xref: /illumos-gate/usr/src/uts/intel/io/amdzen/zen_umc.c (revision 606d76de63f7f3335e75e7f3eb3fba75c8998690)
1 /*
2  * This file and its contents are supplied under the terms of the
3  * Common Development and Distribution License ("CDDL"), version 1.0.
4  * You may only use this file in accordance with the terms of version
5  * 1.0 of the CDDL.
6  *
7  * A full copy of the text of the CDDL should have accompanied this
8  * source.  A copy of the CDDL is also available via the Internet at
9  * http://www.illumos.org/license/CDDL.
10  */
11 
12 /*
13  * Copyright 2024 Oxide Computer Company
14  */
15 
16 /*
17  * AMD Zen Unified Memory Controller Driver
18  *
19  * This file forms the core logic around transforming a physical address that
20  * we're used to using into a specific location on a DIMM. This has support for
21  * a wide range of AMD CPUs and APUs ranging from Zen 1 - Zen 4.
22  *
23  * The goal of this driver is to implement the infrastructure and support
24  * necessary to understand how DRAM requests are being routed in the system and
25  * to be able to map those to particular channels and then DIMMs. This is used
26  * as part of RAS (reliability, availability, and serviceability) to enable
27  * aspects around understanding ECC errors, hardware topology, and more. Like
28  * with any software project, there is more to do here. Please see the Future
29  * Work section at the end of this big theory statement for more information.
30  *
31  * -------------------
32  * Driver Organization
33  * -------------------
34  *
35  * This driver is organized into two major pieces:
36  *
37  *   1. Logic to interface with hardware, discover the data fabric, memory
38  *      controller configuration, and transform that into a normalized fashion
39  *      that can be used across all different Zen family CPUs. This is
40  *      implemented generally in this file, and is designed to assume it is in
41  *      the kernel (as it requires access to the SMN, DF PCI registers, and the
42  *      amdzen nexus driver client services).
43  *
44  *   2. Logic that can take the above normalized memory information and perform
45  *      decoding (e.g. physical address to DIMM information). This generally
46  *      lives in common/mc/zen_uc/zen_umc_decode.c. This file is in common/,
47  *      meaning it is designed to be shared by userland and the kernel. Even
48  *      more so, it is designed to operate on a const version of our primary
49  *      data structure (zen_umc_t), not allowing it to be modified. This allows
50  *      us to more easily unit test the decoding logic and utilize it in other
51  *      circumstances such as with the mcdecode utility.
52  *
53  * There is corresponding traditional dev_ops(9S) and cb_ops(9S) logic in the
54  * driver (currently this file) which take care of interfacing with the broader
55  * operating system environment.
56  *
57  * There is only ever one instance of this driver, e.g. it is a singleton in
58  * design pattern parlance. There is a single struct, the zen_umc_t found in the
59  * global (albeit static) variable zen_umc. This structure itself contains a
60  * hierarchical set of structures that describe the system. To make management
61  * of memory simpler, all of the nested structures that we discover from
62  * hardware are allocated in the same structure. The only exception to this rule
63  * is when we cache serialized nvlists for dumping.
64  *
65  * The organization of the structures inside the zen_umc_t, generally mimics the
66  * hardware organization and is structured as follows:
67  *
68  *   +-----------+
69  *   | zen_umc_t |
70  *   +-----------+
71  *        |
72  *        +-------------------------------+
73  *        v                               v
74  *   +--------------+             +--------------+        One instance of the
75  *   | zen_umc_df_t |     ...     | zen_umc_df_t |        zen_umc_df_t per
76  *   +--------------+             +--------------+        discovered DF.
77  *     |||
78  *     |||
79  *     |||    +----------------+         +----------------+  Global DRAM
80  *     ||+--->| df_dram_rule_t |   ...   | df_dram_rule_t |  rules for the
81  *     ||     +----------------+         +----------------+  platform.
82  *     ||
83  *     ||    +--------------------+       +--------------------+  UMC remap
84  *     |+--->| zen_umc_cs_remap_t |  ...  | zen_umc_cs_remap_t |  rule arrays.
85  *     |     +--------------------+       +--------------------+
86  *     |
87  *     v
88  *    +----------------+         +----------------+   One structure per
89  *    | zen_umc_chan_t |   ...   | zen_umc_chan_t |   discovered DDR4/5
90  *    +----------------+         +----------------+   memory channel.
91  *     ||||
92  *     ||||
93  *     ||||    +----------------+       +----------------+   Channel specific
94  *     |||+--->| df_dram_rule_t |  ...  | df_dram_rule_t |   copy of DRAM rules.
95  *     |||     +----------------+       +----------------+   Less than global.
96  *     |||
97  *     |||     +---------------+       +---------------+   Per-Channel DRAM
98  *     ||+---->| chan_offset_t |  ...  | chan_offset_t |   offset that is used
99  *     ||      +---------------+       +---------------+   for normalization.
100  *     ||
101  *     ||      +-----------------+                         Channel-specific
102  *     |+----->| umc_chan_hash_t |                         hashing rules.
103  *     |       +-----------------+
104  *     |
105  *     |       +------------+         +------------+    One structure for
106  *     +------>| umc_dimm_t |   ...   | umc_dimm_t |    each DIMM in the
107  *             +------------+         +------------+    channel. Always two.
108  *                |
109  *                |     +----------+         +----------+   Per chip-select
110  *                +---> | umc_cs_t |   ...   | umc_cs_t |   data. Always two.
111  *                      +----------+         +----------+
112  *
113  * In the data structures themselves you'll often find several pieces of data
114  * that have the term 'raw' in their name. The point of these is to basically
115  * capture the original value that we read from the register before processing
116  * it. These are generally used either for debugging or to help answer future
117  * curiosity with resorting to the udf and usmn tooling, which hopefully aren't
118  * actually installed on systems.
119  *
120  * With the exception of some of the members in the zen_umc_t that are around
121  * management of state for userland ioctls, everything in the structure is
122  * basically write-once and from that point on should be treated as read-only.
123  *
124  * ---------------
125  * Memory Decoding
126  * ---------------
127  *
128  * To understand the process of memory decoding, it's worth going through and
129  * understanding a bunch of the terminology that is used in this process. As an
130  * additional reference when understanding this, you may want to turn to either
131  * an older generation AMD BIOS and Kernel Developer's Guide or the more current
132  * Processor Programming Reference. In addition, the imc driver, which is the
133  * Intel equivalent, also provides an additional bit of reference.
134  *
135  * SYSTEM ADDRESS
136  *
137  *	This is a physical address and is the way that the operating system
138  *	normally thinks of memory. System addresses can refer to many different
139  *	things. For example, you have traditional DRAM, memory-mapped PCIe
140  *	devices, peripherals that the processor exposes such as the xAPIC, data
141  *	from the FCH (Fusion Controller Hub), etc.
142  *
143  * TOM, TOM2, and the DRAM HOLE
144  *
145  *	Physical memory has a complicated layout on x86 in part because of
146  *	support for traditional 16-bit and 32-bit systems. As a result, contrary
147  *	to popular belief, DRAM is not at a consistent address range in the
148  *	processor. AMD processors have a few different ranges. There is a 32-bit
149  *	region that starts at effectively physical address zero and goes to the
150  *	TOM MSR (top of memory -- Core::X86::Msr::TOP_MEM). This indicates a
151  *	limit below 4 GiB, generally around 2 GiB.
152  *
153  *	From there, the next region of DRAM starts at 4 GiB and goes to TOM2
154  *	(top of memory 2 -- Core::X86::Msr::TOM2). The region between TOM and
155  *	4 GiB is called the DRAM hole. Physical addresses in this region are
156  *	used for memory mapped I/O. This breaks up contiguous physical
157  *	addresses being used for DRAM, creating a "hole".
158  *
159  * DATA FABRIC
160  *
161  *	The data fabric (DF) is the primary interface that different parts of
162  *	the system use to communicate with one another. This includes the I/O
163  *	engines (where PCIe traffic goes), CPU caches and their cores, memory
164  *	channels, cross-socket communication, and a whole lot more. The first
165  *	part of decoding addresses and figuring out which DRAM channel an
166  *	address should be directed to all come from the data fabric.
167  *
168  *	The data fabric is comprised of instances. So there is one instance for
169  *	each group of cores, each memory channel, etc. Each instance has its own
170  *	independent set of register information. As the data fabric is a series
171  *	of devices exposed over PCI, if you do a normal PCI configuration space
172  *	read or write that'll end up broadcasting the I/O. Instead, to access a
173  *	particular instance's register information there is an indirect access
174  *	mechanism. The primary way that this driver accesses data fabric
175  *	registers is via these indirect reads.
176  *
177  *	There is one instance of the Data Fabric per socket starting with Zen 2.
178  *	In Zen 1, there was one instance of the data fabric per CCD -- core
179  *	complex die (see cpuid.c's big theory statement for more information).
180  *
181  * DF INSTANCE ID
182  *
183  *	A DF instance ID is an identifier for a single entity or component in a
184  *	data fabric.  The set of instance IDs is unique only with a single data
185  *	fabric. So for example, each memory channel, I/O endpoint (e.g. PCIe
186  *	logic), group of cores, has its own instance ID. Anything within the
187  *	same data fabric (e.g. the same die) can be reached via its instance ID.
188  *	The instance ID is used to indicate which instance to contact when
189  *	performing indirect accesses.
190  *
191  *	Not everything that has an instance ID will be globally routable (e.g.
192  *	between multiple sockets). For things that are, such as the memory
193  *	channels and coherent core initiators, there is a second ID called a
194  *	fabric ID.
195  *
196  * DF FABRIC ID
197  *
198  *	A DF fabric ID is an identifier that combines information to indicate
199  *	both which instance of the data fabric a component is on and a component
200  *	itself. So with this number you can distinguish between a memory channel
201  *	on one of two sockets. A Fabric ID is made up of two parts. The upper
202  *	part indicates which DF we are talking to and is referred to as a Node
203  *	ID. The Node ID is itself broken into two parts: one that identifies a
204  *	socket, and one that identifies a die. The lower part of a fabric ID is
205  *	called a component ID and indicates which component in a particular data
206  *	fabric that we are talking to. While only a subset of the total
207  *	components in the data fabric are routable, for everything that is, its
208  *	component ID matches its instance ID.
209  *
210  *	Put differently, the component portion of a fabric ID and a component's
211  *	instance ID are always the same for routable entities. For things which
212  *	cannot be routed, they only have an instance ID and no fabric ID.
213  *	Because this code is always interacting with data fabric components that
214  *	are routable, sometimes instance ID and the component ID portion of the
215  *	data fabric ID may be used interchangeably.
216  *
217  *	Finally, it's worth calling out that the number of bits that are used to
218  *	indicate the socket, die, and component in a fabric ID changes from
219  *	hardware generation to hardware generation.
220  *
221  *	Inside the code here, the socket and die decomposition information is
222  *	always relative to the node ID. AMD phrases the decomposition
223  *	information in terms of a series of masks and shifts. This is
224  *	information that can be retrieved from the data fabric itself, allowing
225  *	us to avoid hardcoding too much information other than which registers
226  *	actually have which fields. With both masks and shifts, it's important
227  *	to establish which comes first. We follow AMD's convention and always
228  *	apply masks before shifts. With that, let's look at an example of a
229  *	made up bit set:
230  *
231  *	Assumptions (to make this example simple):
232  *	  o The fabric ID is 16 bits
233  *	  o The component ID is 8 bits
234  *	  o The node ID is 8 bits
235  *	  o The socket and die ID are both 4 bits
236  *
237  *	Here, let's say that we have the ID 0x2106. This decomposes into a
238  *	socket 0x2, die 0x1, and component 0x6. Here is how that works in more
239  *	detail:
240  *
241  *	          0x21      0x06
242  *	        |------|  |------|
243  *	        Node ID   Component ID
244  *	Mask:    0xff00    0x00ff
245  *	Shift:   8         0
246  *
247  *	Next we would decompose the Node ID as:
248  *	         0x2        0x1
249  *	       |------|  |------|
250  *	       Sock ID    Die ID
251  *	Mask:   0xf0      0x0f
252  *	Shift:  4         0
253  *
254  *	Composing a fabric ID from its parts would work in a similar way by
255  *	applying masks and shifts.
256  *
257  * NORMAL ADDRESS
258  *
259  *	A normal address is one of the primary address types that AMD uses in
260  *	memory decoding. It takes into account the DRAM hole, interleave
261  *	settings, and is basically the address that is dispatched to the broader
262  *	data fabric towards a particular DRAM channel.
263  *
264  *	Often, phrases like 'normalizing the address' or normalization refer to
265  *	the process of transforming a system address into the channel address.
266  *
267  * INTERLEAVING
268  *
269  *	The idea of interleaving is to take a contiguous range and weave it
270  *	between multiple different actual entities. Generally certain bits in
271  *	the range are used to select one of several smaller regions. For
272  *	example, if you have 8 regions each that are 4 GiB in size, that creates
273  *	a single 32 GiB region. You can use three bits in that 32 GiB space to
274  *	select one of the 8 regions. For a more visual example, see the
275  *	definition of this in uts/intel/io/imc/imc.c.
276  *
277  * CHANNEL
278  *
279  *	A channel is used to refer to a single memory channel. This is sometimes
280  *	called a DRAM channel as well. A channel operates in a specific mode
281  *	based on the JEDEC DRAM standards (e.g. DDR4, LPDDR5, etc.). A
282  *	(LP)DDR4/5 channel may support up to two DIMMs inside the channel. The
283  *	number of slots is platform dependent and from there the number of DIMMs
284  *	installed can vary. Generally speaking, a DRAM channel defines a set
285  *	number of signals, most of which go to all DIMMs in the channel, what
286  *	varies is which "chip-select" is activated which causes a given DIMM to
287  *	pay attention or not.
288  *
289  * DIMM
290  *
291  *	A DIMM refers to a physical hardware component that is installed into a
292  *	computer to provide access to dynamic memory. Originally this stood for
293  *	dual-inline memory module, though the DIMM itself has evolved beyond
294  *	that. A DIMM is organized into various pages, which are addressed by
295  *	a combination of rows, columns, banks, bank groups, and ranks. How this
296  *	fits together changes from generation to generation and is standardized
297  *	in something like DDR4, LPDDR4, DDR5, LPDDR5, etc. These standards
298  *	define the general individual modules that are assembled into a DIMM.
299  *	There are slightly different standards for combined memory modules
300  *	(which is what we use the term DIMM for). Examples of those include
301  *	things like registered DIMMs (RDIMMs).
302  *
303  *	A DDR4 DIMM contains a single channel that is 64-bits wide with 8 check
304  *	bits. A DDR5 DIMM has a notable change in this scheme from earlier DDR
305  *	standards. It breaks a single DDR5 DIMM into two sub-channels. Each
306  *	sub-channel is independently addressed and contains 32-bits of data and
307  *	8-bits of check data.
308  *
309  * ROW AND COLUMN
310  *
311  *	The most basic building block of a DIMM is a die. A DIMM consists of
312  *	multiple dies that are organized together (we'll discuss the
313  *	organization next). A given die is organized into a series of rows and
314  *	columns. First, one selects a row. At which point one is able to select
315  *	a specific column. It is more expensive to change rows than columns,
316  *	leading a given row to contain approximately 1 KiB of data spread across
317  *	its columns. The exact size depends on the device. Each row/column is a
318  *	series of capacitors and transistors. The transistor is used to select
319  *	data from the capacitor and the capacitor actually contains the logical
320  *	0/1 value.
321  *
322  * BANKS AND BANK GROUPS
323  *
324  *	An individual DRAM die is organized in something called a bank. A DIMM
325  *	has a number of banks that sit in series. These are then grouped into
326  *	larger bank groups. Generally speaking, each bank group has the same
327  *	number of banks. Let's take a look at an example of a system with 4
328  *	bank groups, each with 4 banks.
329  *
330  *         +-----------------------+           +-----------------------+
331  *         | Bank Group 0          |           | Bank Group 1          |
332  *         | +--------+ +--------+ |           | +--------+ +--------+ |
333  *         | | Bank 0 | | Bank 1 | |           | | Bank 0 | | Bank 1 | |
334  *         | +--------+ +--------+ |           | +--------+ +--------+ |
335  *         | +--------+ +--------+ |           | +--------+ +--------+ |
336  *         | | Bank 2 | | Bank 3 | |           | | Bank 2 | | Bank 3 | |
337  *         | +--------+ +--------+ |           | +--------+ +--------+ |
338  *         +-----------------------+           +-----------------------+
339  *
340  *         +-----------------------+           +-----------------------+
341  *         | Bank Group 2          |           | Bank Group 3          |
342  *         | +--------+ +--------+ |           | +--------+ +--------+ |
343  *         | | Bank 0 | | Bank 1 | |           | | Bank 0 | | Bank 1 | |
344  *         | +--------+ +--------+ |           | +--------+ +--------+ |
345  *         | +--------+ +--------+ |           | +--------+ +--------+ |
346  *         | | Bank 2 | | Bank 3 | |           | | Bank 2 | | Bank 3 | |
347  *         | +--------+ +--------+ |           | +--------+ +--------+ |
348  *         +-----------------------+           +-----------------------+
349  *
350  *	On a DIMM, only a single bank and bank group can be active at a time for
351  *	reading or writing an 8 byte chunk of data. However, these are still
352  *	pretty important and useful because of the time involved to switch
353  *	between them. It is much cheaper to switch between bank groups than
354  *	between banks and that time can be cheaper than activating a new row.
355  *	This allows memory controllers to pipeline this substantially.
356  *
357  * RANK AND CHIP-SELECT
358  *
359  *	The next level of organization is a rank. A rank is effectively an
360  *	independent copy of all the bank and bank groups on a DIMM. That is,
361  *	there are additional copies of the DIMM's organization, but not the data
362  *	itself. Originally a
363  *	single or dual rank DIMM was built such that one copy of everything was
364  *	on each physical side of the DIMM. As the number of ranks has increased
365  *	this has changed as well. Generally speaking, the contents of the rank
366  *	are equivalent. That is, you have the same number of bank groups, banks,
367  *	and each bank has the same number of rows and columns.
368  *
369  *	Ranks are selected by what's called a chip-select, often abbreviated as
370  *	CS_L in the various DRAM standards. AMD also often abbreviates this as a
371  *	CS (which is not to be confused with the DF class of device called a
372  *	CS). These signals are used to select a rank to activate on a DIMM.
373  *	There are some number of these for each DIMM which is how the memory
374  *	controller chooses which of the DIMMs it's actually going to activate in
375  *	the system.
376  *
377  *	One interesting gotcha here is how AMD organizes things. Each DIMM
378  *	logically is broken into two chip-selects in hardware. Between DIMMs
379  *	with more than 2 ranks and 3D stacked RDIMMs, there are ways to
380  *	potentially activate more bits. Ultimately these are mapped to a series
381  *	of rank multiplication logic internally. These ultimately then control
382  *	some of these extra pins, though the exact method isn't 100% clear at
383  *	this time.
384  *
385  * -----------------------
386  * Rough Hardware Process
387  * -----------------------
388  *
389  * To better understand how everything is implemented and structured, it's worth
390  * briefly describing what happens when hardware wants to read a given physical
391  * address. This is roughly summarized in the following chart. In the left hand
392  * side is the type of address, which is transformed and generally shrinks along
393  * the way. Next to it is the actor that is taking action and the type of
394  * address that it starts with.
395  *
396  * +---------+   +------+
397  * | Virtual |   | CPU  |
398  * | Address |   | Core |
399  * +---------+   +------+
400  *      |           |          The CPU core receives a memory request and then
401  *      |           * . . . .  determines whether this request is DRAM or MMIO
402  *      |           |          (memory-mapped I/O) and then sends it to the data
403  *      v           v          fabric.
404  * +----------+ +--------+
405  * | Physical | | Data   |
406  * | Address  | | Fabric |
407  * +----------+ +--------+
408  *      |           |          The data fabric instance in the CCX/D uses the
409  *      |           * . . . .  programmed DRAM rules to determine what DRAM
410  *      |           |          channel to direct a request to and what the
411  *      |           |          channel-relative address is. It then sends the
412  *      |           |          request through the fabric. Note, the number of
413  *      |           |          DRAM rules varies based on the processor SoC.
414  *      |           |          Server parts like Milan have many more rules than
415  *      |           |          an APU like Cezanne. The DRAM rules tell us both
416  *      v           v          how to find and normalize the physical address.
417  * +---------+  +---------+
418  * | Channel |  | DRAM    |
419  * | Address |  | Channel |
420  * +---------+  +---------+
421  *      |           |          The UMC (unified memory controller) receives the
422  *      |           * . . . .  DRAM request and determines which DIMM to send
423  *      |           |          the request to along with the rank, banks, row,
424  *      |           |          column, etc. It initiates a DRAM transaction and
425  *      |           |          then sends the results back through the data
426  *      v           v          fabric to the CPU core.
427  * +---------+  +--------+
428  * | DIMM    |  | Target |
429  * | Address |  | DIMM   |
430  * +---------+  +--------+
431  *
432  * The above is all generally done in hardware. There are multiple steps
433  * internal to this that we end up mimicking in software. This includes things
434  * like, applying hashing logic, address transformations, and related.
435  * Thankfully the hardware is fairly generic and programmed with enough
436  * information that we can pull out to figure this out. The rest of this theory
437  * statement covers the major parts of this: interleaving, the act of
438  * determining which memory channel to actually go to, and normalization, the
439  * act of removing some portion of the physical address bits to determine the
440  * address relative to a channel.
441  *
442  * ------------------------
443  * Data Fabric Interleaving
444  * ------------------------
445  *
446  * One of the major parts of address decoding is to understand how the
447  * interleaving features work in the data fabric. This is used to allow an
448  * address range to be spread out between multiple memory channels and then,
449  * later on, when normalizing the address. As mentioned above, a system address
450  * matches a rule which has information on interleaving. Interleaving comes in
451  * many different flavors. It can be used to just switch between channels,
452  * sockets, and dies. It can also end up involving some straightforward and some
453  * fairly complex hashing operations.
454  *
455  * Each DRAM rule has instructions on how to perform this interleaving. The way
456  * this works is that the rule first says to start at a given address bit,
457  * generally ranging from bit 8-12. These influence the granularity of the
458  * interleaving going on. From there, the rules determine how many bits to use
459  * from the address to determine the die, socket, and channel. In the simplest
460  * form, these perform a log2 of the actual number of things you're interleaving
461  * across (we'll come back to non-powers of two). So let's work a few common
462  * examples:
463  *
464  *   o 8-channel interleave, 1-die interleave, 2-socket interleave
465  *     Start at bit 9
466  *
467  *	In this case we have 3 bits that determine the channel to use, 0 bits
468  *	for the die, 1 bit for the socket. Here we would then use the following
469  *	bits to determine what the channel, die, and socket IDs are:
470  *
471  *	[12]    - Socket ID
472  *	[11:9]  - Channel ID
473  *
474  *	You'll note that there was no die-interleave, which means the die ID is
475  *	always zero. This is the general thing you expect to see in Zen 2 and 3
476  *	based systems as they only have one die or a Zen 1 APU.
477  *
478  *   o 2-channel interleave, 4-die interleave, 2-socket interleave
479  *     Start at bit 10
480  *
481  *	In this case we have 1 bit for the channel and socket interleave. We
482  *	have 2 bits for the die. This is something you might see on a Zen 1
483  *	system. This results in the following bits:
484  *
485  *      [13]    - Socket ID
486  *      [12:11] - Die ID
487  *      [10]    - Channel ID
488  *
489  *
490  * COD and NPS HASHING
491  *
492  * However, this isn't the only primary extraction rule of the above values. The
493  * other primary method is using a hash. While the exact hash methods vary
494  * between Zen 2/3 and Zen 4 based systems, they follow a general scheme. In the
495  * system there are three interleaving configurations that are either global or
496  * enabled on a per-rule basis. These indicate whether one should perform the
497  * XOR computation using addresses at:
498  *
499  *   o 64 KiB (starting at bit 16)
500  *   o 2 MiB (starting at bit 21)
501  *   o 1 GiB (starting at bit 30)
502  *
503  * In this world, you take the starting address bit defined by the rule and XOR
504  * it with each enabled interleave address. If you have more than one bit to
505  * select (e.g. because you are hashing across more than 2 channels), then you
506  * continue taking subsequent bits from each enabled region. So the second bit
507  * would use 17, 21, and 31 if all three ranges were enabled while the third bit
508  * would use 18, 22, and 32. While these are straightforward, there is a catch.
509  *
510  * While the DRAM rule contains what the starting address bit, you don't
511  * actually use subsequent bits in the same way. Instead subsequent bits are
512  * deterministic and use bits 12 and 13 from the address.  This is not the same
513  * consecutive thing that one might expect. Let's look at a Rome/Milan based
514  * example:
515  *
516  *   o 8-channel "COD" hashing, starting at address 9. All three ranges enabled.
517  *     1-die and 1-socket interleaving.
518  *
519  *      In this model we are using 3 bits for the channel, 0 bits for the socket
520  *      and die.
521  *
522  *	Channel ID[0] = addr[9]  ^ addr[16] ^ addr[21] ^ addr[30]
523  *	Channel ID[1] = addr[12] ^ addr[17] ^ addr[22] ^ addr[31]
524  *	Channel ID[2] = addr[13] ^ addr[18] ^ addr[23] ^ addr[32]
525  *
526  *	So through this scheme we'd have a socket/die of 0, and then the channel
527  *	ID is computed based on that. The number of bits that we use here
528  *	depends on how many channels the hash is going across.
529  *
530  * The Genoa and related variants, termed "NPS", has a few wrinkles. First,
531  * rather than 3 bits being used for the channel, up to 4 bits are. Second,
532  * while the Rome/Milan "COD" hash above does not support socket or die
533  * interleaving, the "NPS" hash actually supports socket interleaving. However,
534  * unlike the straightforward non-hashing scheme, the first bit is used to
535  * determine the socket when enabled as opposed to the last one. In addition, if
536  * we're not performing socket interleaving, then we end up throwing address bit
537  * 14 into the mix here. Let's look at examples:
538  *
539  *   o 4-channel "NPS" hashing, starting at address 8. All three ranges enabled.
540  *     1-die and 1-socket interleaving.
541  *
542  *      In this model we are using 2 bits for the channel, 0 bits for the socket
543  *      and die. Because socket interleaving is not being used, bit 14 ends up
544  *      being added into the first bit of the channel selection. Presumably this
545  *      is to improve the address distribution in some form.
546  *
547  *      Channel ID[0] = addr[8] ^ addr[16] ^ addr[21] ^ addr[30] ^ addr[14]
548  *      Channel ID[1] = addr[12] ^ addr[17] ^ addr[22] ^ addr[31]
549  *
550  *   o 8-channel "NPS" hashing, starting at address 9. All three ranges enabled.
551  *     1-die and 2-socket interleaving.
552  *
553  *      In this model we are using 3 bits for the channel and 1 for the socket.
554  *      The die is always set to 0. Unlike the above, address bit 14 is not used
555  *      because it ends up being required for the 4th address bit.
556  *
557  *	Socket ID[0]  = addr[9]  ^ addr[16] ^ addr[21] ^ addr[30]
558  *	Channel ID[0] = addr[12] ^ addr[17] ^ addr[22] ^ addr[31]
559  *	Channel ID[1] = addr[13] ^ addr[18] ^ addr[23] ^ addr[32]
560  *	Channel ID[2] = addr[14] ^ addr[19] ^ addr[24] ^ addr[33]
561  *
562  *
563  * ZEN 3 6-CHANNEL
564  *
565  * These were the simple cases. Things get more complex when we move to
566  * non-power of 2 based hashes between channels. There are two different sets of
567  * these schemes. The first of these is 6-channel hashing that was added in Zen
568  * 3. The second of these is a more complex and general form that was added in
569  * Zen 4. Let's start with the Zen 3 case. The Zen 3 6-channel hash requires
570  * starting at address bits 11 or 12 and varies its logic somewhat from there.
571  * In the 6-channel world, the socket and die interleaving must be disabled.
572  * Let's walk through an example:
573  *
574  *   o 6-channel Zen 3, starting at address 11. 2M and 1G range enabled.
575  *     1-die and 1-socket interleaving.
576  *
577  *      Regardless of the starting address, we will always use three bits to
578  *      determine a channel address. However, it's worth calling out that the
579  *      64K range is not considered for this at all. Another oddity is that when
580  *      calculating the hash bits the order of the extracted 2M and 1G addresses
581  *      are different.
582  *
583  *	This flow starts by calculating the three hash bits. This is defined
584  *	below. In the following, all bits marked with an '@' are ones that will
585  *	change when starting at address bit 12. In those cases the value will
586  *	increase by 1. Here's how we calculate the hash bits:
587  *
588  *      hash[0] = addr[11@] ^ addr[14@] ^ addr[23] ^ addr[32]
589  *      hash[1] = addr[12@] ^ addr[21] ^ addr[30]
590  *      hash[2] = addr[13@] ^ addr[22] ^ addr[31]
591  *
592  *      With this calculated, we always assign the first bit of the channel
593  *      based on the hash. The other bits are more complicated as we have to
594  *      deal with that gnarly power of two problem. We determine whether or not
595  *      to use the hash bits directly in the channel based on their value. If
596  *      they are not equal to 3, then we use it, otherwise if they are, then we
597  *      need to go back to the physical address and we take its modulus.
598  *      Basically:
599  *
600  *      Channel Id[0] = hash[0]
601  *      if (hash[2:1] == 3)
602  *		Channel ID[2:1] = (addr >> [11@+3]) % 3
603  *      else
604  *		Channel ID[2:1] = hash[2:1]
605  *
606  *
607  * ZEN 4 NON-POWER OF 2
608  *
609  * I hope you like modulus calculations, because things get even more complex
610  * here now in Zen 4 which has many more modulus variations. These function in a
611  * similar way to the older 6-channel hash in Milan. They require one to start
612  * at address bit 8, they require that there is no die interleaving, and they
613  * support socket interleaving. The different channel arrangements end up in one
614  * of two sets of modulus values: a mod % 3 and a mod % 5 based on the number
615  * of channels used. Unlike the Milan form, all three address ranges (64 KiB, 2
616  * MiB, 1 GiB) are allowed to be used.
617  *
618  *   o 6-channel Zen 4, starting at address 8. 64K, 2M, and 1G range enabled.
619  *     1-die and 2-socket interleaving.
620  *
621  *      We start by calculating the following set of hash bits regardless of
622  *      the number of channels that exist. The set of hash bits that is actually
623  *      used in various computations ends up varying based upon the number of
624  *      channels used. In 3-5 configs, only hash[0] is used. 6-10, both hash[0]
625  *      and hash[2] (yes, not hash[1]). The 12 channel config uses all three.
626  *
627  *      hash[0] = addr[8]  ^ addr[16] ^ addr[21] ^ addr[30] ^ addr[14]
628  *      hash[1] = addr[12] ^ addr[17] ^ addr[22] ^ addr[31]
629  *      hash[2] = addr[13] ^ addr[18] ^ addr[23] ^ addr[32]
630  *
631  *      Unlike other schemes where bits directly map here, they instead are used
632  *      to seed the overall value. Depending on whether hash[0] is a 0 or 1, the
633  *      system goes through two different calculations entirely. Though all of
634  *      them end up involving the remainder of the system address going through
635  *      the modulus. In the following, a '3@' indicates the modulus value would
636  *      be swapped to 5 in a different scenario.
637  *
638  *      Channel ID = addr[63:14] % 3@
639  *      if (hash[0] == 1)
640  *		Channel ID = (Channel ID + 1) % 3@
641  *
642  *      Once this base has for the channel ID has been calculated, additional
643  *      portions are added in. As this is the 6-channel form, we say:
644  *
645  *      Channel ID = Channel ID + (hash[2] * 3@)
646  *
647  *      Finally the socket is deterministic and always comes from hash[0].
648  *      Basically:
649  *
650  *      Socket ID = hash[0]
651  *
652  *   o 12-channel Zen 4, starting at address 8. 64K, 2M, and 1G range enabled.
653  *     1-die and 1-socket interleaving.
654  *
655  *       This is a variant of the above. The hash is calculated the same way.
656  *       The base Channel ID is the same and if socket interleaving were enabled
657  *       it would also be hash[0]. What instead differs is how we use hash[1]
658  *       and hash[2]. The following logic is used instead of the final
659  *       calculation above.
660  *
661  *       Channel ID = Channel ID + (hash[2:1] * 3@)
662  *
663  *
664  * POST BIT EXTRACTION
665  *
666  * Now, all of this was done to concoct up a series of indexes used. However,
667  * you'll note that a given DRAM rule actually already has a fabric target. So
668  * what do we do here? We add them together.
669  *
670  * The data fabric has registers that describe which bits in a fabric ID
671  * correspond to a socket, die, and channel. Taking the channel, die, and socket
672  * IDs above, one can construct a fabric ID. From there, we add the two data
673  * fabric IDs together and can then get to the fabric ID of the actual logical
674  * target. This is why all of the socket and die interleaving examples with no
675  * interleaving are OK to result in a zero. The idea here is that the base
676  * fabric ID in the DRAM rule will take care of indicating those other things as
677  * required.
678  *
679  * You'll note the use of the term "logical target" up above. That's because
680  * some platforms have the ability to remap logical targets to physical targets
681  * (identified by the use of the ZEN_UMC_FAM_F_TARG_REMAP flag in the family
682  * data). The way that remapping works changes based on the hardware generation.
683  * This was first added in Milan (Zen 3) CPUs. In that model, you would use the
684  * socket and component information from the target ID to identify which
685  * remapping rules to use. On Genoa (Zen 4) CPUs, you would instead use
686  * information in the rule itself to determine which of the remap rule sets to
687  * use and then uses the component ID to select which rewrite rule to use.
688  *
689  * Finally, there's one small wrinkle with this whole scheme that we haven't
690  * discussed: what actually is the address that we plug into this calculation.
691  * While you might think it actually is just the system address itself, that
692  * isn't actually always the case. Sometimes rather than using the address
693  * itself, it gets normalized based on the DRAM rule, which involves subtracting
694  * out the base address and potentially subtracting out the size of the DRAM
695  * hole (if the address is above the hole and hoisting is active for that
696  * range). When this is performed appears to tie to the DF generation. After Zen
697  * 3, it is always the default (e.g. Zen 4 and things from DF gen 3.5). At and
698  * before Zen 3, it only occurs if we are doing a non-power of 2 based hashing.
699  *
700  * --------------------------------------------
701  * Data Fabric Interleave Address Normalization
702  * --------------------------------------------
703  *
704  * While you may have thought that we were actually done with the normalization
705  * fun in the last section, there's still a bit more here that we need to
706  * consider. In particular, there's a secondary transformation beyond
707  * interleaving that occurs as part of constructing the channel normalized
708  * address. Effectively, we need to account for all the bits that were used in
709  * the interleaving and generally speaking remove them from our normalized
710  * address.
711  *
712  * While this may sound weird on paper, the way to think about it is that
713  * interleaving at some granularity means that each device is grabbing the same
714  * set of addresses, the interleave just is used to direct it to its own
715  * location. When working with a channel normalized address, we're effectively
716  * creating a new region of addresses that have meaning within the DIMMs
717  * themselves. The channel doesn't care about what got it there, mainly just
718  * what it is now. So with that in mind, we need to discuss how we remove all
719  * the interleaving information in our different modes.
720  *
721  * Just to make sure it's clear, we are _removing_ all bits that were used for
722  * interleaving. This causes all bits above the removed ones to be shifted
723  * right.
724  *
725  * First, we have the case of standard power of 2 interleaving that applies to
726  * the 1, 2, 4, 8, 16, and 32 channel configurations. Here, we need to account
727  * for the total number of bits that are used for the channel, die, and socket
728  * interleaving and we simply remove all those bits starting from the starting
729  * address.
730  *
731  *   o 8-channel interleave, 1-die interleave, 2-socket interleave
732  *     Start at bit 9
733  *
734  *     If we look at this example, we are using 3 bits for the channel, 1 for
735  *     the socket, for a total of 4 bits. Because this is starting at bit 9,
736  *     this means that interleaving covers the bit range [12:9]. In this case
737  *     our new address would be (orig[63:13] >> 4) | orig[8:0].
738  *
739  *
740  * COD and NPS HASHING
741  *
742  * That was the simple case, next we have the COD/NPS hashing case that we need
743  * to consider. If we look at these, the way that they work is that they split
744  * which bits they use for determining the channel address and then hash others
745  * in. Here, we need to extract the starting address bit, then continue at bit
746  * 12 based on the number of bits in use and whether or not socket interleaving
747  * is at play for the NPS variant. Let's look at an example here:
748  *
749  *   o 8-channel "COD" hashing, starting at address 9. All three ranges enabled.
750  *     1-die and 1-socket interleaving.
751  *
752  *     Here we have three total bits being used. Because we start at bit 9, this
753  *     means we need to drop bits [13:12], [9]. So our new address would be:
754  *
755  *     orig[63:14] >> 3 | orig[11:10] >> 1 | orig[8:0]
756  *     |                  |                  +-> stays the same
757  *     |                  +-> relocated to bit 9 -- shifted by 1 because we
758  *     |                      removed bit 9.
759  *     +--> Relocated to bit 11 -- shifted by 3 because we removed bits, 9, 12,
760  *          and 13.
761  *
762  *   o 8-channel "NPS" hashing, starting at address 8. All three ranges enabled.
763  *     1-die and 2-socket interleaving.
764  *
765  *     Here we need to remove bits [14:12], [8]. We're removing an extra bit
766  *     because we have 2-socket interleaving. This results in a new address of:
767  *
768  *     orig[63:15] >> 4 | orig[11:9] >> 1 | orig[7:0]
769  *     |                  |                 +-> stays the same
770  *     |                  +-> relocated to bit 8 -- shifted by 1 because we
771  *     |                      removed bit 8.
772  *     +--> Relocated to bit 11 -- shifted by 4 because we removed bits, 8, 12,
773  *          13, and 14.
774  *
775  *
776  * ZEN 3 6-CHANNEL
777  *
778  * Now, to the real fun stuff, our non-powers of two. First, let's start with
779  * our friend, the Zen 3 6-channel hash. So, the first thing that we need to do
780  * here is start by recomputing our hash again based on the current normalized
781  * address. Regardless of the hash value, this first removes all three bits from
782  * the starting address, so that's removing either [14:12] or [13:11].
783  *
784  * The rest of the normalization process here is quite complex and somewhat mind
785  * bending. Let's start working through an example here and build this up.
786  * First, let's assume that each channel has a single 16 GiB RDIMM. This would
787  * mean that the channel itself has 96 GiB RDIMM. However, by removing 3 bits
788  * worth, that technically corresponds to an 8-channel configuration that
789  * normally suggest a 128 GiB configuration. The processor requires us to record
790  * this fact in the DF::Np2ChannelConfig register. The value that it wants us a
791  * bit weird. We believe it's calculated by the following:
792  *
793  *   1. Round the channel size up to the next power of 2.
794  *   2. Divide this total size by 64 KiB.
795  *   3. Determine the log base 2 that satisfies this value.
796  *
797  * In our particular example above. We have a 96 GiB channel, so for (1) we end
798  * up with 128 GiB (2^37). We now divide that by 64 KiB (2^16), so this becomes
799  * 2^(37 - 16) or 2^21. Because we want the log base 2 of 2^21 from (2), this
800  * simply becomes 21. The DF::Np2ChannelConfig has two members, a 'space 0' and
801  * 'space 1'. Near as we can tell, in this mode only 'space 0' is used.
802  *
803  * Before we get into the actual normalization scheme, we have to ask ourselves
804  * how do we actually interleave data 6 ways. The scheme here is involved.
805  * First, it's important to remember like with other normalization schemes, we
806  * do adjust for the address for the base address in the DRAM rule and then also
807  * take into account the DRAM hole if present.
808  *
809  * If we delete 3 bits, let's take a sample address and see where it would end
810  * up in the above scheme. We're going to take our 3 address bits and say that
811  * they start at bit 12, so this means that the bits removed are [14:12]. So the
812  * following are the 8 addresses that we have here and where they end up
813  * starting with 1ff:
814  *
815  *   o 0x01ff  -> 0x1ff, Channel 0 (hash 0b000)
816  *   o 0x11ff  -> 0x1ff, Channel 1 (hash 0b001)
817  *   o 0x21ff  -> 0x1ff, Channel 2 (hash 0b010)
818  *   o 0x31ff  -> 0x1ff, Channel 3 (hash 0b011)
819  *   o 0x41ff  -> 0x1ff, Channel 4 (hash 0b100)
820  *   o 0x51ff  -> 0x1ff, Channel 5 (hash 0b101)
821  *   o 0x61ff  -> 0x3000001ff, Channel 0 (hash 0b110)
822  *   o 0x71ff  -> 0x3000001ff, Channel 1 (hash 0b111)
823  *
824  * Yes, we did just jump to near the top of what is a 16 GiB DIMM's range for
825  * those last two. The way we determine when to do this jump is based on our
826  * hash. Effectively we ask what is hash[2:1]. If it is 0b11, then we need to
827  * do something different and enter this special case, basically jumping to the
828  * top of the range. If we think about a 6-channel configuration for a moment,
829  * the thing that doesn't exist are the traditional 8-channel hash DIMMs 0b110
830  * and 0b111.
831  *
832  * If you go back to the interleave this kind of meshes, that tried to handle
833  * the case of the hash being 0, 1, and 2, normally, and then did special things
834  * with the case of the hash being in this upper quadrant. The hash then
835  * determined where it went by shifting over the upper address and doing a mod
836  * 3 and using that to determine the upper two bits. With that weird address at
837  * the top of the range, let's go through and see what else actually goes to
838  * those weird addresses:
839  *
840  *   o 0x08000061ff -> 0x3000001ff, Channel 2 (hash 0b110)
841  *   o 0x08000071ff -> 0x3000001ff, Channel 3 (hash 0b111)
842  *   o 0x10000061ff -> 0x3000001ff, Channel 4 (hash 0b110)
843  *   o 0x10000071ff -> 0x3000001ff, Channel 5 (hash 0b111)
844  *
845  * Based on the above you can see that we've split the 16 GiB DIMM into a 12 GiB
846  * region (e.g. [ 0x0, 0x300000000 ), and a 4 GiB region [ 0x300000000,
847  * 0x400000000 ). What seems to happen is that the CPU algorithmically is going
848  * to put things in this upper range. To perform that action it goes back to the
849  * register information that we stored in DF::Np2ChannelConfig. The way this
850  * seems to be thought of is it wants to set the upper two bits of a 64 KiB
851  * chunk (e.g. bits [15:14]) to 0b11 and then shift that over based on the DIMM
852  * size.
853  *
854  * Our 16 GiB DIMM has 34 bits, so effectively we want to set bits [33:32] in
855  * this case. The channel is 37 bits wide, which the CPU again knows as 2^21 *
856  * 2^16. So it constructs the 64 KiB value of [15:14] = 0b11 and fills the rest
857  * with zeros. It then multiplies it by 2^(21 - 3), or 2^18. The - 3 comes from
858  * the fact that we removed 3 address bits. This when added to the above gets
859  * us bits [33,32] = 0b11.
860  *
861  * While this appears to be the logic, I don't have a proof that this scheme
862  * actually evenly covers the entire range, but a few examples appear to work
863  * out.
864  *
865  * With this, the standard example flow that we give, results in something like:
866  *
867  *   o 6-channel Zen 3, starting at address 11. 2M and 1G range enabled. Here,
868  *     we assume that the value of the NP2 space0 is 21 bits. This example
869  *     assumes we have 96 GiB total memory, which means rounding up to 128 GiB.
870  *
871  *     Step 1 here is to adjust our address to remove the three bits indicated.
872  *     So we simply always set our new address to:
873  *
874  *     orig[63:14] >> 3 | orig[10:0]
875  *     |                  +-> stays the same
876  *     +--> Relocated to bit 11 because a 6-channel config always uses 3 bits to
877  *          perform interleaving.
878  *
879  *     At this step, one would need to consult the hash of the normalized
880  *     address before removing bits (but after adjusting for the base / DRAM
881  *     hole). If hash[2:1] == 3, then we would say that the address is actually:
882  *
883  *     0b11 << 32 | orig[63:14] >> 3 | orig[10:0]
884  *
885  *
886  * ZEN 4 NON-POWER OF 2
887  *
888  * Next, we have the DFv4 versions of the 3, 5, 6, 10, and 12 channel hashing.
889  * An important part of this is whether or not there is any socket hashing going
890  * on. Recall there, that if socket hashing was going on, then it is part of the
891  * interleave logic; however, if it is not, then its hash actually becomes
892  * part of the normalized address, but not in the same spot!
893  *
894  * In this mode, we always remove the bits that are actually used by the hash.
895  * Recall that some modes use hash[0], others hash[0] and hash[2], and then only
896  * the 12-channel config uses hash[2:0]. This means we need to be careful in how
897  * we actually remove address bits. All other bits in this lower range we end up
898  * keeping and using. The top bits, e.g. addr[63:14] are kept and divided by the
899  * actual channel-modulus. If we're not performing socket interleaving and
900  * therefore need to keep the value of hash[0], then it is appended as the least
901  * significant bit of that calculation.
902  *
903  * Let's look at an example of this to try to make sense of it all.
904  *
905  *   o 6-channel Zen 4, starting at address 8. 64K, 2M, and 1G range enabled.
906  *     1-die and 2-socket interleaving.
907  *
908  *     Here we'd start by calculating hash[2:0] as described in the earlier
909  *     interleaving situation. Because we're using a socket interleave, we will
910  *     not opt to include hash[0] in the higher-level address calculation.
911  *     Because this is a 6-channel calculation, our modulus is 3. Here, we will
912  *     strip out bits 8 and 13 (recall in the interleaving 6-channel example we
913  *     ignored hash[1], thus no bit 12 here). Our new address will be:
914  *
915  *     (orig[63:14] / 3) >> 2 | orig[12:9] >> 1 | orig[7:0]
916  *      |                       |                 +-> stays the same
917  *      |                       +-> relocated to bit 8 -- shifted by 1 because
918  *      |                           we removed bit 8.
919  *      +--> Relocated to bit 12 -- shifted by 2 because we removed bits 8 and
920  *           13.
921  *
922  *   o 12-channel Zen 4, starting at address 8. 64K, 2M, and 1G range enabled.
923  *     1-die and 1-socket interleaving.
924  *
925  *     This is a slightly different case from the above in two ways. First, we
926  *     will end up removing bits 8, 12, and 13, but then we'll also reuse
927  *     hash[0]. Our new address will be:
928  *
929  *     ((orig[63:14] / 3) << 1 | hash[0]) >> 3 | orig[11:9] >> 1 | orig[7:0]
930  *      |                                   |                      +-> stays the
931  *      |                                   |                          same
932  *      |                                   +-> relocated to bit 8 -- shifted by
933  *      |                                       1 because we removed bit 8.
934  *      +--> Relocated to bit 11 -- shifted by 3 because we removed bits 8, 12,
935  *           and 13.
936  *
937  * That's most of the normalization process for the time being. We will have to
938  * revisit this when we have to transform a normal address into a system address
939  * and undo all this.
940  *
941  * -------------------------------------
942  * Selecting a DIMM and UMC Organization
943  * -------------------------------------
944  *
945  * One of the more nuanced things in decoding and encoding is the question of
946  * where do we send a channel normalized address. That is, now that we've gotten
947  * to a given channel, we need to transform the address into something
948  * meaningful for a DIMM, and select a DIMM as well. The UMC SMN space contains
949  * a number of Base Address and Mask registers which they describe as activating
950  * a chip-select. A given UMC has up to four primary chip-selects (we'll come
951  * back to DDR5 sub-channels later). The first two always go to the first DIMM
952  * in the channel and the latter two always go to the second DIMM in the
953  * channel. Put another way, you can always determine which DIMM you are
954  * referring to by taking the chip-select and shifting it by 1.
955  *
956  * The UMC Channel registers are organized a bit differently in different
957  * hardware generations. In a DDR5 based UMC, almost all of our settings are on
958  * a per-chip-select basis while as in a DDR4 based system only the bases and
959  * masks are. While gathering data we normalize this such that each logical
960  * chip-select (umc_cs_t) that we have in the system has the same data so that
961  * way DDR4 and DDR5 based systems are the same to the decoding logic. There is
962  * also channel-wide data such as hash configurations and related.
963  *
964  * Each channel has a set of base and mask registers (and secondary ones as
965  * well). To determine if we activate a given one, we first check if the
966  * enabled bit is set. The enabled bit is set on a per-base basis, so both the
967  * primary and secondary registers have separate enables. As there are four of
968  * each base, mask, secondary base, and secondary mask, we say that if a
969  * normalized address matches either a given indexes primary or secondary index,
970  * then it activates that given UMC index. The basic formula for an enabled
971  * selection is:
972  *
973  *	NormAddr & ~Mask[i] == Base[i] & ~Mask[i]
974  *
975  * Once this is selected, this index in the UMC is what it always used to derive
976  * the rest of the information that is specific to a given chip-select or DIMM.
977  * An important thing to remember is that from this point onwards, while there
978  * is a bunch of hashing and interleaving logic it doesn't change which UMC
979  * channel we read the data from. Though the particular DIMM, rank, and address
980  * we access will change as we go through hashing and interleaving.
981  *
982  * ------------------------
983  * Row and Column Selection
984  * ------------------------
985  *
986  * The number of bits that are used for the row and column address of a DIMM
987  * varies based on the type of module itself. These depend on the density of a
988  * DIMM module, e.g. how large an individual DRAM block is, a value such as 16
989  * Gbit, and the number of these wide it is, which is generally phrased as X4,
990  * X8, and X16. The memory controller encodes the number of bits (derived from
991  * the DIMM's SPD data) and then determines which bits are used for addresses.
992  *
993  * Based on this information we can initially construct a row and a column
994  * address by leveraging the information about the number of bits and then
995  * extracting the correct bits out of the normalized channel address.
996  *
997  * If you've made it this far, you know nothing is quite this simple, despite it
998  * seeming so. Importantly, not all DIMMs actually have storage that is a power
999  * of 2. As such, there's another bit that we have to consult to transform the
1000  * actual value that we have for a row, remarkably the column somehow has no
1001  * transformations applied to it.
1002  *
1003  * The hardware gives us information on inverting the two 'most significant
1004  * bits' of the row address which we store in 'ucs_inv_msbs'. First, we have the
1005  * question of what are our most significant bits here. This is basically
1006  * determined by the number of low and high row bits. In this case higher
1007  * actually is what we want. Note, the high row bits only exist in DDR4. Next,
1008  * we need to know whether we used the primary or secondary base/mask pair for
1009  * this as there is a primary and secondary inversion bits. The higher bit of
1010  * the inversion register (e.g ucs_inv_msbs[1]) corresponds to the highest row
1011  * bit. A zero in the bit position indicates that we should not perform an
1012  * inversion where as a one says that we should invert this.
1013  *
1014  * To actually make this happen we can take advantage of the fact that the
1015  * meaning of a 0/1 above means that this can be implemented with a binary
1016  * exclusive-OR (XOR). Logically speaking if we have a don't invert setting
1017  * present, a 0, then x ^ 0 is always x. However, if we have a 1 present, then
1018  * we know that (for a single bit) x ^ 1 = ~x. We take advantage of this fact in
1019  * the row logic.
1020  *
1021  * ---------------------
1022  * Banks and Bank Groups
1023  * ---------------------
1024  *
1025  * While addressing within a given module is done by the use of a row and column
1026  * address, to increase storage density a module generally has a number of
1027  * banks, which may be organized into one or more bank groups. While a given
1028  * DDR4/5 access happens in some prefetched chunk of say 64 bytes (what do you
1029  * know, that's a cacheline), that all occurs within a single bank. The addition
1030  * of bank groups makes it easier to access data in parallel -- it is often
1031  * faster to read from another bank group than to read another region inside a
1032  * bank group.
1033  *
1034  * Based on the DIMMs internal configuration, there will be a specified number
1035  * of bits used for the overall bank address (including bank group bits)
1036  * followed by a number of bits actually used for bank groups. There are
1037  * separately an array of bits used to concoct the actual address. It appears,
1038  * mostly through experimental evidence, that the bank group bits occur first
1039  * and then are followed by the bank selection itself.  This makes some sense if
1040  * you assume that switching bank groups is faster than switching banks.
1041  *
1042  * So if we see the UMC noting 4 bank bits and 2 bank groups bits, that means
1043  * that the umc_cs_t's ucs_bank_bits[1:0] correspond to bank_group[1:0] and
1044  * ucs_bank_bits[3:2] correspond to bank_address[1:0]. However, if there were no
1045  * bank bits indicated, then all of the address bits would correspond to the
1046  * bank address.
1047  *
1048  * Now, this would all be straightforward if not for hashing, our favorite.
1049  * There are five bank hashing registers per channel (UMC_BANK_HASH_DDR4,
1050  * UMC_BANK_HASH_DDR5), one that corresponds to the five possible bank bits. To
1051  * do this we need to use the calculated row and column that we previously
1052  * determined. This calculation happens in a few steps:
1053  *
1054  *   1) First check if the enable bit is set in the rule. If not, just use the
1055  *      normal bank address bit and we're done.
1056  *   2) Take a bitwise-AND of the calculated row and hash register's row value.
1057  *      Next do the same thing for the column.
1058  *   3) For each bit in the row, progressively XOR it, e.g. row[0] ^ row[1] ^
1059  *      row[2] ^ ... to calculate a net bit value for the row. This then
1060  *      repeats itself for the column. What basically has happened is that we're
1061  *      using the hash register to select which bits to impact our decision.
1062  *      Think of this as a traditional bitwise functional reduce.
1063  *   4) XOR the combined rank bit with the column bit and the actual bank
1064  *      address bit from the normalized address. So if this were bank bit 0,
1065  *      which indicated we should use bit 15 for bank[0], then we would
1066  *      ultimately say our new bit is norm_addr[15] ^ row_xor ^ col_xor
1067  *
1068  * An important caveat is that we would only consult all this if we actually
1069  * were told that the bank bit was being used. For example if we had 3 bank
1070  * bits, then we'd only check the first 3 hash registers. The latter two would
1071  * be ignored.
1072  *
1073  * Once this process is done, then we can go back and split the activated bank
1074  * into the actual bank used and the bank group used based on the first bits
1075  * going to the bank group.
1076  *
1077  * ---------------
1078  * DDR5 Sub-channel
1079  * ---------------
1080  *
1081  * As described in the definitions section, DDR5 has the notion of a
1082  * sub-channel. Here, a single bit is used to determine which of the
1083  * sub-channels to actually operate and utilize. Importantly the same
1084  * chip-select seems to apply to both halves of a given sub-channel.
1085  *
1086  * There is also a hash that is used here. The hash here utilizes the calculated
1087  * bank, column, and row and follows the same pattern used in the bank
1088  * calculation where we do a bunch of running exclusive-ORs and then do that
1089  * with the original value we found to get the new value. Because there's only
1090  * one bit for the sub-channel, we only have a single hash to consider.
1091  *
1092  * -------------------------------------------
1093  * Ranks, Chip-Select, and Rank Multiplication
1094  * -------------------------------------------
1095  *
1096  * The notion of ranks and the chip-select are interwoven. From a strict DDR4
1097  * RDIMM perspective, there are two lines that are dedicated for chip-selects
1098  * and then another two that are shared with three 'chip-id' bits that are used
1099  * in 3DS RDIMMs. In all cases the controller starts with two logical chip
1100  * selects and then uses something called rank multiplication to figure out how
1101  * to multiplex that and map to the broader set of things. Basically, in
1102  * reality, DDR4 RDIMMs allow for 4 bits to determine a rank and then 3DS RDIMMs
1103  * use 2 bits for a rank and 3 bits to select a stacked chip. In DDR5 this is
1104  * different and you just have 2 bits for a rank.
1105  *
1106  * It's not entirely clear from what we know from AMD, but it seems that we use
1107  * the RM bits as a way to basically go beyond the basic 2 bits of chip-select
1108  * which is determined based on which channel we logically activate. Initially
1109  * we treat this as two distinct things, here as that's what we get from the
1110  * hardware. There are two hashes here a chip-select and rank-multiplication
1111  * hash. Unlike the others, which rely on the bank, row, and column addresses,
1112  * this hash relies on the normalized address. So we calculate that mask and do
1113  * our same xor dance.
1114  *
1115  * There is one hash for each rank multiplication bit and chip-select bit. The
1116  * number of rank multiplication bits is given to us. The number of chip-select
1117  * bits is fixed, it's simply two because there are four base/mask registers and
1118  * logical chip-selects in a given UMC channel. The chip-select on some DDR5
1119  * platforms has a secondary exclusive-OR hash that can be applied. As this only
1120  * exists in some families, for any where it does exist, we seed it to be zero
1121  * so that it becomes a no-op.
1122  *
1123  * -----------
1124  * Future Work
1125  * -----------
1126  *
1127  * As the road goes ever on and on, down from the door where it began, there are
1128  * still some stops on the journey for this driver. In particular, here are the
1129  * major open areas that could be implemented to extend what this can do:
1130  *
1131  *   o The ability to transform a normalized channel address back to a system
1132  *     address. This is required for MCA/MCA-X error handling as those generally
1133  *     work in terms of channel addresses.
1134  *   o Integrating with the MCA/MCA-X error handling paths so that way we can
1135  *     take correct action in the face of ECC errors and allowing recovery from
1136  *     uncorrectable errors.
1137  *   o Providing memory controller information to FMA so that way it can opt to
1138  *     do predictive failure or give us more information about what is fault
1139  *     with ECC errors.
1140  *   o Figuring out if we will get MCEs for privilged address decoding and if so
1141  *     mapping those back to system addresses and related.
1142  *   o 3DS RDIMMs likely will need a little bit of work to ensure we're handling
1143  *     the resulting combination of the RM bits and CS and reporting it
1144  *     intelligently.
1145  */
1146 
1147 #include <sys/types.h>
1148 #include <sys/file.h>
1149 #include <sys/errno.h>
1150 #include <sys/open.h>
1151 #include <sys/cred.h>
1152 #include <sys/ddi.h>
1153 #include <sys/sunddi.h>
1154 #include <sys/stat.h>
1155 #include <sys/conf.h>
1156 #include <sys/devops.h>
1157 #include <sys/cmn_err.h>
1158 #include <sys/x86_archext.h>
1159 #include <sys/sysmacros.h>
1160 #include <sys/mc.h>
1161 
1162 #include <zen_umc.h>
1163 #include <sys/amdzen/df.h>
1164 #include <sys/amdzen/umc.h>
1165 
1166 static zen_umc_t *zen_umc;
1167 
1168 /*
1169  * Per-CPU family information that describes the set of capabilities that they
1170  * implement. When adding support for new CPU generations, you must go through
1171  * what documentation you have and validate these. The best bet is to find a
1172  * similar processor and see what has changed. Unfortunately, there really isn't
1173  * a substitute for just basically checking every register. The family name
1174  * comes from the amdzen_c_family(). One additional note for new CPUs, if our
1175  * parent amdzen nexus driver does not attach (because the DF has changed PCI
1176  * IDs or more), then just adding something here will not be sufficient to make
1177  * it work.
1178  */
1179 static const zen_umc_fam_data_t zen_umc_fam_data[] = {
1180 	{
1181 		.zufd_family = X86_PF_AMD_NAPLES,
1182 		.zufd_dram_nrules = 16,
1183 		.zufd_cs_nrules = 2,
1184 		.zufd_umc_style = ZEN_UMC_UMC_S_DDR4,
1185 		.zufd_chan_hash = UMC_CHAN_HASH_F_BANK | UMC_CHAN_HASH_F_CS
1186 	}, {
1187 		.zufd_family = X86_PF_HYGON_DHYANA,
1188 		.zufd_dram_nrules = 16,
1189 		.zufd_cs_nrules = 2,
1190 		.zufd_umc_style = ZEN_UMC_UMC_S_DDR4,
1191 		.zufd_chan_hash = UMC_CHAN_HASH_F_BANK | UMC_CHAN_HASH_F_CS
1192 	}, {
1193 		.zufd_family = X86_PF_AMD_DALI,
1194 		.zufd_dram_nrules = 2,
1195 		.zufd_cs_nrules = 2,
1196 		.zufd_umc_style = ZEN_UMC_UMC_S_DDR4_APU,
1197 		.zufd_chan_hash = UMC_CHAN_HASH_F_BANK | UMC_CHAN_HASH_F_CS
1198 	}, {
1199 		.zufd_family = X86_PF_AMD_ROME,
1200 		.zufd_flags = ZEN_UMC_FAM_F_NP2 | ZEN_UMC_FAM_F_NORM_HASH |
1201 		    ZEN_UMC_FAM_F_UMC_HASH,
1202 		.zufd_dram_nrules = 16,
1203 		.zufd_cs_nrules = 2,
1204 		.zufd_umc_style = ZEN_UMC_UMC_S_DDR4,
1205 		.zufd_chan_hash = UMC_CHAN_HASH_F_BANK | UMC_CHAN_HASH_F_RM |
1206 		    UMC_CHAN_HASH_F_CS
1207 	}, {
1208 		.zufd_family = X86_PF_AMD_RENOIR,
1209 		.zufd_flags = ZEN_UMC_FAM_F_NORM_HASH,
1210 		.zufd_dram_nrules = 2,
1211 		.zufd_cs_nrules = 2,
1212 		.zufd_umc_style = ZEN_UMC_UMC_S_DDR4_APU,
1213 		.zufd_chan_hash = UMC_CHAN_HASH_F_BANK | UMC_CHAN_HASH_F_PC |
1214 		    UMC_CHAN_HASH_F_CS
1215 	}, {
1216 		.zufd_family = X86_PF_AMD_MATISSE,
1217 		.zufd_flags = ZEN_UMC_FAM_F_NORM_HASH | ZEN_UMC_FAM_F_UMC_HASH,
1218 		.zufd_dram_nrules = 16,
1219 		.zufd_cs_nrules = 2,
1220 		.zufd_umc_style = ZEN_UMC_UMC_S_DDR4,
1221 		.zufd_chan_hash = UMC_CHAN_HASH_F_BANK | UMC_CHAN_HASH_F_RM |
1222 		    UMC_CHAN_HASH_F_CS
1223 	}, {
1224 		.zufd_family = X86_PF_AMD_VAN_GOGH,
1225 		.zufd_flags = ZEN_UMC_FAM_F_NORM_HASH,
1226 		.zufd_dram_nrules = 2,
1227 		.zufd_cs_nrules = 2,
1228 		.zufd_umc_style = ZEN_UMC_UMC_S_HYBRID_LPDDR5,
1229 		.zufd_chan_hash = UMC_CHAN_HASH_F_BANK | UMC_CHAN_HASH_F_CS
1230 	}, {
1231 		.zufd_family = X86_PF_AMD_MENDOCINO,
1232 		.zufd_flags = ZEN_UMC_FAM_F_NORM_HASH,
1233 		.zufd_dram_nrules = 2,
1234 		.zufd_cs_nrules = 2,
1235 		.zufd_umc_style = ZEN_UMC_UMC_S_HYBRID_LPDDR5,
1236 		.zufd_chan_hash = UMC_CHAN_HASH_F_BANK | UMC_CHAN_HASH_F_CS
1237 	}, {
1238 		.zufd_family = X86_PF_AMD_MILAN,
1239 		.zufd_flags = ZEN_UMC_FAM_F_TARG_REMAP | ZEN_UMC_FAM_F_NP2 |
1240 		    ZEN_UMC_FAM_F_NORM_HASH | ZEN_UMC_FAM_F_UMC_HASH,
1241 		.zufd_dram_nrules = 16,
1242 		.zufd_cs_nrules = 2,
1243 		.zufd_umc_style = ZEN_UMC_UMC_S_DDR4,
1244 		.zufd_chan_hash = UMC_CHAN_HASH_F_BANK | UMC_CHAN_HASH_F_RM |
1245 		    UMC_CHAN_HASH_F_CS
1246 	}, {
1247 		.zufd_family = X86_PF_AMD_GENOA,
1248 		.zufd_flags = ZEN_UMC_FAM_F_TARG_REMAP |
1249 		    ZEN_UMC_FAM_F_UMC_HASH | ZEN_UMC_FAM_F_UMC_EADDR |
1250 		    ZEN_UMC_FAM_F_CS_XOR,
1251 		.zufd_dram_nrules = 20,
1252 		.zufd_cs_nrules = 4,
1253 		.zufd_umc_style = ZEN_UMC_UMC_S_DDR5,
1254 		.zufd_chan_hash = UMC_CHAN_HASH_F_BANK | UMC_CHAN_HASH_F_RM |
1255 		    UMC_CHAN_HASH_F_PC | UMC_CHAN_HASH_F_CS
1256 	}, {
1257 		.zufd_family = X86_PF_AMD_VERMEER,
1258 		.zufd_flags = ZEN_UMC_FAM_F_NORM_HASH | ZEN_UMC_FAM_F_UMC_HASH,
1259 		.zufd_dram_nrules = 16,
1260 		.zufd_cs_nrules = 2,
1261 		.zufd_umc_style = ZEN_UMC_UMC_S_DDR4,
1262 		.zufd_chan_hash = UMC_CHAN_HASH_F_BANK | UMC_CHAN_HASH_F_RM |
1263 		    UMC_CHAN_HASH_F_CS,
1264 	}, {
1265 		.zufd_family = X86_PF_AMD_REMBRANDT,
1266 		.zufd_flags = ZEN_UMC_FAM_F_NORM_HASH,
1267 		.zufd_dram_nrules = 2,
1268 		.zufd_cs_nrules = 2,
1269 		.zufd_umc_style = ZEN_UMC_UMC_S_DDR5_APU,
1270 		.zufd_chan_hash = UMC_CHAN_HASH_F_BANK | UMC_CHAN_HASH_F_CS
1271 	}, {
1272 		.zufd_family = X86_PF_AMD_CEZANNE,
1273 		.zufd_flags = ZEN_UMC_FAM_F_NORM_HASH,
1274 		.zufd_dram_nrules = 2,
1275 		.zufd_cs_nrules = 2,
1276 		.zufd_umc_style = ZEN_UMC_UMC_S_DDR4_APU,
1277 		.zufd_chan_hash = UMC_CHAN_HASH_F_BANK | UMC_CHAN_HASH_F_PC |
1278 		    UMC_CHAN_HASH_F_CS
1279 	}, {
1280 		.zufd_family = X86_PF_AMD_RAPHAEL,
1281 		.zufd_flags = ZEN_UMC_FAM_F_TARG_REMAP | ZEN_UMC_FAM_F_CS_XOR,
1282 		.zufd_dram_nrules = 2,
1283 		.zufd_cs_nrules = 2,
1284 		.zufd_umc_style = ZEN_UMC_UMC_S_DDR5,
1285 		.zufd_chan_hash = UMC_CHAN_HASH_F_BANK | UMC_CHAN_HASH_F_PC |
1286 		    UMC_CHAN_HASH_F_CS
1287 	}, {
1288 		.zufd_family = X86_PF_AMD_BERGAMO,
1289 		.zufd_flags = ZEN_UMC_FAM_F_TARG_REMAP |
1290 		    ZEN_UMC_FAM_F_UMC_HASH | ZEN_UMC_FAM_F_UMC_EADDR |
1291 		    ZEN_UMC_FAM_F_CS_XOR,
1292 		.zufd_dram_nrules = 20,
1293 		.zufd_cs_nrules = 4,
1294 		.zufd_umc_style = ZEN_UMC_UMC_S_DDR5,
1295 		.zufd_chan_hash = UMC_CHAN_HASH_F_BANK | UMC_CHAN_HASH_F_RM |
1296 		    UMC_CHAN_HASH_F_PC | UMC_CHAN_HASH_F_CS
1297 	}
1298 };
1299 
1300 /*
1301  * We use this for the DDR4 and Hybrid DDR4 + LPDDR5 tables to map between the
1302  * specific enumerated speeds which are encoded values and the corresponding
1303  * memory clock and speed. For all DDR4 and LPDDR5 items we assume a a 1:2 ratio
1304  * between them. This is not used for the pure DDR5 / LPDDR5 entries because of
1305  * how the register just encodes the raw value in MHz.
1306  */
1307 typedef struct zen_umc_freq_map {
1308 	uint32_t zufm_reg;
1309 	uint32_t zufm_mhz;
1310 	uint32_t zufm_mts2;
1311 	uint32_t zufm_mts4;
1312 } zen_umc_freq_map_t;
1313 
1314 static const zen_umc_freq_map_t zen_umc_ddr4_map[] = {
1315 	{ UMC_DRAMCFG_DDR4_MEMCLK_667, 667, 1333, 0 },
1316 	{ UMC_DRAMCFG_DDR4_MEMCLK_800, 800, 1600, 0 },
1317 	{ UMC_DRAMCFG_DDR4_MEMCLK_933, 933, 1866, 0 },
1318 	{ UMC_DRAMCFG_DDR4_MEMCLK_1067, 1067, 2133, 0 },
1319 	{ UMC_DRAMCFG_DDR4_MEMCLK_1200, 1200, 2400, 0 },
1320 	{ UMC_DRAMCFG_DDR4_MEMCLK_1333, 1333, 2666, 0 },
1321 	{ UMC_DRAMCFG_DDR4_MEMCLK_1467, 1467, 2933, 0 },
1322 	{ UMC_DRAMCFG_DDR4_MEMCLK_1600, 1600, 3200, 0 }
1323 };
1324 
1325 static const zen_umc_freq_map_t zen_umc_lpddr5_map[] = {
1326 	{ UMC_DRAMCFG_HYB_MEMCLK_333, 333, 667, 1333 },
1327 	{ UMC_DRAMCFG_HYB_MEMCLK_400, 400, 800, 1600 },
1328 	{ UMC_DRAMCFG_HYB_MEMCLK_533, 533, 1066, 2133 },
1329 	{ UMC_DRAMCFG_HYB_MEMCLK_687, 687, 1375, 2750 },
1330 	{ UMC_DRAMCFG_HYB_MEMCLK_750, 750, 1500, 3000 },
1331 	{ UMC_DRAMCFG_HYB_MEMCLK_800, 800, 1600, 3200 },
1332 	{ UMC_DRAMCFG_HYB_MEMCLK_933, 933, 1866, 3733 },
1333 	{ UMC_DRAMCFG_HYB_MEMCLK_1066, 1066, 2133, 4267 },
1334 	{ UMC_DRAMCFG_HYB_MEMCLK_1200, 1200, 2400, 4800 },
1335 	{ UMC_DRAMCFG_HYB_MEMCLK_1375, 1375, 2750, 5500 },
1336 	{ UMC_DRAMCFG_HYB_MEMCLK_1500, 1500, 3000, 6000 },
1337 	{ UMC_DRAMCFG_HYB_MEMCLK_1600, 1600, 3200, 6400 }
1338 
1339 };
1340 
1341 static boolean_t
1342 zen_umc_identify(zen_umc_t *umc)
1343 {
1344 	for (uint_t i = 0; i < ARRAY_SIZE(zen_umc_fam_data); i++) {
1345 		if (zen_umc_fam_data[i].zufd_family == umc->umc_family) {
1346 			umc->umc_fdata = &zen_umc_fam_data[i];
1347 			return (B_TRUE);
1348 		}
1349 	}
1350 
1351 	return (B_FALSE);
1352 }
1353 
1354 /*
1355  * This operates on DFv2, DFv3, and DFv3.5 DRAM rules, which generally speaking
1356  * are in similar register locations and meanings, but the size of bits in
1357  * memory is not consistent.
1358  */
1359 static int
1360 zen_umc_read_dram_rule_df_23(zen_umc_t *umc, const uint_t dfno,
1361     const uint_t inst, const uint_t ruleno, df_dram_rule_t *rule)
1362 {
1363 	int ret;
1364 	uint32_t base, limit;
1365 	uint64_t dbase, dlimit;
1366 	uint16_t addr_ileave, chan_ileave, sock_ileave, die_ileave, dest;
1367 	boolean_t hash = B_FALSE;
1368 	zen_umc_df_t *df = &umc->umc_dfs[dfno];
1369 
1370 	if ((ret = amdzen_c_df_read32(dfno, inst, DF_DRAM_BASE_V2(ruleno),
1371 	    &base)) != 0) {
1372 		dev_err(umc->umc_dip, CE_WARN, "!failed to read DRAM base "
1373 		    "register %u on 0x%x/0x%x: %d", ruleno, dfno, inst, ret);
1374 		return (ret);
1375 	}
1376 
1377 	if ((ret = amdzen_c_df_read32(dfno, inst, DF_DRAM_LIMIT_V2(ruleno),
1378 	    &limit)) != 0) {
1379 		dev_err(umc->umc_dip, CE_WARN, "!failed to read DRAM limit "
1380 		    "register %u on 0x%x/0x%x: %d", ruleno, dfno, inst, ret);
1381 		return (ret);
1382 	}
1383 
1384 
1385 	rule->ddr_raw_base = base;
1386 	rule->ddr_raw_limit = limit;
1387 	rule->ddr_raw_ileave = rule->ddr_raw_ctrl = 0;
1388 
1389 	if (!DF_DRAM_BASE_V2_GET_VALID(base)) {
1390 		return (0);
1391 	}
1392 
1393 	/*
1394 	 * Extract all values from the registers and then normalize. While there
1395 	 * are often different bit patterns for the values, the interpretation
1396 	 * is the same across all the Zen 1-3 parts. That is while which bits
1397 	 * may be used for say channel interleave vary, the values of them are
1398 	 * consistent.
1399 	 */
1400 	rule->ddr_flags |= DF_DRAM_F_VALID;
1401 	if (DF_DRAM_BASE_V2_GET_HOLE_EN(base)) {
1402 		rule->ddr_flags |= DF_DRAM_F_HOLE;
1403 	}
1404 
1405 	dbase = DF_DRAM_BASE_V2_GET_BASE(base);
1406 	dlimit = DF_DRAM_LIMIT_V2_GET_LIMIT(limit);
1407 	switch (umc->umc_df_rev) {
1408 	case DF_REV_2:
1409 		addr_ileave = DF_DRAM_BASE_V2_GET_ILV_ADDR(base);
1410 		chan_ileave = DF_DRAM_BASE_V2_GET_ILV_CHAN(base);
1411 		die_ileave = DF_DRAM_LIMIT_V2_GET_ILV_DIE(limit);
1412 		sock_ileave = DF_DRAM_LIMIT_V2_GET_ILV_SOCK(limit);
1413 		dest = DF_DRAM_LIMIT_V2_GET_DEST_ID(limit);
1414 		break;
1415 	case DF_REV_3:
1416 		addr_ileave = DF_DRAM_BASE_V3_GET_ILV_ADDR(base);
1417 		sock_ileave = DF_DRAM_BASE_V3_GET_ILV_SOCK(base);
1418 		die_ileave = DF_DRAM_BASE_V3_GET_ILV_DIE(base);
1419 		chan_ileave = DF_DRAM_BASE_V3_GET_ILV_CHAN(base);
1420 		dest = DF_DRAM_LIMIT_V3_GET_DEST_ID(limit);
1421 		break;
1422 	case DF_REV_3P5:
1423 		addr_ileave = DF_DRAM_BASE_V3P5_GET_ILV_ADDR(base);
1424 		sock_ileave = DF_DRAM_BASE_V3P5_GET_ILV_SOCK(base);
1425 		die_ileave = DF_DRAM_BASE_V3P5_GET_ILV_DIE(base);
1426 		chan_ileave = DF_DRAM_BASE_V3P5_GET_ILV_CHAN(base);
1427 		dest = DF_DRAM_LIMIT_V3P5_GET_DEST_ID(limit);
1428 		break;
1429 	default:
1430 		dev_err(umc->umc_dip, CE_WARN, "!encountered unsupported "
1431 		    "DF revision processing DRAM rules: 0x%x", umc->umc_df_rev);
1432 		return (-1);
1433 	}
1434 
1435 	rule->ddr_base = dbase << DF_DRAM_BASE_V2_BASE_SHIFT;
1436 	rule->ddr_sock_ileave_bits = sock_ileave;
1437 	rule->ddr_die_ileave_bits = die_ileave;
1438 	switch (addr_ileave) {
1439 	case DF_DRAM_ILV_ADDR_8:
1440 	case DF_DRAM_ILV_ADDR_9:
1441 	case DF_DRAM_ILV_ADDR_10:
1442 	case DF_DRAM_ILV_ADDR_11:
1443 	case DF_DRAM_ILV_ADDR_12:
1444 		break;
1445 	default:
1446 		dev_err(umc->umc_dip, CE_WARN, "!encountered invalid address "
1447 		    "interleave on rule %u, df/inst 0x%x/0x%x: 0x%x", ruleno,
1448 		    dfno, inst, addr_ileave);
1449 		return (EINVAL);
1450 	}
1451 	rule->ddr_addr_start = DF_DRAM_ILV_ADDR_BASE + addr_ileave;
1452 
1453 	switch (chan_ileave) {
1454 	case DF_DRAM_BASE_V2_ILV_CHAN_1:
1455 		rule->ddr_chan_ileave = DF_CHAN_ILEAVE_1CH;
1456 		break;
1457 	case DF_DRAM_BASE_V2_ILV_CHAN_2:
1458 		rule->ddr_chan_ileave = DF_CHAN_ILEAVE_2CH;
1459 		break;
1460 	case DF_DRAM_BASE_V2_ILV_CHAN_4:
1461 		rule->ddr_chan_ileave = DF_CHAN_ILEAVE_4CH;
1462 		break;
1463 	case DF_DRAM_BASE_V2_ILV_CHAN_8:
1464 		rule->ddr_chan_ileave = DF_CHAN_ILEAVE_8CH;
1465 		break;
1466 	case DF_DRAM_BASE_V2_ILV_CHAN_6:
1467 		rule->ddr_chan_ileave = DF_CHAN_ILEAVE_6CH;
1468 		break;
1469 	case DF_DRAM_BASE_V2_ILV_CHAN_COD4_2:
1470 		hash = B_TRUE;
1471 		rule->ddr_chan_ileave = DF_CHAN_ILEAVE_COD4_2CH;
1472 		break;
1473 	case DF_DRAM_BASE_V2_ILV_CHAN_COD2_4:
1474 		hash = B_TRUE;
1475 		rule->ddr_chan_ileave = DF_CHAN_ILEAVE_COD2_4CH;
1476 		break;
1477 	case DF_DRAM_BASE_V2_ILV_CHAN_COD1_8:
1478 		hash = B_TRUE;
1479 		rule->ddr_chan_ileave = DF_CHAN_ILEAVE_COD1_8CH;
1480 		break;
1481 	default:
1482 		dev_err(umc->umc_dip, CE_WARN, "!encountered invalid channel "
1483 		    "interleave on rule %u, df/inst 0x%x/0x%x: 0x%x", ruleno,
1484 		    dfno, inst, chan_ileave);
1485 		return (EINVAL);
1486 	}
1487 
1488 	/*
1489 	 * If hashing is enabled, note which hashing rules apply to this
1490 	 * address. This is done to smooth over the differences between DFv3 and
1491 	 * DFv4, where the flags are in the rules themselves in the latter, but
1492 	 * global today.
1493 	 */
1494 	if (hash) {
1495 		if ((df->zud_flags & ZEN_UMC_DF_F_HASH_16_18) != 0) {
1496 			rule->ddr_flags |= DF_DRAM_F_HASH_16_18;
1497 		}
1498 
1499 		if ((df->zud_flags & ZEN_UMC_DF_F_HASH_21_23) != 0) {
1500 			rule->ddr_flags |= DF_DRAM_F_HASH_21_23;
1501 		}
1502 
1503 		if ((df->zud_flags & ZEN_UMC_DF_F_HASH_30_32) != 0) {
1504 			rule->ddr_flags |= DF_DRAM_F_HASH_30_32;
1505 		}
1506 	}
1507 
1508 	/*
1509 	 * While DFv4 makes remapping explicit, it is basically always enabled
1510 	 * and used on supported platforms prior to that point. So flag such
1511 	 * supported platforms as ones that need to do this. On those systems
1512 	 * there is only one set of remap rules for an entire DF that are
1513 	 * determined based on the target socket. To indicate that we use the
1514 	 * DF_DRAM_F_REMAP_SOCK flag below and skip setting a remap target.
1515 	 */
1516 	if ((umc->umc_fdata->zufd_flags & ZEN_UMC_FAM_F_TARG_REMAP) != 0) {
1517 		rule->ddr_flags |= DF_DRAM_F_REMAP_EN | DF_DRAM_F_REMAP_SOCK;
1518 	}
1519 
1520 	rule->ddr_limit = (dlimit << DF_DRAM_LIMIT_V2_LIMIT_SHIFT) +
1521 	    DF_DRAM_LIMIT_V2_LIMIT_EXCL;
1522 	rule->ddr_dest_fabid = dest;
1523 
1524 	return (0);
1525 }
1526 
1527 static int
1528 zen_umc_read_dram_rule_df_4(zen_umc_t *umc, const uint_t dfno,
1529     const uint_t inst, const uint_t ruleno, df_dram_rule_t *rule)
1530 {
1531 	int ret;
1532 	uint16_t addr_ileave;
1533 	uint32_t base, limit, ilv, ctl;
1534 
1535 	if ((ret = amdzen_c_df_read32(dfno, inst, DF_DRAM_BASE_V4(ruleno),
1536 	    &base)) != 0) {
1537 		dev_err(umc->umc_dip, CE_WARN, "!failed to read DRAM base "
1538 		    "register %u on 0x%x/0x%x: %d", ruleno, dfno, inst, ret);
1539 		return (ret);
1540 	}
1541 
1542 	if ((ret = amdzen_c_df_read32(dfno, inst, DF_DRAM_LIMIT_V4(ruleno),
1543 	    &limit)) != 0) {
1544 		dev_err(umc->umc_dip, CE_WARN, "!failed to read DRAM limit "
1545 		    "register %u on 0x%x/0x%x: %d", ruleno, dfno, inst, ret);
1546 		return (ret);
1547 	}
1548 
1549 	if ((ret = amdzen_c_df_read32(dfno, inst, DF_DRAM_ILV_V4(ruleno),
1550 	    &ilv)) != 0) {
1551 		dev_err(umc->umc_dip, CE_WARN, "!failed to read DRAM "
1552 		    "interleave register %u on 0x%x/0x%x: %d", ruleno, dfno,
1553 		    inst, ret);
1554 		return (ret);
1555 	}
1556 
1557 	if ((ret = amdzen_c_df_read32(dfno, inst, DF_DRAM_CTL_V4(ruleno),
1558 	    &ctl)) != 0) {
1559 		dev_err(umc->umc_dip, CE_WARN, "!failed to read DRAM control "
1560 		    "register %u on 0x%x/0x%x: %d", ruleno, dfno, inst, ret);
1561 		return (ret);
1562 	}
1563 
1564 	rule->ddr_raw_base = base;
1565 	rule->ddr_raw_limit = limit;
1566 	rule->ddr_raw_ileave = ilv;
1567 	rule->ddr_raw_ctrl = ctl;
1568 
1569 	if (!DF_DRAM_CTL_V4_GET_VALID(ctl)) {
1570 		return (0);
1571 	}
1572 
1573 	rule->ddr_flags |= DF_DRAM_F_VALID;
1574 	rule->ddr_base = DF_DRAM_BASE_V4_GET_ADDR(base);
1575 	rule->ddr_base = rule->ddr_base << DF_DRAM_BASE_V4_BASE_SHIFT;
1576 	rule->ddr_limit = DF_DRAM_LIMIT_V4_GET_ADDR(limit);
1577 	rule->ddr_limit = (rule->ddr_limit << DF_DRAM_LIMIT_V4_LIMIT_SHIFT) +
1578 	    DF_DRAM_LIMIT_V4_LIMIT_EXCL;
1579 	rule->ddr_dest_fabid = DF_DRAM_CTL_V4_GET_DEST_ID(ctl);
1580 
1581 	if (DF_DRAM_CTL_V4_GET_HASH_1G(ctl) != 0) {
1582 		rule->ddr_flags |= DF_DRAM_F_HASH_30_32;
1583 	}
1584 
1585 	if (DF_DRAM_CTL_V4_GET_HASH_2M(ctl) != 0) {
1586 		rule->ddr_flags |= DF_DRAM_F_HASH_21_23;
1587 	}
1588 
1589 	if (DF_DRAM_CTL_V4_GET_HASH_64K(ctl) != 0) {
1590 		rule->ddr_flags |= DF_DRAM_F_HASH_16_18;
1591 	}
1592 
1593 	if (DF_DRAM_CTL_V4_GET_REMAP_EN(ctl) != 0) {
1594 		rule->ddr_flags |= DF_DRAM_F_REMAP_EN;
1595 		rule->ddr_remap_ent = DF_DRAM_CTL_V4_GET_REMAP_SEL(ctl);
1596 	}
1597 
1598 	if (DF_DRAM_CTL_V4_GET_HOLE_EN(ctl) != 0) {
1599 		rule->ddr_flags |= DF_DRAM_F_HOLE;
1600 	}
1601 
1602 	rule->ddr_sock_ileave_bits = DF_DRAM_ILV_V4_GET_SOCK(ilv);
1603 	rule->ddr_die_ileave_bits = DF_DRAM_ILV_V4_GET_DIE(ilv);
1604 	switch (DF_DRAM_ILV_V4_GET_CHAN(ilv)) {
1605 	case DF_DRAM_ILV_V4_CHAN_1:
1606 		rule->ddr_chan_ileave = DF_CHAN_ILEAVE_1CH;
1607 		break;
1608 	case DF_DRAM_ILV_V4_CHAN_2:
1609 		rule->ddr_chan_ileave = DF_CHAN_ILEAVE_2CH;
1610 		break;
1611 	case DF_DRAM_ILV_V4_CHAN_4:
1612 		rule->ddr_chan_ileave = DF_CHAN_ILEAVE_4CH;
1613 		break;
1614 	case DF_DRAM_ILV_V4_CHAN_8:
1615 		rule->ddr_chan_ileave = DF_CHAN_ILEAVE_8CH;
1616 		break;
1617 	case DF_DRAM_ILV_V4_CHAN_16:
1618 		rule->ddr_chan_ileave = DF_CHAN_ILEAVE_16CH;
1619 		break;
1620 	case DF_DRAM_ILV_V4_CHAN_32:
1621 		rule->ddr_chan_ileave = DF_CHAN_ILEAVE_32CH;
1622 		break;
1623 	case DF_DRAM_ILV_V4_CHAN_NPS4_2CH:
1624 		rule->ddr_chan_ileave = DF_CHAN_ILEAVE_NPS4_2CH;
1625 		break;
1626 	case DF_DRAM_ILV_V4_CHAN_NPS2_4CH:
1627 		rule->ddr_chan_ileave = DF_CHAN_ILEAVE_NPS2_4CH;
1628 		break;
1629 	case DF_DRAM_ILV_V4_CHAN_NPS1_8CH:
1630 		rule->ddr_chan_ileave = DF_CHAN_ILEAVE_NPS1_8CH;
1631 		break;
1632 	case DF_DRAM_ILV_V4_CHAN_NPS4_3CH:
1633 		rule->ddr_chan_ileave = DF_CHAN_ILEAVE_NPS4_3CH;
1634 		break;
1635 	case DF_DRAM_ILV_V4_CHAN_NPS2_6CH:
1636 		rule->ddr_chan_ileave = DF_CHAN_ILEAVE_NPS2_6CH;
1637 		break;
1638 	case DF_DRAM_ILV_V4_CHAN_NPS1_12CH:
1639 		rule->ddr_chan_ileave = DF_CHAN_ILEAVE_NPS1_12CH;
1640 		break;
1641 	case DF_DRAM_ILV_V4_CHAN_NPS2_5CH:
1642 		rule->ddr_chan_ileave = DF_CHAN_ILEAVE_NPS2_5CH;
1643 		break;
1644 	case DF_DRAM_ILV_V4_CHAN_NPS1_10CH:
1645 		rule->ddr_chan_ileave = DF_CHAN_ILEAVE_NPS1_10CH;
1646 		break;
1647 	default:
1648 		dev_err(umc->umc_dip, CE_WARN, "!encountered invalid channel "
1649 		    "interleave on rule %u, df/inst 0x%x/0x%x: 0x%x", ruleno,
1650 		    dfno, inst, DF_DRAM_ILV_V4_GET_CHAN(ilv));
1651 
1652 		break;
1653 	}
1654 
1655 	addr_ileave = DF_DRAM_ILV_V4_GET_ADDR(ilv);
1656 	switch (addr_ileave) {
1657 	case DF_DRAM_ILV_ADDR_8:
1658 	case DF_DRAM_ILV_ADDR_9:
1659 	case DF_DRAM_ILV_ADDR_10:
1660 	case DF_DRAM_ILV_ADDR_11:
1661 	case DF_DRAM_ILV_ADDR_12:
1662 		break;
1663 	default:
1664 		dev_err(umc->umc_dip, CE_WARN, "!encountered invalid address "
1665 		    "interleave on rule %u, df/inst 0x%x/0x%x: 0x%x", ruleno,
1666 		    dfno, inst, addr_ileave);
1667 		return (EINVAL);
1668 	}
1669 	rule->ddr_addr_start = DF_DRAM_ILV_ADDR_BASE + addr_ileave;
1670 
1671 	return (0);
1672 }
1673 
1674 static int
1675 zen_umc_read_dram_rule(zen_umc_t *umc, const uint_t dfno, const uint_t instid,
1676     const uint_t ruleno, df_dram_rule_t *rule)
1677 {
1678 	int ret;
1679 
1680 	switch (umc->umc_df_rev) {
1681 	case DF_REV_2:
1682 	case DF_REV_3:
1683 	case DF_REV_3P5:
1684 		ret = zen_umc_read_dram_rule_df_23(umc, dfno, instid, ruleno,
1685 		    rule);
1686 		break;
1687 	case DF_REV_4:
1688 		ret = zen_umc_read_dram_rule_df_4(umc, dfno, instid, ruleno,
1689 		    rule);
1690 		break;
1691 	default:
1692 		dev_err(umc->umc_dip, CE_WARN, "!encountered unsupported "
1693 		    "DF revision processing DRAM rules: 0x%x", umc->umc_df_rev);
1694 		return (-1);
1695 	}
1696 
1697 	if (ret != 0) {
1698 		dev_err(umc->umc_dip, CE_WARN, "!failed to read DRAM "
1699 		    "rule %u on df/inst 0x%x/0x%x: %d", ruleno,
1700 		    dfno, instid, ret);
1701 		return (-1);
1702 	}
1703 
1704 	return (0);
1705 }
1706 
1707 static int
1708 zen_umc_read_remap(zen_umc_t *umc, zen_umc_df_t *df, const uint_t instid)
1709 {
1710 	uint_t nremaps, nents;
1711 	uint_t dfno = df->zud_dfno;
1712 	const df_reg_def_t milan_remap0[ZEN_UMC_MILAN_CS_NREMAPS] = {
1713 	    DF_SKT0_CS_REMAP0_V3, DF_SKT1_CS_REMAP0_V3 };
1714 	const df_reg_def_t milan_remap1[ZEN_UMC_MILAN_CS_NREMAPS] = {
1715 	    DF_SKT0_CS_REMAP1_V3, DF_SKT1_CS_REMAP1_V3 };
1716 	const df_reg_def_t dfv4_remapA[ZEN_UMC_MAX_CS_REMAPS] = {
1717 	    DF_CS_REMAP0A_V4, DF_CS_REMAP1A_V4, DF_CS_REMAP2A_V4,
1718 	    DF_CS_REMAP3A_V4 };
1719 	const df_reg_def_t dfv4_remapB[ZEN_UMC_MAX_CS_REMAPS] = {
1720 	    DF_CS_REMAP0B_V4, DF_CS_REMAP1B_V4, DF_CS_REMAP2B_V4,
1721 	    DF_CS_REMAP3B_V4 };
1722 	const df_reg_def_t *remapA, *remapB;
1723 
1724 
1725 	switch (umc->umc_df_rev) {
1726 	case DF_REV_3:
1727 		nremaps = ZEN_UMC_MILAN_CS_NREMAPS;
1728 		nents = ZEN_UMC_MILAN_REMAP_ENTS;
1729 		remapA = milan_remap0;
1730 		remapB = milan_remap1;
1731 		break;
1732 	case DF_REV_4:
1733 		nremaps = ZEN_UMC_MAX_CS_REMAPS;
1734 		nents = ZEN_UMC_MAX_REMAP_ENTS;
1735 		remapA = dfv4_remapA;
1736 		remapB = dfv4_remapB;
1737 		break;
1738 	default:
1739 		dev_err(umc->umc_dip, CE_WARN, "!encountered unsupported DF "
1740 		    "revision processing remap rules: 0x%x", umc->umc_df_rev);
1741 		return (-1);
1742 	}
1743 
1744 	df->zud_cs_nremap = nremaps;
1745 	for (uint_t i = 0; i < nremaps; i++) {
1746 		int ret;
1747 		uint32_t rmA, rmB;
1748 		zen_umc_cs_remap_t *remap = &df->zud_remap[i];
1749 
1750 		if ((ret = amdzen_c_df_read32(dfno, instid, remapA[i],
1751 		    &rmA)) != 0) {
1752 			dev_err(umc->umc_dip, CE_WARN, "!failed to read "
1753 			    "df/inst 0x%x/0x%x remap socket %u-0/A: %d", dfno,
1754 			    instid, i, ret);
1755 			return (-1);
1756 		}
1757 
1758 		if ((ret = amdzen_c_df_read32(dfno, instid, remapB[i],
1759 		    &rmB)) != 0) {
1760 			dev_err(umc->umc_dip, CE_WARN, "!failed to read "
1761 			    "df/inst 0x%x/0x%x remap socket %u-1/B: %d", dfno,
1762 			    instid, i, ret);
1763 			return (-1);
1764 		}
1765 
1766 		remap->csr_nremaps = nents;
1767 		for (uint_t ent = 0; ent < ZEN_UMC_REMAP_PER_REG; ent++) {
1768 			uint_t alt = ent + ZEN_UMC_REMAP_PER_REG;
1769 			boolean_t do_alt = alt < nents;
1770 			remap->csr_remaps[ent] = DF_CS_REMAP_GET_CSX(rmA,
1771 			    ent);
1772 			if (do_alt) {
1773 				remap->csr_remaps[alt] =
1774 				    DF_CS_REMAP_GET_CSX(rmB, ent);
1775 			}
1776 		}
1777 	}
1778 
1779 	return (0);
1780 }
1781 
1782 /*
1783  * Now that we have a CCM, we have several different tasks ahead of us:
1784  *
1785  *   o Determine whether or not the DRAM hole is valid.
1786  *   o Snapshot all of the system address rules and translate them into our
1787  *     generic format.
1788  *   o Determine if there are any rules to retarget things (currently
1789  *     Milan/Genoa).
1790  *   o Determine if there are any other hashing rules enabled.
1791  *
1792  * We only require this from a single CCM as these are currently required to be
1793  * the same across all of them.
1794  */
1795 static int
1796 zen_umc_fill_ccm_cb(const uint_t dfno, const uint32_t fabid,
1797     const uint32_t instid, void *arg)
1798 {
1799 	zen_umc_t *umc = arg;
1800 	zen_umc_df_t *df = &umc->umc_dfs[dfno];
1801 	df_reg_def_t hole;
1802 	int ret;
1803 	uint32_t val;
1804 
1805 	df->zud_dfno = dfno;
1806 	df->zud_ccm_inst = instid;
1807 
1808 	/*
1809 	 * First get the DRAM hole. This has the same layout, albeit different
1810 	 * registers across our different platforms.
1811 	 */
1812 	switch (umc->umc_df_rev) {
1813 	case DF_REV_2:
1814 	case DF_REV_3:
1815 	case DF_REV_3P5:
1816 		hole = DF_DRAM_HOLE_V2;
1817 		break;
1818 	case DF_REV_4:
1819 		hole = DF_DRAM_HOLE_V4;
1820 		break;
1821 	default:
1822 		dev_err(umc->umc_dip, CE_WARN, "!encountered unsupported "
1823 		    "DF version: 0x%x", umc->umc_df_rev);
1824 		return (-1);
1825 	}
1826 
1827 	if ((ret = amdzen_c_df_read32(dfno, instid, hole, &val)) != 0) {
1828 		dev_err(umc->umc_dip, CE_WARN, "!failed to read DRAM Hole: %d",
1829 		    ret);
1830 		return (-1);
1831 	}
1832 
1833 	df->zud_hole_raw = val;
1834 	if (DF_DRAM_HOLE_GET_VALID(val)) {
1835 		uint64_t t;
1836 
1837 		df->zud_flags |= ZEN_UMC_DF_F_HOLE_VALID;
1838 		t = DF_DRAM_HOLE_GET_BASE(val);
1839 		df->zud_hole_base = t << DF_DRAM_HOLE_BASE_SHIFT;
1840 	}
1841 
1842 	/*
1843 	 * Prior to Zen 4, the hash information was global and applied to all
1844 	 * COD rules globally. Check if we're on such a system and snapshot this
1845 	 * so we can use it during the rule application. Note, this was added in
1846 	 * DFv3.
1847 	 */
1848 	if (umc->umc_df_rev == DF_REV_3 || umc->umc_df_rev == DF_REV_3P5) {
1849 		uint32_t globctl;
1850 
1851 		if ((ret = amdzen_c_df_read32(dfno, instid, DF_GLOB_CTL_V3,
1852 		    &globctl)) != 0) {
1853 			dev_err(umc->umc_dip, CE_WARN, "!failed to read global "
1854 			    "control: %d", ret);
1855 			return (-1);
1856 		}
1857 
1858 		df->zud_glob_ctl_raw = globctl;
1859 		if (DF_GLOB_CTL_V3_GET_HASH_1G(globctl) != 0) {
1860 			df->zud_flags |= ZEN_UMC_DF_F_HASH_30_32;
1861 		}
1862 
1863 		if (DF_GLOB_CTL_V3_GET_HASH_2M(globctl) != 0) {
1864 			df->zud_flags |= ZEN_UMC_DF_F_HASH_21_23;
1865 		}
1866 
1867 		if (DF_GLOB_CTL_V3_GET_HASH_64K(globctl) != 0) {
1868 			df->zud_flags |= ZEN_UMC_DF_F_HASH_16_18;
1869 		}
1870 	}
1871 
1872 	df->zud_dram_nrules = umc->umc_fdata->zufd_dram_nrules;
1873 	for (uint_t i = 0; i < umc->umc_fdata->zufd_dram_nrules; i++) {
1874 		if (zen_umc_read_dram_rule(umc, dfno, instid, i,
1875 		    &df->zud_rules[i]) != 0) {
1876 			return (-1);
1877 		}
1878 	}
1879 
1880 	if ((umc->umc_fdata->zufd_flags & ZEN_UMC_FAM_F_TARG_REMAP) != 0) {
1881 		if (zen_umc_read_remap(umc, df, instid) != 0) {
1882 			return (-1);
1883 		}
1884 	}
1885 
1886 	/*
1887 	 * We only want a single entry, so always return 1 to terminate us
1888 	 * early.
1889 	 */
1890 	return (1);
1891 }
1892 
1893 /*
1894  * At this point we can go through and calculate the size of the DIMM that we've
1895  * found. While it would be nice to determine this from the SPD data, we can
1896  * figure this out entirely based upon the information in the memory controller.
1897  *
1898  * This works by first noting that DDR4, LPDDR4, DDR5, and LPDDR5 are all built
1899  * around 64-bit data channels. This means that each row and column provides up
1900  * 64-bits (ignoring ECC) of data. There are a number of banks and bank groups.
1901  * The memory controller tracks the total number of bits that are used for each.
1902  * While DDR5 introduces sub-channels, we don't need to worry about those here,
1903  * because ultimately the sub-channel just splits the 64-bit bus we're assuming
1904  * into 2x 32-bit buses. While they can be independently selected, they should
1905  * have equivalent capacities.
1906  *
1907  * The most confusing part of this is that there is one of these related to each
1908  * rank on the device. The UMC natively has two 'chip-selects', each of which is
1909  * used to correspond to a rank. There are then separately multiple rm bits in
1910  * each chip-select. As far as we can tell the PSP or SMU programs the number of
1911  * rm bits to be zero when you have a dual-rank device.
1912  *
1913  * We end up summing each chip-select rather than assuming that the chip-selects
1914  * are identical. In theory some amount of asymmetric DIMMs exist in the wild,
1915  * but we don't know of many systems using them.
1916  */
1917 static void
1918 zen_umc_calc_dimm_size(umc_dimm_t *dimm)
1919 {
1920 	dimm->ud_dimm_size = 0;
1921 	for (uint_t i = 0; i < ZEN_UMC_MAX_CHAN_BASE; i++) {
1922 		uint64_t nrc;
1923 		const umc_cs_t *cs = &dimm->ud_cs[i];
1924 
1925 		if (!cs->ucs_base.udb_valid && !cs->ucs_sec.udb_valid) {
1926 			continue;
1927 		}
1928 
1929 		nrc = cs->ucs_nrow_lo + cs->ucs_nrow_hi + cs->ucs_ncol;
1930 		dimm->ud_dimm_size += (8ULL << nrc) * (1 << cs->ucs_nbanks) *
1931 		    (1 << cs->ucs_nrm);
1932 	}
1933 }
1934 
1935 /*
1936  * This is used to fill in the common properties about a DIMM. This should occur
1937  * after the rank information has been filled out. The information used is the
1938  * same between DDR4 and DDR5 DIMMs. The only major difference is the register
1939  * offset.
1940  */
1941 static boolean_t
1942 zen_umc_fill_dimm_common(zen_umc_t *umc, zen_umc_df_t *df, zen_umc_chan_t *chan,
1943     const uint_t dimmno, boolean_t ddr4_style)
1944 {
1945 	umc_dimm_t *dimm;
1946 	int ret;
1947 	smn_reg_t reg;
1948 	uint32_t val;
1949 	const uint32_t id = chan->chan_logid;
1950 
1951 	dimm = &chan->chan_dimms[dimmno];
1952 	dimm->ud_dimmno = dimmno;
1953 
1954 	if (ddr4_style) {
1955 		reg = UMC_DIMMCFG_DDR4(id, dimmno);
1956 	} else {
1957 		reg = UMC_DIMMCFG_DDR5(id, dimmno);
1958 	}
1959 	if ((ret = amdzen_c_smn_read(df->zud_dfno, reg, &val)) != 0) {
1960 		dev_err(umc->umc_dip, CE_WARN, "failed to read DIMM "
1961 		    "configuration register %x: %d", SMN_REG_ADDR(reg), ret);
1962 		return (B_FALSE);
1963 	}
1964 	dimm->ud_dimmcfg_raw = val;
1965 
1966 	if (UMC_DIMMCFG_GET_X16(val) != 0) {
1967 		dimm->ud_width = UMC_DIMM_W_X16;
1968 	} else if (UMC_DIMMCFG_GET_X4(val) != 0) {
1969 		dimm->ud_width = UMC_DIMM_W_X4;
1970 	} else {
1971 		dimm->ud_width = UMC_DIMM_W_X8;
1972 	}
1973 
1974 	if (UMC_DIMMCFG_GET_3DS(val) != 0) {
1975 		dimm->ud_kind = UMC_DIMM_K_3DS_RDIMM;
1976 	} else if (UMC_DIMMCFG_GET_LRDIMM(val) != 0) {
1977 		dimm->ud_kind = UMC_DIMM_K_LRDIMM;
1978 	} else if (UMC_DIMMCFG_GET_RDIMM(val) != 0) {
1979 		dimm->ud_kind = UMC_DIMM_K_RDIMM;
1980 	} else {
1981 		dimm->ud_kind = UMC_DIMM_K_UDIMM;
1982 	}
1983 
1984 	/*
1985 	 * DIMM information in a UMC can be somewhat confusing. There are quite
1986 	 * a number of non-zero reset values that are here. Flag whether or not
1987 	 * we think this entry should be usable based on enabled chip-selects.
1988 	 */
1989 	for (uint_t i = 0; i < ZEN_UMC_MAX_CHAN_BASE; i++) {
1990 		if (dimm->ud_cs[i].ucs_base.udb_valid ||
1991 		    dimm->ud_cs[i].ucs_sec.udb_valid) {
1992 			dimm->ud_flags |= UMC_DIMM_F_VALID;
1993 			break;
1994 		}
1995 	}
1996 
1997 	/*
1998 	 * The remaining calculations we only want to perform if we have actual
1999 	 * data for a DIMM.
2000 	 */
2001 	if ((dimm->ud_flags & UMC_DIMM_F_VALID) == 0) {
2002 		return (B_TRUE);
2003 	}
2004 
2005 	zen_umc_calc_dimm_size(dimm);
2006 
2007 	return (B_TRUE);
2008 }
2009 
2010 /*
2011  * Fill all the information about a DDR4 DIMM. In the DDR4 UMC, some of this
2012  * information is on a per-chip select basis while at other times it is on a
2013  * per-DIMM basis.  In general, chip-selects 0/1 correspond to DIMM 0, and
2014  * chip-selects 2/3 correspond to DIMM 1. To normalize things with the DDR5 UMC
2015  * which generally has things stored on a per-rank/chips-select basis, we
2016  * duplicate information that is DIMM-wide into the chip-select data structure
2017  * (umc_cs_t).
2018  */
2019 static boolean_t
2020 zen_umc_fill_chan_dimm_ddr4(zen_umc_t *umc, zen_umc_df_t *df,
2021     zen_umc_chan_t *chan, const uint_t dimmno)
2022 {
2023 	umc_dimm_t *dimm;
2024 	umc_cs_t *cs0, *cs1;
2025 	const uint32_t id = chan->chan_logid;
2026 	int ret;
2027 	uint32_t val;
2028 	smn_reg_t reg;
2029 
2030 	ASSERT3U(dimmno, <, ZEN_UMC_MAX_DIMMS);
2031 	dimm = &chan->chan_dimms[dimmno];
2032 	cs0 = &dimm->ud_cs[0];
2033 	cs1 = &dimm->ud_cs[1];
2034 
2035 	/*
2036 	 * DDR4 organization has initial data that exists on a per-chip select
2037 	 * basis. The rest of it is on a per-DIMM basis. First we grab the
2038 	 * per-chip-select data. After this for loop, we will always duplicate
2039 	 * all data that we gather into both chip-selects.
2040 	 */
2041 	for (uint_t i = 0; i < ZEN_UMC_MAX_CS_PER_DIMM; i++) {
2042 		uint64_t addr;
2043 		const uint16_t reginst = i + dimmno * 2;
2044 		reg = UMC_BASE(id, reginst);
2045 		if ((ret = amdzen_c_smn_read(df->zud_dfno, reg, &val)) != 0) {
2046 			dev_err(umc->umc_dip, CE_WARN, "failed to read base "
2047 			    "register %x: %d", SMN_REG_ADDR(reg), ret);
2048 			return (B_FALSE);
2049 		}
2050 
2051 		addr = (uint64_t)UMC_BASE_GET_ADDR(val) << UMC_BASE_ADDR_SHIFT;
2052 		dimm->ud_cs[i].ucs_base.udb_base = addr;
2053 		dimm->ud_cs[i].ucs_base.udb_valid = UMC_BASE_GET_EN(val);
2054 
2055 		reg = UMC_BASE_SEC(id, reginst);
2056 		if ((ret = amdzen_c_smn_read(df->zud_dfno, reg, &val)) != 0) {
2057 			dev_err(umc->umc_dip, CE_WARN, "failed to read "
2058 			    "secondary base register %x: %d", SMN_REG_ADDR(reg),
2059 			    ret);
2060 			return (B_FALSE);
2061 		}
2062 
2063 		addr = (uint64_t)UMC_BASE_GET_ADDR(val) << UMC_BASE_ADDR_SHIFT;
2064 		dimm->ud_cs[i].ucs_sec.udb_base = addr;
2065 		dimm->ud_cs[i].ucs_sec.udb_valid = UMC_BASE_GET_EN(val);
2066 	}
2067 
2068 	reg = UMC_MASK_DDR4(id, dimmno);
2069 	if ((ret = amdzen_c_smn_read(df->zud_dfno, reg, &val)) != 0) {
2070 		dev_err(umc->umc_dip, CE_WARN, "failed to read mask register "
2071 		    "%x: %d", SMN_REG_ADDR(reg), ret);
2072 		return (B_FALSE);
2073 	}
2074 
2075 	/*
2076 	 * When we extract the masks, hardware only checks a limited range of
2077 	 * bits. Therefore we need to always OR in those lower order bits.
2078 	 */
2079 	cs0->ucs_base_mask = (uint64_t)UMC_MASK_GET_ADDR(val) <<
2080 	    UMC_MASK_ADDR_SHIFT;
2081 	cs0->ucs_base_mask |= (1 << UMC_MASK_ADDR_SHIFT) - 1;
2082 	cs1->ucs_base_mask = cs0->ucs_base_mask;
2083 
2084 	reg = UMC_MASK_SEC_DDR4(id, dimmno);
2085 	if ((ret = amdzen_c_smn_read(df->zud_dfno, reg, &val)) != 0) {
2086 		dev_err(umc->umc_dip, CE_WARN, "failed to read secondary mask "
2087 		    "register %x: %d", SMN_REG_ADDR(reg), ret);
2088 		return (B_FALSE);
2089 	}
2090 	cs0->ucs_sec_mask = (uint64_t)UMC_MASK_GET_ADDR(val) <<
2091 	    UMC_MASK_ADDR_SHIFT;
2092 	cs0->ucs_sec_mask |= (1 << UMC_MASK_ADDR_SHIFT) - 1;
2093 	cs1->ucs_sec_mask = cs0->ucs_sec_mask;
2094 
2095 	reg = UMC_ADDRCFG_DDR4(id, dimmno);
2096 	if ((ret = amdzen_c_smn_read(df->zud_dfno, reg, &val)) != 0) {
2097 		dev_err(umc->umc_dip, CE_WARN, "failed to read address config "
2098 		    "register %x: %d", SMN_REG_ADDR(reg), ret);
2099 		return (B_FALSE);
2100 	}
2101 
2102 	cs0->ucs_nbanks = UMC_ADDRCFG_GET_NBANK_BITS(val) +
2103 	    UMC_ADDRCFG_NBANK_BITS_BASE;
2104 	cs1->ucs_nbanks = cs0->ucs_nbanks;
2105 	cs0->ucs_ncol = UMC_ADDRCFG_GET_NCOL_BITS(val) +
2106 	    UMC_ADDRCFG_NCOL_BITS_BASE;
2107 	cs1->ucs_ncol = cs0->ucs_ncol;
2108 	cs0->ucs_nrow_hi = UMC_ADDRCFG_DDR4_GET_NROW_BITS_HI(val);
2109 	cs1->ucs_nrow_hi = cs0->ucs_nrow_hi;
2110 	cs0->ucs_nrow_lo = UMC_ADDRCFG_GET_NROW_BITS_LO(val) +
2111 	    UMC_ADDRCFG_NROW_BITS_LO_BASE;
2112 	cs1->ucs_nrow_lo = cs0->ucs_nrow_lo;
2113 	cs0->ucs_nbank_groups = UMC_ADDRCFG_GET_NBANKGRP_BITS(val);
2114 	cs1->ucs_nbank_groups = cs0->ucs_nbank_groups;
2115 	/*
2116 	 * As the chip-select XORs don't always show up, use a dummy value
2117 	 * that'll result in no change occurring here.
2118 	 */
2119 	cs0->ucs_cs_xor = cs1->ucs_cs_xor = 0;
2120 
2121 	/*
2122 	 * APUs don't seem to support various rank select bits.
2123 	 */
2124 	if (umc->umc_fdata->zufd_umc_style == ZEN_UMC_UMC_S_DDR4) {
2125 		cs0->ucs_nrm = UMC_ADDRCFG_DDR4_GET_NRM_BITS(val);
2126 		cs1->ucs_nrm = cs0->ucs_nrm;
2127 	} else {
2128 		cs0->ucs_nrm = cs1->ucs_nrm = 0;
2129 	}
2130 
2131 	reg = UMC_ADDRSEL_DDR4(id, dimmno);
2132 	if ((ret = amdzen_c_smn_read(df->zud_dfno, reg, &val)) != 0) {
2133 		dev_err(umc->umc_dip, CE_WARN, "failed to read bank address "
2134 		    "select register %x: %d", SMN_REG_ADDR(reg), ret);
2135 		return (B_FALSE);
2136 	}
2137 	cs0->ucs_row_hi_bit = UMC_ADDRSEL_DDR4_GET_ROW_HI(val) +
2138 	    UMC_ADDRSEL_DDR4_ROW_HI_BASE;
2139 	cs1->ucs_row_hi_bit = cs0->ucs_row_hi_bit;
2140 	cs0->ucs_row_low_bit = UMC_ADDRSEL_GET_ROW_LO(val) +
2141 	    UMC_ADDRSEL_ROW_LO_BASE;
2142 	cs1->ucs_row_low_bit = cs0->ucs_row_low_bit;
2143 	cs0->ucs_bank_bits[0] = UMC_ADDRSEL_GET_BANK0(val) +
2144 	    UMC_ADDRSEL_BANK_BASE;
2145 	cs0->ucs_bank_bits[1] = UMC_ADDRSEL_GET_BANK1(val) +
2146 	    UMC_ADDRSEL_BANK_BASE;
2147 	cs0->ucs_bank_bits[2] = UMC_ADDRSEL_GET_BANK2(val) +
2148 	    UMC_ADDRSEL_BANK_BASE;
2149 	cs0->ucs_bank_bits[3] = UMC_ADDRSEL_GET_BANK3(val) +
2150 	    UMC_ADDRSEL_BANK_BASE;
2151 	cs0->ucs_bank_bits[4] = UMC_ADDRSEL_GET_BANK4(val) +
2152 	    UMC_ADDRSEL_BANK_BASE;
2153 	bcopy(cs0->ucs_bank_bits, cs1->ucs_bank_bits,
2154 	    sizeof (cs0->ucs_bank_bits));
2155 
2156 	reg = UMC_COLSEL_LO_DDR4(id, dimmno);
2157 	if ((ret = amdzen_c_smn_read(df->zud_dfno, reg, &val)) != 0) {
2158 		dev_err(umc->umc_dip, CE_WARN, "failed to read column address "
2159 		    "select low register %x: %d", SMN_REG_ADDR(reg), ret);
2160 		return (B_FALSE);
2161 	}
2162 	for (uint_t i = 0; i < ZEN_UMC_MAX_COLSEL_PER_REG; i++) {
2163 		cs0->ucs_col_bits[i] = UMC_COLSEL_REMAP_GET_COL(val, i) +
2164 		    UMC_COLSEL_LO_BASE;
2165 	}
2166 
2167 	reg = UMC_COLSEL_HI_DDR4(id, dimmno);
2168 	if ((ret = amdzen_c_smn_read(df->zud_dfno, reg, &val)) != 0) {
2169 		dev_err(umc->umc_dip, CE_WARN, "failed to read column address "
2170 		    "select high register %x: %d", SMN_REG_ADDR(reg), ret);
2171 		return (B_FALSE);
2172 	}
2173 	for (uint_t i = 0; i < ZEN_UMC_MAX_COLSEL_PER_REG; i++) {
2174 		cs0->ucs_col_bits[i + ZEN_UMC_MAX_COLSEL_PER_REG] =
2175 		    UMC_COLSEL_REMAP_GET_COL(val, i) + UMC_COLSEL_HI_BASE;
2176 	}
2177 	bcopy(cs0->ucs_col_bits, cs1->ucs_col_bits, sizeof (cs0->ucs_col_bits));
2178 
2179 	/*
2180 	 * The next two registers give us information about a given rank select.
2181 	 * In the APUs, the inversion bits are there; however, the actual bit
2182 	 * selects are not. In this case we read the reserved bits regardless.
2183 	 * They should be ignored due to the fact that the number of banks is
2184 	 * zero.
2185 	 */
2186 	reg = UMC_RMSEL_DDR4(id, dimmno);
2187 	if ((ret = amdzen_c_smn_read(df->zud_dfno, reg, &val)) != 0) {
2188 		dev_err(umc->umc_dip, CE_WARN, "failed to read rank address "
2189 		    "select register %x: %d", SMN_REG_ADDR(reg), ret);
2190 		return (B_FALSE);
2191 	}
2192 	cs0->ucs_inv_msbs = UMC_RMSEL_DDR4_GET_INV_MSBE(val);
2193 	cs1->ucs_inv_msbs = UMC_RMSEL_DDR4_GET_INV_MSBO(val);
2194 	cs0->ucs_rm_bits[0] = UMC_RMSEL_DDR4_GET_RM0(val) +
2195 	    UMC_RMSEL_BASE;
2196 	cs0->ucs_rm_bits[1] = UMC_RMSEL_DDR4_GET_RM1(val) +
2197 	    UMC_RMSEL_BASE;
2198 	cs0->ucs_rm_bits[2] = UMC_RMSEL_DDR4_GET_RM2(val) +
2199 	    UMC_RMSEL_BASE;
2200 	bcopy(cs0->ucs_rm_bits, cs1->ucs_rm_bits, sizeof (cs0->ucs_rm_bits));
2201 
2202 	reg = UMC_RMSEL_SEC_DDR4(id, dimmno);
2203 	if ((ret = amdzen_c_smn_read(df->zud_dfno, reg, &val)) != 0) {
2204 		dev_err(umc->umc_dip, CE_WARN, "failed to read secondary rank "
2205 		    "address select register %x: %d", SMN_REG_ADDR(reg), ret);
2206 		return (B_FALSE);
2207 	}
2208 	cs0->ucs_inv_msbs_sec = UMC_RMSEL_DDR4_GET_INV_MSBE(val);
2209 	cs1->ucs_inv_msbs_sec = UMC_RMSEL_DDR4_GET_INV_MSBO(val);
2210 	cs0->ucs_rm_bits_sec[0] = UMC_RMSEL_DDR4_GET_RM0(val) +
2211 	    UMC_RMSEL_BASE;
2212 	cs0->ucs_rm_bits_sec[1] = UMC_RMSEL_DDR4_GET_RM1(val) +
2213 	    UMC_RMSEL_BASE;
2214 	cs0->ucs_rm_bits_sec[2] = UMC_RMSEL_DDR4_GET_RM2(val) +
2215 	    UMC_RMSEL_BASE;
2216 	bcopy(cs0->ucs_rm_bits_sec, cs1->ucs_rm_bits_sec,
2217 	    sizeof (cs0->ucs_rm_bits_sec));
2218 
2219 	return (zen_umc_fill_dimm_common(umc, df, chan, dimmno, B_TRUE));
2220 }
2221 
2222 /*
2223  * The DDR5 based systems are organized such that almost all the information we
2224  * care about is split between two different chip-select structures in the UMC
2225  * hardware SMN space.
2226  */
2227 static boolean_t
2228 zen_umc_fill_chan_rank_ddr5(zen_umc_t *umc, zen_umc_df_t *df,
2229     zen_umc_chan_t *chan, const uint_t dimmno, const uint_t rankno)
2230 {
2231 	int ret;
2232 	umc_cs_t *cs;
2233 	uint32_t val;
2234 	smn_reg_t reg;
2235 	const uint32_t id = chan->chan_logid;
2236 	const uint32_t regno = dimmno * 2 + rankno;
2237 
2238 	ASSERT3U(dimmno, <, ZEN_UMC_MAX_DIMMS);
2239 	ASSERT3U(rankno, <, ZEN_UMC_MAX_CS_PER_DIMM);
2240 	cs = &chan->chan_dimms[dimmno].ud_cs[rankno];
2241 
2242 	reg = UMC_BASE(id, regno);
2243 	if ((ret = amdzen_c_smn_read(df->zud_dfno, reg, &val)) != 0) {
2244 		dev_err(umc->umc_dip, CE_WARN, "failed to read base "
2245 		    "register %x: %d", SMN_REG_ADDR(reg), ret);
2246 		return (B_FALSE);
2247 	}
2248 	cs->ucs_base.udb_base = (uint64_t)UMC_BASE_GET_ADDR(val) <<
2249 	    UMC_BASE_ADDR_SHIFT;
2250 	cs->ucs_base.udb_valid = UMC_BASE_GET_EN(val);
2251 	if ((umc->umc_fdata->zufd_flags & ZEN_UMC_FAM_F_UMC_EADDR) != 0) {
2252 		uint64_t addr;
2253 
2254 		reg = UMC_BASE_EXT_DDR5(id, regno);
2255 		if ((ret = amdzen_c_smn_read(df->zud_dfno, reg, &val)) !=
2256 		    0) {
2257 			dev_err(umc->umc_dip, CE_WARN, "failed to read "
2258 			    "extended base register %x: %d", SMN_REG_ADDR(reg),
2259 			    ret);
2260 			return (B_FALSE);
2261 		}
2262 
2263 		addr = (uint64_t)UMC_BASE_EXT_GET_ADDR(val) <<
2264 		    UMC_BASE_EXT_ADDR_SHIFT;
2265 		cs->ucs_base.udb_base |= addr;
2266 	}
2267 
2268 	reg = UMC_BASE_SEC(id, regno);
2269 	if ((ret = amdzen_c_smn_read(df->zud_dfno, reg, &val)) != 0) {
2270 		dev_err(umc->umc_dip, CE_WARN, "failed to read secondary base "
2271 		    "register %x: %d", SMN_REG_ADDR(reg), ret);
2272 		return (B_FALSE);
2273 	}
2274 	cs->ucs_sec.udb_base = (uint64_t)UMC_BASE_GET_ADDR(val) <<
2275 	    UMC_BASE_ADDR_SHIFT;
2276 	cs->ucs_sec.udb_valid = UMC_BASE_GET_EN(val);
2277 	if ((umc->umc_fdata->zufd_flags & ZEN_UMC_FAM_F_UMC_EADDR) != 0) {
2278 		uint64_t addr;
2279 
2280 		reg = UMC_BASE_EXT_SEC_DDR5(id, regno);
2281 		if ((ret = amdzen_c_smn_read(df->zud_dfno, reg, &val)) !=
2282 		    0) {
2283 			dev_err(umc->umc_dip, CE_WARN, "failed to read "
2284 			    "extended secondary base register %x: %d",
2285 			    SMN_REG_ADDR(reg), ret);
2286 			return (B_FALSE);
2287 		}
2288 
2289 		addr = (uint64_t)UMC_BASE_EXT_GET_ADDR(val) <<
2290 		    UMC_BASE_EXT_ADDR_SHIFT;
2291 		cs->ucs_sec.udb_base |= addr;
2292 	}
2293 
2294 	reg = UMC_MASK_DDR5(id, regno);
2295 	if ((ret = amdzen_c_smn_read(df->zud_dfno, reg, &val)) != 0) {
2296 		dev_err(umc->umc_dip, CE_WARN, "failed to read mask "
2297 		    "register %x: %d", SMN_REG_ADDR(reg), ret);
2298 		return (B_FALSE);
2299 	}
2300 	cs->ucs_base_mask = (uint64_t)UMC_MASK_GET_ADDR(val) <<
2301 	    UMC_MASK_ADDR_SHIFT;
2302 	cs->ucs_base_mask |= (1 << UMC_MASK_ADDR_SHIFT) - 1;
2303 	if ((umc->umc_fdata->zufd_flags & ZEN_UMC_FAM_F_UMC_EADDR) != 0) {
2304 		uint64_t addr;
2305 
2306 		reg = UMC_MASK_EXT_DDR5(id, regno);
2307 		if ((ret = amdzen_c_smn_read(df->zud_dfno, reg, &val)) !=
2308 		    0) {
2309 			dev_err(umc->umc_dip, CE_WARN, "failed to read "
2310 			    "extended mask register %x: %d", SMN_REG_ADDR(reg),
2311 			    ret);
2312 			return (B_FALSE);
2313 		}
2314 
2315 		addr = (uint64_t)UMC_MASK_EXT_GET_ADDR(val) <<
2316 		    UMC_MASK_EXT_ADDR_SHIFT;
2317 		cs->ucs_base_mask |= addr;
2318 	}
2319 
2320 
2321 	reg = UMC_MASK_SEC_DDR5(id, regno);
2322 	if ((ret = amdzen_c_smn_read(df->zud_dfno, reg, &val)) != 0) {
2323 		dev_err(umc->umc_dip, CE_WARN, "failed to read secondary mask "
2324 		    "register %x: %d", SMN_REG_ADDR(reg), ret);
2325 		return (B_FALSE);
2326 	}
2327 	cs->ucs_sec_mask = (uint64_t)UMC_MASK_GET_ADDR(val) <<
2328 	    UMC_MASK_ADDR_SHIFT;
2329 	cs->ucs_sec_mask |= (1 << UMC_MASK_ADDR_SHIFT) - 1;
2330 	if ((umc->umc_fdata->zufd_flags & ZEN_UMC_FAM_F_UMC_EADDR) != 0) {
2331 		uint64_t addr;
2332 
2333 		reg = UMC_MASK_EXT_SEC_DDR5(id, regno);
2334 		if ((ret = amdzen_c_smn_read(df->zud_dfno, reg, &val)) !=
2335 		    0) {
2336 			dev_err(umc->umc_dip, CE_WARN, "failed to read "
2337 			    "extended mask register %x: %d", SMN_REG_ADDR(reg),
2338 			    ret);
2339 			return (B_FALSE);
2340 		}
2341 
2342 		addr = (uint64_t)UMC_MASK_EXT_GET_ADDR(val) <<
2343 		    UMC_MASK_EXT_ADDR_SHIFT;
2344 		cs->ucs_sec_mask |= addr;
2345 	}
2346 
2347 	reg = UMC_ADDRCFG_DDR5(id, regno);
2348 	if ((ret = amdzen_c_smn_read(df->zud_dfno, reg, &val)) != 0) {
2349 		dev_err(umc->umc_dip, CE_WARN, "failed to read address config "
2350 		    "register %x: %d", SMN_REG_ADDR(reg), ret);
2351 		return (B_FALSE);
2352 	}
2353 	if ((umc->umc_fdata->zufd_flags & ZEN_UMC_FAM_F_CS_XOR) != 0) {
2354 		cs->ucs_cs_xor = UMC_ADDRCFG_DDR5_GET_CSXOR(val);
2355 	} else {
2356 		cs->ucs_cs_xor = 0;
2357 	}
2358 	cs->ucs_nbanks = UMC_ADDRCFG_GET_NBANK_BITS(val) +
2359 	    UMC_ADDRCFG_NBANK_BITS_BASE;
2360 	cs->ucs_ncol = UMC_ADDRCFG_GET_NCOL_BITS(val) +
2361 	    UMC_ADDRCFG_NCOL_BITS_BASE;
2362 	cs->ucs_nrow_lo = UMC_ADDRCFG_GET_NROW_BITS_LO(val) +
2363 	    UMC_ADDRCFG_NROW_BITS_LO_BASE;
2364 	cs->ucs_nrow_hi = 0;
2365 	cs->ucs_nrm = UMC_ADDRCFG_DDR5_GET_NRM_BITS(val);
2366 	cs->ucs_nbank_groups = UMC_ADDRCFG_GET_NBANKGRP_BITS(val);
2367 
2368 	reg = UMC_ADDRSEL_DDR5(id, regno);
2369 	if ((ret = amdzen_c_smn_read(df->zud_dfno, reg, &val)) != 0) {
2370 		dev_err(umc->umc_dip, CE_WARN, "failed to read address select "
2371 		    "register %x: %d", SMN_REG_ADDR(reg), ret);
2372 		return (B_FALSE);
2373 	}
2374 	cs->ucs_row_hi_bit = 0;
2375 	cs->ucs_row_low_bit = UMC_ADDRSEL_GET_ROW_LO(val) +
2376 	    UMC_ADDRSEL_ROW_LO_BASE;
2377 	cs->ucs_bank_bits[4] = UMC_ADDRSEL_GET_BANK4(val) +
2378 	    UMC_ADDRSEL_BANK_BASE;
2379 	cs->ucs_bank_bits[3] = UMC_ADDRSEL_GET_BANK3(val) +
2380 	    UMC_ADDRSEL_BANK_BASE;
2381 	cs->ucs_bank_bits[2] = UMC_ADDRSEL_GET_BANK2(val) +
2382 	    UMC_ADDRSEL_BANK_BASE;
2383 	cs->ucs_bank_bits[1] = UMC_ADDRSEL_GET_BANK1(val) +
2384 	    UMC_ADDRSEL_BANK_BASE;
2385 	cs->ucs_bank_bits[0] = UMC_ADDRSEL_GET_BANK0(val) +
2386 	    UMC_ADDRSEL_BANK_BASE;
2387 
2388 	reg = UMC_COLSEL_LO_DDR5(id, regno);
2389 	if ((ret = amdzen_c_smn_read(df->zud_dfno, reg, &val)) != 0) {
2390 		dev_err(umc->umc_dip, CE_WARN, "failed to read column address "
2391 		    "select low register %x: %d", SMN_REG_ADDR(reg), ret);
2392 		return (B_FALSE);
2393 	}
2394 	for (uint_t i = 0; i < ZEN_UMC_MAX_COLSEL_PER_REG; i++) {
2395 		cs->ucs_col_bits[i] = UMC_COLSEL_REMAP_GET_COL(val, i) +
2396 		    UMC_COLSEL_LO_BASE;
2397 	}
2398 
2399 	reg = UMC_COLSEL_HI_DDR5(id, regno);
2400 	if ((ret = amdzen_c_smn_read(df->zud_dfno, reg, &val)) != 0) {
2401 		dev_err(umc->umc_dip, CE_WARN, "failed to read column address "
2402 		    "select high register %x: %d", SMN_REG_ADDR(reg), ret);
2403 		return (B_FALSE);
2404 	}
2405 	for (uint_t i = 0; i < ZEN_UMC_MAX_COLSEL_PER_REG; i++) {
2406 		cs->ucs_col_bits[i + ZEN_UMC_MAX_COLSEL_PER_REG] =
2407 		    UMC_COLSEL_REMAP_GET_COL(val, i) + UMC_COLSEL_HI_BASE;
2408 	}
2409 
2410 	/*
2411 	 * Time for our friend, the RM Selection register. Like in DDR4 we end
2412 	 * up reading everything here, even though most others have reserved
2413 	 * bits here. The intent is that we won't look at the reserved bits
2414 	 * unless something actually points us there.
2415 	 */
2416 	reg = UMC_RMSEL_DDR5(id, regno);
2417 	if ((ret = amdzen_c_smn_read(df->zud_dfno, reg, &val)) != 0) {
2418 		dev_err(umc->umc_dip, CE_WARN, "failed to read rank multiply "
2419 		    "select register %x: %d", SMN_REG_ADDR(reg), ret);
2420 		return (B_FALSE);
2421 	}
2422 
2423 	/*
2424 	 * DDR5 based devices have a primary and secondary msbs; however, they
2425 	 * only have a single set of rm bits. To normalize things with the DDR4
2426 	 * subsystem, we copy the primary bits to the secondary so we can use
2427 	 * these the same way in the decoder/encoder.
2428 	 */
2429 	cs->ucs_inv_msbs = UMC_RMSEL_DDR5_GET_INV_MSBS(val);
2430 	cs->ucs_inv_msbs_sec = UMC_RMSEL_DDR5_GET_INV_MSBS_SEC(val);
2431 	cs->ucs_subchan = UMC_RMSEL_DDR5_GET_SUBCHAN(val) +
2432 	    UMC_RMSEL_DDR5_SUBCHAN_BASE;
2433 	cs->ucs_rm_bits[3] = UMC_RMSEL_DDR5_GET_RM3(val) + UMC_RMSEL_BASE;
2434 	cs->ucs_rm_bits[2] = UMC_RMSEL_DDR5_GET_RM2(val) + UMC_RMSEL_BASE;
2435 	cs->ucs_rm_bits[1] = UMC_RMSEL_DDR5_GET_RM1(val) + UMC_RMSEL_BASE;
2436 	cs->ucs_rm_bits[0] = UMC_RMSEL_DDR5_GET_RM0(val) + UMC_RMSEL_BASE;
2437 	bcopy(cs->ucs_rm_bits, cs->ucs_rm_bits_sec,
2438 	    sizeof (cs->ucs_rm_bits));
2439 
2440 	return (zen_umc_fill_dimm_common(umc, df, chan, dimmno, B_FALSE));
2441 }
2442 
2443 static void
2444 zen_umc_fill_ddr_type(zen_umc_t *umc, zen_umc_chan_t *chan)
2445 {
2446 	umc_dimm_type_t dimm = UMC_DIMM_T_UNKNOWN;
2447 	uint8_t val;
2448 
2449 	/*
2450 	 * The different UMC styles split into two groups. Those that support
2451 	 * DDR4 and those that support DDR5 (with the hybrid group being in the
2452 	 * DDR5 style camp). While all the values are consistent between
2453 	 * different ones (e.g. reserved values correspond to unsupported
2454 	 * items), we still check types based on the UMC's design type so if we
2455 	 * see something weird, we don't accidentally use an older value.
2456 	 */
2457 	val = UMC_UMCCFG_GET_DDR_TYPE(chan->chan_umccfg_raw);
2458 	switch (umc->umc_fdata->zufd_umc_style) {
2459 	case ZEN_UMC_UMC_S_DDR4:
2460 	case ZEN_UMC_UMC_S_DDR4_APU:
2461 		switch (val) {
2462 		case UMC_UMCCFG_DDR4_T_DDR4:
2463 			dimm = UMC_DIMM_T_DDR4;
2464 			break;
2465 		case UMC_UMCCFG_DDR4_T_LPDDR4:
2466 			dimm = UMC_DIMM_T_LPDDR4;
2467 			break;
2468 		default:
2469 			break;
2470 		}
2471 		break;
2472 	case ZEN_UMC_UMC_S_HYBRID_LPDDR5:
2473 		switch (val) {
2474 		case UMC_UMCCFG_DDR5_T_LPDDR5:
2475 			dimm = UMC_DIMM_T_LPDDR5;
2476 			break;
2477 		case UMC_UMCCFG_DDR5_T_LPDDR4:
2478 			dimm = UMC_DIMM_T_LPDDR4;
2479 			break;
2480 		default:
2481 			break;
2482 		}
2483 		break;
2484 	case ZEN_UMC_UMC_S_DDR5:
2485 	case ZEN_UMC_UMC_S_DDR5_APU:
2486 		switch (val) {
2487 		case UMC_UMCCFG_DDR5_T_DDR5:
2488 			dimm = UMC_DIMM_T_DDR5;
2489 			break;
2490 		case UMC_UMCCFG_DDR5_T_LPDDR5:
2491 			dimm = UMC_DIMM_T_LPDDR5;
2492 			break;
2493 		default:
2494 			break;
2495 		}
2496 		break;
2497 	}
2498 
2499 	chan->chan_type = dimm;
2500 }
2501 
2502 /*
2503  * Use the DDR4 frequency table to determine the speed of this. Note that our
2504  * hybrid based UMCs use 8 bits for the clock, while the traditional DDR4 ones
2505  * only use 7. The caller is responsible for using the right mask for the UMC.
2506  */
2507 static void
2508 zen_umc_fill_chan_ddr4(zen_umc_chan_t *chan, uint_t mstate,
2509     const uint32_t clock)
2510 {
2511 	for (size_t i = 0; i < ARRAY_SIZE(zen_umc_ddr4_map); i++) {
2512 		if (clock == zen_umc_ddr4_map[i].zufm_reg) {
2513 			chan->chan_clock[mstate] = zen_umc_ddr4_map[i].zufm_mhz;
2514 			chan->chan_speed[mstate] =
2515 			    zen_umc_ddr4_map[i].zufm_mts2;
2516 			break;
2517 		}
2518 	}
2519 }
2520 
2521 static void
2522 zen_umc_fill_chan_hyb_lpddr5(zen_umc_chan_t *chan, uint_t mstate)
2523 {
2524 	const uint32_t reg = chan->chan_dramcfg_raw[mstate];
2525 	const uint32_t wck = UMC_DRAMCFG_HYB_GET_WCLKRATIO(reg);
2526 	const uint32_t clock = UMC_DRAMCFG_HYB_GET_MEMCLK(reg);
2527 	boolean_t twox;
2528 
2529 	switch (wck) {
2530 	case UMC_DRAMCFG_WCLKRATIO_1TO2:
2531 		twox = B_TRUE;
2532 		break;
2533 	case UMC_DRAMCFG_WCLKRATIO_1TO4:
2534 		twox = B_FALSE;
2535 		break;
2536 	default:
2537 		return;
2538 	}
2539 
2540 	for (size_t i = 0; i < ARRAY_SIZE(zen_umc_lpddr5_map); i++) {
2541 		if (clock == zen_umc_lpddr5_map[i].zufm_reg) {
2542 			chan->chan_clock[mstate] =
2543 			    zen_umc_lpddr5_map[i].zufm_mhz;
2544 
2545 			if (twox) {
2546 				chan->chan_speed[mstate] =
2547 				    zen_umc_lpddr5_map[i].zufm_mts2;
2548 			} else {
2549 				chan->chan_speed[mstate] =
2550 				    zen_umc_lpddr5_map[i].zufm_mts4;
2551 			}
2552 			break;
2553 		}
2554 	}
2555 }
2556 
2557 /*
2558  * Determine the current operating frequency of the channel. This varies based
2559  * upon the type of UMC that we're operating on as there are multiple ways to
2560  * determine this. There are up to four memory P-states that exist in the UMC.
2561  * This grabs it for a single P-state at a time.
2562  *
2563  * Unlike other things, if we cannot determine the frequency of the clock or
2564  * transfer speed, we do not consider this fatal because that does not stop
2565  * decoding. It only means that we cannot give a bit of useful information to
2566  * topo.
2567  */
2568 static void
2569 zen_umc_fill_chan_freq(zen_umc_t *umc, zen_umc_chan_t *chan, uint_t mstate)
2570 {
2571 	const uint32_t cfg = chan->chan_dramcfg_raw[mstate];
2572 	const umc_dimm_type_t dimm_type = chan->chan_type;
2573 
2574 	switch (umc->umc_fdata->zufd_umc_style) {
2575 	case ZEN_UMC_UMC_S_HYBRID_LPDDR5:
2576 		if (dimm_type == UMC_DIMM_T_LPDDR5) {
2577 			zen_umc_fill_chan_hyb_lpddr5(chan, mstate);
2578 		} else if (dimm_type != UMC_DIMM_T_LPDDR4) {
2579 			zen_umc_fill_chan_ddr4(chan, mstate,
2580 			    UMC_DRAMCFG_HYB_GET_MEMCLK(cfg));
2581 		}
2582 		break;
2583 	case ZEN_UMC_UMC_S_DDR4:
2584 	case ZEN_UMC_UMC_S_DDR4_APU:
2585 		zen_umc_fill_chan_ddr4(chan, mstate,
2586 		    UMC_DRAMCFG_DDR4_GET_MEMCLK(cfg));
2587 		break;
2588 	case ZEN_UMC_UMC_S_DDR5:
2589 	case ZEN_UMC_UMC_S_DDR5_APU:
2590 		chan->chan_clock[mstate] = UMC_DRAMCFG_DDR5_GET_MEMCLK(cfg);
2591 		if (dimm_type == UMC_DIMM_T_DDR5) {
2592 			chan->chan_speed[mstate] = 2 * chan->chan_clock[mstate];
2593 		} else if (dimm_type == UMC_DIMM_T_LPDDR5) {
2594 			switch (UMC_DRAMCFG_LPDDR5_GET_WCKRATIO(cfg)) {
2595 			case UMC_DRAMCFG_WCLKRATIO_1TO2:
2596 				chan->chan_speed[mstate] = 2 *
2597 				    chan->chan_clock[mstate];
2598 				break;
2599 			case UMC_DRAMCFG_WCLKRATIO_1TO4:
2600 				chan->chan_speed[mstate] = 4 *
2601 				    chan->chan_clock[mstate];
2602 				break;
2603 			default:
2604 				break;
2605 			}
2606 		}
2607 		break;
2608 	}
2609 }
2610 
2611 /*
2612  * Fill common channel information. While the locations of many of the registers
2613  * changed between the DDR4-capable and DDR5-capable devices, the actual
2614  * contents are the same so we process them together.
2615  */
2616 static boolean_t
2617 zen_umc_fill_chan_hash(zen_umc_t *umc, zen_umc_df_t *df, zen_umc_chan_t *chan,
2618     boolean_t ddr4)
2619 {
2620 	int ret;
2621 	smn_reg_t reg;
2622 	uint32_t val;
2623 
2624 	const umc_chan_hash_flags_t flags = umc->umc_fdata->zufd_chan_hash;
2625 	const uint32_t id = chan->chan_logid;
2626 	umc_chan_hash_t *chash = &chan->chan_hash;
2627 	chash->uch_flags = flags;
2628 
2629 	if ((flags & UMC_CHAN_HASH_F_BANK) != 0) {
2630 		for (uint_t i = 0; i < ZEN_UMC_MAX_CHAN_BANK_HASH; i++) {
2631 			umc_bank_hash_t *bank = &chash->uch_bank_hashes[i];
2632 
2633 			if (ddr4) {
2634 				reg = UMC_BANK_HASH_DDR4(id, i);
2635 			} else {
2636 				reg = UMC_BANK_HASH_DDR5(id, i);
2637 			}
2638 
2639 			if ((ret = amdzen_c_smn_read(df->zud_dfno, reg,
2640 			    &val)) != 0) {
2641 				dev_err(umc->umc_dip, CE_WARN, "failed to read "
2642 				    "bank hash register %x: %d",
2643 				    SMN_REG_ADDR(reg), ret);
2644 				return (B_FALSE);
2645 			}
2646 
2647 			bank->ubh_row_xor = UMC_BANK_HASH_GET_ROW(val);
2648 			bank->ubh_col_xor = UMC_BANK_HASH_GET_COL(val);
2649 			bank->ubh_en = UMC_BANK_HASH_GET_EN(val);
2650 		}
2651 	}
2652 
2653 	if ((flags & UMC_CHAN_HASH_F_RM) != 0) {
2654 		for (uint_t i = 0; i < ZEN_UMC_MAX_CHAN_RM_HASH; i++) {
2655 			uint64_t addr;
2656 			umc_addr_hash_t *rm = &chash->uch_rm_hashes[i];
2657 
2658 			if (ddr4) {
2659 				reg = UMC_RANK_HASH_DDR4(id, i);
2660 			} else {
2661 				reg = UMC_RANK_HASH_DDR5(id, i);
2662 			}
2663 
2664 			if ((ret = amdzen_c_smn_read(df->zud_dfno, reg,
2665 			    &val)) != 0) {
2666 				dev_err(umc->umc_dip, CE_WARN, "failed to read "
2667 				    "rm hash register %x: %d",
2668 				    SMN_REG_ADDR(reg), ret);
2669 				return (B_FALSE);
2670 			}
2671 
2672 			addr = UMC_RANK_HASH_GET_ADDR(val);
2673 			rm->uah_addr_xor = addr << UMC_RANK_HASH_SHIFT;
2674 			rm->uah_en = UMC_RANK_HASH_GET_EN(val);
2675 
2676 			if (ddr4 || (umc->umc_fdata->zufd_flags &
2677 			    ZEN_UMC_FAM_F_UMC_EADDR) == 0) {
2678 				continue;
2679 			}
2680 
2681 			reg = UMC_RANK_HASH_EXT_DDR5(id, i);
2682 			if ((ret = amdzen_c_smn_read(df->zud_dfno, reg,
2683 			    &val)) != 0) {
2684 				dev_err(umc->umc_dip, CE_WARN, "failed to read "
2685 				    "rm hash ext register %x: %d",
2686 				    SMN_REG_ADDR(reg), ret);
2687 				return (B_FALSE);
2688 			}
2689 
2690 			addr = UMC_RANK_HASH_EXT_GET_ADDR(val);
2691 			rm->uah_addr_xor |= addr <<
2692 			    UMC_RANK_HASH_EXT_ADDR_SHIFT;
2693 		}
2694 	}
2695 
2696 	if ((flags & UMC_CHAN_HASH_F_PC) != 0) {
2697 		umc_pc_hash_t *pc = &chash->uch_pc_hash;
2698 
2699 		if (ddr4) {
2700 			reg = UMC_PC_HASH_DDR4(id);
2701 		} else {
2702 			reg = UMC_PC_HASH_DDR5(id);
2703 		}
2704 
2705 		if ((ret = amdzen_c_smn_read(df->zud_dfno, reg, &val)) != 0) {
2706 			dev_err(umc->umc_dip, CE_WARN, "failed to read pc hash "
2707 			    "register %x: %d", SMN_REG_ADDR(reg), ret);
2708 			return (B_FALSE);
2709 		}
2710 
2711 		pc->uph_row_xor = UMC_PC_HASH_GET_ROW(val);
2712 		pc->uph_col_xor = UMC_PC_HASH_GET_COL(val);
2713 		pc->uph_en = UMC_PC_HASH_GET_EN(val);
2714 
2715 		if (ddr4) {
2716 			reg = UMC_PC_HASH2_DDR4(id);
2717 		} else {
2718 			reg = UMC_PC_HASH2_DDR5(id);
2719 		}
2720 
2721 		if ((ret = amdzen_c_smn_read(df->zud_dfno, reg, &val)) != 0) {
2722 			dev_err(umc->umc_dip, CE_WARN, "failed to read pc hash "
2723 			    "2 register %x: %d", SMN_REG_ADDR(reg), ret);
2724 			return (B_FALSE);
2725 		}
2726 
2727 		pc->uph_bank_xor = UMC_PC_HASH2_GET_BANK(val);
2728 	}
2729 
2730 	if ((flags & UMC_CHAN_HASH_F_CS) != 0) {
2731 		for (uint_t i = 0; i < ZEN_UMC_MAX_CHAN_CS_HASH; i++) {
2732 			uint64_t addr;
2733 			umc_addr_hash_t *rm = &chash->uch_cs_hashes[i];
2734 
2735 			if (ddr4) {
2736 				reg = UMC_CS_HASH_DDR4(id, i);
2737 			} else {
2738 				reg = UMC_CS_HASH_DDR5(id, i);
2739 			}
2740 
2741 			if ((ret = amdzen_c_smn_read(df->zud_dfno, reg,
2742 			    &val)) != 0) {
2743 				dev_err(umc->umc_dip, CE_WARN, "failed to read "
2744 				    "cs hash register %x", SMN_REG_ADDR(reg));
2745 				return (B_FALSE);
2746 			}
2747 
2748 			addr = UMC_CS_HASH_GET_ADDR(val);
2749 			rm->uah_addr_xor = addr << UMC_CS_HASH_SHIFT;
2750 			rm->uah_en = UMC_CS_HASH_GET_EN(val);
2751 
2752 			if (ddr4 || (umc->umc_fdata->zufd_flags &
2753 			    ZEN_UMC_FAM_F_UMC_EADDR) == 0) {
2754 				continue;
2755 			}
2756 
2757 			reg = UMC_CS_HASH_EXT_DDR5(id, i);
2758 			if ((ret = amdzen_c_smn_read(df->zud_dfno, reg,
2759 			    &val)) != 0) {
2760 				dev_err(umc->umc_dip, CE_WARN, "failed to read "
2761 				    "cs hash ext register %x",
2762 				    SMN_REG_ADDR(reg));
2763 				return (B_FALSE);
2764 			}
2765 
2766 			addr = UMC_CS_HASH_EXT_GET_ADDR(val);
2767 			rm->uah_addr_xor |= addr << UMC_CS_HASH_EXT_ADDR_SHIFT;
2768 		}
2769 	}
2770 
2771 	return (B_TRUE);
2772 }
2773 
2774 /*
2775  * This fills in settings that we care about which are valid for the entire
2776  * channel and are the same between DDR4/5 capable devices.
2777  */
2778 static boolean_t
2779 zen_umc_fill_chan(zen_umc_t *umc, zen_umc_df_t *df, zen_umc_chan_t *chan)
2780 {
2781 	uint32_t val;
2782 	smn_reg_t reg;
2783 	const uint32_t id = chan->chan_logid;
2784 	int ret;
2785 	boolean_t ddr4;
2786 
2787 	if (umc->umc_fdata->zufd_umc_style == ZEN_UMC_UMC_S_DDR4 ||
2788 	    umc->umc_fdata->zufd_umc_style == ZEN_UMC_UMC_S_DDR4_APU) {
2789 		ddr4 = B_TRUE;
2790 	} else {
2791 		ddr4 = B_FALSE;
2792 	}
2793 
2794 	/*
2795 	 * Begin by gathering all of the information related to hashing. What is
2796 	 * valid here varies based on the actual chip family and then the
2797 	 * registers vary based on DDR4 and DDR5.
2798 	 */
2799 	if (!zen_umc_fill_chan_hash(umc, df, chan, ddr4)) {
2800 		return (B_FALSE);
2801 	}
2802 
2803 	reg = UMC_UMCCFG(id);
2804 	if ((ret = amdzen_c_smn_read(df->zud_dfno, reg, &val)) != 0) {
2805 		dev_err(umc->umc_dip, CE_WARN, "failed to read UMC "
2806 		    "configuration register %x: %d", SMN_REG_ADDR(reg), ret);
2807 		return (B_FALSE);
2808 	}
2809 
2810 	chan->chan_umccfg_raw = val;
2811 	if (UMC_UMCCFG_GET_ECC_EN(val)) {
2812 		chan->chan_flags |= UMC_CHAN_F_ECC_EN;
2813 	}
2814 
2815 	/*
2816 	 * Grab the DRAM configuration register. This can be used to determine
2817 	 * the frequency and speed of the memory channel. At this time we only
2818 	 * capture Memory P-state 0.
2819 	 */
2820 	reg = UMC_DRAMCFG(id, 0);
2821 
2822 	/*
2823 	 * This register contains information to determine the type of DIMM.
2824 	 * All DIMMs in the channel must be the same type so we leave this
2825 	 * setting on the channel. Once we have that, we proceed to obtain the
2826 	 * currently configuration information for the DRAM in each memory
2827 	 * P-state.
2828 	 */
2829 	zen_umc_fill_ddr_type(umc, chan);
2830 	for (uint_t i = 0; i < ZEN_UMC_NMEM_PSTATES; i++) {
2831 		chan->chan_clock[i] = ZEN_UMC_UNKNOWN_FREQ;
2832 		chan->chan_speed[i] = ZEN_UMC_UNKNOWN_FREQ;
2833 
2834 		reg = UMC_DRAMCFG(id, i);
2835 		if ((ret = amdzen_c_smn_read(df->zud_dfno, reg, &val)) != 0) {
2836 			dev_err(umc->umc_dip, CE_WARN, "failed to read DRAM "
2837 			    "Configuration register P-state %u %x: %d", i,
2838 			    SMN_REG_ADDR(reg), ret);
2839 			return (B_FALSE);
2840 		}
2841 		chan->chan_dramcfg_raw[i] = val;
2842 
2843 		zen_umc_fill_chan_freq(umc, chan, i);
2844 	}
2845 
2846 	/*
2847 	 * Grab data that we can use to determine if we're scrambling or
2848 	 * encrypting regions of memory.
2849 	 */
2850 	reg = UMC_DATACTL(id);
2851 	if ((ret = amdzen_c_smn_read(df->zud_dfno, reg, &val)) != 0) {
2852 		dev_err(umc->umc_dip, CE_WARN, "failed to read data control "
2853 		    "register %x: %d", SMN_REG_ADDR(reg), ret);
2854 		return (B_FALSE);
2855 	}
2856 	chan->chan_datactl_raw = val;
2857 	if (UMC_DATACTL_GET_SCRAM_EN(val)) {
2858 		chan->chan_flags |= UMC_CHAN_F_SCRAMBLE_EN;
2859 	}
2860 
2861 	if (UMC_DATACTL_GET_ENCR_EN(val)) {
2862 		chan->chan_flags |= UMC_CHAN_F_ENCR_EN;
2863 	}
2864 
2865 	/*
2866 	 * At the moment we snapshot the raw ECC control information. When we do
2867 	 * further work of making this a part of the MCA/X decoding, we'll want
2868 	 * to further take this apart for syndrome decoding. Until then, simply
2869 	 * cache it for future us and observability.
2870 	 */
2871 	reg = UMC_ECCCTL(id);
2872 	if ((ret = amdzen_c_smn_read(df->zud_dfno, reg, &val)) != 0) {
2873 		dev_err(umc->umc_dip, CE_WARN, "failed to read ECC control "
2874 		    "register %x: %d", SMN_REG_ADDR(reg), ret);
2875 		return (B_FALSE);
2876 	}
2877 	chan->chan_eccctl_raw = val;
2878 
2879 	/*
2880 	 * Read and snapshot the UMC capability registers for debugging in the
2881 	 * future.
2882 	 */
2883 	reg = UMC_UMCCAP(id);
2884 	if ((ret = amdzen_c_smn_read(df->zud_dfno, reg, &val)) != 0) {
2885 		dev_err(umc->umc_dip, CE_WARN, "failed to read UMC cap"
2886 		    "register %x: %d", SMN_REG_ADDR(reg), ret);
2887 		return (B_FALSE);
2888 	}
2889 	chan->chan_umccap_raw = val;
2890 
2891 	reg = UMC_UMCCAP_HI(id);
2892 	if ((ret = amdzen_c_smn_read(df->zud_dfno, reg, &val)) != 0) {
2893 		dev_err(umc->umc_dip, CE_WARN, "failed to read UMC cap high "
2894 		    "register %x: %d", SMN_REG_ADDR(reg), ret);
2895 		return (B_FALSE);
2896 	}
2897 	chan->chan_umccap_hi_raw = val;
2898 
2899 	return (B_TRUE);
2900 }
2901 
2902 static int
2903 zen_umc_fill_umc_cb(const uint_t dfno, const uint32_t fabid,
2904     const uint32_t instid, void *arg)
2905 {
2906 	zen_umc_t *umc = arg;
2907 	zen_umc_df_t *df = &umc->umc_dfs[dfno];
2908 	zen_umc_chan_t *chan = &df->zud_chan[df->zud_nchan];
2909 
2910 	df->zud_nchan++;
2911 	VERIFY3U(df->zud_nchan, <=, ZEN_UMC_MAX_UMCS);
2912 
2913 	/*
2914 	 * The data fabric is generally organized such that all UMC entries
2915 	 * should be continuous in their fabric ID space; however, we don't
2916 	 * want to rely on specific ID locations. The UMC SMN addresses are
2917 	 * organized in a relative order. To determine the SMN ID to use (the
2918 	 * chan_logid) we end up making the following assumptions:
2919 	 *
2920 	 *  o The iteration order will always be from the lowest component ID
2921 	 *    to the highest component ID.
2922 	 *  o The relative order that we encounter will be the same as the SMN
2923 	 *    order. That is, the first thing we find (regardless of component
2924 	 *    ID) will be SMN UMC entry 0, the next 1, etc.
2925 	 */
2926 	chan->chan_logid = df->zud_nchan - 1;
2927 	chan->chan_fabid = fabid;
2928 	chan->chan_instid = instid;
2929 	chan->chan_nrules = umc->umc_fdata->zufd_cs_nrules;
2930 	for (uint_t i = 0; i < umc->umc_fdata->zufd_cs_nrules; i++) {
2931 		if (zen_umc_read_dram_rule(umc, dfno, instid, i,
2932 		    &chan->chan_rules[i]) != 0) {
2933 			return (-1);
2934 		}
2935 	}
2936 
2937 	for (uint_t i = 0; i < umc->umc_fdata->zufd_cs_nrules - 1; i++) {
2938 		int ret;
2939 		uint32_t offset;
2940 		uint64_t t;
2941 		df_reg_def_t off_reg;
2942 		chan_offset_t *offp = &chan->chan_offsets[i];
2943 
2944 		switch (umc->umc_df_rev) {
2945 		case DF_REV_2:
2946 		case DF_REV_3:
2947 		case DF_REV_3P5:
2948 			ASSERT3U(i, ==, 0);
2949 			off_reg = DF_DRAM_OFFSET_V2;
2950 			break;
2951 		case DF_REV_4:
2952 			off_reg = DF_DRAM_OFFSET_V4(i);
2953 			break;
2954 		default:
2955 			dev_err(umc->umc_dip, CE_WARN, "!encountered "
2956 			    "unsupported DF revision processing DRAM Offsets: "
2957 			    "0x%x", umc->umc_df_rev);
2958 			return (-1);
2959 		}
2960 
2961 		if ((ret = amdzen_c_df_read32(dfno, instid, off_reg,
2962 		    &offset)) != 0) {
2963 			dev_err(umc->umc_dip, CE_WARN, "!failed to read DRAM "
2964 			    "offset %u on 0x%x/0x%x: %d", i, dfno, instid, ret);
2965 			return (-1);
2966 		}
2967 
2968 		offp->cho_raw = offset;
2969 		offp->cho_valid = DF_DRAM_OFFSET_GET_EN(offset);
2970 
2971 		switch (umc->umc_df_rev) {
2972 		case DF_REV_2:
2973 			t = DF_DRAM_OFFSET_V2_GET_OFFSET(offset);
2974 			break;
2975 		case DF_REV_3:
2976 		case DF_REV_3P5:
2977 			t = DF_DRAM_OFFSET_V3_GET_OFFSET(offset);
2978 			break;
2979 		case DF_REV_4:
2980 			t = DF_DRAM_OFFSET_V4_GET_OFFSET(offset);
2981 			break;
2982 		default:
2983 			dev_err(umc->umc_dip, CE_WARN, "!encountered "
2984 			    "unsupported DF revision processing DRAM Offsets: "
2985 			    "0x%x", umc->umc_df_rev);
2986 			return (-1);
2987 		}
2988 		offp->cho_offset = t << DF_DRAM_OFFSET_SHIFT;
2989 	}
2990 
2991 	/*
2992 	 * If this platform supports our favorete Zen 3 6-channel hash special
2993 	 * then we need to grab the NP2 configuration registers. This will only
2994 	 * be referenced if this channel is actually being used for a 6-channel
2995 	 * hash, so even if the contents are weird that should still be ok.
2996 	 */
2997 	if ((umc->umc_fdata->zufd_flags & ZEN_UMC_FAM_F_NP2) != 0) {
2998 		uint32_t np2;
2999 		int ret;
3000 
3001 		if ((ret = amdzen_c_df_read32(dfno, instid, DF_NP2_CONFIG_V3,
3002 		    &np2)) != 0) {
3003 			dev_err(umc->umc_dip, CE_WARN, "!failed to read NP2 "
3004 			    "config: %d", ret);
3005 			return (-1);
3006 		}
3007 
3008 		chan->chan_np2_raw = np2;
3009 		chan->chan_np2_space0 = DF_NP2_CONFIG_V3_GET_SPACE0(np2);
3010 	}
3011 
3012 	/*
3013 	 * Now that we have everything we need from the data fabric, read out
3014 	 * the rest of what we need from the UMC channel data in SMN register
3015 	 * space.
3016 	 */
3017 	switch (umc->umc_fdata->zufd_umc_style) {
3018 	case ZEN_UMC_UMC_S_DDR4:
3019 	case ZEN_UMC_UMC_S_DDR4_APU:
3020 		for (uint_t i = 0; i < ZEN_UMC_MAX_DIMMS; i++) {
3021 			if (!zen_umc_fill_chan_dimm_ddr4(umc, df, chan, i)) {
3022 				return (-1);
3023 			}
3024 		}
3025 		break;
3026 	case ZEN_UMC_UMC_S_HYBRID_LPDDR5:
3027 	case ZEN_UMC_UMC_S_DDR5:
3028 	case ZEN_UMC_UMC_S_DDR5_APU:
3029 		for (uint_t i = 0; i < ZEN_UMC_MAX_DIMMS; i++) {
3030 			for (uint_t r = 0; r < ZEN_UMC_MAX_CS_PER_DIMM; r++) {
3031 				if (!zen_umc_fill_chan_rank_ddr5(umc, df, chan,
3032 				    i, r)) {
3033 					return (-1);
3034 				}
3035 			}
3036 		}
3037 		break;
3038 	default:
3039 		dev_err(umc->umc_dip, CE_WARN, "!encountered unsupported "
3040 		    "Zen family: 0x%x", umc->umc_fdata->zufd_umc_style);
3041 		return (-1);
3042 	}
3043 
3044 	if (!zen_umc_fill_chan(umc, df, chan)) {
3045 		return (-1);
3046 	}
3047 
3048 	return (0);
3049 }
3050 
3051 /*
3052  * Today there are no privileges for the memory controller information, it is
3053  * restricted based on file system permissions.
3054  */
3055 static int
3056 zen_umc_open(dev_t *devp, int flag, int otyp, cred_t *credp)
3057 {
3058 	zen_umc_t *umc = zen_umc;
3059 
3060 	if ((flag & (FEXCL | FNDELAY | FNONBLOCK | FWRITE)) != 0) {
3061 		return (EINVAL);
3062 	}
3063 
3064 	if (otyp != OTYP_CHR) {
3065 		return (EINVAL);
3066 	}
3067 
3068 	if (getminor(*devp) >= umc->umc_ndfs) {
3069 		return (ENXIO);
3070 	}
3071 
3072 	return (0);
3073 }
3074 
3075 static void
3076 zen_umc_ioctl_decode(zen_umc_t *umc, mc_encode_ioc_t *encode)
3077 {
3078 	zen_umc_decoder_t dec;
3079 	uint32_t sock, die, comp;
3080 
3081 	bzero(&dec, sizeof (dec));
3082 	if (!zen_umc_decode_pa(umc, encode->mcei_pa, &dec)) {
3083 		encode->mcei_err = (uint32_t)dec.dec_fail;
3084 		encode->mcei_errdata = dec.dec_fail_data;
3085 		return;
3086 	}
3087 
3088 	encode->mcei_errdata = 0;
3089 	encode->mcei_err = 0;
3090 	encode->mcei_chan_addr = dec.dec_norm_addr;
3091 	encode->mcei_rank_addr = UINT64_MAX;
3092 	encode->mcei_board = 0;
3093 	zen_fabric_id_decompose(&umc->umc_decomp, dec.dec_targ_fabid, &sock,
3094 	    &die, &comp);
3095 	encode->mcei_chip = sock;
3096 	encode->mcei_die = die;
3097 	encode->mcei_mc = dec.dec_umc_chan->chan_logid;
3098 	encode->mcei_chan = 0;
3099 	encode->mcei_dimm = dec.dec_dimm_no;
3100 	encode->mcei_row = dec.dec_dimm_row;
3101 	encode->mcei_column = dec.dec_dimm_col;
3102 	/*
3103 	 * We don't have a logical rank that something matches to, we have the
3104 	 * actual chip-select and rank multiplication. If we could figure out
3105 	 * how to transform that into an actual rank, that'd be grand.
3106 	 */
3107 	encode->mcei_rank = UINT8_MAX;
3108 	encode->mcei_cs = dec.dec_dimm_csno;
3109 	encode->mcei_rm = dec.dec_dimm_rm;
3110 	encode->mcei_bank = dec.dec_dimm_bank;
3111 	encode->mcei_bank_group = dec.dec_dimm_bank_group;
3112 	encode->mcei_subchan = dec.dec_dimm_subchan;
3113 }
3114 
3115 static void
3116 umc_decoder_pack(zen_umc_t *umc)
3117 {
3118 	char *buf = NULL;
3119 	size_t len = 0;
3120 
3121 	ASSERT(MUTEX_HELD(&umc->umc_nvl_lock));
3122 	if (umc->umc_decoder_buf != NULL) {
3123 		return;
3124 	}
3125 
3126 	if (umc->umc_decoder_nvl == NULL) {
3127 		umc->umc_decoder_nvl = zen_umc_dump_decoder(umc);
3128 		if (umc->umc_decoder_nvl == NULL) {
3129 			return;
3130 		}
3131 	}
3132 
3133 	if (nvlist_pack(umc->umc_decoder_nvl, &buf, &len, NV_ENCODE_XDR,
3134 	    KM_NOSLEEP_LAZY) != 0) {
3135 		return;
3136 	}
3137 
3138 	umc->umc_decoder_buf = buf;
3139 	umc->umc_decoder_len = len;
3140 }
3141 
3142 static int
3143 zen_umc_ioctl(dev_t dev, int cmd, intptr_t arg, int mode, cred_t *credp,
3144     int *rvalp)
3145 {
3146 	int ret;
3147 	zen_umc_t *umc = zen_umc;
3148 	mc_encode_ioc_t encode;
3149 	mc_snapshot_info_t info;
3150 
3151 	if (getminor(dev) >= umc->umc_ndfs) {
3152 		return (ENXIO);
3153 	}
3154 
3155 	switch (cmd) {
3156 	case MC_IOC_DECODE_PA:
3157 		if (crgetzoneid(credp) != GLOBAL_ZONEID ||
3158 		    drv_priv(credp) != 0) {
3159 			ret = EPERM;
3160 			break;
3161 		}
3162 
3163 		if (ddi_copyin((void *)arg, &encode, sizeof (encode),
3164 		    mode & FKIOCTL) != 0) {
3165 			ret = EFAULT;
3166 			break;
3167 		}
3168 
3169 		zen_umc_ioctl_decode(umc, &encode);
3170 		ret = 0;
3171 
3172 		if (ddi_copyout(&encode, (void *)arg, sizeof (encode),
3173 		    mode & FKIOCTL) != 0) {
3174 			ret = EFAULT;
3175 			break;
3176 		}
3177 		break;
3178 	case MC_IOC_DECODE_SNAPSHOT_INFO:
3179 		mutex_enter(&umc->umc_nvl_lock);
3180 		umc_decoder_pack(umc);
3181 
3182 		if (umc->umc_decoder_buf == NULL) {
3183 			mutex_exit(&umc->umc_nvl_lock);
3184 			ret = EIO;
3185 			break;
3186 		}
3187 
3188 		if (umc->umc_decoder_len > UINT32_MAX) {
3189 			mutex_exit(&umc->umc_nvl_lock);
3190 			ret = EOVERFLOW;
3191 			break;
3192 		}
3193 
3194 		info.mcs_size = umc->umc_decoder_len;
3195 		info.mcs_gen = 0;
3196 		if (ddi_copyout(&info, (void *)arg, sizeof (info),
3197 		    mode & FKIOCTL) != 0) {
3198 			mutex_exit(&umc->umc_nvl_lock);
3199 			ret = EFAULT;
3200 			break;
3201 		}
3202 
3203 		mutex_exit(&umc->umc_nvl_lock);
3204 		ret = 0;
3205 		break;
3206 	case MC_IOC_DECODE_SNAPSHOT:
3207 		mutex_enter(&umc->umc_nvl_lock);
3208 		umc_decoder_pack(umc);
3209 
3210 		if (umc->umc_decoder_buf == NULL) {
3211 			mutex_exit(&umc->umc_nvl_lock);
3212 			ret = EIO;
3213 			break;
3214 		}
3215 
3216 		if (ddi_copyout(umc->umc_decoder_buf, (void *)arg,
3217 		    umc->umc_decoder_len, mode & FKIOCTL) != 0) {
3218 			mutex_exit(&umc->umc_nvl_lock);
3219 			ret = EFAULT;
3220 			break;
3221 		}
3222 
3223 		mutex_exit(&umc->umc_nvl_lock);
3224 		ret = 0;
3225 		break;
3226 	default:
3227 		ret = ENOTTY;
3228 		break;
3229 	}
3230 
3231 	return (ret);
3232 }
3233 
3234 static int
3235 zen_umc_close(dev_t dev, int flag, int otyp, cred_t *credp)
3236 {
3237 	return (0);
3238 }
3239 
3240 static void
3241 zen_umc_cleanup(zen_umc_t *umc)
3242 {
3243 	nvlist_free(umc->umc_decoder_nvl);
3244 	umc->umc_decoder_nvl = NULL;
3245 	if (umc->umc_decoder_buf != NULL) {
3246 		kmem_free(umc->umc_decoder_buf, umc->umc_decoder_len);
3247 		umc->umc_decoder_buf = NULL;
3248 		umc->umc_decoder_len = 0;
3249 	}
3250 
3251 	if (umc->umc_dip != NULL) {
3252 		ddi_remove_minor_node(umc->umc_dip, NULL);
3253 	}
3254 	mutex_destroy(&umc->umc_nvl_lock);
3255 	kmem_free(umc, sizeof (zen_umc_t));
3256 }
3257 
3258 static int
3259 zen_umc_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
3260 {
3261 	int ret;
3262 	zen_umc_t *umc;
3263 
3264 	if (cmd == DDI_RESUME) {
3265 		return (DDI_SUCCESS);
3266 	} else if (cmd != DDI_ATTACH) {
3267 		return (DDI_FAILURE);
3268 	}
3269 	if (zen_umc != NULL) {
3270 		dev_err(dip, CE_WARN, "!zen_umc is already attached to a "
3271 		    "dev_info_t: %p", zen_umc->umc_dip);
3272 		return (DDI_FAILURE);
3273 	}
3274 
3275 	/*
3276 	 * To get us going, we need to do several bits of set up. First, we need
3277 	 * to use the knowledge about the actual hardware that we're using to
3278 	 * encode a bunch of different data:
3279 	 *
3280 	 *  o The set of register styles and extra hardware features that exist
3281 	 *    on the hardware platform.
3282 	 *  o The number of actual rules there are for the CCMs and UMCs.
3283 	 *  o How many actual things exist (DFs, etc.)
3284 	 *  o Useful fabric and instance IDs for all of the different UMC
3285 	 *    entries so we can actually talk to them.
3286 	 *
3287 	 * Only once we have all the above will we go dig into the actual data.
3288 	 */
3289 	umc = kmem_zalloc(sizeof (zen_umc_t), KM_SLEEP);
3290 	mutex_init(&umc->umc_nvl_lock, NULL, MUTEX_DRIVER, NULL);
3291 	umc->umc_family = chiprev_family(cpuid_getchiprev(CPU));
3292 	umc->umc_ndfs = amdzen_c_df_count();
3293 	umc->umc_dip = dip;
3294 
3295 	if (!zen_umc_identify(umc)) {
3296 		dev_err(dip, CE_WARN, "!encountered unsupported CPU");
3297 		goto err;
3298 	}
3299 
3300 	umc->umc_df_rev = amdzen_c_df_rev();
3301 	switch (umc->umc_df_rev) {
3302 	case DF_REV_2:
3303 	case DF_REV_3:
3304 	case DF_REV_3P5:
3305 	case DF_REV_4:
3306 		break;
3307 	default:
3308 		dev_err(dip, CE_WARN, "!encountered unknown DF revision: %x",
3309 		    umc->umc_df_rev);
3310 		goto err;
3311 	}
3312 
3313 	if ((ret = amdzen_c_df_fabric_decomp(&umc->umc_decomp)) != 0) {
3314 		dev_err(dip, CE_WARN, "!failed to get fabric decomposition: %d",
3315 		    ret);
3316 	}
3317 
3318 	umc->umc_tom = rdmsr(MSR_AMD_TOM);
3319 	umc->umc_tom2 = rdmsr(MSR_AMD_TOM2);
3320 
3321 	/*
3322 	 * For each DF, start by reading all of the data that we need from it.
3323 	 * This involves finding a target CCM, reading all of the rules,
3324 	 * ancillary settings, and related. Then we'll do a pass over all of the
3325 	 * actual UMC targets there.
3326 	 */
3327 	for (uint_t i = 0; i < umc->umc_ndfs; i++) {
3328 		if (amdzen_c_df_iter(i, ZEN_DF_TYPE_CCM_CPU,
3329 		    zen_umc_fill_ccm_cb, umc) < 0 ||
3330 		    amdzen_c_df_iter(i, ZEN_DF_TYPE_CS_UMC, zen_umc_fill_umc_cb,
3331 		    umc) != 0) {
3332 			goto err;
3333 		}
3334 	}
3335 
3336 	/*
3337 	 * Create a minor node for each df that we encounter.
3338 	 */
3339 	for (uint_t i = 0; i < umc->umc_ndfs; i++) {
3340 		int ret;
3341 		char minor[64];
3342 
3343 		(void) snprintf(minor, sizeof (minor), "mc-umc-%u", i);
3344 		if ((ret = ddi_create_minor_node(umc->umc_dip, minor, S_IFCHR,
3345 		    i, "ddi_mem_ctrl", 0)) != 0) {
3346 			dev_err(dip, CE_WARN, "!failed to create minor %s: %d",
3347 			    minor, ret);
3348 			goto err;
3349 		}
3350 	}
3351 
3352 	zen_umc = umc;
3353 	return (DDI_SUCCESS);
3354 
3355 err:
3356 	zen_umc_cleanup(umc);
3357 	return (DDI_FAILURE);
3358 }
3359 
3360 static int
3361 zen_umc_getinfo(dev_info_t *dip, ddi_info_cmd_t cmd, void *arg, void **resultp)
3362 {
3363 	zen_umc_t *umc;
3364 
3365 	if (zen_umc == NULL || zen_umc->umc_dip == NULL) {
3366 		return (DDI_FAILURE);
3367 	}
3368 	umc = zen_umc;
3369 
3370 	switch (cmd) {
3371 	case DDI_INFO_DEVT2DEVINFO:
3372 		*resultp = (void *)umc->umc_dip;
3373 		break;
3374 	case DDI_INFO_DEVT2INSTANCE:
3375 		*resultp = (void *)(uintptr_t)ddi_get_instance(
3376 		    umc->umc_dip);
3377 		break;
3378 	default:
3379 		return (DDI_FAILURE);
3380 	}
3381 	return (DDI_SUCCESS);
3382 }
3383 
3384 static int
3385 zen_umc_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
3386 {
3387 	zen_umc_t *umc;
3388 
3389 	if (cmd == DDI_SUSPEND) {
3390 		return (DDI_SUCCESS);
3391 	} else if (cmd != DDI_DETACH) {
3392 		return (DDI_FAILURE);
3393 	}
3394 
3395 	if (zen_umc == NULL) {
3396 		dev_err(dip, CE_WARN, "!asked to detach zen_umc, but it "
3397 		    "was never successfully attached");
3398 		return (DDI_FAILURE);
3399 	}
3400 
3401 	umc = zen_umc;
3402 	zen_umc = NULL;
3403 	zen_umc_cleanup(umc);
3404 	return (DDI_SUCCESS);
3405 }
3406 
3407 static struct cb_ops zen_umc_cb_ops = {
3408 	.cb_open = zen_umc_open,
3409 	.cb_close = zen_umc_close,
3410 	.cb_strategy = nodev,
3411 	.cb_print = nodev,
3412 	.cb_dump = nodev,
3413 	.cb_read = nodev,
3414 	.cb_write = nodev,
3415 	.cb_ioctl = zen_umc_ioctl,
3416 	.cb_devmap = nodev,
3417 	.cb_mmap = nodev,
3418 	.cb_segmap = nodev,
3419 	.cb_chpoll = nochpoll,
3420 	.cb_prop_op = ddi_prop_op,
3421 	.cb_flag = D_MP,
3422 	.cb_rev = CB_REV,
3423 	.cb_aread = nodev,
3424 	.cb_awrite = nodev
3425 };
3426 
3427 static struct dev_ops zen_umc_dev_ops = {
3428 	.devo_rev = DEVO_REV,
3429 	.devo_refcnt = 0,
3430 	.devo_getinfo = zen_umc_getinfo,
3431 	.devo_identify = nulldev,
3432 	.devo_probe = nulldev,
3433 	.devo_attach = zen_umc_attach,
3434 	.devo_detach = zen_umc_detach,
3435 	.devo_reset = nodev,
3436 	.devo_quiesce = ddi_quiesce_not_needed,
3437 	.devo_cb_ops = &zen_umc_cb_ops
3438 };
3439 
3440 static struct modldrv zen_umc_modldrv = {
3441 	.drv_modops = &mod_driverops,
3442 	.drv_linkinfo = "AMD Zen Unified Memory Controller",
3443 	.drv_dev_ops = &zen_umc_dev_ops
3444 };
3445 
3446 static struct modlinkage zen_umc_modlinkage = {
3447 	.ml_rev = MODREV_1,
3448 	.ml_linkage = { &zen_umc_modldrv, NULL }
3449 };
3450 
3451 int
3452 _init(void)
3453 {
3454 	return (mod_install(&zen_umc_modlinkage));
3455 }
3456 
3457 int
3458 _info(struct modinfo *modinfop)
3459 {
3460 	return (mod_info(&zen_umc_modlinkage, modinfop));
3461 }
3462 
3463 int
3464 _fini(void)
3465 {
3466 	return (mod_remove(&zen_umc_modlinkage));
3467 }
3468