need to
706  * consider. In particular, there's a secondary transformation beyond
707  * interleaving that occurs as part of constructing the channel normalized
708  * address. Effectively, we need to account for all the bits that were used in
709  * the interleaving and generally speaking remove them from our normalized
710  * address.
711  *
712  * While this may sound weird on paper, the way to think about it is that
713  * interleaving at some granularity means that each device is grabbing the same
714  * set of addresses, the interleave just is used to direct it to its own
715  * location. When working with a channel normalized address, we're effectively
716  * creating a new region of addresses that have meaning within the DIMMs
717  * themselves. The channel doesn't care about what got it there, mainly just
718  * what it is now. So with that in mind, we need to discuss how we remove all
719  * the interleaving information in our different modes.
720  *
721  * Just to make sure it's clear, we are _removing_ all bits that were used for
722  * interleaving. This causes all bits above the removed ones to be shifted
723  * right.
724  *
725  * First, we have the case of standard power of 2 interleaving that applies to
726  * the 1, 2, 4, 8, 16, and 32 channel configurations. Here, we need to account
727  * for the total number of bits that are used for the channel, die, and socket
728  * interleaving and we simply remove all those bits starting from the starting
729  * address.
730  *
731  *   o 8-channel interleave, 1-die interleave, 2-socket interleave
732  *     Start at bit 9
733  *
734  *     If we look at this example, we are using 3 bits for the channel, 1 for
735  *     the socket, for a total of 4 bits. Because this is starting at bit 9,
736  *     this means that interleaving covers the bit range [12:9]. In this case
737  *     our new address would be (orig[63:13] >> 4) | orig[8:0].
738  *
739  *
740  * COD and NPS HASHING
741  *
742  * That was the simple case, next we have the COD/NPS hashing case that we need
743  * to consider. If we look at these, the way that they work is that they split
744  * which bits they use for determining the channel address and then hash others
745  * in. Here, we need to extract the starting address bit, then continue at bit
746  * 12 based on the number of bits in use and whether or not socket interleaving
747  * is at play for the NPS variant. Let's look at an example here:
748  *
749  *   o 8-channel "COD" hashing, starting at address 9. All three ranges enabled.
750  *     1-die and 1-socket interleaving.
751  *
752  *     Here we have three total bits being used. Because we start at bit 9, this
753  *     means we need to drop bits [13:12], [9]. So our new address would be:
754  *
755  *     orig[63:14] >> 3 | orig[11:10] >> 1 | orig[8:0]
756  *     |                  |                  +-> stays the same
757  *     |                  +-> relocated to bit 9 -- shifted by 1 because we
758  *     |                      removed bit 9.
759  *     +--> Relocated to bit 11 -- shifted by 3 because we removed bits, 9, 12,
760  *          and 13.
761  *
762  *   o 8-channel "NPS" hashing, starting at address 8. All three ranges enabled.
763  *     1-die and 2-socket interleaving.
764  *
765  *     Here we need to remove bits [14:12], [8]. We're removing an extra bit
766  *     because we have 2-socket interleaving. This results in a new address of:
767  *
768  *     orig[63:15] >> 4 | orig[11:9] >> 1 | orig[7:0]
769  *     |                  |                 +-> stays the same
770  *     |                  +-> relocated to bit 8 -- shifted by 1 because we
771  *     |                      removed bit 8.
772  *     +--> Relocated to bit 11 -- shifted by 4 because we removed bits, 8, 12,
773  *          13, and 14.
774  *
775  *
776  * ZEN 3 6-CHANNEL
777  *
778  * Now, to the real fun stuff, our non-powers of two. First, let's start with
779  * our friend, the Zen 3 6-channel hash. So, the first thing that we need to do
780  * here is start by recomputing our hash again based on the current normalized
781  * address. Regardless of the hash value, this first removes all three bits from
782  * the starting address, so that's removing either [14:12] or [13:11].
783  *
784  * The rest of the normalization process here is quite complex and somewhat mind
785  * bending. Let's start working through an example here and build this up.
786  * First, let's assume that each channel has a single 16 GiB RDIMM. This would
787  * mean that the channel itself has 96 GiB RDIMM. However, by removing 3 bits
788  * worth, that technically corresponds to an 8-channel configuration that
789  * normally suggest a 128 GiB configuration. The processor requires us to record
790  * this fact in the DF::Np2ChannelConfig register. The value that it wants us a
791  * bit weird. We believe it's calculated by the following:
792  *
793  *   1. Round the channel size up to the next power of 2.
794  *   2. Divide this total size by 64 KiB.
795  *   3. Determine the log base 2 that satisfies this value.
796  *
797  * In our particular example above. We have a 96 GiB channel, so for (1) we end
798  * up with 128 GiB (2^37). We now divide that by 64 KiB (2^16), so this becomes
799  * 2^(37 - 16) or 2^21. Because we want the log base 2 of 2^21 from (2), this
800  * simply becomes 21. The DF::Np2ChannelConfig has two members, a 'space 0' and
801  * 'space 1'. Near as we can tell, in this mode only 'space 0' is used.
802  *
803  * Before we get into the actual normalization scheme, we have to ask ourselves
804  * how do we actually interleave data 6 ways. The scheme here is involved.
805  * First, it's important to remember like with other normalization schemes, we
806  * do adjust for the address for the base address in the DRAM rule and then also
807  * take into account the DRAM hole if present.
808  *
809  * If we delete 3 bits, let's take a sample address and see where it would end
810  * up in the above scheme. We're going to take our 3 address bits and say that
811  * they start at bit 12, so this means that the bits removed are [14:12]. So the
812  * following are the 8 addresses that we have here and where they end up
813  * starting with 1ff:
814  *
815  *   o 0x01ff  -> 0x1ff, Channel 0 (hash 0b000)
816  *   o 0x11ff  -> 0x1ff, Channel 1 (hash 0b001)
817  *   o 0x21ff  -> 0x1ff, Channel 2 (hash 0b010)
818  *   o 0x31ff  -> 0x1ff, Channel 3 (hash 0b011)
819  *   o 0x41ff  -> 0x1ff, Channel 4 (hash 0b100)
820  *   o 0x51ff  -> 0x1ff, Channel 5 (hash 0b101)
821  *   o 0x61ff  -> 0x3000001ff, Channel 0 (hash 0b110)
822  *   o 0x71ff  -> 0x3000001ff, Channel 1 (hash 0b111)
823  *
824  * Yes, we did just jump to near the top of what is a 16 GiB DIMM's range for
825  * those last two. The way we determine when to do this jump is based on our
826  * hash. Effectively we ask what is hash[2:1]. If it is 0b11, then we need to
827  * do something different and enter this special case, basically jumping to the
828  * top of the range. If we think about a 6-channel configuration for a moment,
829  * the thing that doesn't exist are the traditional 8-channel hash DIMMs 0b110
830  * and 0b111.
831  *
832  * If you go back to the interleave this kind of meshes, that tried to handle
833  * the case of the hash being 0, 1, and 2, normally, and then did special things
834  * with the case of the hash being in this upper quadrant. The hash then
835  * determined where it went by shifting over the upper address and doing a mod
836  * 3 and using that to determine the upper two bits. With that weird address at
837  * the top of the range, let's go through and see what else actually goes to
838  * those weird addresses:
839  *
840  *   o 0x08000061ff -> 0x3000001ff, Channel 2 (hash 0b110)
841  *   o 0x08000071ff -> 0x3000001ff, Channel 3 (hash 0b111)
842  *   o 0x10000061ff -> 0x3000001ff, Channel 4 (hash 0b110)
843  *   o 0x10000071ff -> 0x3000001ff, Channel 5 (hash 0b111)
844  *
845  * Based on the above you can see that we've split the 16 GiB DIMM into a 12 GiB
846  * region (e.g. [ 0x0, 0x300000000 ), and a 4 GiB region [ 0x300000000,
847  * 0x400000000 ). What seems to happen is that the CPU algorithmically is going
848  * to put things in this upper range. To perform that action it goes back to the
849  * register information that we stored in DF::Np2ChannelConfig. The way this
850  * seems to be thought of is it wants to set the upper two bits of a 64 KiB
851  * chunk (e.g. bits [15:14]) to 0b11 and then shift that over based on the DIMM
852  * size.
853  *
854  * Our 16 GiB DIMM has 34 bits, so effectively we want to set bits [33:32] in
855  * this case. The channel is 37 bits wide, which the CPU again knows as 2^21 *
856  * 2^16. So it constructs the 64 KiB value of [15:14] = 0b11 and fills the rest
857  * with zeros. It then multiplies it by 2^(21 - 3), or 2^18. The - 3 comes from
858  * the fact that we removed 3 address bits. This when added to the above gets
859  * us bits [33,32] = 0b11.
860  *
861  * While this appears to be the logic, I don't have a proof that this scheme
862  * actually evenly covers the entire range, but a few examples appear to work
863  * out.
864  *
865  * With this, the standard example flow that we give, results in something like:
866  *
867  *   o 6-channel Zen 3, starting at address 11. 2M and 1G range enabled. Here,
868  *     we assume that the value of the NP2 space0 is 21 bits. This example
869  *     assumes we have 96 GiB total memory, which means rounding up to 128 GiB.
870  *
871  *     Step 1 here is to adjust our address to remove the three bits indicated.
872  *     So we simply always set our new address to:
873  *
874  *     orig[63:14] >> 3 | orig[10:0]
875  *     |                  +-> stays the same
876  *     +--> Relocated to bit 11 because a 6-channel config always uses 3 bits to
877  *          perform interleaving.
878  *
879  *     At this step, one would need to consult the hash of the normalized
880  *     address before removing bits (but after adjusting for the base / DRAM
881  *     hole). If hash[2:1] == 3, then we would say that the address is actually:
882  *
883  *     0b11 << 32 | orig[63:14] >> 3 | orig[10:0]
884  *
885  *
886  * ZEN 4 NON-POWER OF 2
887  *
888  * Next, we have the DFv4 versions of the 3, 5, 6, 10, and 12 channel hashing.
889  * An important part of this is whether or not there is any socket hashing going
890  * on. Recall there, that if socket hashing was going on, then it is part of the
891  * interleave logic; however, if it is not, then its hash actually becomes
892  * part of the normalized address, but not in the same spot!
893  *
894  * In this mode, we always remove the bits that are actually used by the hash.
895  * Recall that some modes use hash[0], others hash[0] and hash[2], and then only
896  * the 12-channel config uses hash[2:0]. This means we need to be careful in how
897  * we actually remove address bits. All other bits in this lower range we end up
898  * keeping and using. The top bits, e.g. addr[63:14] are kept and divided by the
899  * actual channel-modulus. If we're not performing socket interleaving and
900  * therefore need to keep the value of hash[0], then it is appended as the least
901  * significant bit of that calculation.
902  *
903  * Let's look at an example of this to try to make sense of it all.
904  *
905  *   o 6-channel Zen 4, starting at address 8. 64K, 2M, and 1G range enabled.
906  *     1-die and 2-socket interleaving.
907  *
908  *     Here we'd start by calculating hash[2:0] as described in the earlier
909  *     interleaving situation. Because we're using a socket interleave, we will
910  *     not opt to include hash[0] in the higher-level address calculation.
911  *     Because this is a 6-channel calculation, our modulus is 3. Here, we will
912  *     strip out bits 8 and 13 (recall in the interleaving 6-channel example we
913  *     ignored hash[1], thus no bit 12 here). Our new address will be:
914  *
915  *     (orig[63:14] / 3) >> 2 | orig[12:9] >> 1 | orig[7:0]
916  *      |                       |                 +-> stays the same
917  *      |                       +-> relocated to bit 8 -- shifted by 1 because
918  *      |                           we removed bit 8.
919  *      +--> Relocated to bit 12 -- shifted by 2 because we removed bits 8 and
920  *           13.
921  *
922  *   o 12-channel Zen 4, starting at address 8. 64K, 2M, and 1G range enabled.
923  *     1-die and 1-socket interleaving.
924  *
925  *     This is a slightly different case from the above in two ways. First, we
926  *     will end up removing bits 8, 12, and 13, but then we'll also reuse
927  *     hash[0]. Our new address will be:
928  *
929  *     ((orig[63:14] / 3) << 1 | hash[0]) >> 3 | orig[11:9] >> 1 | orig[7:0]
930  *      |                                   |                      +-> stays the
931  *      |                                   |                          same
932  *      |                                   +-> relocated to bit 8 -- shifted by
933  *      |                                       1 because we removed bit 8.
934  *      +--> Relocated to bit 11 -- shifted by 3 because we removed bits 8, 12,
935  *           and 13.
936  *
937  * That's most of the normalization process for the time being. We will have to
938  * revisit this when we have to transform a normal address into a system address
939  * and undo all this.
940  *
941  * -------------------------------------
942  * Selecting a DIMM and UMC Organization
943  * -------------------------------------
944  *
945  * One of the more nuanced things in decoding and encoding is the question of
946  * where do we send a channel normalized address. That is, now that we've gotten
947  * to a given channel, we need to transform the address into something
948  * meaningful for a DIMM, and select a DIMM as well. The UMC SMN space contains
949  * a number of Base Address and Mask registers which they describe as activating
950  * a chip-select. A given UMC has up to four primary chip-selects (we'll come
951  * back to DDR5 sub-channels later). The first two always go to the first DIMM
952  * in the channel and the latter two always go to the second DIMM in the
953  * channel. Put another way, you can always determine which DIMM you are
954  * referring to by taking the chip-select and shifting it by 1.
955  *
956  * The UMC Channel registers are organized a bit differently in different
957  * hardware generations. In a DDR5 based UMC, almost all of our settings are on
958  * a per-chip-select basis while as in a DDR4 based system only the bases and
959  * masks are. While gathering data we normalize this such that each logical
960  * chip-select (umc_cs_t) that we have in the system has the same data so that
961  * way DDR4 and DDR5 based systems are the same to the decoding logic. There is
962  * also channel-wide data such as hash configurations and related.
963  *
964  * Each channel has a set of base and mask registers (and secondary ones as
965  * well). To determine if we activate a given one, we first check if the
966  * enabled bit is set. The enabled bit is set on a per-base basis, so both the
967  * primary and secondary registers have separate enables. As there are four of
968  * each base, mask, secondary base, and secondary mask, we say that if a
969  * normalized address matches either a given indexes primary or secondary index,
970  * then it activates that given UMC index. The basic formula for an enabled
971  * selection is:
972  *
973  *	NormAddr & ~Mask[i] == Base[i] & ~Mask[i]
974  *
975  * Once this is selected, this index in the UMC is what it always used to derive
976  * the rest of the information that is specific to a given chip-select or DIMM.
977  * An important thing to remember is that from this point onwards, while there
978  * is a bunch of hashing and interleaving logic it doesn't change which UMC
979  * channel we read the data from. Though the particular DIMM, rank, and address
980  * we access will change as we go through hashing and interleaving.
981  *
982  * ------------------------
983  * Row and Column Selection
984  * ------------------------
985  *
986  * The number of bits that are used for the row and column address of a DIMM
987  * varies based on the type of module itself. These depend on the density of a
988  * DIMM module, e.g. how large an individual DRAM block is, a value such as 16
989  * Gbit, and the number of these wide it is, which is generally phrased as X4,
990  * X8, and X16. The memory controller encodes the number of bits (derived from
991  * the DIMM's SPD data) and then determines which bits are used for addresses.
992  *
993  * Based on this information we can initially construct a row and a column
994  * address by leveraging the information about the number of bits and then
995  * extracting the correct bits out of the normalized channel address.
996  *
997  * If you've made it this far, you know nothing is quite this simple, despite it
998  * seeming so. Importantly, not all DIMMs actually have storage that is a power
999  * of 2. As such, there's another bit that we have to consult to transform the
1000  * actual value that we have for a row, remarkably the column somehow has no
1001  * transformations applied to it.
1002  *
1003  * The hardware gives us information on inverting the two 'most significant
1004  * bits' of the row address which we store in 'ucs_inv_msbs'. First, we have the
1005  * question of what are our most significant bits here. This is basically
1006  * determined by the number of low and high row bits. In this case higher
1007  * actually is what we want. Note, the high row bits only exist in DDR4. Next,
1008  * we need to know whether we used the primary or secondary base/mask pair for
1009  * this as there is a primary and secondary inversion bits. The higher bit of
1010  * the inversion register (e.g ucs_inv_msbs[1]) corresponds to the highest row
1011  * bit. A zero in the bit position indicates that we should not perform an
1012  * inversion where as a one says that we should invert this.
1013  *
1014  * To actually make this happen we can take advantage of the fact that the
1015  * meaning of a 0/1 above means that this can be implemented with a binary
1016  * exclusive-OR (XOR). Logically speaking if we have a don't invert setting
1017  * present, a 0, then x ^ 0 is always x. However, if we have a 1 present, then
1018  * we know that (for a single bit) x ^ 1 = ~x. We take advantage of this fact in
1019  * the row logic.
1020  *
1021  * ---------------------
1022  * Banks and Bank Groups
1023  * ---------------------
1024  *
1025  * While addressing within a given module is done by the use of a row and column
1026  * address, to increase storage density a module generally has a number of
1027  * banks, which may be organized into one or more bank groups. While a given
1028  * DDR4/5 access happens in some prefetched chunk of say 64 bytes (what do you
1029  * know, that's a cacheline), that all occurs within a single bank. The addition
1030  * of bank groups makes it easier to access data in parallel -- it is often
1031  * faster to read from another bank group than to read another region inside a
1032  * bank group.
1033  *
1034  * Based on the DIMMs internal configuration, there will be a specified number
1035  * of bits used for the overall bank address (including bank group bits)
1036  * followed by a number of bits actually used for bank groups. There are
1037  * separately an array of bits used to concoct the actual address. It appears,
1038  * mostly through experimental evidence, that the bank group bits occur first
1039  * and then are followed by the bank selection itself.  This makes some sense if
1040  * you assume that switching bank groups is faster than switching banks.
1041  *
1042  * So if we see the UMC noting 4 bank bits and 2 bank groups bits, that means
1043  * that the umc_cs_t's ucs_bank_bits[1:0] correspond to bank_group[1:0] and
1044  * ucs_bank_bits[3:2] correspond to bank_address[1:0]. However, if there were no
1045  * bank bits indicated, then all of the address bits would correspond to the
1046  * bank address.
1047  *
1048  * Now, this would all be straightforward if not for hashing, our favorite.
1049  * There are five bank hashing registers per channel (UMC_BANK_HASH_DDR4,
1050  * UMC_BANK_HASH_DDR5), one that corresponds to the five possible bank bits. To
1051  * do this we need to use the calculated row and column that we previously
1052  * determined. This calculation happens in a few steps:
1053  *
1054  *   1) First check if the enable bit is set in the rule. If not, just use the
1055  *      normal bank address bit and we're done.
1056  *   2) Take a bitwise-AND of the calculated row and hash register's row value.
1057  *      Next do the same thing for the column.
1058  *   3) For each bit in the row, progressively XOR it, e.g. row[0] ^ row[1] ^
1059  *      row[2] ^ ... to calculate a net bit value for the row. This then
1060  *      repeats itself for the column. What basically has happened is that we're
1061  *      using the hash register to select which bits to impact our decision.
1062  *      Think of this as a traditional bitwise functional reduce.
1063  *   4) XOR the combined rank bit with the column bit and the actual bank
1064  *      address bit from the normalized address. So if this were bank bit 0,
1065  *      which indicated we should use bit 15 for bank[0], then we would
1066  *      ultimately say our new bit is norm_addr[15] ^ row_xor ^ col_xor
1067  *
1068  * An important caveat is that we would only consult all this if we actually
1069  * were told that the bank bit was being used. For example if we had 3 bank
1070  * bits, then we'd only check the first 3 hash registers. The latter two would
1071  * be ignored.
1072  *
1073  * Once this process is done, then we can go back and split the activated bank
1074  * into the actual bank used and the bank group used based on the first bits
1075  * going to the bank group.
1076  *
1077  * ---------------
1078  * DDR5 Sub-channel
1079  * ---------------
1080  *
1081  * As described in the definitions section, DDR5 has the notion of a
1082  * sub-channel. Here, a single bit is used to determine which of the
1083  * sub-channels to actually operate and utilize. Importantly the same
1084  * chip-select seems to apply to both halves of a given sub-channel.
1085  *
1086  * There is also a hash that is used here. The hash here utilizes the calculated
1087  * bank, column, and row and follows the same pattern used in the bank
1088  * calculation where we do a bunch of running exclusive-ORs and then do that
1089  * with the original value we found to get the new value. Because there's only
1090  * one bit for the sub-channel, we only have a single hash to consider.
1091  *
1092  * -------------------------------------------
1093  * Ranks, Chip-Select, and Rank Multiplication
1094  * -------------------------------------------
1095  *
1096  * The notion of ranks and the chip-select are interwoven. From a strict DDR4
1097  * RDIMM perspective, there are two lines that are dedicated for chip-selects
1098  * and then another two that are shared with three 'chip-id' bits that are used
1099  * in 3DS RDIMMs. In all cases the controller starts with two logical chip
1100  * selects and then uses something called rank multiplication to figure out how
1101  * to multiplex that and map to the broader set of things. Basically, in
1102  * reality, DDR4 RDIMMs allow for 4 bits to determine a rank and then 3DS RDIMMs
1103  * use 2 bits for a rank and 3 bits to select a stacked chip. In DDR5 this is
1104  * different and you just have 2 bits for a rank.
1105  *
1106  * It's not entirely clear from what we know from AMD, but it seems that we use
1107  * the RM bits as a way to basically go beyond the basic 2 bits of chip-select
1108  * which is determined based on which channel we logically activate. Initially
1109  * we treat this as two distinct things, here as that's what we get from the
1110  * hardware. There are two hashes here a chip-select and rank-multiplication
1111  * hash. Unlike the others, which rely on the bank, row, and column addresses,
1112  * this hash relies on the normalized address. So we calculate that mask and do
1113  * our same xor dance.
1114  *
1115  * There is one hash for each rank multiplication bit and chip-select bit. The
1116  * number of rank multiplication bits is given to us. The number of chip-select
1117  * bits is fixed, it's simply two because there are four base/mask registers and
1118  * logical chip-selects in a given UMC channel. The chip-select on some DDR5
1119  * platforms has a secondary exclusive-OR hash that can be applied. As this only
1120  * exists in some families, for any where it does exist, we seed it to be zero
1121  * so that it becomes a no-op.
1122  *
1123  * -----------
1124  * Future Work
1125  * -----------
1126  *
1127  * As the road goes ever on and on, down from the door where it began, there are
1128  * still some stops on the journey for this driver. In particular, here are the
1129  * major open areas that could be implemented to extend what this can do:
1130  *
1131  *   o The ability to transform a normalized channel address back to a system
1132  *     address. This is required for MCA/MCA-X error handling as those generally
1133  *     work in terms of channel addresses.
1134  *   o Integrating with the MCA/MCA-X error handling paths so that way we can
1135  *     take correct action in the face of ECC errors and allowing recovery from
1136  *     uncorrectable errors.
1137  *   o Providing memory controller information to FMA so that way it can opt to
1138  *     do predictive failure or give us more information about what is fault
1139  *     with ECC errors.
1140  *   o Figuring out if we will get MCEs for privilged address decoding and if so
1141  *     mapping those back to system addresses and related.
1142  *   o 3DS RDIMMs likely will need a little bit of work to ensure we're handling
1143  *     the resulting combination of the RM bits and CS and reporting it
1144  *     intelligently.
1145  */
1146 
1147 #include <sys/types.h>
1148 #include <sys/file.h>
1149 #include <sys/errno.h>
1150 #include <sys/open.h>
1151 #include <sys/cred.h>
1152 #include <sys/ddi.h>
1153 #include <sys/sunddi.h>
1154 #include <sys/stat.h>
1155 #include <sys/conf.h>
1156 #include <sys/devops.h>
1157 #include <sys/cmn_err.h>
1158 #include <sys/x86_archext.h>
1159 #include <sys/sysmacros.h>
1160 #include <sys/mc.h>
1161 
1162 #include <zen_umc.h>
1163 #include <sys/amdzen/df.h>
1164 #include <sys/amdzen/umc.h>
1165 
1166 static zen_umc_t *zen_umc;
1167 
1168 /*
1169  * Per-CPU family information that describes the set of capabilities that they
1170  * implement. When adding support for new CPU generations, you must go through
1171  * what documentation you have and validate these. The best bet is to find a
1172  * similar processor and see what has changed. Unfortunately, there really isn't
1173  * a substitute for just basically checking every register. The family name
1174  * comes from the amdzen_c_family(). One additional note for new CPUs, if our
1175  * parent amdzen nexus driver does not attach (because the DF has changed PCI
1176  * IDs or more), then just adding something here will not be sufficient to make
1177  * it work.
1178  */
1179 static const zen_umc_fam_data_t zen_umc_fam_data[] = {
1180 	{
1181 		.zufd_family = X86_PF_AMD_NAPLES,
1182 		.zufd_dram_nrules = 16,
1183 		.zufd_cs_nrules = 2,
1184 		.zufd_umc_style = ZEN_UMC_UMC_S_DDR4,
1185 		.zufd_chan_hash = UMC_CHAN_HASH_F_BANK | UMC_CHAN_HASH_F_CS
1186 	}, {
1187 		.zufd_family = X86_PF_HYGON_DHYANA,
1188 		.zufd_dram_nrules = 16,
1189 		.zufd_cs_nrules = 2,
1190 		.zufd_umc_style = ZEN_UMC_UMC_S_DDR4,
1191 		.zufd_chan_hash = UMC_CHAN_HASH_F_BANK | UMC_CHAN_HASH_F_CS
1192 	}, {
1193 		.zufd_family = X86_PF_AMD_DALI,
1194 		.zufd_dram_nrules = 2,
1195 		.zufd_cs_nrules = 2,
1196 		.zufd_umc_style = ZEN_UMC_UMC_S_DDR4_APU,
1197 		.zufd_chan_hash = UMC_CHAN_HASH_F_BANK | UMC_CHAN_HASH_F_CS
1198 	}, {
1199 		.zufd_family = X86_PF_AMD_ROME,
1200 		.zufd_flags = ZEN_UMC_FAM_F_NP2 | ZEN_UMC_FAM_F_NORM_HASH |
1201 		    ZEN_UMC_FAM_F_UMC_HASH,
1202 		.zufd_dram_nrules = 16,
1203 		.zufd_cs_nrules = 2,
1204 		.zufd_umc_style = ZEN_UMC_UMC_S_DDR4,
1205 		.zufd_chan_hash = UMC_CHAN_HASH_F_BANK | UMC_CHAN_HASH_F_RM |
1206 		    UMC_CHAN_HASH_F_CS
1207 	}, {
1208 		.zufd_family = X86_PF_AMD_RENOIR,
1209 		.zufd_flags = ZEN_UMC_FAM_F_NORM_HASH,
1210 		.zufd_dram_nrules = 2,
1211 		.zufd_cs_nrules = 2,
1212 		.zufd_umc_style = ZEN_UMC_UMC_S_DDR4_APU,
1213 		.zufd_chan_hash = UMC_CHAN_HASH_F_BANK | UMC_CHAN_HASH_F_PC |
1214 		    UMC_CHAN_HASH_F_CS
1215 	}, {
1216 		.zufd_family = X86_PF_AMD_MATISSE,
1217 		.zufd_flags = ZEN_UMC_FAM_F_NORM_HASH | ZEN_UMC_FAM_F_UMC_HASH,
1218 		.zufd_dram_nrules = 16,
1219 		.zufd_cs_nrules = 2,
1220 		.zufd_umc_style = ZEN_UMC_UMC_S_DDR4,
1221 		.zufd_chan_hash = UMC_CHAN_HASH_F_BANK | UMC_CHAN_HASH_F_RM |
1222 		    UMC_CHAN_HASH_F_CS
1223 	}, {
1224 		.zufd_family = X86_PF_AMD_VAN_GOGH,
1225 		.zufd_flags = ZEN_UMC_FAM_F_NORM_HASH,
1226 		.zufd_dram_nrules = 2,
1227 		.zufd_cs_nrules = 2,
1228 		.zufd_umc_style = ZEN_UMC_UMC_S_HYBRID_LPDDR5,
1229 		.zufd_chan_hash = UMC_CHAN_HASH_F_BANK | UMC_CHAN_HASH_F_CS
1230 	}, {
1231 		.zufd_family = X86_PF_AMD_MENDOCINO,
1232 		.zufd_flags = ZEN_UMC_FAM_F_NORM_HASH,
1233 		.zufd_dram_nrules = 2,
1234 		.zufd_cs_nrules = 2,
1235 		.zufd_umc_style = ZEN_UMC_UMC_S_HYBRID_LPDDR5,
1236 		.zufd_chan_hash = UMC_CHAN_HASH_F_BANK | UMC_CHAN_HASH_F_CS
1237 	}, {
1238 		.zufd_family = X86_PF_AMD_MILAN,
1239 		.zufd_flags = ZEN_UMC_FAM_F_TARG_REMAP | ZEN_UMC_FAM_F_NP2 |
1240 		    ZEN_UMC_FAM_F_NORM_HASH | ZEN_UMC_FAM_F_UMC_HASH,
1241 		.zufd_dram_nrules = 16,
1242 		.zufd_cs_nrules = 2,
1243 		.zufd_umc_style = ZEN_UMC_UMC_S_DDR4,
1244 		.zufd_chan_hash = UMC_CHAN_HASH_F_BANK | UMC_CHAN_HASH_F_RM |
1245 		    UMC_CHAN_HASH_F_CS
1246 	}, {
1247 		.zufd_family = X86_PF_AMD_GENOA,
1248 		.zufd_flags = ZEN_UMC_FAM_F_TARG_REMAP |
1249 		    ZEN_UMC_FAM_F_UMC_HASH | ZEN_UMC_FAM_F_UMC_EADDR |
1250 		    ZEN_UMC_FAM_F_CS_XOR,
1251 		.zufd_dram_nrules = 20,
1252 		.zufd_cs_nrules = 4,
1253 		.zufd_umc_style = ZEN_UMC_UMC_S_DDR5,
1254 		.zufd_chan_hash = UMC_CHAN_HASH_F_BANK | UMC_CHAN_HASH_F_RM |
1255 		    UMC_CHAN_HASH_F_PC | UMC_CHAN_HASH_F_CS
1256 	}, {
1257 		.zufd_family = X86_PF_AMD_VERMEER,
1258 		.zufd_flags = ZEN_UMC_FAM_F_NORM_HASH | ZEN_UMC_FAM_F_UMC_HASH,
1259 		.zufd_dram_nrules = 16,
1260 		.zufd_cs_nrules = 2,
1261 		.zufd_umc_style = ZEN_UMC_UMC_S_DDR4,
1262 		.zufd_chan_hash = UMC_CHAN_HASH_F_BANK | UMC_CHAN_HASH_F_RM |
1263 		    UMC_CHAN_HASH_F_CS,
1264 	}, {
1265 		.zufd_family = X86_PF_AMD_REMBRANDT,
1266 		.zufd_flags = ZEN_UMC_FAM_F_NORM_HASH,
1267 		.zufd_dram_nrules = 2,
1268 		.zufd_cs_nrules = 2,
1269 		.zufd_umc_style = ZEN_UMC_UMC_S_DDR5_APU,
1270 		.zufd_chan_hash = UMC_CHAN_HASH_F_BANK | UMC_CHAN_HASH_F_CS
1271 	}, {
1272 		.zufd_family = X86_PF_AMD_CEZANNE,
1273 		.zufd_flags = ZEN_UMC_FAM_F_NORM_HASH,
1274 		.zufd_dram_nrules = 2,
1275 		.zufd_cs_nrules = 2,
1276 		.zufd_umc_style = ZEN_UMC_UMC_S_DDR4_APU,
1277 		.zufd_chan_hash = UMC_CHAN_HASH_F_BANK | UMC_CHAN_HASH_F_PC |
1278 		    UMC_CHAN_HASH_F_CS
1279 	}, {
1280 		.zufd_family = X86_PF_AMD_RAPHAEL,
1281 		.zufd_flags = ZEN_UMC_FAM_F_TARG_REMAP | ZEN_UMC_FAM_F_CS_XOR,
1282 		.zufd_dram_nrules = 2,
1283 		.zufd_cs_nrules = 2,
1284 		.zufd_umc_style = ZEN_UMC_UMC_S_DDR5,
1285 		.zufd_chan_hash = UMC_CHAN_HASH_F_BANK | UMC_CHAN_HASH_F_PC |
1286 		    UMC_CHAN_HASH_F_CS
1287 	}, {
1288 		.zufd_family = X86_PF_AMD_PHOENIX,
1289 		.zufd_flags = ZEN_UMC_FAM_F_CS_XOR,
1290 		.zufd_dram_nrules = 2,
1291 		.zufd_cs_nrules = 2,
1292 		.zufd_umc_style = ZEN_UMC_UMC_S_DDR5_APU,
1293 		.zufd_chan_hash = UMC_CHAN_HASH_F_BANK | UMC_CHAN_HASH_F_CS
1294 	}, {
1295 		.zufd_family = X86_PF_AMD_BERGAMO,
1296 		.zufd_flags = ZEN_UMC_FAM_F_TARG_REMAP |
1297 		    ZEN_UMC_FAM_F_UMC_HASH | ZEN_UMC_FAM_F_UMC_EADDR |
1298 		    ZEN_UMC_FAM_F_CS_XOR,
1299 		.zufd_dram_nrules = 20,
1300 		.zufd_cs_nrules = 4,
1301 		.zufd_umc_style = ZEN_UMC_UMC_S_DDR5,
1302 		.zufd_chan_hash = UMC_CHAN_HASH_F_BANK | UMC_CHAN_HASH_F_RM |
1303 		    UMC_CHAN_HASH_F_PC | UMC_CHAN_HASH_F_CS
1304 	}
1305 };
1306 
1307 /*
1308  * We use this for the DDR4 and Hybrid DDR4 + LPDDR5 tables to map between the
1309  * specific enumerated speeds which are encoded values and the corresponding
1310  * memory clock and speed. For all DDR4 and LPDDR5 items we assume a a 1:2 ratio
1311  * between them. This is not used for the pure DDR5 / LPDDR5 entries because of
1312  * how the register just encodes the raw value in MHz.
1313  */
1314 typedef struct zen_umc_freq_map {
1315 	uint32_t zufm_reg;
1316 	uint32_t zufm_mhz;
1317 	uint32_t zufm_mts2;
1318 	uint32_t zufm_mts4;
1319 } zen_umc_freq_map_t;
1320 
1321 static const zen_umc_freq_map_t zen_umc_ddr4_map[] = {
1322 	{ UMC_DRAMCFG_DDR4_MEMCLK_667, 667, 1333, 0 },
1323 	{ UMC_DRAMCFG_DDR4_MEMCLK_800, 800, 1600, 0 },
1324 	{ UMC_DRAMCFG_DDR4_MEMCLK_933, 933, 1866, 0 },
1325 	{ UMC_DRAMCFG_DDR4_MEMCLK_1067, 1067, 2133, 0 },
1326 	{ UMC_DRAMCFG_DDR4_MEMCLK_1200, 1200, 2400, 0 },
1327 	{ UMC_DRAMCFG_DDR4_MEMCLK_1333, 1333, 2666, 0 },
1328 	{ UMC_DRAMCFG_DDR4_MEMCLK_1467, 1467, 2933, 0 },
1329 	{ UMC_DRAMCFG_DDR4_MEMCLK_1600, 1600, 3200, 0 }
1330 };
1331 
1332 static const zen_umc_freq_map_t zen_umc_lpddr5_map[] = {
1333 	{ UMC_DRAMCFG_HYB_MEMCLK_333, 333, 667, 1333 },
1334 	{ UMC_DRAMCFG_HYB_MEMCLK_400, 400, 800, 1600 },
1335 	{ UMC_DRAMCFG_HYB_MEMCLK_533, 533, 1066, 2133 },
1336 	{ UMC_DRAMCFG_HYB_MEMCLK_687, 687, 1375, 2750 },
1337 	{ UMC_DRAMCFG_HYB_MEMCLK_750, 750, 1500, 3000 },
1338 	{ UMC_DRAMCFG_HYB_MEMCLK_800, 800, 1600, 3200 },
1339 	{ UMC_DRAMCFG_HYB_MEMCLK_933, 933, 1866, 3733 },
1340 	{ UMC_DRAMCFG_HYB_MEMCLK_1066, 1066, 2133, 4267 },
1341 	{ UMC_DRAMCFG_HYB_MEMCLK_1200, 1200, 2400, 4800 },
1342 	{ UMC_DRAMCFG_HYB_MEMCLK_1375, 1375, 2750, 5500 },
1343 	{ UMC_DRAMCFG_HYB_MEMCLK_1500, 1500, 3000, 6000 },
1344 	{ UMC_DRAMCFG_HYB_MEMCLK_1600, 1600, 3200, 6400 }
1345 
1346 };
1347 
1348 static boolean_t
1349 zen_umc_identify(zen_umc_t *umc)
1350 {
1351 	for (uint_t i = 0; i < ARRAY_SIZE(zen_umc_fam_data); i++) {
1352 		if (zen_umc_fam_data[i].zufd_family == umc->umc_family) {
1353 			umc->umc_fdata = &zen_umc_fam_data[i];
1354 			return (B_TRUE);
1355 		}
1356 	}
1357 
1358 	return (B_FALSE);
1359 }
1360 
1361 /*
1362  * This operates on DFv2, DFv3, and DFv3.5 DRAM rules, which generally speaking
1363  * are in similar register locations and meanings, but the size of bits in
1364  * memory is not consistent.
1365  */
1366 static int
1367 zen_umc_read_dram_rule_df_23(zen_umc_t *umc, const uint_t dfno,
1368     const uint_t inst, const uint_t ruleno, df_dram_rule_t *rule)
1369 {
1370 	int ret;
1371 	uint32_t base, limit;
1372 	uint64_t dbase, dlimit;
1373 	uint16_t addr_ileave, chan_ileave, sock_ileave, die_ileave, dest;
1374 	boolean_t hash = B_FALSE;
1375 	zen_umc_df_t *df = &umc->umc_dfs[dfno];
1376 
1377 	if ((ret = amdzen_c_df_read32(dfno, inst, DF_DRAM_BASE_V2(ruleno),
1378 	    &base)) != 0) {
1379 		dev_err(umc->umc_dip, CE_WARN, "!failed to read DRAM base "
1380 		    "register %u on 0x%x/0x%x: %d", ruleno, dfno, inst, ret);
1381 		return (ret);
1382 	}
1383 
1384 	if ((ret = amdzen_c_df_read32(dfno, inst, DF_DRAM_LIMIT_V2(ruleno),
1385 	    &limit)) != 0) {
1386 		dev_err(umc->umc_dip, CE_WARN, "!failed to read DRAM limit "
1387 		    "register %u on 0x%x/0x%x: %d", ruleno, dfno, inst, ret);
1388 		return (ret);
1389 	}
1390 
1391 
1392 	rule->ddr_raw_base = base;
1393 	rule->ddr_raw_limit = limit;
1394 	rule->ddr_raw_ileave = rule->ddr_raw_ctrl = 0;
1395 
1396 	if (!DF_DRAM_BASE_V2_GET_VALID(base)) {
1397 		return (0);
1398 	}
1399 
1400 	/*
1401 	 * Extract all values from the registers and then normalize. While there
1402 	 * are often different bit patterns for the values, the interpretation
1403 	 * is the same across all the Zen 1-3 parts. That is while which bits
1404 	 * may be used for say channel interleave vary, the values of them are
1405 	 * consistent.
1406 	 */
1407 	rule->ddr_flags |= DF_DRAM_F_VALID;
1408 	if (DF_DRAM_BASE_V2_GET_HOLE_EN(base)) {
1409 		rule->ddr_flags |= DF_DRAM_F_HOLE;
1410 	}
1411 
1412 	dbase = DF_DRAM_BASE_V2_GET_BASE(base);
1413 	dlimit = DF_DRAM_LIMIT_V2_GET_LIMIT(limit);
1414 	switch (umc->umc_df_rev) {
1415 	case DF_REV_2:
1416 		addr_ileave = DF_DRAM_BASE_V2_GET_ILV_ADDR(base);
1417 		chan_ileave = DF_DRAM_BASE_V2_GET_ILV_CHAN(base);
1418 		die_ileave = DF_DRAM_LIMIT_V2_GET_ILV_DIE(limit);
1419 		sock_ileave = DF_DRAM_LIMIT_V2_GET_ILV_SOCK(limit);
1420 		dest = DF_DRAM_LIMIT_V2_GET_DEST_ID(limit);
1421 		break;
1422 	case DF_REV_3:
1423 		addr_ileave = DF_DRAM_BASE_V3_GET_ILV_ADDR(base);
1424 		sock_ileave = DF_DRAM_BASE_V3_GET_ILV_SOCK(base);
1425 		die_ileave = DF_DRAM_BASE_V3_GET_ILV_DIE(base);
1426 		chan_ileave = DF_DRAM_BASE_V3_GET_ILV_CHAN(base);
1427 		dest = DF_DRAM_LIMIT_V3_GET_DEST_ID(limit);
1428 		break;
1429 	case DF_REV_3P5:
1430 		addr_ileave = DF_DRAM_BASE_V3P5_GET_ILV_ADDR(base);
1431 		sock_ileave = DF_DRAM_BASE_V3P5_GET_ILV_SOCK(base);
1432 		die_ileave = DF_DRAM_BASE_V3P5_GET_ILV_DIE(base);
1433 		chan_ileave = DF_DRAM_BASE_V3P5_GET_ILV_CHAN(base);
1434 		dest = DF_DRAM_LIMIT_V3P5_GET_DEST_ID(limit);
1435 		break;
1436 	default:
1437 		dev_err(umc->umc_dip, CE_WARN, "!encountered unsupported "
1438 		    "DF revision processing DRAM rules: 0x%x", umc->umc_df_rev);
1439 		return (-1);
1440 	}
1441 
1442 	rule->ddr_base = dbase << DF_DRAM_BASE_V2_BASE_SHIFT;
1443 	rule->ddr_sock_ileave_bits = sock_ileave;
1444 	rule->ddr_die_ileave_bits = die_ileave;
1445 	switch (addr_ileave) {
1446 	case DF_DRAM_ILV_ADDR_8:
1447 	case DF_DRAM_ILV_ADDR_9:
1448 	case DF_DRAM_ILV_ADDR_10:
1449 	case DF_DRAM_ILV_ADDR_11:
1450 	case DF_DRAM_ILV_ADDR_12:
1451 		break;
1452 	default:
1453 		dev_err(umc->umc_dip, CE_WARN, "!encountered invalid address "
1454 		    "interleave on rule %u, df/inst 0x%x/0x%x: 0x%x", ruleno,
1455 		    dfno, inst, addr_ileave);
1456 		return (EINVAL);
1457 	}
1458 	rule->ddr_addr_start = DF_DRAM_ILV_ADDR_BASE + addr_ileave;
1459 
1460 	switch (chan_ileave) {
1461 	case DF_DRAM_BASE_V2_ILV_CHAN_1:
1462 		rule->ddr_chan_ileave = DF_CHAN_ILEAVE_1CH;
1463 		break;
1464 	case DF_DRAM_BASE_V2_ILV_CHAN_2:
1465 		rule->ddr_chan_ileave = DF_CHAN_ILEAVE_2CH;
1466 		break;
1467 	case DF_DRAM_BASE_V2_ILV_CHAN_4:
1468 		rule->ddr_chan_ileave = DF_CHAN_ILEAVE_4CH;
1469 		break;
1470 	case DF_DRAM_BASE_V2_ILV_CHAN_8:
1471 		rule->ddr_chan_ileave = DF_CHAN_ILEAVE_8CH;
1472 		break;
1473 	case DF_DRAM_BASE_V2_ILV_CHAN_6:
1474 		rule->ddr_chan_ileave = DF_CHAN_ILEAVE_6CH;
1475 		break;
1476 	case DF_DRAM_BASE_V2_ILV_CHAN_COD4_2:
1477 		hash = B_TRUE;
1478 		rule->ddr_chan_ileave = DF_CHAN_ILEAVE_COD4_2CH;
1479 		break;
1480 	case DF_DRAM_BASE_V2_ILV_CHAN_COD2_4:
1481 		hash = B_TRUE;
1482 		rule->ddr_chan_ileave = DF_CHAN_ILEAVE_COD2_4CH;
1483 		break;
1484 	case DF_DRAM_BASE_V2_ILV_CHAN_COD1_8:
1485 		hash = B_TRUE;
1486 		rule->ddr_chan_ileave = DF_CHAN_ILEAVE_COD1_8CH;
1487 		break;
1488 	default:
1489 		dev_err(umc->umc_dip, CE_WARN, "!encountered invalid channel "
1490 		    "interleave on rule %u, df/inst 0x%x/0x%x: 0x%x", ruleno,
1491 		    dfno, inst, chan_ileave);
1492 		return (EINVAL);
1493 	}
1494 
1495 	/*
1496 	 * If hashing is enabled, note which hashing rules apply to this
1497 	 * address. This is done to smooth over the differences between DFv3 and
1498 	 * DFv4, where the flags are in the rules themselves in the latter, but
1499 	 * global today.
1500 	 */
1501 	if (hash) {
1502 		if ((df->zud_flags & ZEN_UMC_DF_F_HASH_16_18) != 0) {
1503 			rule->ddr_flags |= DF_DRAM_F_HASH_16_18;
1504 		}
1505 
1506 		if ((df->zud_flags & ZEN_UMC_DF_F_HASH_21_23) != 0) {
1507 			rule->ddr_flags |= DF_DRAM_F_HASH_21_23;
1508 		}
1509 
1510 		if ((df->zud_flags & ZEN_UMC_DF_F_HASH_30_32) != 0) {
1511 			rule->ddr_flags |= DF_DRAM_F_HASH_30_32;
1512 		}
1513 	}
1514 
1515 	/*
1516 	 * While DFv4 makes remapping explicit, it is basically always enabled
1517 	 * and used on supported platforms prior to that point. So flag such
1518 	 * supported platforms as ones that need to do this. On those systems
1519 	 * there is only one set of remap rules for an entire DF that are
1520 	 * determined based on the target socket. To indicate that we use the
1521 	 * DF_DRAM_F_REMAP_SOCK flag below and skip setting a remap target.
1522 	 */
1523 	if ((umc->umc_fdata->zufd_flags & ZEN_UMC_FAM_F_TARG_REMAP) != 0) {
1524 		rule->ddr_flags |= DF_DRAM_F_REMAP_EN | DF_DRAM_F_REMAP_SOCK;
1525 	}
1526 
1527 	rule->ddr_limit = (dlimit << DF_DRAM_LIMIT_V2_LIMIT_SHIFT) +
1528 	    DF_DRAM_LIMIT_V2_LIMIT_EXCL;
1529 	rule->ddr_dest_fabid = dest;
1530 
1531 	return (0);
1532 }
1533 
1534 static int
1535 zen_umc_read_dram_rule_df_4(zen_umc_t *umc, const uint_t dfno,
1536     const uint_t inst, const uint_t ruleno, df_dram_rule_t *rule)
1537 {
1538 	int ret;
1539 	uint16_t addr_ileave;
1540 	uint32_t base, limit, ilv, ctl;
1541 
1542 	if ((ret = amdzen_c_df_read32(dfno, inst, DF_DRAM_BASE_V4(ruleno),
1543 	    &base)) != 0) {
1544 		dev_err(umc->umc_dip, CE_WARN, "!failed to read DRAM base "
1545 		    "register %u on 0x%x/0x%x: %d", ruleno, dfno, inst, ret);
1546 		return (ret);
1547 	}
1548 
1549 	if ((ret = amdzen_c_df_read32(dfno, inst, DF_DRAM_LIMIT_V4(ruleno),
1550 	    &limit)) != 0) {
1551 		dev_err(umc->umc_dip, CE_WARN, "!failed to read DRAM limit "
1552 		    "register %u on 0x%x/0x%x: %d", ruleno, dfno, inst, ret);
1553 		return (ret);
1554 	}
1555 
1556 	if ((ret = amdzen_c_df_read32(dfno, inst, DF_DRAM_ILV_V4(ruleno),
1557 	    &ilv)) != 0) {
1558 		dev_err(umc->umc_dip, CE_WARN, "!failed to read DRAM "
1559 		    "interleave register %u on 0x%x/0x%x: %d", ruleno, dfno,
1560 		    inst, ret);
1561 		return (ret);
1562 	}
1563 
1564 	if ((ret = amdzen_c_df_read32(dfno, inst, DF_DRAM_CTL_V4(ruleno),
1565 	    &ctl)) != 0) {
1566 		dev_err(umc->umc_dip, CE_WARN, "!failed to read DRAM control "
1567 		    "register %u on 0x%x/0x%x: %d", ruleno, dfno, inst, ret);
1568 		return (ret);
1569 	}
1570 
1571 	rule->ddr_raw_base = base;
1572 	rule->ddr_raw_limit = limit;
1573 	rule->ddr_raw_ileave = ilv;
1574 	rule->ddr_raw_ctrl = ctl;
1575 
1576 	if (!DF_DRAM_CTL_V4_GET_VALID(ctl)) {
1577 		return (0);
1578 	}
1579 
1580 	rule->ddr_flags |= DF_DRAM_F_VALID;
1581 	rule->ddr_base = DF_DRAM_BASE_V4_GET_ADDR(base);
1582 	rule->ddr_base = rule->ddr_base << DF_DRAM_BASE_V4_BASE_SHIFT;
1583 	rule->ddr_limit = DF_DRAM_LIMIT_V4_GET_ADDR(limit);
1584 	rule->ddr_limit = (rule->ddr_limit << DF_DRAM_LIMIT_V4_LIMIT_SHIFT) +
1585 	    DF_DRAM_LIMIT_V4_LIMIT_EXCL;
1586 	rule->ddr_dest_fabid = DF_DRAM_CTL_V4_GET_DEST_ID(ctl);
1587 
1588 	if (DF_DRAM_CTL_V4_GET_HASH_1G(ctl) != 0) {
1589 		rule->ddr_flags |= DF_DRAM_F_HASH_30_32;
1590 	}
1591 
1592 	if (DF_DRAM_CTL_V4_GET_HASH_2M(ctl) != 0) {
1593 		rule->ddr_flags |= DF_DRAM_F_HASH_21_23;
1594 	}
1595 
1596 	if (DF_DRAM_CTL_V4_GET_HASH_64K(ctl) != 0) {
1597 		rule->ddr_flags |= DF_DRAM_F_HASH_16_18;
1598 	}
1599 
1600 	if (DF_DRAM_CTL_V4_GET_REMAP_EN(ctl) != 0) {
1601 		rule->ddr_flags |= DF_DRAM_F_REMAP_EN;
1602 		rule->ddr_remap_ent = DF_DRAM_CTL_V4_GET_REMAP_SEL(ctl);
1603 	}
1604 
1605 	if (DF_DRAM_CTL_V4_GET_HOLE_EN(ctl) != 0) {
1606 		rule->ddr_flags |= DF_DRAM_F_HOLE;
1607 	}
1608 
1609 	rule->ddr_sock_ileave_bits = DF_DRAM_ILV_V4_GET_SOCK(ilv);
1610 	rule->ddr_die_ileave_bits = DF_DRAM_ILV_V4_GET_DIE(ilv);
1611 	switch (DF_DRAM_ILV_V4_GET_CHAN(ilv)) {
1612 	case DF_DRAM_ILV_V4_CHAN_1:
1613 		rule->ddr_chan_ileave = DF_CHAN_ILEAVE_1CH;
1614 		break;
1615 	case DF_DRAM_ILV_V4_CHAN_2:
1616 		rule->ddr_chan_ileave = DF_CHAN_ILEAVE_2CH;
1617 		break;
1618 	case DF_DRAM_ILV_V4_CHAN_4:
1619 		rule->ddr_chan_ileave = DF_CHAN_ILEAVE_4CH;
1620 		break;
1621 	case DF_DRAM_ILV_V4_CHAN_8:
1622 		rule->ddr_chan_ileave = DF_CHAN_ILEAVE_8CH;
1623 		break;
1624 	case DF_DRAM_ILV_V4_CHAN_16:
1625 		rule->ddr_chan_ileave = DF_CHAN_ILEAVE_16CH;
1626 		break;
1627 	case DF_DRAM_ILV_V4_CHAN_32:
1628 		rule->ddr_chan_ileave = DF_CHAN_ILEAVE_32CH;
1629 		break;
1630 	case DF_DRAM_ILV_V4_CHAN_NPS4_2CH:
1631 		rule->ddr_chan_ileave = DF_CHAN_ILEAVE_NPS4_2CH;
1632 		break;
1633 	case DF_DRAM_ILV_V4_CHAN_NPS2_4CH:
1634 		rule->ddr_chan_ileave = DF_CHAN_ILEAVE_COD2_4CH;
1635 		break;
1636 	case DF_DRAM_ILV_V4_CHAN_NPS1_8CH:
1637 		rule->ddr_chan_ileave = DF_CHAN_ILEAVE_NPS1_8CH;
1638 		break;
1639 	case DF_DRAM_ILV_V4_CHAN_NPS4_3CH:
1640 		rule->ddr_chan_ileave = DF_CHAN_ILEAVE_NPS4_3CH;
1641 		break;
1642 	case DF_DRAM_ILV_V4_CHAN_NPS2_6CH:
1643 		rule->ddr_chan_ileave = DF_CHAN_ILEAVE_NPS2_6CH;
1644 		break;
1645 	case DF_DRAM_ILV_V4_CHAN_NPS1_12CH:
1646 		rule->ddr_chan_ileave = DF_CHAN_ILEAVE_NPS1_12CH;
1647 		break;
1648 	case DF_DRAM_ILV_V4_CHAN_NPS2_5CH:
1649 		rule->ddr_chan_ileave = DF_CHAN_ILEAVE_NPS2_5CH;
1650 		break;
1651 	case DF_DRAM_ILV_V4_CHAN_NPS1_10CH:
1652 		rule->ddr_chan_ileave = DF_CHAN_ILEAVE_NPS1_10CH;
1653 		break;
1654 	default:
1655 		dev_err(umc->umc_dip, CE_WARN, "!encountered invalid channel "
1656 		    "interleave on rule %u, df/inst 0x%x/0x%x: 0x%x", ruleno,
1657 		    dfno, inst, DF_DRAM_ILV_V4_GET_CHAN(ilv));
1658 
1659 		break;
1660 	}
1661 
1662 	addr_ileave = DF_DRAM_ILV_V4_GET_ADDR(ilv);
1663 	switch (addr_ileave) {
1664 	case DF_DRAM_ILV_ADDR_8:
1665 	case DF_DRAM_ILV_ADDR_9:
1666 	case DF_DRAM_ILV_ADDR_10:
1667 	case DF_DRAM_ILV_ADDR_11:
1668 	case DF_DRAM_ILV_ADDR_12:
1669 		break;
1670 	default:
1671 		dev_err(umc->umc_dip, CE_WARN, "!encountered invalid address "
1672 		    "interleave on rule %u, df/inst 0x%x/0x%x: 0x%x", ruleno,
1673 		    dfno, inst, addr_ileave);
1674 		return (EINVAL);
1675 	}
1676 	rule->ddr_addr_start = DF_DRAM_ILV_ADDR_BASE + addr_ileave;
1677 
1678 	return (0);
1679 }
1680 
1681 static int
1682 zen_umc_read_dram_rule(zen_umc_t *umc, const uint_t dfno, const uint_t instid,
1683     const uint_t ruleno, df_dram_rule_t *rule)
1684 {
1685 	int ret;
1686 
1687 	switch (umc->umc_df_rev) {
1688 	case DF_REV_2:
1689 	case DF_REV_3:
1690 	case DF_REV_3P5:
1691 		ret = zen_umc_read_dram_rule_df_23(umc, dfno, instid, ruleno,
1692 		    rule);
1693 		break;
1694 	case DF_REV_4:
1695 		ret = zen_umc_read_dram_rule_df_4(umc, dfno, instid, ruleno,
1696 		    rule);
1697 		break;
1698 	default:
1699 		dev_err(umc->umc_dip, CE_WARN, "!encountered unsupported "
1700 		    "DF revision processing DRAM rules: 0x%x", umc->umc_df_rev);
1701 		return (-1);
1702 	}
1703 
1704 	if (ret != 0) {
1705 		dev_err(umc->umc_dip, CE_WARN, "!failed to read DRAM "
1706 		    "rule %u on df/inst 0x%x/0x%x: %d", ruleno,
1707 		    dfno, instid, ret);
1708 		return (-1);
1709 	}
1710 
1711 	return (0);
1712 }
1713 
1714 static int
1715 zen_umc_read_remap(zen_umc_t *umc, zen_umc_df_t *df, const uint_t instid)
1716 {
1717 	uint_t nremaps, nents;
1718 	uint_t dfno = df->zud_dfno;
1719 	const df_reg_def_t milan_remap0[ZEN_UMC_MILAN_CS_NREMAPS] = {
1720 	    DF_SKT0_CS_REMAP0_V3, DF_SKT1_CS_REMAP0_V3 };
1721 	const df_reg_def_t milan_remap1[ZEN_UMC_MILAN_CS_NREMAPS] = {
1722 	    DF_SKT0_CS_REMAP1_V3, DF_SKT1_CS_REMAP1_V3 };
1723 	const df_reg_def_t dfv4_remapA[ZEN_UMC_MAX_CS_REMAPS] = {
1724 	    DF_CS_REMAP0A_V4, DF_CS_REMAP1A_V4, DF_CS_REMAP2A_V4,
1725 	    DF_CS_REMAP3A_V4 };
1726 	const df_reg_def_t dfv4_remapB[ZEN_UMC_MAX_CS_REMAPS] = {
1727 	    DF_CS_REMAP0B_V4, DF_CS_REMAP1B_V4, DF_CS_REMAP2B_V4,
1728 	    DF_CS_REMAP3B_V4 };
1729 	const df_reg_def_t *remapA, *remapB;
1730 
1731 
1732 	switch (umc->umc_df_rev) {
1733 	case DF_REV_3:
1734 		nremaps = ZEN_UMC_MILAN_CS_NREMAPS;
1735 		nents = ZEN_UMC_MILAN_REMAP_ENTS;
1736 		remapA = milan_remap0;
1737 		remapB = milan_remap1;
1738 		break;
1739 	case DF_REV_4:
1740 		nremaps = ZEN_UMC_MAX_CS_REMAPS;
1741 		nents = ZEN_UMC_MAX_REMAP_ENTS;
1742 		remapA = dfv4_remapA;
1743 		remapB = dfv4_remapB;
1744 		break;
1745 	default:
1746 		dev_err(umc->umc_dip, CE_WARN, "!encountered unsupported DF "
1747 		    "revision processing remap rules: 0x%x", umc->umc_df_rev);
1748 		return (-1);
1749 	}
1750 
1751 	df->zud_cs_nremap = nremaps;
1752 	for (uint_t i = 0; i < nremaps; i++) {
1753 		int ret;
1754 		uint32_t rmA, rmB;
1755 		zen_umc_cs_remap_t *remap = &df->zud_remap[i];
1756 
1757 		if ((ret = amdzen_c_df_read32(dfno, instid, remapA[i],
1758 		    &rmA)) != 0) {
1759 			dev_err(umc->umc_dip, CE_WARN, "!failed to read "
1760 			    "df/inst 0x%x/0x%x remap socket %u-0/A: %d", dfno,
1761 			    instid, i, ret);
1762 			return (-1);
1763 		}
1764 
1765 		if ((ret = amdzen_c_df_read32(dfno, instid, remapB[i],
1766 		    &rmB)) != 0) {
1767 			dev_err(umc->umc_dip, CE_WARN, "!failed to read "
1768 			    "df/inst 0x%x/0x%x remap socket %u-1/B: %d", dfno,
1769 			    instid, i, ret);
1770 			return (-1);
1771 		}
1772 
1773 		remap->csr_nremaps = nents;
1774 		for (uint_t ent = 0; ent < ZEN_UMC_REMAP_PER_REG; ent++) {
1775 			uint_t alt = ent + ZEN_UMC_REMAP_PER_REG;
1776 			boolean_t do_alt = alt < nents;
1777 			remap->csr_remaps[ent] = DF_CS_REMAP_GET_CSX(rmA,
1778 			    ent);
1779 			if (do_alt) {
1780 				remap->csr_remaps[alt] =
1781 				    DF_CS_REMAP_GET_CSX(rmB, ent);
1782 			}
1783 		}
1784 	}
1785 
1786 	return (0);
1787 }
1788 
1789 /*
1790  * Now that we have a CCM, we have several different tasks ahead of us:
1791  *
1792  *   o Determine whether or not the DRAM hole is valid.
1793  *   o Snapshot all of the system address rules and translate them into our
1794  *     generic format.
1795  *   o Determine if there are any rules to retarget things (currently
1796  *     Milan/Genoa).
1797  *   o Determine if there are any other hashing rules enabled.
1798  *
1799  * We only require this from a single CCM as these are currently required to be
1800  * the same across all of them.
1801  */
1802 static int
1803 zen_umc_fill_ccm_cb(const uint_t dfno, const uint32_t fabid,
1804     const uint32_t instid, void *arg)
1805 {
1806 	zen_umc_t *umc = arg;
1807 	zen_umc_df_t *df = &umc->umc_dfs[dfno];
1808 	df_reg_def_t hole;
1809 	int ret;
1810 	uint32_t val;
1811 
1812 	df->zud_dfno = dfno;
1813 	df->zud_ccm_inst = instid;
1814 
1815 	/*
1816 	 * First get the DRAM hole. This has the same layout, albeit different
1817 	 * registers across our different platforms.
1818 	 */
1819 	switch (umc->umc_df_rev) {
1820 	case DF_REV_2:
1821 	case DF_REV_3:
1822 	case DF_REV_3P5:
1823 		hole = DF_DRAM_HOLE_V2;
1824 		break;
1825 	case DF_REV_4:
1826 		hole = DF_DRAM_HOLE_V4;
1827 		break;
1828 	default:
1829 		dev_err(umc->umc_dip, CE_WARN, "!encountered unsupported "
1830 		    "DF version: 0x%x", umc->umc_df_rev);
1831 		return (-1);
1832 	}
1833 
1834 	if ((ret = amdzen_c_df_read32(dfno, instid, hole, &val)) != 0) {
1835 		dev_err(umc->umc_dip, CE_WARN, "!failed to read DRAM Hole: %d",
1836 		    ret);
1837 		return (-1);
1838 	}
1839 
1840 	df->zud_hole_raw = val;
1841 	if (DF_DRAM_HOLE_GET_VALID(val)) {
1842 		uint64_t t;
1843 
1844 		df->zud_flags |= ZEN_UMC_DF_F_HOLE_VALID;
1845 		t = DF_DRAM_HOLE_GET_BASE(val);
1846 		df->zud_hole_base = t << DF_DRAM_HOLE_BASE_SHIFT;
1847 	}
1848 
1849 	/*
1850 	 * Prior to Zen 4, the hash information was global and applied to all
1851 	 * COD rules globally. Check if we're on such a system and snapshot this
1852 	 * so we can use it during the rule application. Note, this was added in
1853 	 * DFv3.
1854 	 */
1855 	if (umc->umc_df_rev == DF_REV_3 || umc->umc_df_rev == DF_REV_3P5) {
1856 		uint32_t globctl;
1857 
1858 		if ((ret = amdzen_c_df_read32(dfno, instid, DF_GLOB_CTL_V3,
1859 		    &globctl)) != 0) {
1860 			dev_err(umc->umc_dip, CE_WARN, "!failed to read global "
1861 			    "control: %d", ret);
1862 			return (-1);
1863 		}
1864 
1865 		df->zud_glob_ctl_raw = globctl;
1866 		if (DF_GLOB_CTL_V3_GET_HASH_1G(globctl) != 0) {
1867 			df->zud_flags |= ZEN_UMC_DF_F_HASH_30_32;
1868 		}
1869 
1870 		if (DF_GLOB_CTL_V3_GET_HASH_2M(globctl) != 0) {
1871 			df->zud_flags |= ZEN_UMC_DF_F_HASH_21_23;
1872 		}
1873 
1874 		if (DF_GLOB_CTL_V3_GET_HASH_64K(globctl) != 0) {
1875 			df->zud_flags |= ZEN_UMC_DF_F_HASH_16_18;
1876 		}
1877 	}
1878 
1879 	df->zud_dram_nrules = umc->umc_fdata->zufd_dram_nrules;
1880 	for (uint_t i = 0; i < umc->umc_fdata->zufd_dram_nrules; i++) {
1881 		if (zen_umc_read_dram_rule(umc, dfno, instid, i,
1882 		    &df->zud_rules[i]) != 0) {
1883 			return (-1);
1884 		}
1885 	}
1886 
1887 	if ((umc->umc_fdata->zufd_flags & ZEN_UMC_FAM_F_TARG_REMAP) != 0) {
1888 		if (zen_umc_read_remap(umc, df, instid) != 0) {
1889 			return (-1);
1890 		}
1891 	}
1892 
1893 	/*
1894 	 * We only want a single entry, so always return 1 to terminate us
1895 	 * early.
1896 	 */
1897 	return (1);
1898 }
1899 
1900 /*
1901  * At this point we can go through and calculate the size of the DIMM that we've
1902  * found. While it would be nice to determine this from the SPD data, we can
1903  * figure this out entirely based upon the information in the memory controller.
1904  *
1905  * This works by first noting that DDR4, LPDDR4, DDR5, and LPDDR5 are all built
1906  * around 64-bit data channels. This means that each row and column provides up
1907  * 64-bits (ignoring ECC) of data. There are a number of banks and bank groups.
1908  * The memory controller tracks the total number of bits that are used for each.
1909  * While DDR5 introduces sub-channels, we don't need to worry about those here,
1910  * because ultimately the sub-channel just splits the 64-bit bus we're assuming
1911  * into 2x 32-bit buses. While they can be independently selected, they should
1912  * have equivalent capacities.
1913  *
1914  * The most confusing part of this is that there is one of these related to each
1915  * rank on the device. The UMC natively has two 'chip-selects', each of which is
1916  * used to correspond to a rank. There are then separately multiple rm bits in
1917  * each chip-select. As far as we can tell the PSP or SMU programs the number of
1918  * rm bits to be zero when you have a dual-rank device.
1919  *
1920  * We end up summing each chip-select rather than assuming that the chip-selects
1921  * are identical. In theory some amount of asymmetric DIMMs exist in the wild,
1922  * but we don't know of many systems using them.
1923  */
1924 static void
1925 zen_umc_calc_dimm_size(umc_dimm_t *dimm)
1926 {
1927 	dimm->ud_dimm_size = 0;
1928 	for (uint_t i = 0; i < ZEN_UMC_MAX_CHAN_BASE; i++) {
1929 		uint64_t nrc;
1930 		const umc_cs_t *cs = &dimm->ud_cs[i];
1931 
1932 		if (!cs->ucs_base.udb_valid && !cs->ucs_sec.udb_valid) {
1933 			continue;
1934 		}
1935 
1936 		nrc = cs->ucs_nrow_lo + cs->ucs_nrow_hi + cs->ucs_ncol;
1937 		dimm->ud_dimm_size += (8ULL << nrc) * (1 << cs->ucs_nbanks) *
1938 		    (1 << cs->ucs_nrm);
1939 	}
1940 }
1941 
1942 /*
1943  * This is used to fill in the common properties about a DIMM. This should occur
1944  * after the rank information has been filled out. The information used is the
1945  * same between DDR4 and DDR5 DIMMs. The only major difference is the register
1946  * offset.
1947  */
1948 static boolean_t
1949 zen_umc_fill_dimm_common(zen_umc_t *umc, zen_umc_df_t *df, zen_umc_chan_t *chan,
1950     const uint_t dimmno, boolean_t ddr4_style)
1951 {
1952 	umc_dimm_t *dimm;
1953 	int ret;
1954 	smn_reg_t reg;
1955 	uint32_t val;
1956 	const uint32_t id = chan->chan_logid;
1957 
1958 	dimm = &chan->chan_dimms[dimmno];
1959 	dimm->ud_dimmno = dimmno;
1960 
1961 	if (ddr4_style) {
1962 		reg = UMC_DIMMCFG_DDR4(id, dimmno);
1963 	} else {
1964 		reg = UMC_DIMMCFG_DDR5(id, dimmno);
1965 	}
1966 	if ((ret = amdzen_c_smn_read(df->zud_dfno, reg, &val)) != 0) {
1967 		dev_err(umc->umc_dip, CE_WARN, "failed to read DIMM "
1968 		    "configuration register %x: %d", SMN_REG_ADDR(reg), ret);
1969 		return (B_FALSE);
1970 	}
1971 	dimm->ud_dimmcfg_raw = val;
1972 
1973 	if (UMC_DIMMCFG_GET_X16(val) != 0) {
1974 		dimm->ud_width = UMC_DIMM_W_X16;
1975 	} else if (UMC_DIMMCFG_GET_X4(val) != 0) {
1976 		dimm->ud_width = UMC_DIMM_W_X4;
1977 	} else {
1978 		dimm->ud_width = UMC_DIMM_W_X8;
1979 	}
1980 
1981 	if (UMC_DIMMCFG_GET_3DS(val) != 0) {
1982 		dimm->ud_kind = UMC_DIMM_K_3DS_RDIMM;
1983 	} else if (UMC_DIMMCFG_GET_LRDIMM(val) != 0) {
1984 		dimm->ud_kind = UMC_DIMM_K_LRDIMM;
1985 	} else if (UMC_DIMMCFG_GET_RDIMM(val) != 0) {
1986 		dimm->ud_kind = UMC_DIMM_K_RDIMM;
1987 	} else {
1988 		dimm->ud_kind = UMC_DIMM_K_UDIMM;
1989 	}
1990 
1991 	/*
1992 	 * DIMM information in a UMC can be somewhat confusing. There are quite
1993 	 * a number of non-zero reset values that are here. Flag whether or not
1994 	 * we think this entry should be usable based on enabled chip-selects.
1995 	 */
1996 	for (uint_t i = 0; i < ZEN_UMC_MAX_CHAN_BASE; i++) {
1997 		if (dimm->ud_cs[i].ucs_base.udb_valid ||
1998 		    dimm->ud_cs[i].ucs_sec.udb_valid) {
1999 			dimm->ud_flags |= UMC_DIMM_F_VALID;
2000 			break;
2001 		}
2002 	}
2003 
2004 	/*
2005 	 * The remaining calculations we only want to perform if we have actual
2006 	 * data for a DIMM.
2007 	 */
2008 	if ((dimm->ud_flags & UMC_DIMM_F_VALID) == 0) {
2009 		return (B_TRUE);
2010 	}
2011 
2012 	zen_umc_calc_dimm_size(dimm);
2013 
2014 	return (B_TRUE);
2015 }
2016 
2017 /*
2018  * Fill all the information about a DDR4 DIMM. In the DDR4 UMC, some of this
2019  * information is on a per-chip select basis while at other times it is on a
2020  * per-DIMM basis.  In general, chip-selects 0/1 correspond to DIMM 0, and
2021  * chip-selects 2/3 correspond to DIMM 1. To normalize things with the DDR5 UMC
2022  * which generally has things stored on a per-rank/chips-select basis, we
2023  * duplicate information that is DIMM-wide into the chip-select data structure
2024  * (umc_cs_t).
2025  */
2026 static boolean_t
2027 zen_umc_fill_chan_dimm_ddr4(zen_umc_t *umc, zen_umc_df_t *df,
2028     zen_umc_chan_t *chan, const uint_t dimmno)
2029 {
2030 	umc_dimm_t *dimm;
2031 	umc_cs_t *cs0, *cs1;
2032 	const uint32_t id = chan->chan_logid;
2033 	int ret;
2034 	uint32_t val;
2035 	smn_reg_t reg;
2036 
2037 	ASSERT3U(dimmno, <, ZEN_UMC_MAX_DIMMS);
2038 	dimm = &chan->chan_dimms[dimmno];
2039 	cs0 = &dimm->ud_cs[0];
2040 	cs1 = &dimm->ud_cs[1];
2041 
2042 	/*
2043 	 * DDR4 organization has initial data that exists on a per-chip select
2044 	 * basis. The rest of it is on a per-DIMM basis. First we grab the
2045 	 * per-chip-select data. After this for loop, we will always duplicate
2046 	 * all data that we gather into both chip-selects.
2047 	 */
2048 	for (uint_t i = 0; i < ZEN_UMC_MAX_CS_PER_DIMM; i++) {
2049 		uint64_t addr;
2050 		const uint16_t reginst = i + dimmno * 2;
2051 		reg = UMC_BASE(id, reginst);
2052 		if ((ret = amdzen_c_smn_read(df->zud_dfno, reg, &val)) != 0) {
2053 			dev_err(umc->umc_dip, CE_WARN, "failed to read base "
2054 			    "register %x: %d", SMN_REG_ADDR(reg), ret);
2055 			return (B_FALSE);
2056 		}
2057 
2058 		addr = (uint64_t)UMC_BASE_GET_ADDR(val) << UMC_BASE_ADDR_SHIFT;
2059 		dimm->ud_cs[i].ucs_base.udb_base = addr;
2060 		dimm->ud_cs[i].ucs_base.udb_valid = UMC_BASE_GET_EN(val);
2061 
2062 		reg = UMC_BASE_SEC(id, reginst);
2063 		if ((ret = amdzen_c_smn_read(df->zud_dfno, reg, &val)) != 0) {
2064 			dev_err(umc->umc_dip, CE_WARN, "failed to read "
2065 			    "secondary base register %x: %d", SMN_REG_ADDR(reg),
2066 			    ret);
2067 			return (B_FALSE);
2068 		}
2069 
2070 		addr = (uint64_t)UMC_BASE_GET_ADDR(val) << UMC_BASE_ADDR_SHIFT;
2071 		dimm->ud_cs[i].ucs_sec.udb_base = addr;
2072 		dimm->ud_cs[i].ucs_sec.udb_valid = UMC_BASE_GET_EN(val);
2073 	}
2074 
2075 	reg = UMC_MASK_DDR4(id, dimmno);
2076 	if ((ret = amdzen_c_smn_read(df->zud_dfno, reg, &val)) != 0) {
2077 		dev_err(umc->umc_dip, CE_WARN, "failed to read mask register "
2078 		    "%x: %d", SMN_REG_ADDR(reg), ret);
2079 		return (B_FALSE);
2080 	}
2081 
2082 	/*
2083 	 * When we extract the masks, hardware only checks a limited range of
2084 	 * bits. Therefore we need to always OR in those lower order bits.
2085 	 */
2086 	cs0->ucs_base_mask = (uint64_t)UMC_MASK_GET_ADDR(val) <<
2087 	    UMC_MASK_ADDR_SHIFT;
2088 	cs0->ucs_base_mask |= (1 << UMC_MASK_ADDR_SHIFT) - 1;
2089 	cs1->ucs_base_mask = cs0->ucs_base_mask;
2090 
2091 	reg = UMC_MASK_SEC_DDR4(id, dimmno);
2092 	if ((ret = amdzen_c_smn_read(df->zud_dfno, reg, &val)) != 0) {
2093 		dev_err(umc->umc_dip, CE_WARN, "failed to read secondary mask "
2094 		    "register %x: %d", SMN_REG_ADDR(reg), ret);
2095 		return (B_FALSE);
2096 	}
2097 	cs0->ucs_sec_mask = (uint64_t)UMC_MASK_GET_ADDR(val) <<
2098 	    UMC_MASK_ADDR_SHIFT;
2099 	cs0->ucs_sec_mask |= (1 << UMC_MASK_ADDR_SHIFT) - 1;
2100 	cs1->ucs_sec_mask = cs0->ucs_sec_mask;
2101 
2102 	reg = UMC_ADDRCFG_DDR4(id, dimmno);
2103 	if ((ret = amdzen_c_smn_read(df->zud_dfno, reg, &val)) != 0) {
2104 		dev_err(umc->umc_dip, CE_WARN, "failed to read address config "
2105 		    "register %x: %d", SMN_REG_ADDR(reg), ret);
2106 		return (B_FALSE);
2107 	}
2108 
2109 	cs0->ucs_nbanks = UMC_ADDRCFG_GET_NBANK_BITS(val) +
2110 	    UMC_ADDRCFG_NBANK_BITS_BASE;
2111 	cs1->ucs_nbanks = cs0->ucs_nbanks;
2112 	cs0->ucs_ncol = UMC_ADDRCFG_GET_NCOL_BITS(val) +
2113 	    UMC_ADDRCFG_NCOL_BITS_BASE;
2114 	cs1->ucs_ncol = cs0->ucs_ncol;
2115 	cs0->ucs_nrow_hi = UMC_ADDRCFG_DDR4_GET_NROW_BITS_HI(val);
2116 	cs1->ucs_nrow_hi = cs0->ucs_nrow_hi;
2117 	cs0->ucs_nrow_lo = UMC_ADDRCFG_GET_NROW_BITS_LO(val) +
2118 	    UMC_ADDRCFG_NROW_BITS_LO_BASE;
2119 	cs1->ucs_nrow_lo = cs0->ucs_nrow_lo;
2120 	cs0->ucs_nbank_groups = UMC_ADDRCFG_GET_NBANKGRP_BITS(val);
2121 	cs1->ucs_nbank_groups = cs0->ucs_nbank_groups;
2122 	/*
2123 	 * As the chip-select XORs don't always show up, use a dummy value
2124 	 * that'll result in no change occurring here.
2125 	 */
2126 	cs0->ucs_cs_xor = cs1->ucs_cs_xor = 0;
2127 
2128 	/*
2129 	 * APUs don't seem to support various rank select bits.
2130 	 */
2131 	if (umc->umc_fdata->zufd_umc_style == ZEN_UMC_UMC_S_DDR4) {
2132 		cs0->ucs_nrm = UMC_ADDRCFG_DDR4_GET_NRM_BITS(val);
2133 		cs1->ucs_nrm = cs0->ucs_nrm;
2134 	} else {
2135 		cs0->ucs_nrm = cs1->ucs_nrm = 0;
2136 	}
2137 
2138 	reg = UMC_ADDRSEL_DDR4(id, dimmno);
2139 	if ((ret = amdzen_c_smn_read(df->zud_dfno, reg, &val)) != 0) {
2140 		dev_err(umc->umc_dip, CE_WARN, "failed to read bank address "
2141 		    "select register %x: %d", SMN_REG_ADDR(reg), ret);
2142 		return (B_FALSE);
2143 	}
2144 	cs0->ucs_row_hi_bit = UMC_ADDRSEL_DDR4_GET_ROW_HI(val) +
2145 	    UMC_ADDRSEL_DDR4_ROW_HI_BASE;
2146 	cs1->ucs_row_hi_bit = cs0->ucs_row_hi_bit;
2147 	cs0->ucs_row_low_bit = UMC_ADDRSEL_GET_ROW_LO(val) +
2148 	    UMC_ADDRSEL_ROW_LO_BASE;
2149 	cs1->ucs_row_low_bit = cs0->ucs_row_low_bit;
2150 	cs0->ucs_bank_bits[0] = UMC_ADDRSEL_GET_BANK0(val) +
2151 	    UMC_ADDRSEL_BANK_BASE;
2152 	cs0->ucs_bank_bits[1] = UMC_ADDRSEL_GET_BANK1(val) +
2153 	    UMC_ADDRSEL_BANK_BASE;
2154 	cs0->ucs_bank_bits[2] = UMC_ADDRSEL_GET_BANK2(val) +
2155 	    UMC_ADDRSEL_BANK_BASE;
2156 	cs0->ucs_bank_bits[3] = UMC_ADDRSEL_GET_BANK3(val) +
2157 	    UMC_ADDRSEL_BANK_BASE;
2158 	cs0->ucs_bank_bits[4] = UMC_ADDRSEL_GET_BANK4(val) +
2159 	    UMC_ADDRSEL_BANK_BASE;
2160 	bcopy(cs0->ucs_bank_bits, cs1->ucs_bank_bits,
2161 	    sizeof (cs0->ucs_bank_bits));
2162 
2163 	reg = UMC_COLSEL_LO_DDR4(id, dimmno);
2164 	if ((ret = amdzen_c_smn_read(df->zud_dfno, reg, &val)) != 0) {
2165 		dev_err(umc->umc_dip, CE_WARN, "failed to read column address "
2166 		    "select low register %x: %d", SMN_REG_ADDR(reg), ret);
2167 		return (B_FALSE);
2168 	}
2169 	for (uint_t i = 0; i < ZEN_UMC_MAX_COLSEL_PER_REG; i++) {
2170 		cs0->ucs_col_bits[i] = UMC_COLSEL_REMAP_GET_COL(val, i) +
2171 		    UMC_COLSEL_LO_BASE;
2172 	}
2173 
2174 	reg = UMC_COLSEL_HI_DDR4(id, dimmno);
2175 	if ((ret = amdzen_c_smn_read(df->zud_dfno, reg, &val)) != 0) {
2176 		dev_err(umc->umc_dip, CE_WARN, "failed to read column address "
2177 		    "select high register %x: %d", SMN_REG_ADDR(reg), ret);
2178 		return (B_FALSE);
2179 	}
2180 	for (uint_t i = 0; i < ZEN_UMC_MAX_COLSEL_PER_REG; i++) {
2181 		cs0->ucs_col_bits[i + ZEN_UMC_MAX_COLSEL_PER_REG] =
2182 		    UMC_COLSEL_REMAP_GET_COL(val, i) + UMC_COLSEL_HI_BASE;
2183 	}
2184 	bcopy(cs0->ucs_col_bits, cs1->ucs_col_bits, sizeof (cs0->ucs_col_bits));
2185 
2186 	/*
2187 	 * The next two registers give us information about a given rank select.
2188 	 * In the APUs, the inversion bits are there; however, the actual bit
2189 	 * selects are not. In this case we read the reserved bits regardless.
2190 	 * They should be ignored due to the fact that the number of banks is
2191 	 * zero.
2192 	 */
2193 	reg = UMC_RMSEL_DDR4(id, dimmno);
2194 	if ((ret = amdzen_c_smn_read(df->zud_dfno, reg, &val)) != 0) {
2195 		dev_err(umc->umc_dip, CE_WARN, "failed to read rank address "
2196 		    "select register %x: %d", SMN_REG_ADDR(reg), ret);
2197 		return (B_FALSE);
2198 	}
2199 	cs0->ucs_inv_msbs = UMC_RMSEL_DDR4_GET_INV_MSBE(val);
2200 	cs1->ucs_inv_msbs = UMC_RMSEL_DDR4_GET_INV_MSBO(val);
2201 	cs0->ucs_rm_bits[0] = UMC_RMSEL_DDR4_GET_RM0(val) +
2202 	    UMC_RMSEL_BASE;
2203 	cs0->ucs_rm_bits[1] = UMC_RMSEL_DDR4_GET_RM1(val) +
2204 	    UMC_RMSEL_BASE;
2205 	cs0->ucs_rm_bits[2] = UMC_RMSEL_DDR4_GET_RM2(val) +
2206 	    UMC_RMSEL_BASE;
2207 	bcopy(cs0->ucs_rm_bits, cs1->ucs_rm_bits, sizeof (cs0->ucs_rm_bits));
2208 
2209 	reg = UMC_RMSEL_SEC_DDR4(id, dimmno);
2210 	if ((ret = amdzen_c_smn_read(df->zud_dfno, reg, &val)) != 0) {
2211 		dev_err(umc->umc_dip, CE_WARN, "failed to read secondary rank "
2212 		    "address select register %x: %d", SMN_REG_ADDR(reg), ret);
2213 		return (B_FALSE);
2214 	}
2215 	cs0->ucs_inv_msbs_sec = UMC_RMSEL_DDR4_GET_INV_MSBE(val);
2216 	cs1->ucs_inv_msbs_sec = UMC_RMSEL_DDR4_GET_INV_MSBO(val);
2217 	cs0->ucs_rm_bits_sec[0] = UMC_RMSEL_DDR4_GET_RM0(val) +
2218 	    UMC_RMSEL_BASE;
2219 	cs0->ucs_rm_bits_sec[1] = UMC_RMSEL_DDR4_GET_RM1(val) +
2220 	    UMC_RMSEL_BASE;
2221 	cs0->ucs_rm_bits_sec[2] = UMC_RMSEL_DDR4_GET_RM2(val) +
2222 	    UMC_RMSEL_BASE;
2223 	bcopy(cs0->ucs_rm_bits_sec, cs1->ucs_rm_bits_sec,
2224 	    sizeof (cs0->ucs_rm_bits_sec));
2225 
2226 	return (zen_umc_fill_dimm_common(umc, df, chan, dimmno, B_TRUE));
2227 }
2228 
2229 /*
2230  * The DDR5 based systems are organized such that almost all the information we
2231  * care about is split between two different chip-select structures in the UMC
2232  * hardware SMN space.
2233  */
2234 static boolean_t
2235 zen_umc_fill_chan_rank_ddr5(zen_umc_t *umc, zen_umc_df_t *df,
2236     zen_umc_chan_t *chan, const uint_t dimmno, const uint_t rankno)
2237 {
2238 	int ret;
2239 	umc_cs_t *cs;
2240 	uint32_t val;
2241 	smn_reg_t reg;
2242 	const uint32_t id = chan->chan_logid;
2243 	const uint32_t regno = dimmno * 2 + rankno;
2244 
2245 	ASSERT3U(dimmno, <, ZEN_UMC_MAX_DIMMS);
2246 	ASSERT3U(rankno, <, ZEN_UMC_MAX_CS_PER_DIMM);
2247 	cs = &chan->chan_dimms[dimmno].ud_cs[rankno];
2248 
2249 	reg = UMC_BASE(id, regno);
2250 	if ((ret = amdzen_c_smn_read(df->zud_dfno, reg, &val)) != 0) {
2251 		dev_err(umc->umc_dip, CE_WARN, "failed to read base "
2252 		    "register %x: %d", SMN_REG_ADDR(reg), ret);
2253 		return (B_FALSE);
2254 	}
2255 	cs->ucs_base.udb_base = (uint64_t)UMC_BASE_GET_ADDR(val) <<
2256 	    UMC_BASE_ADDR_SHIFT;
2257 	cs->ucs_base.udb_valid = UMC_BASE_GET_EN(val);
2258 	if ((umc->umc_fdata->zufd_flags & ZEN_UMC_FAM_F_UMC_EADDR) != 0) {
2259 		uint64_t addr;
2260 
2261 		reg = UMC_BASE_EXT_DDR5(id, regno);
2262 		if ((ret = amdzen_c_smn_read(df->zud_dfno, reg, &val)) !=
2263 		    0) {
2264 			dev_err(umc->umc_dip, CE_WARN, "failed to read "
2265 			    "extended base register %x: %d", SMN_REG_ADDR(reg),
2266 			    ret);
2267 			return (B_FALSE);
2268 		}
2269 
2270 		addr = (uint64_t)UMC_BASE_EXT_GET_ADDR(val) <<
2271 		    UMC_BASE_EXT_ADDR_SHIFT;
2272 		cs->ucs_base.udb_base |= addr;
2273 	}
2274 
2275 	reg = UMC_BASE_SEC(id, regno);
2276 	if ((ret = amdzen_c_smn_read(df->zud_dfno, reg, &val)) != 0) {
2277 		dev_err(umc->umc_dip, CE_WARN, "failed to read secondary base "
2278 		    "register %x: %d", SMN_REG_ADDR(reg), ret);
2279 		return (B_FALSE);
2280 	}
2281 	cs->ucs_sec.udb_base = (uint64_t)UMC_BASE_GET_ADDR(val) <<
2282 	    UMC_BASE_ADDR_SHIFT;
2283 	cs->ucs_sec.udb_valid = UMC_BASE_GET_EN(val);
2284 	if ((umc->umc_fdata->zufd_flags & ZEN_UMC_FAM_F_UMC_EADDR) != 0) {
2285 		uint64_t addr;
2286 
2287 		reg = UMC_BASE_EXT_SEC_DDR5(id, regno);
2288 		if ((ret = amdzen_c_smn_read(df->zud_dfno, reg, &val)) !=
2289 		    0) {
2290 			dev_err(umc->umc_dip, CE_WARN, "failed to read "
2291 			    "extended secondary base register %x: %d",
2292 			    SMN_REG_ADDR(reg), ret);
2293 			return (B_FALSE);
2294 		}
2295 
2296 		addr = (uint64_t)UMC_BASE_EXT_GET_ADDR(val) <<
2297 		    UMC_BASE_EXT_ADDR_SHIFT;
2298 		cs->ucs_sec.udb_base |= addr;
2299 	}
2300 
2301 	reg = UMC_MASK_DDR5(id, regno);
2302 	if ((ret = amdzen_c_smn_read(df->zud_dfno, reg, &val)) != 0) {
2303 		dev_err(umc->umc_dip, CE_WARN, "failed to read mask "
2304 		    "register %x: %d", SMN_REG_ADDR(reg), ret);
2305 		return (B_FALSE);
2306 	}
2307 	cs->ucs_base_mask = (uint64_t)UMC_MASK_GET_ADDR(val) <<
2308 	    UMC_MASK_ADDR_SHIFT;
2309 	cs->ucs_base_mask |= (1 << UMC_MASK_ADDR_SHIFT) - 1;
2310 	if ((umc->umc_fdata->zufd_flags & ZEN_UMC_FAM_F_UMC_EADDR) != 0) {
2311 		uint64_t addr;
2312 
2313 		reg = UMC_MASK_EXT_DDR5(id, regno);
2314 		if ((ret = amdzen_c_smn_read(df->zud_dfno, reg, &val)) !=
2315 		    0) {
2316 			dev_err(umc->umc_dip, CE_WARN, "failed to read "
2317 			    "extended mask register %x: %d", SMN_REG_ADDR(reg),
2318 			    ret);
2319 			return (B_FALSE);
2320 		}
2321 
2322 		addr = (uint64_t)UMC_MASK_EXT_GET_ADDR(val) <<
2323 		    UMC_MASK_EXT_ADDR_SHIFT;
2324 		cs->ucs_base_mask |= addr;
2325 	}
2326 
2327 
2328 	reg = UMC_MASK_SEC_DDR5(id, regno);
2329 	if ((ret = amdzen_c_smn_read(df->zud_dfno, reg, &val)) != 0) {
2330 		dev_err(umc->umc_dip, CE_WARN, "failed to read secondary mask "
2331 		    "register %x: %d", SMN_REG_ADDR(reg), ret);
2332 		return (B_FALSE);
2333 	}
2334 	cs->ucs_sec_mask = (uint64_t)UMC_MASK_GET_ADDR(val) <<
2335 	    UMC_MASK_ADDR_SHIFT;
2336 	cs->ucs_sec_mask |= (1 << UMC_MASK_ADDR_SHIFT) - 1;
2337 	if ((umc->umc_fdata->zufd_flags & ZEN_UMC_FAM_F_UMC_EADDR) != 0) {
2338 		uint64_t addr;
2339 
2340 		reg = UMC_MASK_EXT_SEC_DDR5(id, regno);
2341 		if ((ret = amdzen_c_smn_read(df->zud_dfno, reg, &val)) !=
2342 		    0) {
2343 			dev_err(umc->umc_dip, CE_WARN, "failed to read "
2344 			    "extended mask register %x: %d", SMN_REG_ADDR(reg),
2345 			    ret);
2346 			return (B_FALSE);
2347 		}
2348 
2349 		addr = (uint64_t)UMC_MASK_EXT_GET_ADDR(val) <<
2350 		    UMC_MASK_EXT_ADDR_SHIFT;
2351 		cs->ucs_sec_mask |= addr;
2352 	}
2353 
2354 	reg = UMC_ADDRCFG_DDR5(id, regno);
2355 	if ((ret = amdzen_c_smn_read(df->zud_dfno, reg, &val)) != 0) {
2356 		dev_err(umc->umc_dip, CE_WARN, "failed to read address config "
2357 		    "register %x: %d", SMN_REG_ADDR(reg), ret);
2358 		return (B_FALSE);
2359 	}
2360 	if ((umc->umc_fdata->zufd_flags & ZEN_UMC_FAM_F_CS_XOR) != 0) {
2361 		cs->ucs_cs_xor = UMC_ADDRCFG_DDR5_GET_CSXOR(val);
2362 	} else {
2363 		cs->ucs_cs_xor = 0;
2364 	}
2365 	cs->ucs_nbanks = UMC_ADDRCFG_GET_NBANK_BITS(val) +
2366 	    UMC_ADDRCFG_NBANK_BITS_BASE;
2367 	cs->ucs_ncol = UMC_ADDRCFG_GET_NCOL_BITS(val) +
2368 	    UMC_ADDRCFG_NCOL_BITS_BASE;
2369 	cs->ucs_nrow_lo = UMC_ADDRCFG_GET_NROW_BITS_LO(val) +
2370 	    UMC_ADDRCFG_NROW_BITS_LO_BASE;
2371 	cs->ucs_nrow_hi = 0;
2372 	cs->ucs_nrm = UMC_ADDRCFG_DDR5_GET_NRM_BITS(val);
2373 	cs->ucs_nbank_groups = UMC_ADDRCFG_GET_NBANKGRP_BITS(val);
2374 
2375 	reg = UMC_ADDRSEL_DDR5(id, regno);
2376 	if ((ret = amdzen_c_smn_read(df->zud_dfno, reg, &val)) != 0) {
2377 		dev_err(umc->umc_dip, CE_WARN, "failed to read address select "
2378 		    "register %x: %d", SMN_REG_ADDR(reg), ret);
2379 		return (B_FALSE);
2380 	}
2381 	cs->ucs_row_hi_bit = 0;
2382 	cs->ucs_row_low_bit = UMC_ADDRSEL_GET_ROW_LO(val) +
2383 	    UMC_ADDRSEL_ROW_LO_BASE;
2384 	cs->ucs_bank_bits[4] = UMC_ADDRSEL_GET_BANK4(val) +
2385 	    UMC_ADDRSEL_BANK_BASE;
2386 	cs->ucs_bank_bits[3] = UMC_ADDRSEL_GET_BANK3(val) +
2387 	    UMC_ADDRSEL_BANK_BASE;
2388 	cs->ucs_bank_bits[2] = UMC_ADDRSEL_GET_BANK2(val) +
2389 	    UMC_ADDRSEL_BANK_BASE;
2390 	cs->ucs_bank_bits[1] = UMC_ADDRSEL_GET_BANK1(val) +
2391 	    UMC_ADDRSEL_BANK_BASE;
2392 	cs->ucs_bank_bits[0] = UMC_ADDRSEL_GET_BANK0(val) +
2393 	    UMC_ADDRSEL_BANK_BASE;
2394 
2395 	reg = UMC_COLSEL_LO_DDR5(id, regno);
2396 	if ((ret = amdzen_c_smn_read(df->zud_dfno, reg, &val)) != 0) {
2397 		dev_err(umc->umc_dip, CE_WARN, "failed to read column address "
2398 		    "select low register %x: %d", SMN_REG_ADDR(reg), ret);
2399 		return (B_FALSE);
2400 	}
2401 	for (uint_t i = 0; i < ZEN_UMC_MAX_COLSEL_PER_REG; i++) {
2402 		cs->ucs_col_bits[i] = UMC_COLSEL_REMAP_GET_COL(val, i) +
2403 		    UMC_COLSEL_LO_BASE;
2404 	}
2405 
2406 	reg = UMC_COLSEL_HI_DDR5(id, regno);
2407 	if ((ret = amdzen_c_smn_read(df->zud_dfno, reg, &val)) != 0) {
2408 		dev_err(umc->umc_dip, CE_WARN, "failed to read column address "
2409 		    "select high register %x: %d", SMN_REG_ADDR(reg), ret);
2410 		return (B_FALSE);
2411 	}
2412 	for (uint_t i = 0; i < ZEN_UMC_MAX_COLSEL_PER_REG; i++) {
2413 		cs->ucs_col_bits[i + ZEN_UMC_MAX_COLSEL_PER_REG] =
2414 		    UMC_COLSEL_REMAP_GET_COL(val, i) + UMC_COLSEL_HI_BASE;
2415 	}
2416 
2417 	/*
2418 	 * Time for our friend, the RM Selection register. Like in DDR4 we end
2419 	 * up reading everything here, even though most others have reserved
2420 	 * bits here. The intent is that we won't look at the reserved bits
2421 	 * unless something actually points us there.
2422 	 */
2423 	reg = UMC_RMSEL_DDR5(id, regno);
2424 	if ((ret = amdzen_c_smn_read(df->zud_dfno, reg, &val)) != 0) {
2425 		dev_err(umc->umc_dip, CE_WARN, "failed to read rank multiply "
2426 		    "select register %x: %d", SMN_REG_ADDR(reg), ret);
2427 		return (B_FALSE);
2428 	}
2429 
2430 	/*
2431 	 * DDR5 based devices have a primary and secondary msbs; however, they
2432 	 * only have a single set of rm bits. To normalize things with the DDR4
2433 	 * subsystem, we copy the primary bits to the secondary so we can use
2434 	 * these the same way in the decoder/encoder.
2435 	 */
2436 	cs->ucs_inv_msbs = UMC_RMSEL_DDR5_GET_INV_MSBS(val);
2437 	cs->ucs_inv_msbs_sec = UMC_RMSEL_DDR5_GET_INV_MSBS_SEC(val);
2438 	cs->ucs_subchan = UMC_RMSEL_DDR5_GET_SUBCHAN(val) +
2439 	    UMC_RMSEL_DDR5_SUBCHAN_BASE;
2440 	cs->ucs_rm_bits[3] = UMC_RMSEL_DDR5_GET_RM3(val) + UMC_RMSEL_BASE;
2441 	cs->ucs_rm_bits[2] = UMC_RMSEL_DDR5_GET_RM2(val) + UMC_RMSEL_BASE;
2442 	cs->ucs_rm_bits[1] = UMC_RMSEL_DDR5_GET_RM1(val) + UMC_RMSEL_BASE;
2443 	cs->ucs_rm_bits[0] = UMC_RMSEL_DDR5_GET_RM0(val) + UMC_RMSEL_BASE;
2444 	bcopy(cs->ucs_rm_bits, cs->ucs_rm_bits_sec,
2445 	    sizeof (cs->ucs_rm_bits));
2446 
2447 	return (zen_umc_fill_dimm_common(umc, df, chan, dimmno, B_FALSE));
2448 }
2449 
2450 static void
2451 zen_umc_fill_ddr_type(zen_umc_t *umc, zen_umc_chan_t *chan)
2452 {
2453 	umc_dimm_type_t dimm = UMC_DIMM_T_UNKNOWN;
2454 	uint8_t val;
2455 
2456 	/*
2457 	 * The different UMC styles split into two groups. Those that support
2458 	 * DDR4 and those that support DDR5 (with the hybrid group being in the
2459 	 * DDR5 style camp). While all the values are consistent between
2460 	 * different ones (e.g. reserved values correspond to unsupported
2461 	 * items), we still check types based on the UMC's design type so if we
2462 	 * see something weird, we don't accidentally use an older value.
2463 	 */
2464 	val = UMC_UMCCFG_GET_DDR_TYPE(chan->chan_umccfg_raw);
2465 	switch (umc->umc_fdata->zufd_umc_style) {
2466 	case ZEN_UMC_UMC_S_DDR4:
2467 	case ZEN_UMC_UMC_S_DDR4_APU:
2468 		switch (val) {
2469 		case UMC_UMCCFG_DDR4_T_DDR4:
2470 			dimm = UMC_DIMM_T_DDR4;
2471 			break;
2472 		case UMC_UMCCFG_DDR4_T_LPDDR4:
2473 			dimm = UMC_DIMM_T_LPDDR4;
2474 			break;
2475 		default:
2476 			break;
2477 		}
2478 		break;
2479 	case ZEN_UMC_UMC_S_HYBRID_LPDDR5:
2480 		switch (val) {
2481 		case UMC_UMCCFG_DDR5_T_LPDDR5:
2482 			dimm = UMC_DIMM_T_LPDDR5;
2483 			break;
2484 		case UMC_UMCCFG_DDR5_T_LPDDR4:
2485 			dimm = UMC_DIMM_T_LPDDR4;
2486 			break;
2487 		default:
2488 			break;
2489 		}
2490 		break;
2491 	case ZEN_UMC_UMC_S_DDR5:
2492 	case ZEN_UMC_UMC_S_DDR5_APU:
2493 		switch (val) {
2494 		case UMC_UMCCFG_DDR5_T_DDR5:
2495 			dimm = UMC_DIMM_T_DDR5;
2496 			break;
2497 		case UMC_UMCCFG_DDR5_T_LPDDR5:
2498 			dimm = UMC_DIMM_T_LPDDR5;
2499 			break;
2500 		default:
2501 			break;
2502 		}
2503 		break;
2504 	}
2505 
2506 	chan->chan_type = dimm;
2507 }
2508 
2509 /*
2510  * Use the DDR4 frequency table to determine the speed of this. Note that our
2511  * hybrid based UMCs use 8 bits for the clock, while the traditional DDR4 ones
2512  * only use 7. The caller is responsible for using the right mask for the UMC.
2513  */
2514 static void
2515 zen_umc_fill_chan_ddr4(zen_umc_chan_t *chan, uint_t mstate,
2516     const uint32_t clock)
2517 {
2518 	for (size_t i = 0; i < ARRAY_SIZE(zen_umc_ddr4_map); i++) {
2519 		if (clock == zen_umc_ddr4_map[i].zufm_reg) {
2520 			chan->chan_clock[mstate] = zen_umc_ddr4_map[i].zufm_mhz;
2521 			chan->chan_speed[mstate] =
2522 			    zen_umc_ddr4_map[i].zufm_mts2;
2523 			break;
2524 		}
2525 	}
2526 }
2527 
2528 static void
2529 zen_umc_fill_chan_hyb_lpddr5(zen_umc_chan_t *chan, uint_t mstate)
2530 {
2531 	const uint32_t reg = chan->chan_dramcfg_raw[mstate];
2532 	const uint32_t wck = UMC_DRAMCFG_HYB_GET_WCLKRATIO(reg);
2533 	const uint32_t clock = UMC_DRAMCFG_HYB_GET_MEMCLK(reg);
2534 	boolean_t twox;
2535 
2536 	switch (wck) {
2537 	case UMC_DRAMCFG_WCLKRATIO_1TO2:
2538 		twox = B_TRUE;
2539 		break;
2540 	case UMC_DRAMCFG_WCLKRATIO_1TO4:
2541 		twox = B_FALSE;
2542 		break;
2543 	default:
2544 		return;
2545 	}
2546 
2547 	for (size_t i = 0; i < ARRAY_SIZE(zen_umc_lpddr5_map); i++) {
2548 		if (clock == zen_umc_lpddr5_map[i].zufm_reg) {
2549 			chan->chan_clock[mstate] =
2550 			    zen_umc_lpddr5_map[i].zufm_mhz;
2551 
2552 			if (twox) {
2553 				chan->chan_speed[mstate] =
2554 				    zen_umc_lpddr5_map[i].zufm_mts2;
2555 			} else {
2556 				chan->chan_speed[mstate] =
2557 				    zen_umc_lpddr5_map[i].zufm_mts4;
2558 			}
2559 			break;
2560 		}
2561 	}
2562 }
2563 
2564 /*
2565  * Determine the current operating frequency of the channel. This varies based
2566  * upon the type of UMC that we're operating on as there are multiple ways to
2567  * determine this. There are up to four memory P-states that exist in the UMC.
2568  * This grabs it for a single P-state at a time.
2569  *
2570  * Unlike other things, if we cannot determine the frequency of the clock or
2571  * transfer speed, we do not consider this fatal because that does not stop
2572  * decoding. It only means that we cannot give a bit of useful information to
2573  * topo.
2574  */
2575 static void
2576 zen_umc_fill_chan_freq(zen_umc_t *umc, zen_umc_chan_t *chan, uint_t mstate)
2577 {
2578 	const uint32_t cfg = chan->chan_dramcfg_raw[mstate];
2579 	const umc_dimm_type_t dimm_type = chan->chan_type;
2580 
2581 	switch (umc->umc_fdata->zufd_umc_style) {
2582 	case ZEN_UMC_UMC_S_HYBRID_LPDDR5:
2583 		if (dimm_type == UMC_DIMM_T_LPDDR5) {
2584 			zen_umc_fill_chan_hyb_lpddr5(chan, mstate);
2585 		} else if (dimm_type != UMC_DIMM_T_LPDDR4) {
2586 			zen_umc_fill_chan_ddr4(chan, mstate,
2587 			    UMC_DRAMCFG_HYB_GET_MEMCLK(cfg));
2588 		}
2589 		break;
2590 	case ZEN_UMC_UMC_S_DDR4:
2591 	case ZEN_UMC_UMC_S_DDR4_APU:
2592 		zen_umc_fill_chan_ddr4(chan, mstate,
2593 		    UMC_DRAMCFG_DDR4_GET_MEMCLK(cfg));
2594 		break;
2595 	case ZEN_UMC_UMC_S_DDR5:
2596 	case ZEN_UMC_UMC_S_DDR5_APU:
2597 		chan->chan_clock[mstate] = UMC_DRAMCFG_DDR5_GET_MEMCLK(cfg);
2598 		if (dimm_type == UMC_DIMM_T_DDR5) {
2599 			chan->chan_speed[mstate] = 2 * chan->chan_clock[mstate];
2600 		} else if (dimm_type == UMC_DIMM_T_LPDDR5) {
2601 			switch (UMC_DRAMCFG_LPDDR5_GET_WCKRATIO(cfg)) {
2602 			case UMC_DRAMCFG_WCLKRATIO_1TO2:
2603 				chan->chan_speed[mstate] = 2 *
2604 				    chan->chan_clock[mstate];
2605 				break;
2606 			case UMC_DRAMCFG_WCLKRATIO_1TO4:
2607 				chan->chan_speed[mstate] = 4 *
2608 				    chan->chan_clock[mstate];
2609 				break;
2610 			default:
2611 				break;
2612 			}
2613 		}
2614 		break;
2615 	}
2616 }
2617 
2618 /*
2619  * Fill common channel information. While the locations of many of the registers
2620  * changed between the DDR4-capable and DDR5-capable devices, the actual
2621  * contents are the same so we process them together.
2622  */
2623 static boolean_t
2624 zen_umc_fill_chan_hash(zen_umc_t *umc, zen_umc_df_t *df, zen_umc_chan_t *chan,
2625     boolean_t ddr4)
2626 {
2627 	int ret;
2628 	smn_reg_t reg;
2629 	uint32_t val;
2630 
2631 	const umc_chan_hash_flags_t flags = umc->umc_fdata->zufd_chan_hash;
2632 	const uint32_t id = chan->chan_logid;
2633 	umc_chan_hash_t *chash = &chan->chan_hash;
2634 	chash->uch_flags = flags;
2635 
2636 	if ((flags & UMC_CHAN_HASH_F_BANK) != 0) {
2637 		for (uint_t i = 0; i < ZEN_UMC_MAX_CHAN_BANK_HASH; i++) {
2638 			umc_bank_hash_t *bank = &chash->uch_bank_hashes[i];
2639 
2640 			if (ddr4) {
2641 				reg = UMC_BANK_HASH_DDR4(id, i);
2642 			} else {
2643 				reg = UMC_BANK_HASH_DDR5(id, i);
2644 			}
2645 
2646 			if ((ret = amdzen_c_smn_read(df->zud_dfno, reg,
2647 			    &val)) != 0) {
2648 				dev_err(umc->umc_dip, CE_WARN, "failed to read "
2649 				    "bank hash register %x: %d",
2650 				    SMN_REG_ADDR(reg), ret);
2651 				return (B_FALSE);
2652 			}
2653 
2654 			bank->ubh_row_xor = UMC_BANK_HASH_GET_ROW(val);
2655 			bank->ubh_col_xor = UMC_BANK_HASH_GET_COL(val);
2656 			bank->ubh_en = UMC_BANK_HASH_GET_EN(val);
2657 		}
2658 	}
2659 
2660 	if ((flags & UMC_CHAN_HASH_F_RM) != 0) {
2661 		for (uint_t i = 0; i < ZEN_UMC_MAX_CHAN_RM_HASH; i++) {
2662 			uint64_t addr;
2663 			umc_addr_hash_t *rm = &chash->uch_rm_hashes[i];
2664 
2665 			if (ddr4) {
2666 				reg = UMC_RANK_HASH_DDR4(id, i);
2667 			} else {
2668 				reg = UMC_RANK_HASH_DDR5(id, i);
2669 			}
2670 
2671 			if ((ret = amdzen_c_smn_read(df->zud_dfno, reg,
2672 			    &val)) != 0) {
2673 				dev_err(umc->umc_dip, CE_WARN, "failed to read "
2674 				    "rm hash register %x: %d",
2675 				    SMN_REG_ADDR(reg), ret);
2676 				return (B_FALSE);
2677 			}
2678 
2679 			addr = UMC_RANK_HASH_GET_ADDR(val);
2680 			rm->uah_addr_xor = addr << UMC_RANK_HASH_SHIFT;
2681 			rm->uah_en = UMC_RANK_HASH_GET_EN(val);
2682 
2683 			if (ddr4 || (umc->umc_fdata->zufd_flags &
2684 			    ZEN_UMC_FAM_F_UMC_EADDR) == 0) {
2685 				continue;
2686 			}
2687 
2688 			reg = UMC_RANK_HASH_EXT_DDR5(id, i);
2689 			if ((ret = amdzen_c_smn_read(df->zud_dfno, reg,
2690 			    &val)) != 0) {
2691 				dev_err(umc->umc_dip, CE_WARN, "failed to read "
2692 				    "rm hash ext register %x: %d",
2693 				    SMN_REG_ADDR(reg), ret);
2694 				return (B_FALSE);
2695 			}
2696 
2697 			addr = UMC_RANK_HASH_EXT_GET_ADDR(val);
2698 			rm->uah_addr_xor |= addr <<
2699 			    UMC_RANK_HASH_EXT_ADDR_SHIFT;
2700 		}
2701 	}
2702 
2703 	if ((flags & UMC_CHAN_HASH_F_PC) != 0) {
2704 		umc_pc_hash_t *pc = &chash->uch_pc_hash;
2705 
2706 		if (ddr4) {
2707 			reg = UMC_PC_HASH_DDR4(id);
2708 		} else {
2709 			reg = UMC_PC_HASH_DDR5(id);
2710 		}
2711 
2712 		if ((ret = amdzen_c_smn_read(df->zud_dfno, reg, &val)) != 0) {
2713 			dev_err(umc->umc_dip, CE_WARN, "failed to read pc hash "
2714 			    "register %x: %d", SMN_REG_ADDR(reg), ret);
2715 			return (B_FALSE);
2716 		}
2717 
2718 		pc->uph_row_xor = UMC_PC_HASH_GET_ROW(val);
2719 		pc->uph_col_xor = UMC_PC_HASH_GET_COL(val);
2720 		pc->uph_en = UMC_PC_HASH_GET_EN(val);
2721 
2722 		if (ddr4) {
2723 			reg = UMC_PC_HASH2_DDR4(id);
2724 		} else {
2725 			reg = UMC_PC_HASH2_DDR5(id);
2726 		}
2727 
2728 		if ((ret = amdzen_c_smn_read(df->zud_dfno, reg, &val)) != 0) {
2729 			dev_err(umc->umc_dip, CE_WARN, "failed to read pc hash "
2730 			    "2 register %x: %d", SMN_REG_ADDR(reg), ret);
2731 			return (B_FALSE);
2732 		}
2733 
2734 		pc->uph_bank_xor = UMC_PC_HASH2_GET_BANK(val);
2735 	}
2736 
2737 	if ((flags & UMC_CHAN_HASH_F_CS) != 0) {
2738 		for (uint_t i = 0; i < ZEN_UMC_MAX_CHAN_CS_HASH; i++) {
2739 			uint64_t addr;
2740 			umc_addr_hash_t *rm = &chash->uch_cs_hashes[i];
2741 
2742 			if (ddr4) {
2743 				reg = UMC_CS_HASH_DDR4(id, i);
2744 			} else {
2745 				reg = UMC_CS_HASH_DDR5(id, i);
2746 			}
2747 
2748 			if ((ret = amdzen_c_smn_read(df->zud_dfno, reg,
2749 			    &val)) != 0) {
2750 				dev_err(umc->umc_dip, CE_WARN, "failed to read "
2751 				    "cs hash register %x", SMN_REG_ADDR(reg));
2752 				return (B_FALSE);
2753 			}
2754 
2755 			addr = UMC_CS_HASH_GET_ADDR(val);
2756 			rm->uah_addr_xor = addr << UMC_CS_HASH_SHIFT;
2757 			rm->uah_en = UMC_CS_HASH_GET_EN(val);
2758 
2759 			if (ddr4 || (umc->umc_fdata->zufd_flags &
2760 			    ZEN_UMC_FAM_F_UMC_EADDR) == 0) {
2761 				continue;
2762 			}
2763 
2764 			reg = UMC_CS_HASH_EXT_DDR5(id, i);
2765 			if ((ret = amdzen_c_smn_read(df->zud_dfno, reg,
2766 			    &val)) != 0) {
2767 				dev_err(umc->umc_dip, CE_WARN, "failed to read "
2768 				    "cs hash ext register %x",
2769 				    SMN_REG_ADDR(reg));
2770 				return (B_FALSE);
2771 			}
2772 
2773 			addr = UMC_CS_HASH_EXT_GET_ADDR(val);
2774 			rm->uah_addr_xor |= addr << UMC_CS_HASH_EXT_ADDR_SHIFT;
2775 		}
2776 	}
2777 
2778 	return (B_TRUE);
2779 }
2780 
2781 /*
2782  * This fills in settings that we care about which are valid for the entire
2783  * channel and are the same between DDR4/5 capable devices.
2784  */
2785 static boolean_t
2786 zen_umc_fill_chan(zen_umc_t *umc, zen_umc_df_t *df, zen_umc_chan_t *chan)
2787 {
2788 	uint32_t val;
2789 	smn_reg_t reg;
2790 	const uint32_t id = chan->chan_logid;
2791 	int ret;
2792 	boolean_t ddr4;
2793 
2794 	if (umc->umc_fdata->zufd_umc_style == ZEN_UMC_UMC_S_DDR4 ||
2795 	    umc->umc_fdata->zufd_umc_style == ZEN_UMC_UMC_S_DDR4_APU) {
2796 		ddr4 = B_TRUE;
2797 	} else {
2798 		ddr4 = B_FALSE;
2799 	}
2800 
2801 	/*
2802 	 * Begin by gathering all of the information related to hashing. What is
2803 	 * valid here varies based on the actual chip family and then the
2804 	 * registers vary based on DDR4 and DDR5.
2805 	 */
2806 	if (!zen_umc_fill_chan_hash(umc, df, chan, ddr4)) {
2807 		return (B_FALSE);
2808 	}
2809 
2810 	reg = UMC_UMCCFG(id);
2811 	if ((ret = amdzen_c_smn_read(df->zud_dfno, reg, &val)) != 0) {
2812 		dev_err(umc->umc_dip, CE_WARN, "failed to read UMC "
2813 		    "configuration register %x: %d", SMN_REG_ADDR(reg), ret);
2814 		return (B_FALSE);
2815 	}
2816 
2817 	chan->chan_umccfg_raw = val;
2818 	if (UMC_UMCCFG_GET_ECC_EN(val)) {
2819 		chan->chan_flags |= UMC_CHAN_F_ECC_EN;
2820 	}
2821 
2822 	/*
2823 	 * Grab the DRAM configuration register. This can be used to determine
2824 	 * the frequency and speed of the memory channel. At this time we only
2825 	 * capture Memory P-state 0.
2826 	 */
2827 	reg = UMC_DRAMCFG(id, 0);
2828 
2829 	/*
2830 	 * This register contains information to determine the type of DIMM.
2831 	 * All DIMMs in the channel must be the same type so we leave this
2832 	 * setting on the channel. Once we have that, we proceed to obtain the
2833 	 * currently configuration information for the DRAM in each memory
2834 	 * P-state.
2835 	 */
2836 	zen_umc_fill_ddr_type(umc, chan);
2837 	for (uint_t i = 0; i < ZEN_UMC_NMEM_PSTATES; i++) {
2838 		chan->chan_clock[i] = ZEN_UMC_UNKNOWN_FREQ;
2839 		chan->chan_speed[i] = ZEN_UMC_UNKNOWN_FREQ;
2840 
2841 		reg = UMC_DRAMCFG(id, i);
2842 		if ((ret = amdzen_c_smn_read(df->zud_dfno, reg, &val)) != 0) {
2843 			dev_err(umc->umc_dip, CE_WARN, "failed to read DRAM "
2844 			    "Configuration register P-state %u %x: %d", i,
2845 			    SMN_REG_ADDR(reg), ret);
2846 			return (B_FALSE);
2847 		}
2848 		chan->chan_dramcfg_raw[i] = val;
2849 
2850 		zen_umc_fill_chan_freq(umc, chan, i);
2851 	}
2852 
2853 	/*
2854 	 * Grab data that we can use to determine if we're scrambling or
2855 	 * encrypting regions of memory.
2856 	 */
2857 	reg = UMC_DATACTL(id);
2858 	if ((ret = amdzen_c_smn_read(df->zud_dfno, reg, &val)) != 0) {
2859 		dev_err(umc->umc_dip, CE_WARN, "failed to read data control "
2860 		    "register %x: %d", SMN_REG_ADDR(reg), ret);
2861 		return (B_FALSE);
2862 	}
2863 	chan->chan_datactl_raw = val;
2864 	if (UMC_DATACTL_GET_SCRAM_EN(val)) {
2865 		chan->chan_flags |= UMC_CHAN_F_SCRAMBLE_EN;
2866 	}
2867 
2868 	if (UMC_DATACTL_GET_ENCR_EN(val)) {
2869 		chan->chan_flags |= UMC_CHAN_F_ENCR_EN;
2870 	}
2871 
2872 	/*
2873 	 * At the moment we snapshot the raw ECC control information. When we do
2874 	 * further work of making this a part of the MCA/X decoding, we'll want
2875 	 * to further take this apart for syndrome decoding. Until then, simply
2876 	 * cache it for future us and observability.
2877 	 */
2878 	reg = UMC_ECCCTL(id);
2879 	if ((ret = amdzen_c_smn_read(df->zud_dfno, reg, &val)) != 0) {
2880 		dev_err(umc->umc_dip, CE_WARN, "failed to read ECC control "
2881 		    "register %x: %d", SMN_REG_ADDR(reg), ret);
2882 		return (B_FALSE);
2883 	}
2884 	chan->chan_eccctl_raw = val;
2885 
2886 	/*
2887 	 * Read and snapshot the UMC capability registers for debugging in the
2888 	 * future.
2889 	 */
2890 	reg = UMC_UMCCAP(id);
2891 	if ((ret = amdzen_c_smn_read(df->zud_dfno, reg, &val)) != 0) {
2892 		dev_err(umc->umc_dip, CE_WARN, "failed to read UMC cap"
2893 		    "register %x: %d", SMN_REG_ADDR(reg), ret);
2894 		return (B_FALSE);
2895 	}
2896 	chan->chan_umccap_raw = val;
2897 
2898 	reg = UMC_UMCCAP_HI(id);
2899 	if ((ret = amdzen_c_smn_read(df->zud_dfno, reg, &val)) != 0) {
2900 		dev_err(umc->umc_dip, CE_WARN, "failed to read UMC cap high "
2901 		    "register %x: %d", SMN_REG_ADDR(reg), ret);
2902 		return (B_FALSE);
2903 	}
2904 	chan->chan_umccap_hi_raw = val;
2905 
2906 	return (B_TRUE);
2907 }
2908 
2909 static int
2910 zen_umc_fill_umc_cb(const uint_t dfno, const uint32_t fabid,
2911     const uint32_t instid, void *arg)
2912 {
2913 	zen_umc_t *umc = arg;
2914 	zen_umc_df_t *df = &umc->umc_dfs[dfno];
2915 	zen_umc_chan_t *chan = &df->zud_chan[df->zud_nchan];
2916 
2917 	df->zud_nchan++;
2918 	VERIFY3U(df->zud_nchan, <=, ZEN_UMC_MAX_UMCS);
2919 
2920 	/*
2921 	 * The data fabric is generally organized such that all UMC entries
2922 	 * should be continuous in their fabric ID space; however, we don't
2923 	 * want to rely on specific ID locations. The UMC SMN addresses are
2924 	 * organized in a relative order. To determine the SMN ID to use (the
2925 	 * chan_logid) we end up making the following assumptions:
2926 	 *
2927 	 *  o The iteration order will always be from the lowest component ID
2928 	 *    to the highest component ID.
2929 	 *  o The relative order that we encounter will be the same as the SMN
2930 	 *    order. That is, the first thing we find (regardless of component
2931 	 *    ID) will be SMN UMC entry 0, the next 1, etc.
2932 	 */
2933 	chan->chan_logid = df->zud_nchan - 1;
2934 	chan->chan_fabid = fabid;
2935 	chan->chan_instid = instid;
2936 	chan->chan_nrules = umc->umc_fdata->zufd_cs_nrules;
2937 	for (uint_t i = 0; i < umc->umc_fdata->zufd_cs_nrules; i++) {
2938 		if (zen_umc_read_dram_rule(umc, dfno, instid, i,
2939 		    &chan->chan_rules[i]) != 0) {
2940 			return (-1);
2941 		}
2942 	}
2943 
2944 	for (uint_t i = 0; i < umc->umc_fdata->zufd_cs_nrules - 1; i++) {
2945 		int ret;
2946 		uint32_t offset;
2947 		uint64_t t;
2948 		df_reg_def_t off_reg;
2949 		chan_offset_t *offp = &chan->chan_offsets[i];
2950 
2951 		switch (umc->umc_df_rev) {
2952 		case DF_REV_2:
2953 		case DF_REV_3:
2954 		case DF_REV_3P5:
2955 			ASSERT3U(i, ==, 0);
2956 			off_reg = DF_DRAM_OFFSET_V2;
2957 			break;
2958 		case DF_REV_4:
2959 			off_reg = DF_DRAM_OFFSET_V4(i);
2960 			break;
2961 		default:
2962 			dev_err(umc->umc_dip, CE_WARN, "!encountered "
2963 			    "unsupported DF revision processing DRAM Offsets: "
2964 			    "0x%x", umc->umc_df_rev);
2965 			return (-1);
2966 		}
2967 
2968 		if ((ret = amdzen_c_df_read32(dfno, instid, off_reg,
2969 		    &offset)) != 0) {
2970 			dev_err(umc->umc_dip, CE_WARN, "!failed to read DRAM "
2971 			    "offset %u on 0x%x/0x%x: %d", i, dfno, instid, ret);
2972 			return (-1);
2973 		}
2974 
2975 		offp->cho_raw = offset;
2976 		offp->cho_valid = DF_DRAM_OFFSET_GET_EN(offset);
2977 
2978 		switch (umc->umc_df_rev) {
2979 		case DF_REV_2:
2980 			t = DF_DRAM_OFFSET_V2_GET_OFFSET(offset);
2981 			break;
2982 		case DF_REV_3:
2983 		case DF_REV_3P5:
2984 			t = DF_DRAM_OFFSET_V3_GET_OFFSET(offset);
2985 			break;
2986 		case DF_REV_4:
2987 			t = DF_DRAM_OFFSET_V4_GET_OFFSET(offset);
2988 			break;
2989 		default:
2990 			dev_err(umc->umc_dip, CE_WARN, "!encountered "
2991 			    "unsupported DF revision processing DRAM Offsets: "
2992 			    "0x%x", umc->umc_df_rev);
2993 			return (-1);
2994 		}
2995 		offp->cho_offset = t << DF_DRAM_OFFSET_SHIFT;
2996 	}
2997 
2998 	/*
2999 	 * If this platform supports our favorete Zen 3 6-channel hash special
3000 	 * then we need to grab the NP2 configuration registers. This will only
3001 	 * be referenced if this channel is actually being used for a 6-channel
3002 	 * hash, so even if the contents are weird that should still be ok.
3003 	 */
3004 	if ((umc->umc_fdata->zufd_flags & ZEN_UMC_FAM_F_NP2) != 0) {
3005 		uint32_t np2;
3006 		int ret;
3007 
3008 		if ((ret = amdzen_c_df_read32(dfno, instid, DF_NP2_CONFIG_V3,
3009 		    &np2)) != 0) {
3010 			dev_err(umc->umc_dip, CE_WARN, "!failed to read NP2 "
3011 			    "config: %d", ret);
3012 			return (-1);
3013 		}
3014 
3015 		chan->chan_np2_raw = np2;
3016 		chan->chan_np2_space0 = DF_NP2_CONFIG_V3_GET_SPACE0(np2);
3017 	}
3018 
3019 	/*
3020 	 * Now that we have everything we need from the data fabric, read out
3021 	 * the rest of what we need from the UMC channel data in SMN register
3022 	 * space.
3023 	 */
3024 	switch (umc->umc_fdata->zufd_umc_style) {
3025 	case ZEN_UMC_UMC_S_DDR4:
3026 	case ZEN_UMC_UMC_S_DDR4_APU:
3027 		for (uint_t i = 0; i < ZEN_UMC_MAX_DIMMS; i++) {
3028 			if (!zen_umc_fill_chan_dimm_ddr4(umc, df, chan, i)) {
3029 				return (-1);
3030 			}
3031 		}
3032 		break;
3033 	case ZEN_UMC_UMC_S_HYBRID_LPDDR5:
3034 	case ZEN_UMC_UMC_S_DDR5:
3035 	case ZEN_UMC_UMC_S_DDR5_APU:
3036 		for (uint_t i = 0; i < ZEN_UMC_MAX_DIMMS; i++) {
3037 			for (uint_t r = 0; r < ZEN_UMC_MAX_CS_PER_DIMM; r++) {
3038 				if (!zen_umc_fill_chan_rank_ddr5(umc, df, chan,
3039 				    i, r)) {
3040 					return (-1);
3041 				}
3042 			}
3043 		}
3044 		break;
3045 	default:
3046 		dev_err(umc->umc_dip, CE_WARN, "!encountered unsupported "
3047 		    "Zen family: 0x%x", umc->umc_fdata->zufd_umc_style);
3048 		return (-1);
3049 	}
3050 
3051 	if (!zen_umc_fill_chan(umc, df, chan)) {
3052 		return (-1);
3053 	}
3054 
3055 	return (0);
3056 }
3057 
3058 /*
3059  * Today there are no privileges for the memory controller information, it is
3060  * restricted based on file system permissions.
3061  */
3062 static int
3063 zen_umc_open(dev_t *devp, int flag, int otyp, cred_t *credp)
3064 {
3065 	zen_umc_t *umc = zen_umc;
3066 
3067 	if ((flag & (FEXCL | FNDELAY | FNONBLOCK | FWRITE)) != 0) {
3068 		return (EINVAL);
3069 	}
3070 
3071 	if (otyp != OTYP_CHR) {
3072 		return (EINVAL);
3073 	}
3074 
3075 	if (getminor(*devp) >= umc->umc_ndfs) {
3076 		return (ENXIO);
3077 	}
3078 
3079 	return (0);
3080 }
3081 
3082 static void
3083 zen_umc_ioctl_decode(zen_umc_t *umc, mc_encode_ioc_t *encode)
3084 {
3085 	zen_umc_decoder_t dec;
3086 	uint32_t sock, die, comp;
3087 
3088 	bzero(&dec, sizeof (dec));
3089 	if (!zen_umc_decode_pa(umc, encode->mcei_pa, &dec)) {
3090 		encode->mcei_err = (uint32_t)dec.dec_fail;
3091 		encode->mcei_errdata = dec.dec_fail_data;
3092 		return;
3093 	}
3094 
3095 	encode->mcei_errdata = 0;
3096 	encode->mcei_err = 0;
3097 	encode->mcei_chan_addr = dec.dec_norm_addr;
3098 	encode->mcei_rank_addr = UINT64_MAX;
3099 	encode->mcei_board = 0;
3100 	zen_fabric_id_decompose(&umc->umc_decomp, dec.dec_targ_fabid, &sock,
3101 	    &die, &comp);
3102 	encode->mcei_chip = sock;
3103 	encode->mcei_die = die;
3104 	encode->mcei_mc = dec.dec_umc_chan->chan_logid;
3105 	encode->mcei_chan = 0;
3106 	encode->mcei_dimm = dec.dec_dimm_no;
3107 	encode->mcei_row = dec.dec_dimm_row;
3108 	encode->mcei_column = dec.dec_dimm_col;
3109 	/*
3110 	 * We don't have a logical rank that something matches to, we have the
3111 	 * actual chip-select and rank multiplication. If we could figure out
3112 	 * how to transform that into an actual rank, that'd be grand.
3113 	 */
3114 	encode->mcei_rank = UINT8_MAX;
3115 	encode->mcei_cs = dec.dec_dimm_csno;
3116 	encode->mcei_rm = dec.dec_dimm_rm;
3117 	encode->mcei_bank = dec.dec_dimm_bank;
3118 	encode->mcei_bank_group = dec.dec_dimm_bank_group;
3119 	encode->mcei_subchan = dec.dec_dimm_subchan;
3120 }
3121 
3122 static void
3123 umc_decoder_pack(zen_umc_t *umc)
3124 {
3125 	char *buf = NULL;
3126 	size_t len = 0;
3127 
3128 	ASSERT(MUTEX_HELD(&umc->umc_nvl_lock));
3129 	if (umc->umc_decoder_buf != NULL) {
3130 		return;
3131 	}
3132 
3133 	if (umc->umc_decoder_nvl == NULL) {
3134 		umc->umc_decoder_nvl = zen_umc_dump_decoder(umc);
3135 		if (umc->umc_decoder_nvl == NULL) {
3136 			return;
3137 		}
3138 	}
3139 
3140 	if (nvlist_pack(umc->umc_decoder_nvl, &buf, &len, NV_ENCODE_XDR,
3141 	    KM_NOSLEEP_LAZY) != 0) {
3142 		return;
3143 	}
3144 
3145 	umc->umc_decoder_buf = buf;
3146 	umc->umc_decoder_len = len;
3147 }
3148 
3149 static int
3150 zen_umc_ioctl(dev_t dev, int cmd, intptr_t arg, int mode, cred_t *credp,
3151     int *rvalp)
3152 {
3153 	int ret;
3154 	zen_umc_t *umc = zen_umc;
3155 	mc_encode_ioc_t encode;
3156 	mc_snapshot_info_t info;
3157 
3158 	if (getminor(dev) >= umc->umc_ndfs) {
3159 		return (ENXIO);
3160 	}
3161 
3162 	switch (cmd) {
3163 	case MC_IOC_DECODE_PA:
3164 		if (crgetzoneid(credp) != GLOBAL_ZONEID ||
3165 		    drv_priv(credp) != 0) {
3166 			ret = EPERM;
3167 			break;
3168 		}
3169 
3170 		if (ddi_copyin((void *)arg, &encode, sizeof (encode),
3171 		    mode & FKIOCTL) != 0) {
3172 			ret = EFAULT;
3173 			break;
3174 		}
3175 
3176 		zen_umc_ioctl_decode(umc, &encode);
3177 		ret = 0;
3178 
3179 		if (ddi_copyout(&encode, (void *)arg, sizeof (encode),
3180 		    mode & FKIOCTL) != 0) {
3181 			ret = EFAULT;
3182 			break;
3183 		}
3184 		break;
3185 	case MC_IOC_DECODE_SNAPSHOT_INFO:
3186 		mutex_enter(&umc->umc_nvl_lock);
3187 		umc_decoder_pack(umc);
3188 
3189 		if (umc->umc_decoder_buf == NULL) {
3190 			mutex_exit(&umc->umc_nvl_lock);
3191 			ret = EIO;
3192 			break;
3193 		}
3194 
3195 		if (umc->umc_decoder_len > UINT32_MAX) {
3196 			mutex_exit(&umc->umc_nvl_lock);
3197 			ret = EOVERFLOW;
3198 			break;
3199 		}
3200 
3201 		info.mcs_size = umc->umc_decoder_len;
3202 		info.mcs_gen = 0;
3203 		if (ddi_copyout(&info, (void *)arg, sizeof (info),
3204 		    mode & FKIOCTL) != 0) {
3205 			mutex_exit(&umc->umc_nvl_lock);
3206 			ret = EFAULT;
3207 			break;
3208 		}
3209 
3210 		mutex_exit(&umc->umc_nvl_lock);
3211 		ret = 0;
3212 		break;
3213 	case MC_IOC_DECODE_SNAPSHOT:
3214 		mutex_enter(&umc->umc_nvl_lock);
3215 		umc_decoder_pack(umc);
3216 
3217 		if (umc->umc_decoder_buf == NULL) {
3218 			mutex_exit(&umc->umc_nvl_lock);
3219 			ret = EIO;
3220 			break;
3221 		}
3222 
3223 		if (ddi_copyout(umc->umc_decoder_buf, (void *)arg,
3224 		    umc->umc_decoder_len, mode & FKIOCTL) != 0) {
3225 			mutex_exit(&umc->umc_nvl_lock);
3226 			ret = EFAULT;
3227 			break;
3228 		}
3229 
3230 		mutex_exit(&umc->umc_nvl_lock);
3231 		ret = 0;
3232 		break;
3233 	default:
3234 		ret = ENOTTY;
3235 		break;
3236 	}
3237 
3238 	return (ret);
3239 }
3240 
3241 static int
3242 zen_umc_close(dev_t dev, int flag, int otyp, cred_t *credp)
3243 {
3244 	return (0);
3245 }
3246 
3247 static void
3248 zen_umc_cleanup(zen_umc_t *umc)
3249 {
3250 	nvlist_free(umc->umc_decoder_nvl);
3251 	umc->umc_decoder_nvl = NULL;
3252 	if (umc->umc_decoder_buf != NULL) {
3253 		kmem_free(umc->umc_decoder_buf, umc->umc_decoder_len);
3254 		umc->umc_decoder_buf = NULL;
3255 		umc->umc_decoder_len = 0;
3256 	}
3257 
3258 	if (umc->umc_dip != NULL) {
3259 		ddi_remove_minor_node(umc->umc_dip, NULL);
3260 	}
3261 	mutex_destroy(&umc->umc_nvl_lock);
3262 	kmem_free(umc, sizeof (zen_umc_t));
3263 }
3264 
3265 static int
3266 zen_umc_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
3267 {
3268 	int ret;
3269 	zen_umc_t *umc;
3270 
3271 	if (cmd == DDI_RESUME) {
3272 		return (DDI_SUCCESS);
3273 	} else if (cmd != DDI_ATTACH) {
3274 		return (DDI_FAILURE);
3275 	}
3276 	if (zen_umc != NULL) {
3277 		dev_err(dip, CE_WARN, "!zen_umc is already attached to a "
3278 		    "dev_info_t: %p", zen_umc->umc_dip);
3279 		return (DDI_FAILURE);
3280 	}
3281 
3282 	/*
3283 	 * To get us going, we need to do several bits of set up. First, we need
3284 	 * to use the knowledge about the actual hardware that we're using to
3285 	 * encode a bunch of different data:
3286 	 *
3287 	 *  o The set of register styles and extra hardware features that exist
3288 	 *    on the hardware platform.
3289 	 *  o The number of actual rules there are for the CCMs and UMCs.
3290 	 *  o How many actual things exist (DFs, etc.)
3291 	 *  o Useful fabric and instance IDs for all of the different UMC
3292 	 *    entries so we can actually talk to them.
3293 	 *
3294 	 * Only once we have all the above will we go dig into the actual data.
3295 	 */
3296 	umc = kmem_zalloc(sizeof (zen_umc_t), KM_SLEEP);
3297 	mutex_init(&umc->umc_nvl_lock, NULL, MUTEX_DRIVER, NULL);
3298 	umc->umc_family = chiprev_family(cpuid_getchiprev(CPU));
3299 	umc->umc_ndfs = amdzen_c_df_count();
3300 	umc->umc_dip = dip;
3301 
3302 	if (!zen_umc_identify(umc)) {
3303 		dev_err(dip, CE_WARN, "!encountered unsupported CPU");
3304 		goto err;
3305 	}
3306 
3307 	umc->umc_df_rev = amdzen_c_df_rev();
3308 	switch (umc->umc_df_rev) {
3309 	case DF_REV_2:
3310 	case DF_REV_3:
3311 	case DF_REV_3P5:
3312 	case DF_REV_4:
3313 		break;
3314 	default:
3315 		dev_err(dip, CE_WARN, "!encountered unknown DF revision: %x",
3316 		    umc->umc_df_rev);
3317 		goto err;
3318 	}
3319 
3320 	if ((ret = amdzen_c_df_fabric_decomp(&umc->umc_decomp)) != 0) {
3321 		dev_err(dip, CE_WARN, "!failed to get fabric decomposition: %d",
3322 		    ret);
3323 	}
3324 
3325 	umc->umc_tom = rdmsr(MSR_AMD_TOM);
3326 	umc->umc_tom2 = rdmsr(MSR_AMD_TOM2);
3327 
3328 	/*
3329 	 * For each DF, start by reading all of the data that we need from it.
3330 	 * This involves finding a target CCM, reading all of the rules,
3331 	 * ancillary settings, and related. Then we'll do a pass over all of the
3332 	 * actual UMC targets there.
3333 	 */
3334 	for (uint_t i = 0; i < umc->umc_ndfs; i++) {
3335 		if (amdzen_c_df_iter(i, ZEN_DF_TYPE_CCM_CPU,
3336 		    zen_umc_fill_ccm_cb, umc) < 0 ||
3337 		    amdzen_c_df_iter(i, ZEN_DF_TYPE_CS_UMC, zen_umc_fill_umc_cb,
3338 		    umc) != 0) {
3339 			goto err;
3340 		}
3341 	}
3342 
3343 	/*
3344 	 * Create a minor node for each df that we encounter.
3345 	 */
3346 	for (uint_t i = 0; i < umc->umc_ndfs; i++) {
3347 		int ret;
3348 		char minor[64];
3349 
3350 		(void) snprintf(minor, sizeof (minor), "mc-umc-%u", i);
3351 		if ((ret = ddi_create_minor_node(umc->umc_dip, minor, S_IFCHR,
3352 		    i, "ddi_mem_ctrl", 0)) != 0) {
3353 			dev_err(dip, CE_WARN, "!failed to create minor %s: %d",
3354 			    minor, ret);
3355 			goto err;
3356 		}
3357 	}
3358 
3359 	zen_umc = umc;
3360 	return (DDI_SUCCESS);
3361 
3362 err:
3363 	zen_umc_cleanup(umc);
3364 	return (DDI_FAILURE);
3365 }
3366 
3367 static int
3368 zen_umc_getinfo(dev_info_t *dip, ddi_info_cmd_t cmd, void *arg, void **resultp)
3369 {
3370 	zen_umc_t *umc;
3371 
3372 	if (zen_umc == NULL || zen_umc->umc_dip == NULL) {
3373 		return (DDI_FAILURE);
3374 	}
3375 	umc = zen_umc;
3376 
3377 	switch (cmd) {
3378 	case DDI_INFO_DEVT2DEVINFO:
3379 		*resultp = (void *)umc->umc_dip;
3380 		break;
3381 	case DDI_INFO_DEVT2INSTANCE:
3382 		*resultp = (void *)(uintptr_t)ddi_get_instance(
3383 		    umc->umc_dip);
3384 		break;
3385 	default:
3386 		return (DDI_FAILURE);
3387 	}
3388 	return (DDI_SUCCESS);
3389 }
3390 
3391 static int
3392 zen_umc_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
3393 {
3394 	zen_umc_t *umc;
3395 
3396 	if (cmd == DDI_SUSPEND) {
3397 		return (DDI_SUCCESS);
3398 	} else if (cmd != DDI_DETACH) {
3399 		return (DDI_FAILURE);
3400 	}
3401 
3402 	if (zen_umc == NULL) {
3403 		dev_err(dip, CE_WARN, "!asked to detach zen_umc, but it "
3404 		    "was never successfully attached");
3405 		return (DDI_FAILURE);
3406 	}
3407 
3408 	umc = zen_umc;
3409 	zen_umc = NULL;
3410 	zen_umc_cleanup(umc);
3411 	return (DDI_SUCCESS);
3412 }
3413 
3414 static struct cb_ops zen_umc_cb_ops = {
3415 	.cb_open = zen_umc_open,
3416 	.cb_close = zen_umc_close,
3417 	.cb_strategy = nodev,
3418 	.cb_print = nodev,
3419 	.cb_dump = nodev,
3420 	.cb_read = nodev,
3421 	.cb_write = nodev,
3422 	.cb_ioctl = zen_umc_ioctl,
3423 	.cb_devmap = nodev,
3424 	.cb_mmap = nodev,
3425 	.cb_segmap = nodev,
3426 	.cb_chpoll = nochpoll,
3427 	.cb_prop_op = ddi_prop_op,
3428 	.cb_flag = D_MP,
3429 	.cb_rev = CB_REV,
3430 	.cb_aread = nodev,
3431 	.cb_awrite = nodev
3432 };
3433 
3434 static struct dev_ops zen_umc_dev_ops = {
3435 	.devo_rev = DEVO_REV,
3436 	.devo_refcnt = 0,
3437 	.devo_getinfo = zen_umc_getinfo,
3438 	.devo_identify = nulldev,
3439 	.devo_probe = nulldev,
3440 	.devo_attach = zen_umc_attach,
3441 	.devo_detach = zen_umc_detach,
3442 	.devo_reset = nodev,
3443 	.devo_quiesce = ddi_quiesce_not_needed,
3444 	.devo_cb_ops = &zen_umc_cb_ops
3445 };
3446 
3447 static struct modldrv zen_umc_modldrv = {
3448 	.drv_modops = &mod_driverops,
3449 	.drv_linkinfo = "AMD Zen Unified Memory Controller",
3450 	.drv_dev_ops = &zen_umc_dev_ops
3451 };
3452 
3453 static struct modlinkage zen_umc_modlinkage = {
3454 	.ml_rev = MODREV_1,
3455 	.ml_linkage = { &zen_umc_modldrv, NULL }
3456 };
3457 
3458 int
3459 _init(void)
3460 {
3461 	return (mod_install(&zen_umc_modlinkage));
3462 }
3463 
3464 int
3465 _info(struct modinfo *modinfop)
3466 {
3467 	return (mod_info(&zen_umc_modlinkage, modinfop));
3468 }
3469 
3470 int
3471 _fini(void)
3472 {
3473 	return (mod_remove(&zen_umc_modlinkage));
3474 }
3475