xref: /illumos-gate/usr/src/uts/intel/io/acpica/osl.c (revision e86372a01d2d16a5dd4a64e144ed978ba17fe7dd)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  * Copyright 2018 Joyent, Inc.
26  * Copyright 2019 Western Digital Corporation
27  */
28 /*
29  * Copyright (c) 2009-2010, Intel Corporation.
30  * All rights reserved.
31  */
32 /*
33  * ACPI CA OSL for Solaris x86
34  */
35 
36 #include <sys/types.h>
37 #include <sys/kmem.h>
38 #include <sys/psm.h>
39 #include <sys/pci_cfgspace.h>
40 #include <sys/apic.h>
41 #include <sys/ddi.h>
42 #include <sys/sunddi.h>
43 #include <sys/sunndi.h>
44 #include <sys/pci.h>
45 #include <sys/kobj.h>
46 #include <sys/taskq.h>
47 #include <sys/strlog.h>
48 #include <sys/x86_archext.h>
49 #include <sys/note.h>
50 #include <sys/promif.h>
51 
52 #include <sys/acpi/accommon.h>
53 #include <sys/acpica.h>
54 
55 #define	MAX_DAT_FILE_SIZE	(64*1024)
56 
57 /* local functions */
58 static int CompressEisaID(char *np);
59 
60 static void scan_d2a_subtree(dev_info_t *dip, ACPI_HANDLE acpiobj, int bus);
61 static int acpica_query_bbn_problem(void);
62 static int acpica_find_pcibus(int busno, ACPI_HANDLE *rh);
63 static int acpica_eval_hid(ACPI_HANDLE dev, char *method, int *rint);
64 static ACPI_STATUS acpica_set_devinfo(ACPI_HANDLE, dev_info_t *);
65 static ACPI_STATUS acpica_unset_devinfo(ACPI_HANDLE);
66 static void acpica_devinfo_handler(ACPI_HANDLE, void *);
67 
68 /*
69  * Event queue vars
70  */
71 int acpica_eventq_init = 0;
72 ddi_taskq_t *osl_eventq[OSL_EC_BURST_HANDLER+1];
73 
74 /*
75  * Priorities relative to minclsyspri that each taskq
76  * run at; OSL_NOTIFY_HANDLER needs to run at a higher
77  * priority than OSL_GPE_HANDLER.  There's an implicit
78  * assumption that no priority here results in exceeding
79  * maxclsyspri.
80  * Note: these initializations need to match the order of
81  * ACPI_EXECUTE_TYPE.
82  */
83 int osl_eventq_pri_delta[OSL_EC_BURST_HANDLER+1] = {
84 	0,	/* OSL_GLOBAL_LOCK_HANDLER */
85 	2,	/* OSL_NOTIFY_HANDLER */
86 	0,	/* OSL_GPE_HANDLER */
87 	0,	/* OSL_DEBUGGER_THREAD */
88 	0,	/* OSL_EC_POLL_HANDLER */
89 	0	/* OSL_EC_BURST_HANDLER */
90 };
91 
92 /*
93  * Note, if you change this path, you need to update
94  * /boot/grub/filelist.ramdisk and pkg SUNWckr/prototype_i386
95  */
96 static char *acpi_table_path = "/boot/acpi/tables/";
97 
98 /* non-zero while scan_d2a_map() is working */
99 static int scanning_d2a_map = 0;
100 static int d2a_done = 0;
101 
102 /* features supported by ACPICA and ACPI device configuration. */
103 uint64_t acpica_core_features = ACPI_FEATURE_OSI_MODULE;
104 static uint64_t acpica_devcfg_features = 0;
105 
106 /* set by acpi_poweroff() in PSMs and appm_ioctl() in acpippm for S3 */
107 int acpica_use_safe_delay = 0;
108 
109 /* CPU mapping data */
110 struct cpu_map_item {
111 	processorid_t	cpu_id;
112 	UINT32		proc_id;
113 	UINT32		apic_id;
114 	ACPI_HANDLE	obj;
115 };
116 
117 kmutex_t cpu_map_lock;
118 static struct cpu_map_item **cpu_map = NULL;
119 static int cpu_map_count_max = 0;
120 static int cpu_map_count = 0;
121 static int cpu_map_built = 0;
122 
123 /*
124  * On systems with the uppc PSM only, acpica_map_cpu() won't be called at all.
125  * This flag is used to check for uppc-only systems by detecting whether
126  * acpica_map_cpu() has been called or not.
127  */
128 static int cpu_map_called = 0;
129 
130 static int acpi_has_broken_bbn = -1;
131 
132 /* buffer for AcpiOsVprintf() */
133 #define	ACPI_OSL_PR_BUFLEN	1024
134 static char *acpi_osl_pr_buffer = NULL;
135 static int acpi_osl_pr_buflen;
136 
137 #define	D2A_DEBUG
138 
139 /*
140  *
141  */
142 static void
143 discard_event_queues()
144 {
145 	int	i;
146 
147 	/*
148 	 * destroy event queues
149 	 */
150 	for (i = OSL_GLOBAL_LOCK_HANDLER; i <= OSL_EC_BURST_HANDLER; i++) {
151 		if (osl_eventq[i])
152 			ddi_taskq_destroy(osl_eventq[i]);
153 	}
154 }
155 
156 
157 /*
158  *
159  */
160 static ACPI_STATUS
161 init_event_queues()
162 {
163 	char	namebuf[32];
164 	int	i, error = 0;
165 
166 	/*
167 	 * Initialize event queues
168 	 */
169 
170 	/* Always allocate only 1 thread per queue to force FIFO execution */
171 	for (i = OSL_GLOBAL_LOCK_HANDLER; i <= OSL_EC_BURST_HANDLER; i++) {
172 		snprintf(namebuf, 32, "ACPI%d", i);
173 		osl_eventq[i] = ddi_taskq_create(NULL, namebuf, 1,
174 		    osl_eventq_pri_delta[i] + minclsyspri, 0);
175 		if (osl_eventq[i] == NULL)
176 			error++;
177 	}
178 
179 	if (error != 0) {
180 		discard_event_queues();
181 #ifdef	DEBUG
182 		cmn_err(CE_WARN, "!acpica: could not initialize event queues");
183 #endif
184 		return (AE_ERROR);
185 	}
186 
187 	acpica_eventq_init = 1;
188 	return (AE_OK);
189 }
190 
191 /*
192  * One-time initialization of OSL layer
193  */
194 ACPI_STATUS
195 AcpiOsInitialize(void)
196 {
197 	/*
198 	 * Allocate buffer for AcpiOsVprintf() here to avoid
199 	 * kmem_alloc()/kmem_free() at high PIL
200 	 */
201 	acpi_osl_pr_buffer = kmem_alloc(ACPI_OSL_PR_BUFLEN, KM_SLEEP);
202 	if (acpi_osl_pr_buffer != NULL)
203 		acpi_osl_pr_buflen = ACPI_OSL_PR_BUFLEN;
204 
205 	return (AE_OK);
206 }
207 
208 /*
209  * One-time shut-down of OSL layer
210  */
211 ACPI_STATUS
212 AcpiOsTerminate(void)
213 {
214 
215 	if (acpi_osl_pr_buffer != NULL)
216 		kmem_free(acpi_osl_pr_buffer, acpi_osl_pr_buflen);
217 
218 	discard_event_queues();
219 	return (AE_OK);
220 }
221 
222 
223 ACPI_PHYSICAL_ADDRESS
224 AcpiOsGetRootPointer()
225 {
226 	ACPI_PHYSICAL_ADDRESS Address;
227 
228 	/*
229 	 * For EFI firmware, the root pointer is defined in EFI systab.
230 	 * The boot code process the table and put the physical address
231 	 * in the acpi-root-tab property.
232 	 */
233 	Address = ddi_prop_get_int64(DDI_DEV_T_ANY, ddi_root_node(),
234 	    DDI_PROP_DONTPASS, "acpi-root-tab", 0);
235 
236 	if ((Address == 0) && ACPI_FAILURE(AcpiFindRootPointer(&Address)))
237 		Address = 0;
238 
239 	return (Address);
240 }
241 
242 /*ARGSUSED*/
243 ACPI_STATUS
244 AcpiOsPredefinedOverride(const ACPI_PREDEFINED_NAMES *InitVal,
245     ACPI_STRING *NewVal)
246 {
247 
248 	*NewVal = 0;
249 	return (AE_OK);
250 }
251 
252 static void
253 acpica_strncpy(char *dest, const char *src, int len)
254 {
255 
256 	/*LINTED*/
257 	while ((*dest++ = *src++) && (--len > 0))
258 		/* copy the string */;
259 	*dest = '\0';
260 }
261 
262 ACPI_STATUS
263 AcpiOsTableOverride(ACPI_TABLE_HEADER *ExistingTable,
264     ACPI_TABLE_HEADER **NewTable)
265 {
266 	char signature[5];
267 	char oemid[7];
268 	char oemtableid[9];
269 	struct _buf *file;
270 	char *buf1, *buf2;
271 	int count;
272 	char acpi_table_loc[128];
273 
274 	acpica_strncpy(signature, ExistingTable->Signature, 4);
275 	acpica_strncpy(oemid, ExistingTable->OemId, 6);
276 	acpica_strncpy(oemtableid, ExistingTable->OemTableId, 8);
277 
278 	/* File name format is "signature_oemid_oemtableid.dat" */
279 	(void) strcpy(acpi_table_loc, acpi_table_path);
280 	(void) strcat(acpi_table_loc, signature); /* for example, DSDT */
281 	(void) strcat(acpi_table_loc, "_");
282 	(void) strcat(acpi_table_loc, oemid); /* for example, IntelR */
283 	(void) strcat(acpi_table_loc, "_");
284 	(void) strcat(acpi_table_loc, oemtableid); /* for example, AWRDACPI */
285 	(void) strcat(acpi_table_loc, ".dat");
286 
287 	file = kobj_open_file(acpi_table_loc);
288 	if (file == (struct _buf *)-1) {
289 		*NewTable = 0;
290 		return (AE_OK);
291 	} else {
292 		buf1 = (char *)kmem_alloc(MAX_DAT_FILE_SIZE, KM_SLEEP);
293 		count = kobj_read_file(file, buf1, MAX_DAT_FILE_SIZE-1, 0);
294 		if (count >= MAX_DAT_FILE_SIZE) {
295 			cmn_err(CE_WARN, "!acpica: table %s file size too big",
296 			    acpi_table_loc);
297 			*NewTable = 0;
298 		} else {
299 			buf2 = (char *)kmem_alloc(count, KM_SLEEP);
300 			(void) memcpy(buf2, buf1, count);
301 			*NewTable = (ACPI_TABLE_HEADER *)buf2;
302 			cmn_err(CE_NOTE, "!acpica: replacing table: %s",
303 			    acpi_table_loc);
304 		}
305 	}
306 	kobj_close_file(file);
307 	kmem_free(buf1, MAX_DAT_FILE_SIZE);
308 
309 	return (AE_OK);
310 }
311 
312 ACPI_STATUS
313 AcpiOsPhysicalTableOverride(ACPI_TABLE_HEADER *ExistingTable,
314     ACPI_PHYSICAL_ADDRESS *NewAddress, UINT32 *NewTableLength)
315 {
316 	return (AE_SUPPORT);
317 }
318 
319 /*
320  * ACPI semaphore implementation
321  */
322 typedef struct {
323 	kmutex_t	mutex;
324 	kcondvar_t	cv;
325 	uint32_t	available;
326 	uint32_t	initial;
327 	uint32_t	maximum;
328 } acpi_sema_t;
329 
330 /*
331  *
332  */
333 void
334 acpi_sema_init(acpi_sema_t *sp, unsigned max, unsigned count)
335 {
336 	mutex_init(&sp->mutex, NULL, MUTEX_DRIVER, NULL);
337 	cv_init(&sp->cv, NULL, CV_DRIVER, NULL);
338 	/* no need to enter mutex here at creation */
339 	sp->available = count;
340 	sp->initial = count;
341 	sp->maximum = max;
342 }
343 
344 /*
345  *
346  */
347 void
348 acpi_sema_destroy(acpi_sema_t *sp)
349 {
350 
351 	cv_destroy(&sp->cv);
352 	mutex_destroy(&sp->mutex);
353 }
354 
355 /*
356  *
357  */
358 ACPI_STATUS
359 acpi_sema_p(acpi_sema_t *sp, unsigned count, uint16_t wait_time)
360 {
361 	ACPI_STATUS rv = AE_OK;
362 	clock_t deadline;
363 
364 	mutex_enter(&sp->mutex);
365 
366 	if (sp->available >= count) {
367 		/*
368 		 * Enough units available, no blocking
369 		 */
370 		sp->available -= count;
371 		mutex_exit(&sp->mutex);
372 		return (rv);
373 	} else if (wait_time == 0) {
374 		/*
375 		 * Not enough units available and timeout
376 		 * specifies no blocking
377 		 */
378 		rv = AE_TIME;
379 		mutex_exit(&sp->mutex);
380 		return (rv);
381 	}
382 
383 	/*
384 	 * Not enough units available and timeout specifies waiting
385 	 */
386 	if (wait_time != ACPI_WAIT_FOREVER)
387 		deadline = ddi_get_lbolt() +
388 		    (clock_t)drv_usectohz(wait_time * 1000);
389 
390 	do {
391 		if (wait_time == ACPI_WAIT_FOREVER)
392 			cv_wait(&sp->cv, &sp->mutex);
393 		else if (cv_timedwait(&sp->cv, &sp->mutex, deadline) < 0) {
394 			rv = AE_TIME;
395 			break;
396 		}
397 	} while (sp->available < count);
398 
399 	/* if we dropped out of the wait with AE_OK, we got the units */
400 	if (rv == AE_OK)
401 		sp->available -= count;
402 
403 	mutex_exit(&sp->mutex);
404 	return (rv);
405 }
406 
407 /*
408  *
409  */
410 void
411 acpi_sema_v(acpi_sema_t *sp, unsigned count)
412 {
413 	mutex_enter(&sp->mutex);
414 	sp->available += count;
415 	cv_broadcast(&sp->cv);
416 	mutex_exit(&sp->mutex);
417 }
418 
419 
420 ACPI_STATUS
421 AcpiOsCreateSemaphore(UINT32 MaxUnits, UINT32 InitialUnits,
422     ACPI_HANDLE *OutHandle)
423 {
424 	acpi_sema_t *sp;
425 
426 	if ((OutHandle == NULL) || (InitialUnits > MaxUnits))
427 		return (AE_BAD_PARAMETER);
428 
429 	sp = (acpi_sema_t *)kmem_alloc(sizeof (acpi_sema_t), KM_SLEEP);
430 	acpi_sema_init(sp, MaxUnits, InitialUnits);
431 	*OutHandle = (ACPI_HANDLE)sp;
432 	return (AE_OK);
433 }
434 
435 
436 ACPI_STATUS
437 AcpiOsDeleteSemaphore(ACPI_HANDLE Handle)
438 {
439 
440 	if (Handle == NULL)
441 		return (AE_BAD_PARAMETER);
442 
443 	acpi_sema_destroy((acpi_sema_t *)Handle);
444 	kmem_free((void *)Handle, sizeof (acpi_sema_t));
445 	return (AE_OK);
446 }
447 
448 ACPI_STATUS
449 AcpiOsWaitSemaphore(ACPI_HANDLE Handle, UINT32 Units, UINT16 Timeout)
450 {
451 
452 	if ((Handle == NULL) || (Units < 1))
453 		return (AE_BAD_PARAMETER);
454 
455 	return (acpi_sema_p((acpi_sema_t *)Handle, Units, Timeout));
456 }
457 
458 ACPI_STATUS
459 AcpiOsSignalSemaphore(ACPI_HANDLE Handle, UINT32 Units)
460 {
461 
462 	if ((Handle == NULL) || (Units < 1))
463 		return (AE_BAD_PARAMETER);
464 
465 	acpi_sema_v((acpi_sema_t *)Handle, Units);
466 	return (AE_OK);
467 }
468 
469 ACPI_STATUS
470 AcpiOsCreateLock(ACPI_HANDLE *OutHandle)
471 {
472 	kmutex_t *mp;
473 
474 	if (OutHandle == NULL)
475 		return (AE_BAD_PARAMETER);
476 
477 	mp = (kmutex_t *)kmem_alloc(sizeof (kmutex_t), KM_SLEEP);
478 	mutex_init(mp, NULL, MUTEX_DRIVER, NULL);
479 	*OutHandle = (ACPI_HANDLE)mp;
480 	return (AE_OK);
481 }
482 
483 void
484 AcpiOsDeleteLock(ACPI_HANDLE Handle)
485 {
486 
487 	if (Handle == NULL)
488 		return;
489 
490 	mutex_destroy((kmutex_t *)Handle);
491 	kmem_free((void *)Handle, sizeof (kmutex_t));
492 }
493 
494 ACPI_CPU_FLAGS
495 AcpiOsAcquireLock(ACPI_HANDLE Handle)
496 {
497 
498 
499 	if (Handle == NULL)
500 		return (AE_BAD_PARAMETER);
501 
502 	if (curthread == CPU->cpu_idle_thread) {
503 		while (!mutex_tryenter((kmutex_t *)Handle))
504 			/* spin */;
505 	} else
506 		mutex_enter((kmutex_t *)Handle);
507 	return (AE_OK);
508 }
509 
510 void
511 AcpiOsReleaseLock(ACPI_HANDLE Handle, ACPI_CPU_FLAGS Flags)
512 {
513 	_NOTE(ARGUNUSED(Flags))
514 
515 	mutex_exit((kmutex_t *)Handle);
516 }
517 
518 
519 void *
520 AcpiOsAllocate(ACPI_SIZE Size)
521 {
522 	ACPI_SIZE *tmp_ptr;
523 
524 	Size += sizeof (Size);
525 	tmp_ptr = (ACPI_SIZE *)kmem_zalloc(Size, KM_SLEEP);
526 	*tmp_ptr++ = Size;
527 	return (tmp_ptr);
528 }
529 
530 void
531 AcpiOsFree(void *Memory)
532 {
533 	ACPI_SIZE	size, *tmp_ptr;
534 
535 	tmp_ptr = (ACPI_SIZE *)Memory;
536 	tmp_ptr -= 1;
537 	size = *tmp_ptr;
538 	kmem_free(tmp_ptr, size);
539 }
540 
541 static int napics_found;	/* number of ioapic addresses in array */
542 static ACPI_PHYSICAL_ADDRESS ioapic_paddr[MAX_IO_APIC];
543 static ACPI_TABLE_MADT *acpi_mapic_dtp = NULL;
544 static void *dummy_ioapicadr;
545 
546 void
547 acpica_find_ioapics(void)
548 {
549 	int			madt_seen, madt_size;
550 	ACPI_SUBTABLE_HEADER		*ap;
551 	ACPI_MADT_IO_APIC		*mia;
552 
553 	if (acpi_mapic_dtp != NULL)
554 		return;	/* already parsed table */
555 	if (AcpiGetTable(ACPI_SIG_MADT, 1,
556 	    (ACPI_TABLE_HEADER **) &acpi_mapic_dtp) != AE_OK)
557 		return;
558 
559 	napics_found = 0;
560 
561 	/*
562 	 * Search the MADT for ioapics
563 	 */
564 	ap = (ACPI_SUBTABLE_HEADER *) (acpi_mapic_dtp + 1);
565 	madt_size = acpi_mapic_dtp->Header.Length;
566 	madt_seen = sizeof (*acpi_mapic_dtp);
567 
568 	while (madt_seen < madt_size) {
569 
570 		switch (ap->Type) {
571 		case ACPI_MADT_TYPE_IO_APIC:
572 			mia = (ACPI_MADT_IO_APIC *) ap;
573 			if (napics_found < MAX_IO_APIC) {
574 				ioapic_paddr[napics_found++] =
575 				    (ACPI_PHYSICAL_ADDRESS)
576 				    (mia->Address & PAGEMASK);
577 			}
578 			break;
579 
580 		default:
581 			break;
582 		}
583 
584 		/* advance to next entry */
585 		madt_seen += ap->Length;
586 		ap = (ACPI_SUBTABLE_HEADER *)(((char *)ap) + ap->Length);
587 	}
588 	if (dummy_ioapicadr == NULL)
589 		dummy_ioapicadr = kmem_zalloc(PAGESIZE, KM_SLEEP);
590 }
591 
592 
593 void *
594 AcpiOsMapMemory(ACPI_PHYSICAL_ADDRESS PhysicalAddress, ACPI_SIZE Size)
595 {
596 	int	i;
597 
598 	/*
599 	 * If the iopaic address table is populated, check if trying
600 	 * to access an ioapic.  Instead, return a pointer to a dummy ioapic.
601 	 */
602 	for (i = 0; i < napics_found; i++) {
603 		if ((PhysicalAddress & PAGEMASK) == ioapic_paddr[i])
604 			return (dummy_ioapicadr);
605 	}
606 	/* FUTUREWORK: test PhysicalAddress for > 32 bits */
607 	return (psm_map_new((paddr_t)PhysicalAddress,
608 	    (size_t)Size, PSM_PROT_WRITE | PSM_PROT_READ));
609 }
610 
611 void
612 AcpiOsUnmapMemory(void *LogicalAddress, ACPI_SIZE Size)
613 {
614 	/*
615 	 * Check if trying to unmap dummy ioapic address.
616 	 */
617 	if (LogicalAddress == dummy_ioapicadr)
618 		return;
619 
620 	psm_unmap((caddr_t)LogicalAddress, (size_t)Size);
621 }
622 
623 /*ARGSUSED*/
624 ACPI_STATUS
625 AcpiOsGetPhysicalAddress(void *LogicalAddress,
626     ACPI_PHYSICAL_ADDRESS *PhysicalAddress)
627 {
628 
629 	/* UNIMPLEMENTED: not invoked by ACPI CA code */
630 	return (AE_NOT_IMPLEMENTED);
631 }
632 
633 
634 ACPI_OSD_HANDLER acpi_isr;
635 void *acpi_isr_context;
636 
637 uint_t
638 acpi_wrapper_isr(char *arg, char *arg1 __unused)
639 {
640 	_NOTE(ARGUNUSED(arg))
641 
642 	int	status;
643 
644 	status = (*acpi_isr)(acpi_isr_context);
645 
646 	if (status == ACPI_INTERRUPT_HANDLED) {
647 		return (DDI_INTR_CLAIMED);
648 	} else {
649 		return (DDI_INTR_UNCLAIMED);
650 	}
651 }
652 
653 static int acpi_intr_hooked = 0;
654 
655 ACPI_STATUS
656 AcpiOsInstallInterruptHandler(UINT32 InterruptNumber,
657     ACPI_OSD_HANDLER ServiceRoutine,
658     void *Context)
659 {
660 	_NOTE(ARGUNUSED(InterruptNumber))
661 
662 	int retval;
663 	int sci_vect;
664 	iflag_t sci_flags;
665 
666 	acpi_isr = ServiceRoutine;
667 	acpi_isr_context = Context;
668 
669 	/*
670 	 * Get SCI (adjusted for PIC/APIC mode if necessary)
671 	 */
672 	if (acpica_get_sci(&sci_vect, &sci_flags) != AE_OK) {
673 		return (AE_ERROR);
674 	}
675 
676 #ifdef	DEBUG
677 	cmn_err(CE_NOTE, "!acpica: attaching SCI %d", sci_vect);
678 #endif
679 
680 	retval = add_avintr(NULL, SCI_IPL, acpi_wrapper_isr,
681 	    "ACPI SCI", sci_vect, NULL, NULL, NULL, NULL);
682 	if (retval) {
683 		acpi_intr_hooked = 1;
684 		return (AE_OK);
685 	} else
686 		return (AE_BAD_PARAMETER);
687 }
688 
689 ACPI_STATUS
690 AcpiOsRemoveInterruptHandler(UINT32 InterruptNumber,
691     ACPI_OSD_HANDLER ServiceRoutine)
692 {
693 	_NOTE(ARGUNUSED(ServiceRoutine))
694 
695 #ifdef	DEBUG
696 	cmn_err(CE_NOTE, "!acpica: detaching SCI %d", InterruptNumber);
697 #endif
698 	if (acpi_intr_hooked) {
699 		rem_avintr(NULL, LOCK_LEVEL - 1, acpi_wrapper_isr,
700 		    InterruptNumber);
701 		acpi_intr_hooked = 0;
702 	}
703 	return (AE_OK);
704 }
705 
706 
707 ACPI_THREAD_ID
708 AcpiOsGetThreadId(void)
709 {
710 	/*
711 	 * ACPI CA doesn't care what actual value is returned as long
712 	 * as it is non-zero and unique to each existing thread.
713 	 * ACPI CA assumes that thread ID is castable to a pointer,
714 	 * so we use the current thread pointer.
715 	 */
716 	return (ACPI_CAST_PTHREAD_T((uintptr_t)curthread));
717 }
718 
719 /*
720  *
721  */
722 ACPI_STATUS
723 AcpiOsExecute(ACPI_EXECUTE_TYPE Type, ACPI_OSD_EXEC_CALLBACK  Function,
724     void *Context)
725 {
726 
727 	if (!acpica_eventq_init) {
728 		/*
729 		 * Create taskqs for event handling
730 		 */
731 		if (init_event_queues() != AE_OK)
732 			return (AE_ERROR);
733 	}
734 
735 	if (ddi_taskq_dispatch(osl_eventq[Type], Function, Context,
736 	    DDI_NOSLEEP) == DDI_FAILURE) {
737 #ifdef	DEBUG
738 		cmn_err(CE_WARN, "!acpica: unable to dispatch event");
739 #endif
740 		return (AE_ERROR);
741 	}
742 	return (AE_OK);
743 
744 }
745 
746 
747 void
748 AcpiOsWaitEventsComplete(void)
749 {
750 	int	i;
751 
752 	/*
753 	 * Wait for event queues to be empty.
754 	 */
755 	for (i = OSL_GLOBAL_LOCK_HANDLER; i <= OSL_EC_BURST_HANDLER; i++) {
756 		if (osl_eventq[i] != NULL) {
757 			ddi_taskq_wait(osl_eventq[i]);
758 		}
759 	}
760 }
761 
762 void
763 AcpiOsSleep(ACPI_INTEGER Milliseconds)
764 {
765 	/*
766 	 * During kernel startup, before the first tick interrupt
767 	 * has taken place, we can't call delay; very late in
768 	 * kernel shutdown or suspend/resume, clock interrupts
769 	 * are blocked, so delay doesn't work then either.
770 	 * So we busy wait if lbolt == 0 (kernel startup)
771 	 * or if acpica_use_safe_delay has been set to a
772 	 * non-zero value.
773 	 */
774 	if ((ddi_get_lbolt() == 0) || acpica_use_safe_delay)
775 		drv_usecwait(Milliseconds * 1000);
776 	else
777 		delay(drv_usectohz(Milliseconds * 1000));
778 }
779 
780 void
781 AcpiOsStall(UINT32 Microseconds)
782 {
783 	drv_usecwait(Microseconds);
784 }
785 
786 
787 /*
788  * Implementation of "Windows 2001" compatible I/O permission map
789  *
790  */
791 #define	OSL_IO_NONE	(0)
792 #define	OSL_IO_READ	(1<<0)
793 #define	OSL_IO_WRITE	(1<<1)
794 #define	OSL_IO_RW	(OSL_IO_READ | OSL_IO_WRITE)
795 #define	OSL_IO_TERM	(1<<2)
796 #define	OSL_IO_DEFAULT	OSL_IO_RW
797 
798 static struct io_perm  {
799 	ACPI_IO_ADDRESS	low;
800 	ACPI_IO_ADDRESS	high;
801 	uint8_t		perm;
802 } osl_io_perm[] = {
803 	{ 0xcf8, 0xd00, OSL_IO_TERM | OSL_IO_RW}
804 };
805 
806 
807 /*
808  *
809  */
810 static struct io_perm *
811 osl_io_find_perm(ACPI_IO_ADDRESS addr)
812 {
813 	struct io_perm *p;
814 
815 	p = osl_io_perm;
816 	while (p != NULL) {
817 		if ((p->low <= addr) && (addr <= p->high))
818 			break;
819 		p = (p->perm & OSL_IO_TERM) ? NULL : p+1;
820 	}
821 
822 	return (p);
823 }
824 
825 /*
826  *
827  */
828 ACPI_STATUS
829 AcpiOsReadPort(ACPI_IO_ADDRESS Address, UINT32 *Value, UINT32 Width)
830 {
831 	struct io_perm *p;
832 
833 	/* verify permission */
834 	p = osl_io_find_perm(Address);
835 	if (p && (p->perm & OSL_IO_READ) == 0) {
836 		cmn_err(CE_WARN, "!AcpiOsReadPort: %lx %u not permitted",
837 		    (long)Address, Width);
838 		*Value = 0xffffffff;
839 		return (AE_ERROR);
840 	}
841 
842 	switch (Width) {
843 	case 8:
844 		*Value = inb(Address);
845 		break;
846 	case 16:
847 		*Value = inw(Address);
848 		break;
849 	case 32:
850 		*Value = inl(Address);
851 		break;
852 	default:
853 		cmn_err(CE_WARN, "!AcpiOsReadPort: %lx %u failed",
854 		    (long)Address, Width);
855 		return (AE_BAD_PARAMETER);
856 	}
857 	return (AE_OK);
858 }
859 
860 ACPI_STATUS
861 AcpiOsWritePort(ACPI_IO_ADDRESS Address, UINT32 Value, UINT32 Width)
862 {
863 	struct io_perm *p;
864 
865 	/* verify permission */
866 	p = osl_io_find_perm(Address);
867 	if (p && (p->perm & OSL_IO_WRITE) == 0) {
868 		cmn_err(CE_WARN, "!AcpiOsWritePort: %lx %u not permitted",
869 		    (long)Address, Width);
870 		return (AE_ERROR);
871 	}
872 
873 	switch (Width) {
874 	case 8:
875 		outb(Address, Value);
876 		break;
877 	case 16:
878 		outw(Address, Value);
879 		break;
880 	case 32:
881 		outl(Address, Value);
882 		break;
883 	default:
884 		cmn_err(CE_WARN, "!AcpiOsWritePort: %lx %u failed",
885 		    (long)Address, Width);
886 		return (AE_BAD_PARAMETER);
887 	}
888 	return (AE_OK);
889 }
890 
891 
892 /*
893  *
894  */
895 
896 #define	OSL_RW(ptr, val, type, rw) \
897 	{ if (rw) *((type *)(ptr)) = *((type *) val); \
898 	    else *((type *) val) = *((type *)(ptr)); }
899 
900 
901 static void
902 osl_rw_memory(ACPI_PHYSICAL_ADDRESS Address, UINT64 *Value,
903     UINT32 Width, int write)
904 {
905 	size_t	maplen = Width / 8;
906 	caddr_t	ptr;
907 
908 	ptr = psm_map_new((paddr_t)Address, maplen,
909 	    PSM_PROT_WRITE | PSM_PROT_READ);
910 
911 	switch (maplen) {
912 	case 1:
913 		OSL_RW(ptr, Value, uint8_t, write);
914 		break;
915 	case 2:
916 		OSL_RW(ptr, Value, uint16_t, write);
917 		break;
918 	case 4:
919 		OSL_RW(ptr, Value, uint32_t, write);
920 		break;
921 	case 8:
922 		OSL_RW(ptr, Value, uint64_t, write);
923 		break;
924 	default:
925 		cmn_err(CE_WARN, "!osl_rw_memory: invalid size %d",
926 		    Width);
927 		break;
928 	}
929 
930 	psm_unmap(ptr, maplen);
931 }
932 
933 ACPI_STATUS
934 AcpiOsReadMemory(ACPI_PHYSICAL_ADDRESS Address,
935     UINT64 *Value, UINT32 Width)
936 {
937 	osl_rw_memory(Address, Value, Width, 0);
938 	return (AE_OK);
939 }
940 
941 ACPI_STATUS
942 AcpiOsWriteMemory(ACPI_PHYSICAL_ADDRESS Address,
943     UINT64 Value, UINT32 Width)
944 {
945 	osl_rw_memory(Address, &Value, Width, 1);
946 	return (AE_OK);
947 }
948 
949 
950 ACPI_STATUS
951 AcpiOsReadPciConfiguration(ACPI_PCI_ID *PciId, UINT32 Reg,
952     UINT64 *Value, UINT32 Width)
953 {
954 
955 	switch (Width) {
956 	case 8:
957 		*Value = (UINT64)(*pci_getb_func)
958 		    (PciId->Bus, PciId->Device, PciId->Function, Reg);
959 		break;
960 	case 16:
961 		*Value = (UINT64)(*pci_getw_func)
962 		    (PciId->Bus, PciId->Device, PciId->Function, Reg);
963 		break;
964 	case 32:
965 		*Value = (UINT64)(*pci_getl_func)
966 		    (PciId->Bus, PciId->Device, PciId->Function, Reg);
967 		break;
968 	case 64:
969 	default:
970 		cmn_err(CE_WARN, "!AcpiOsReadPciConfiguration: %x %u failed",
971 		    Reg, Width);
972 		return (AE_BAD_PARAMETER);
973 	}
974 	return (AE_OK);
975 }
976 
977 /*
978  *
979  */
980 int acpica_write_pci_config_ok = 1;
981 
982 ACPI_STATUS
983 AcpiOsWritePciConfiguration(ACPI_PCI_ID *PciId, UINT32 Reg,
984     UINT64 Value, UINT32 Width)
985 {
986 
987 	if (!acpica_write_pci_config_ok) {
988 		cmn_err(CE_NOTE, "!write to PCI cfg %x/%x/%x %x"
989 		    " %lx %d not permitted", PciId->Bus, PciId->Device,
990 		    PciId->Function, Reg, (long)Value, Width);
991 		return (AE_OK);
992 	}
993 
994 	switch (Width) {
995 	case 8:
996 		(*pci_putb_func)(PciId->Bus, PciId->Device, PciId->Function,
997 		    Reg, (uint8_t)Value);
998 		break;
999 	case 16:
1000 		(*pci_putw_func)(PciId->Bus, PciId->Device, PciId->Function,
1001 		    Reg, (uint16_t)Value);
1002 		break;
1003 	case 32:
1004 		(*pci_putl_func)(PciId->Bus, PciId->Device, PciId->Function,
1005 		    Reg, (uint32_t)Value);
1006 		break;
1007 	case 64:
1008 	default:
1009 		cmn_err(CE_WARN, "!AcpiOsWritePciConfiguration: %x %u failed",
1010 		    Reg, Width);
1011 		return (AE_BAD_PARAMETER);
1012 	}
1013 	return (AE_OK);
1014 }
1015 
1016 /*
1017  * Called with ACPI_HANDLEs for both a PCI Config Space
1018  * OpRegion and (what ACPI CA thinks is) the PCI device
1019  * to which this ConfigSpace OpRegion belongs.
1020  *
1021  * ACPI CA uses _BBN and _ADR objects to determine the default
1022  * values for bus, segment, device and function; anything ACPI CA
1023  * can't figure out from the ACPI tables will be 0.  One very
1024  * old 32-bit x86 system is known to have broken _BBN; this is
1025  * not addressed here.
1026  *
1027  * Some BIOSes implement _BBN() by reading PCI config space
1028  * on bus #0 - which means that we'll recurse when we attempt
1029  * to create the devinfo-to-ACPI map.  If Derive is called during
1030  * scan_d2a_map, we don't translate the bus # and return.
1031  *
1032  * We get the parent of the OpRegion, which must be a PCI
1033  * node, fetch the associated devinfo node and snag the
1034  * b/d/f from it.
1035  */
1036 void
1037 AcpiOsDerivePciId(ACPI_HANDLE rhandle, ACPI_HANDLE chandle,
1038     ACPI_PCI_ID **PciId)
1039 {
1040 	ACPI_HANDLE handle;
1041 	dev_info_t *dip;
1042 	int bus, device, func, devfn;
1043 
1044 	/*
1045 	 * See above - avoid recursing during scanning_d2a_map.
1046 	 */
1047 	if (scanning_d2a_map)
1048 		return;
1049 
1050 	/*
1051 	 * Get the OpRegion's parent
1052 	 */
1053 	if (AcpiGetParent(chandle, &handle) != AE_OK)
1054 		return;
1055 
1056 	/*
1057 	 * If we've mapped the ACPI node to the devinfo
1058 	 * tree, use the devinfo reg property
1059 	 */
1060 	if (ACPI_SUCCESS(acpica_get_devinfo(handle, &dip)) &&
1061 	    (acpica_get_bdf(dip, &bus, &device, &func) >= 0)) {
1062 		(*PciId)->Bus = bus;
1063 		(*PciId)->Device = device;
1064 		(*PciId)->Function = func;
1065 	}
1066 }
1067 
1068 
1069 /*ARGSUSED*/
1070 BOOLEAN
1071 AcpiOsReadable(void *Pointer, ACPI_SIZE Length)
1072 {
1073 
1074 	/* Always says yes; all mapped memory assumed readable */
1075 	return (1);
1076 }
1077 
1078 /*ARGSUSED*/
1079 BOOLEAN
1080 AcpiOsWritable(void *Pointer, ACPI_SIZE Length)
1081 {
1082 
1083 	/* Always says yes; all mapped memory assumed writable */
1084 	return (1);
1085 }
1086 
1087 UINT64
1088 AcpiOsGetTimer(void)
1089 {
1090 	/* gethrtime() returns 1nS resolution; convert to 100nS granules */
1091 	return ((gethrtime() + 50) / 100);
1092 }
1093 
1094 static struct AcpiOSIFeature_s {
1095 	uint64_t	control_flag;
1096 	const char	*feature_name;
1097 } AcpiOSIFeatures[] = {
1098 	{ ACPI_FEATURE_OSI_MODULE,	"Module Device" },
1099 	{ 0,				"Processor Device" }
1100 };
1101 
1102 /*ARGSUSED*/
1103 ACPI_STATUS
1104 AcpiOsValidateInterface(char *feature)
1105 {
1106 	int i;
1107 
1108 	ASSERT(feature != NULL);
1109 	for (i = 0; i < sizeof (AcpiOSIFeatures) / sizeof (AcpiOSIFeatures[0]);
1110 	    i++) {
1111 		if (strcmp(feature, AcpiOSIFeatures[i].feature_name) != 0) {
1112 			continue;
1113 		}
1114 		/* Check whether required core features are available. */
1115 		if (AcpiOSIFeatures[i].control_flag != 0 &&
1116 		    acpica_get_core_feature(AcpiOSIFeatures[i].control_flag) !=
1117 		    AcpiOSIFeatures[i].control_flag) {
1118 			break;
1119 		}
1120 		/* Feature supported. */
1121 		return (AE_OK);
1122 	}
1123 
1124 	return (AE_SUPPORT);
1125 }
1126 
1127 /*ARGSUSED*/
1128 ACPI_STATUS
1129 AcpiOsValidateAddress(UINT8 spaceid, ACPI_PHYSICAL_ADDRESS addr,
1130     ACPI_SIZE length)
1131 {
1132 	return (AE_OK);
1133 }
1134 
1135 ACPI_STATUS
1136 AcpiOsSignal(UINT32 Function, void *Info)
1137 {
1138 	_NOTE(ARGUNUSED(Function, Info))
1139 
1140 	/* FUTUREWORK: debugger support */
1141 
1142 	cmn_err(CE_NOTE, "!OsSignal unimplemented");
1143 	return (AE_OK);
1144 }
1145 
1146 void ACPI_INTERNAL_VAR_XFACE
1147 AcpiOsPrintf(const char *Format, ...)
1148 {
1149 	va_list ap;
1150 
1151 	va_start(ap, Format);
1152 	AcpiOsVprintf(Format, ap);
1153 	va_end(ap);
1154 }
1155 
1156 /*ARGSUSED*/
1157 ACPI_STATUS
1158 AcpiOsEnterSleep(UINT8 SleepState, UINT32 Rega, UINT32 Regb)
1159 {
1160 	return (AE_OK);
1161 }
1162 
1163 /*
1164  * When != 0, sends output to console
1165  * Patchable with kmdb or /etc/system.
1166  */
1167 int acpica_console_out = 0;
1168 
1169 #define	ACPICA_OUTBUF_LEN	160
1170 char	acpica_outbuf[ACPICA_OUTBUF_LEN];
1171 int	acpica_outbuf_offset;
1172 
1173 /*
1174  *
1175  */
1176 static void
1177 acpica_pr_buf(char *buf)
1178 {
1179 	char c, *bufp, *outp;
1180 	int	out_remaining;
1181 
1182 	/*
1183 	 * copy the supplied buffer into the output buffer
1184 	 * when we hit a '\n' or overflow the output buffer,
1185 	 * output and reset the output buffer
1186 	 */
1187 	bufp = buf;
1188 	outp = acpica_outbuf + acpica_outbuf_offset;
1189 	out_remaining = ACPICA_OUTBUF_LEN - acpica_outbuf_offset - 1;
1190 	while (c = *bufp++) {
1191 		*outp++ = c;
1192 		if (c == '\n' || --out_remaining == 0) {
1193 			*outp = '\0';
1194 			switch (acpica_console_out) {
1195 			case 1:
1196 				printf(acpica_outbuf);
1197 				break;
1198 			case 2:
1199 				prom_printf(acpica_outbuf);
1200 				break;
1201 			case 0:
1202 			default:
1203 				(void) strlog(0, 0, 0,
1204 				    SL_CONSOLE | SL_NOTE | SL_LOGONLY,
1205 				    acpica_outbuf);
1206 				break;
1207 			}
1208 			acpica_outbuf_offset = 0;
1209 			outp = acpica_outbuf;
1210 			out_remaining = ACPICA_OUTBUF_LEN - 1;
1211 		}
1212 	}
1213 
1214 	acpica_outbuf_offset = outp - acpica_outbuf;
1215 }
1216 
1217 void
1218 AcpiOsVprintf(const char *Format, va_list Args)
1219 {
1220 
1221 	/*
1222 	 * If AcpiOsInitialize() failed to allocate a string buffer,
1223 	 * resort to vprintf().
1224 	 */
1225 	if (acpi_osl_pr_buffer == NULL) {
1226 		vprintf(Format, Args);
1227 		return;
1228 	}
1229 
1230 	/*
1231 	 * It is possible that a very long debug output statement will
1232 	 * be truncated; this is silently ignored.
1233 	 */
1234 	(void) vsnprintf(acpi_osl_pr_buffer, acpi_osl_pr_buflen, Format, Args);
1235 	acpica_pr_buf(acpi_osl_pr_buffer);
1236 }
1237 
1238 void
1239 AcpiOsRedirectOutput(void *Destination)
1240 {
1241 	_NOTE(ARGUNUSED(Destination))
1242 
1243 	/* FUTUREWORK: debugger support */
1244 
1245 #ifdef	DEBUG
1246 	cmn_err(CE_WARN, "!acpica: AcpiOsRedirectOutput called");
1247 #endif
1248 }
1249 
1250 
1251 UINT32
1252 AcpiOsGetLine(char *Buffer, UINT32 len, UINT32 *BytesRead)
1253 {
1254 	_NOTE(ARGUNUSED(Buffer))
1255 	_NOTE(ARGUNUSED(len))
1256 	_NOTE(ARGUNUSED(BytesRead))
1257 
1258 	/* FUTUREWORK: debugger support */
1259 
1260 	return (0);
1261 }
1262 
1263 static ACPI_STATUS
1264 acpica_crs_cb(ACPI_RESOURCE *rp, void *context)
1265 {
1266 	int	*busno = context;
1267 
1268 	if (rp->Data.Address.ProducerConsumer == 1)
1269 		return (AE_OK);
1270 
1271 	switch (rp->Type) {
1272 	case ACPI_RESOURCE_TYPE_ADDRESS16:
1273 		if (rp->Data.Address16.Address.AddressLength == 0)
1274 			break;
1275 		if (rp->Data.Address16.ResourceType != ACPI_BUS_NUMBER_RANGE)
1276 			break;
1277 
1278 		*busno = rp->Data.Address16.Address.Minimum;
1279 		break;
1280 
1281 	case ACPI_RESOURCE_TYPE_ADDRESS32:
1282 		if (rp->Data.Address32.Address.AddressLength == 0)
1283 			break;
1284 		if (rp->Data.Address32.ResourceType != ACPI_BUS_NUMBER_RANGE)
1285 			break;
1286 
1287 		*busno = rp->Data.Address32.Address.Minimum;
1288 		break;
1289 
1290 	case ACPI_RESOURCE_TYPE_ADDRESS64:
1291 		if (rp->Data.Address64.Address.AddressLength == 0)
1292 			break;
1293 		if (rp->Data.Address64.ResourceType != ACPI_BUS_NUMBER_RANGE)
1294 			break;
1295 
1296 		*busno = (int)rp->Data.Address64.Address.Minimum;
1297 		break;
1298 
1299 	default:
1300 		break;
1301 	}
1302 
1303 	return (AE_OK);
1304 }
1305 
1306 /*
1307  * Retrieve the bus number for a root bus.
1308  *
1309  * _CRS (Current Resource Setting) holds the bus number as set in
1310  * PCI configuration, this may differ from _BBN and is a more reliable
1311  * indicator of what the bus number is.
1312  */
1313 ACPI_STATUS
1314 acpica_get_busno(ACPI_HANDLE hdl, int *busno)
1315 {
1316 	ACPI_STATUS	rv;
1317 	int		bus = -1;
1318 	int		bbn;
1319 
1320 	if (ACPI_FAILURE(rv = acpica_eval_int(hdl, "_BBN", &bbn)))
1321 		return (rv);
1322 
1323 	(void) AcpiWalkResources(hdl, "_CRS", acpica_crs_cb, &bus);
1324 
1325 	*busno = bus == -1 ? bbn : bus;
1326 
1327 	return (AE_OK);
1328 }
1329 
1330 /*
1331  * Device tree binding
1332  */
1333 static ACPI_STATUS
1334 acpica_find_pcibus_walker(ACPI_HANDLE hdl, UINT32 lvl, void *ctxp, void **rvpp)
1335 {
1336 	_NOTE(ARGUNUSED(lvl));
1337 
1338 	int sta, hid, bbn;
1339 	int busno = (intptr_t)ctxp;
1340 	ACPI_HANDLE *hdlp = (ACPI_HANDLE *)rvpp;
1341 
1342 	/* Check whether device exists. */
1343 	if (ACPI_SUCCESS(acpica_eval_int(hdl, "_STA", &sta)) &&
1344 	    !(sta & (ACPI_STA_DEVICE_PRESENT | ACPI_STA_DEVICE_FUNCTIONING))) {
1345 		/*
1346 		 * Skip object if device doesn't exist.
1347 		 * According to ACPI Spec,
1348 		 * 1) setting either bit 0 or bit 3 means that device exists.
1349 		 * 2) Absence of _STA method means all status bits set.
1350 		 */
1351 		return (AE_CTRL_DEPTH);
1352 	}
1353 
1354 	if (ACPI_FAILURE(acpica_eval_hid(hdl, "_HID", &hid)) ||
1355 	    (hid != HID_PCI_BUS && hid != HID_PCI_EXPRESS_BUS)) {
1356 		/* Non PCI/PCIe host bridge. */
1357 		return (AE_OK);
1358 	}
1359 
1360 	if (acpi_has_broken_bbn) {
1361 		ACPI_BUFFER rb;
1362 		rb.Pointer = NULL;
1363 		rb.Length = ACPI_ALLOCATE_BUFFER;
1364 
1365 		/* Decree _BBN == n from PCI<n> */
1366 		if (AcpiGetName(hdl, ACPI_SINGLE_NAME, &rb) != AE_OK) {
1367 			return (AE_CTRL_TERMINATE);
1368 		}
1369 		bbn = ((char *)rb.Pointer)[3] - '0';
1370 		AcpiOsFree(rb.Pointer);
1371 		if (bbn == busno || busno == 0) {
1372 			*hdlp = hdl;
1373 			return (AE_CTRL_TERMINATE);
1374 		}
1375 	} else if (ACPI_SUCCESS(acpica_get_busno(hdl, &bbn))) {
1376 		if (bbn == busno) {
1377 			*hdlp = hdl;
1378 			return (AE_CTRL_TERMINATE);
1379 		}
1380 	} else if (busno == 0) {
1381 		*hdlp = hdl;
1382 		return (AE_CTRL_TERMINATE);
1383 	}
1384 
1385 	return (AE_CTRL_DEPTH);
1386 }
1387 
1388 static int
1389 acpica_find_pcibus(int busno, ACPI_HANDLE *rh)
1390 {
1391 	ACPI_HANDLE sbobj, busobj;
1392 
1393 	/* initialize static flag by querying ACPI namespace for bug */
1394 	if (acpi_has_broken_bbn == -1)
1395 		acpi_has_broken_bbn = acpica_query_bbn_problem();
1396 
1397 	if (ACPI_SUCCESS(AcpiGetHandle(NULL, "\\_SB", &sbobj))) {
1398 		busobj = NULL;
1399 		(void) AcpiWalkNamespace(ACPI_TYPE_DEVICE, sbobj, UINT32_MAX,
1400 		    acpica_find_pcibus_walker, NULL, (void *)(intptr_t)busno,
1401 		    (void **)&busobj);
1402 		if (busobj != NULL) {
1403 			*rh = busobj;
1404 			return (AE_OK);
1405 		}
1406 	}
1407 
1408 	return (AE_ERROR);
1409 }
1410 
1411 static ACPI_STATUS
1412 acpica_query_bbn_walker(ACPI_HANDLE hdl, UINT32 lvl, void *ctxp, void **rvpp)
1413 {
1414 	_NOTE(ARGUNUSED(lvl));
1415 	_NOTE(ARGUNUSED(rvpp));
1416 
1417 	int sta, hid, bbn;
1418 	int *cntp = (int *)ctxp;
1419 
1420 	/* Check whether device exists. */
1421 	if (ACPI_SUCCESS(acpica_eval_int(hdl, "_STA", &sta)) &&
1422 	    !(sta & (ACPI_STA_DEVICE_PRESENT | ACPI_STA_DEVICE_FUNCTIONING))) {
1423 		/*
1424 		 * Skip object if device doesn't exist.
1425 		 * According to ACPI Spec,
1426 		 * 1) setting either bit 0 or bit 3 means that device exists.
1427 		 * 2) Absence of _STA method means all status bits set.
1428 		 */
1429 		return (AE_CTRL_DEPTH);
1430 	}
1431 
1432 	if (ACPI_FAILURE(acpica_eval_hid(hdl, "_HID", &hid)) ||
1433 	    (hid != HID_PCI_BUS && hid != HID_PCI_EXPRESS_BUS)) {
1434 		/* Non PCI/PCIe host bridge. */
1435 		return (AE_OK);
1436 	} else if (ACPI_SUCCESS(acpica_eval_int(hdl, "_BBN", &bbn)) &&
1437 	    bbn == 0 && ++(*cntp) > 1) {
1438 		/*
1439 		 * If we find more than one bus with a 0 _BBN
1440 		 * we have the problem that BigBear's BIOS shows
1441 		 */
1442 		return (AE_CTRL_TERMINATE);
1443 	} else {
1444 		/*
1445 		 * Skip children of PCI/PCIe host bridge.
1446 		 */
1447 		return (AE_CTRL_DEPTH);
1448 	}
1449 }
1450 
1451 /*
1452  * Look for ACPI problem where _BBN is zero for multiple PCI buses
1453  * This is a clear ACPI bug, but we have a workaround in acpica_find_pcibus()
1454  * below if it exists.
1455  */
1456 static int
1457 acpica_query_bbn_problem(void)
1458 {
1459 	ACPI_HANDLE sbobj;
1460 	int zerobbncnt;
1461 	void *rv;
1462 
1463 	zerobbncnt = 0;
1464 	if (ACPI_SUCCESS(AcpiGetHandle(NULL, "\\_SB", &sbobj))) {
1465 		(void) AcpiWalkNamespace(ACPI_TYPE_DEVICE, sbobj, UINT32_MAX,
1466 		    acpica_query_bbn_walker, NULL, &zerobbncnt, &rv);
1467 	}
1468 
1469 	return (zerobbncnt > 1 ? 1 : 0);
1470 }
1471 
1472 static const char hextab[] = "0123456789ABCDEF";
1473 
1474 static int
1475 hexdig(int c)
1476 {
1477 	/*
1478 	 *  Get hex digit:
1479 	 *
1480 	 *  Returns the 4-bit hex digit named by the input character.  Returns
1481 	 *  zero if the input character is not valid hex!
1482 	 */
1483 
1484 	int x = ((c < 'a') || (c > 'z')) ? c : (c - ' ');
1485 	int j = sizeof (hextab);
1486 
1487 	while (--j && (x != hextab[j])) {
1488 	}
1489 	return (j);
1490 }
1491 
1492 static int
1493 CompressEisaID(char *np)
1494 {
1495 	/*
1496 	 *  Compress an EISA device name:
1497 	 *
1498 	 *  This routine converts a 7-byte ASCII device name into the 4-byte
1499 	 *  compressed form used by EISA (50 bytes of ROM to save 1 byte of
1500 	 *  NV-RAM!)
1501 	 */
1502 
1503 	union { char octets[4]; int retval; } myu;
1504 
1505 	myu.octets[0] = ((np[0] & 0x1F) << 2) + ((np[1] >> 3) & 0x03);
1506 	myu.octets[1] = ((np[1] & 0x07) << 5) + (np[2] & 0x1F);
1507 	myu.octets[2] = (hexdig(np[3]) << 4) + hexdig(np[4]);
1508 	myu.octets[3] = (hexdig(np[5]) << 4) + hexdig(np[6]);
1509 
1510 	return (myu.retval);
1511 }
1512 
1513 ACPI_STATUS
1514 acpica_eval_int(ACPI_HANDLE dev, char *method, int *rint)
1515 {
1516 	ACPI_STATUS status;
1517 	ACPI_BUFFER rb;
1518 	ACPI_OBJECT ro;
1519 
1520 	rb.Pointer = &ro;
1521 	rb.Length = sizeof (ro);
1522 	if ((status = AcpiEvaluateObjectTyped(dev, method, NULL, &rb,
1523 	    ACPI_TYPE_INTEGER)) == AE_OK)
1524 		*rint = ro.Integer.Value;
1525 
1526 	return (status);
1527 }
1528 
1529 static int
1530 acpica_eval_hid(ACPI_HANDLE dev, char *method, int *rint)
1531 {
1532 	ACPI_BUFFER rb;
1533 	ACPI_OBJECT *rv;
1534 
1535 	rb.Pointer = NULL;
1536 	rb.Length = ACPI_ALLOCATE_BUFFER;
1537 	if (AcpiEvaluateObject(dev, method, NULL, &rb) == AE_OK &&
1538 	    rb.Length != 0) {
1539 		rv = rb.Pointer;
1540 		if (rv->Type == ACPI_TYPE_INTEGER) {
1541 			*rint = rv->Integer.Value;
1542 			AcpiOsFree(rv);
1543 			return (AE_OK);
1544 		} else if (rv->Type == ACPI_TYPE_STRING) {
1545 			char *stringData;
1546 
1547 			/* Convert the string into an EISA ID */
1548 			if (rv->String.Pointer == NULL) {
1549 				AcpiOsFree(rv);
1550 				return (AE_ERROR);
1551 			}
1552 
1553 			stringData = rv->String.Pointer;
1554 
1555 			/*
1556 			 * If the string is an EisaID, it must be 7
1557 			 * characters; if it's an ACPI ID, it will be 8
1558 			 * (and we don't care about ACPI ids here).
1559 			 */
1560 			if (strlen(stringData) != 7) {
1561 				AcpiOsFree(rv);
1562 				return (AE_ERROR);
1563 			}
1564 
1565 			*rint = CompressEisaID(stringData);
1566 			AcpiOsFree(rv);
1567 			return (AE_OK);
1568 		} else
1569 			AcpiOsFree(rv);
1570 	}
1571 	return (AE_ERROR);
1572 }
1573 
1574 /*
1575  * Create linkage between devinfo nodes and ACPI nodes
1576  */
1577 ACPI_STATUS
1578 acpica_tag_devinfo(dev_info_t *dip, ACPI_HANDLE acpiobj)
1579 {
1580 	ACPI_STATUS status;
1581 	ACPI_BUFFER rb;
1582 
1583 	/*
1584 	 * Tag the devinfo node with the ACPI name
1585 	 */
1586 	rb.Pointer = NULL;
1587 	rb.Length = ACPI_ALLOCATE_BUFFER;
1588 	status = AcpiGetName(acpiobj, ACPI_FULL_PATHNAME, &rb);
1589 	if (ACPI_FAILURE(status)) {
1590 		cmn_err(CE_WARN, "acpica: could not get ACPI path!");
1591 	} else {
1592 		(void) ndi_prop_update_string(DDI_DEV_T_NONE, dip,
1593 		    "acpi-namespace", (char *)rb.Pointer);
1594 		AcpiOsFree(rb.Pointer);
1595 
1596 		/*
1597 		 * Tag the ACPI node with the dip
1598 		 */
1599 		status = acpica_set_devinfo(acpiobj, dip);
1600 		ASSERT(ACPI_SUCCESS(status));
1601 	}
1602 
1603 	return (status);
1604 }
1605 
1606 /*
1607  * Destroy linkage between devinfo nodes and ACPI nodes
1608  */
1609 ACPI_STATUS
1610 acpica_untag_devinfo(dev_info_t *dip, ACPI_HANDLE acpiobj)
1611 {
1612 	(void) acpica_unset_devinfo(acpiobj);
1613 	(void) ndi_prop_remove(DDI_DEV_T_NONE, dip, "acpi-namespace");
1614 
1615 	return (AE_OK);
1616 }
1617 
1618 /*
1619  * Return the ACPI device node matching the CPU dev_info node.
1620  */
1621 ACPI_STATUS
1622 acpica_get_handle_cpu(int cpu_id, ACPI_HANDLE *rh)
1623 {
1624 	int i;
1625 
1626 	/*
1627 	 * if cpu_map itself is NULL, we're a uppc system and
1628 	 * acpica_build_processor_map() hasn't been called yet.
1629 	 * So call it here
1630 	 */
1631 	if (cpu_map == NULL) {
1632 		(void) acpica_build_processor_map();
1633 		if (cpu_map == NULL)
1634 			return (AE_ERROR);
1635 	}
1636 
1637 	if (cpu_id < 0) {
1638 		return (AE_ERROR);
1639 	}
1640 
1641 	/*
1642 	 * search object with cpuid in cpu_map
1643 	 */
1644 	mutex_enter(&cpu_map_lock);
1645 	for (i = 0; i < cpu_map_count; i++) {
1646 		if (cpu_map[i]->cpu_id == cpu_id) {
1647 			break;
1648 		}
1649 	}
1650 	if (i < cpu_map_count && (cpu_map[i]->obj != NULL)) {
1651 		*rh = cpu_map[i]->obj;
1652 		mutex_exit(&cpu_map_lock);
1653 		return (AE_OK);
1654 	}
1655 
1656 	/* Handle special case for uppc-only systems. */
1657 	if (cpu_map_called == 0) {
1658 		uint32_t apicid = cpuid_get_apicid(CPU);
1659 		if (apicid != UINT32_MAX) {
1660 			for (i = 0; i < cpu_map_count; i++) {
1661 				if (cpu_map[i]->apic_id == apicid) {
1662 					break;
1663 				}
1664 			}
1665 			if (i < cpu_map_count && (cpu_map[i]->obj != NULL)) {
1666 				*rh = cpu_map[i]->obj;
1667 				mutex_exit(&cpu_map_lock);
1668 				return (AE_OK);
1669 			}
1670 		}
1671 	}
1672 	mutex_exit(&cpu_map_lock);
1673 
1674 	return (AE_ERROR);
1675 }
1676 
1677 /*
1678  * Determine if this object is a processor
1679  */
1680 static ACPI_STATUS
1681 acpica_probe_processor(ACPI_HANDLE obj, UINT32 level, void *ctx, void **rv)
1682 {
1683 	ACPI_STATUS status;
1684 	ACPI_OBJECT_TYPE objtype;
1685 	unsigned long acpi_id;
1686 	ACPI_BUFFER rb;
1687 	ACPI_DEVICE_INFO *di;
1688 
1689 	if (AcpiGetType(obj, &objtype) != AE_OK)
1690 		return (AE_OK);
1691 
1692 	if (objtype == ACPI_TYPE_PROCESSOR) {
1693 		/* process a Processor */
1694 		rb.Pointer = NULL;
1695 		rb.Length = ACPI_ALLOCATE_BUFFER;
1696 		status = AcpiEvaluateObjectTyped(obj, NULL, NULL, &rb,
1697 		    ACPI_TYPE_PROCESSOR);
1698 		if (status != AE_OK) {
1699 			cmn_err(CE_WARN, "!acpica: error probing Processor");
1700 			return (status);
1701 		}
1702 		acpi_id = ((ACPI_OBJECT *)rb.Pointer)->Processor.ProcId;
1703 		AcpiOsFree(rb.Pointer);
1704 	} else if (objtype == ACPI_TYPE_DEVICE) {
1705 		/* process a processor Device */
1706 		status = AcpiGetObjectInfo(obj, &di);
1707 		if (status != AE_OK) {
1708 			cmn_err(CE_WARN,
1709 			    "!acpica: error probing Processor Device\n");
1710 			return (status);
1711 		}
1712 
1713 		if (!(di->Valid & ACPI_VALID_UID) ||
1714 		    ddi_strtoul(di->UniqueId.String, NULL, 10, &acpi_id) != 0) {
1715 			ACPI_FREE(di);
1716 			cmn_err(CE_WARN,
1717 			    "!acpica: error probing Processor Device _UID\n");
1718 			return (AE_ERROR);
1719 		}
1720 		ACPI_FREE(di);
1721 	}
1722 	(void) acpica_add_processor_to_map(acpi_id, obj, UINT32_MAX);
1723 
1724 	return (AE_OK);
1725 }
1726 
1727 void
1728 scan_d2a_map(void)
1729 {
1730 	dev_info_t *dip, *cdip;
1731 	ACPI_HANDLE acpiobj;
1732 	char *device_type_prop;
1733 	int bus;
1734 	static int map_error = 0;
1735 
1736 	if (map_error || (d2a_done != 0))
1737 		return;
1738 
1739 	scanning_d2a_map = 1;
1740 
1741 	/*
1742 	 * Find all child-of-root PCI buses, and find their corresponding
1743 	 * ACPI child-of-root PCI nodes.  For each one, add to the
1744 	 * d2a table.
1745 	 */
1746 
1747 	for (dip = ddi_get_child(ddi_root_node());
1748 	    dip != NULL;
1749 	    dip = ddi_get_next_sibling(dip)) {
1750 
1751 		/* prune non-PCI nodes */
1752 		if (ddi_prop_lookup_string(DDI_DEV_T_ANY, dip,
1753 		    DDI_PROP_DONTPASS,
1754 		    "device_type", &device_type_prop) != DDI_PROP_SUCCESS)
1755 			continue;
1756 
1757 		if ((strcmp("pci", device_type_prop) != 0) &&
1758 		    (strcmp("pciex", device_type_prop) != 0)) {
1759 			ddi_prop_free(device_type_prop);
1760 			continue;
1761 		}
1762 
1763 		ddi_prop_free(device_type_prop);
1764 
1765 		/*
1766 		 * To get bus number of dip, get first child and get its
1767 		 * bus number.  If NULL, just continue, because we don't
1768 		 * care about bus nodes with no children anyway.
1769 		 */
1770 		if ((cdip = ddi_get_child(dip)) == NULL)
1771 			continue;
1772 
1773 		if (acpica_get_bdf(cdip, &bus, NULL, NULL) < 0) {
1774 #ifdef D2ADEBUG
1775 			cmn_err(CE_WARN, "Can't get bus number of PCI child?");
1776 #endif
1777 			map_error = 1;
1778 			scanning_d2a_map = 0;
1779 			d2a_done = 1;
1780 			return;
1781 		}
1782 
1783 		if (acpica_find_pcibus(bus, &acpiobj) == AE_ERROR) {
1784 #ifdef D2ADEBUG
1785 			cmn_err(CE_WARN, "No ACPI bus obj for bus %d?\n", bus);
1786 #endif
1787 			map_error = 1;
1788 			continue;
1789 		}
1790 
1791 		acpica_tag_devinfo(dip, acpiobj);
1792 
1793 		/* call recursively to enumerate subtrees */
1794 		scan_d2a_subtree(dip, acpiobj, bus);
1795 	}
1796 
1797 	scanning_d2a_map = 0;
1798 	d2a_done = 1;
1799 }
1800 
1801 /*
1802  * For all acpi child devices of acpiobj, find their matching
1803  * dip under "dip" argument.  (matching means "matches dev/fn").
1804  * bus is assumed to already be a match from caller, and is
1805  * used here only to record in the d2a entry.  Recurse if necessary.
1806  */
1807 static void
1808 scan_d2a_subtree(dev_info_t *dip, ACPI_HANDLE acpiobj, int bus)
1809 {
1810 	int acpi_devfn, hid;
1811 	ACPI_HANDLE acld;
1812 	dev_info_t *dcld;
1813 	int dcld_b, dcld_d, dcld_f;
1814 	int dev, func;
1815 	char *device_type_prop;
1816 
1817 	acld = NULL;
1818 	while (AcpiGetNextObject(ACPI_TYPE_DEVICE, acpiobj, acld, &acld)
1819 	    == AE_OK) {
1820 		/* get the dev/func we're looking for in the devinfo tree */
1821 		if (acpica_eval_int(acld, "_ADR", &acpi_devfn) != AE_OK)
1822 			continue;
1823 		dev = (acpi_devfn >> 16) & 0xFFFF;
1824 		func = acpi_devfn & 0xFFFF;
1825 
1826 		/* look through all the immediate children of dip */
1827 		for (dcld = ddi_get_child(dip); dcld != NULL;
1828 		    dcld = ddi_get_next_sibling(dcld)) {
1829 			if (acpica_get_bdf(dcld, &dcld_b, &dcld_d, &dcld_f) < 0)
1830 				continue;
1831 
1832 			/* dev must match; function must match or wildcard */
1833 			if (dcld_d != dev ||
1834 			    (func != 0xFFFF && func != dcld_f))
1835 				continue;
1836 			bus = dcld_b;
1837 
1838 			/* found a match, record it */
1839 			acpica_tag_devinfo(dcld, acld);
1840 
1841 			/* if we find a bridge, recurse from here */
1842 			if (ddi_prop_lookup_string(DDI_DEV_T_ANY, dcld,
1843 			    DDI_PROP_DONTPASS, "device_type",
1844 			    &device_type_prop) == DDI_PROP_SUCCESS) {
1845 				if ((strcmp("pci", device_type_prop) == 0) ||
1846 				    (strcmp("pciex", device_type_prop) == 0))
1847 					scan_d2a_subtree(dcld, acld, bus);
1848 				ddi_prop_free(device_type_prop);
1849 			}
1850 
1851 			/* done finding a match, so break now */
1852 			break;
1853 		}
1854 	}
1855 }
1856 
1857 /*
1858  * Return bus/dev/fn for PCI dip (note: not the parent "pci" node).
1859  */
1860 int
1861 acpica_get_bdf(dev_info_t *dip, int *bus, int *device, int *func)
1862 {
1863 	pci_regspec_t *pci_rp;
1864 	int len;
1865 
1866 	if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS,
1867 	    "reg", (int **)&pci_rp, (uint_t *)&len) != DDI_SUCCESS)
1868 		return (-1);
1869 
1870 	if (len < (sizeof (pci_regspec_t) / sizeof (int))) {
1871 		ddi_prop_free(pci_rp);
1872 		return (-1);
1873 	}
1874 	if (bus != NULL)
1875 		*bus = (int)PCI_REG_BUS_G(pci_rp->pci_phys_hi);
1876 	if (device != NULL)
1877 		*device = (int)PCI_REG_DEV_G(pci_rp->pci_phys_hi);
1878 	if (func != NULL)
1879 		*func = (int)PCI_REG_FUNC_G(pci_rp->pci_phys_hi);
1880 	ddi_prop_free(pci_rp);
1881 	return (0);
1882 }
1883 
1884 /*
1885  * Return the ACPI device node matching this dev_info node, if it
1886  * exists in the ACPI tree.
1887  */
1888 ACPI_STATUS
1889 acpica_get_handle(dev_info_t *dip, ACPI_HANDLE *rh)
1890 {
1891 	ACPI_STATUS status;
1892 	char *acpiname;
1893 
1894 #ifdef	DEBUG
1895 	if (d2a_done == 0)
1896 		cmn_err(CE_WARN, "!acpica_get_handle:"
1897 		    " no ACPI mapping for %s", ddi_node_name(dip));
1898 #endif
1899 
1900 	if (ddi_prop_lookup_string(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS,
1901 	    "acpi-namespace", &acpiname) != DDI_PROP_SUCCESS) {
1902 		return (AE_ERROR);
1903 	}
1904 
1905 	status = AcpiGetHandle(NULL, acpiname, rh);
1906 	ddi_prop_free((void *)acpiname);
1907 	return (status);
1908 }
1909 
1910 
1911 
1912 /*
1913  * Manage OS data attachment to ACPI nodes
1914  */
1915 
1916 /*
1917  * Return the (dev_info_t *) associated with the ACPI node.
1918  */
1919 ACPI_STATUS
1920 acpica_get_devinfo(ACPI_HANDLE obj, dev_info_t **dipp)
1921 {
1922 	ACPI_STATUS status;
1923 	void *ptr;
1924 
1925 	status = AcpiGetData(obj, acpica_devinfo_handler, &ptr);
1926 	if (status == AE_OK)
1927 		*dipp = (dev_info_t *)ptr;
1928 
1929 	return (status);
1930 }
1931 
1932 /*
1933  * Set the dev_info_t associated with the ACPI node.
1934  */
1935 static ACPI_STATUS
1936 acpica_set_devinfo(ACPI_HANDLE obj, dev_info_t *dip)
1937 {
1938 	ACPI_STATUS status;
1939 
1940 	status = AcpiAttachData(obj, acpica_devinfo_handler, (void *)dip);
1941 	return (status);
1942 }
1943 
1944 /*
1945  * Unset the dev_info_t associated with the ACPI node.
1946  */
1947 static ACPI_STATUS
1948 acpica_unset_devinfo(ACPI_HANDLE obj)
1949 {
1950 	return (AcpiDetachData(obj, acpica_devinfo_handler));
1951 }
1952 
1953 /*
1954  *
1955  */
1956 void
1957 acpica_devinfo_handler(ACPI_HANDLE obj, void *data)
1958 {
1959 	/* no-op */
1960 }
1961 
1962 ACPI_STATUS
1963 acpica_build_processor_map(void)
1964 {
1965 	ACPI_STATUS status;
1966 	void *rv;
1967 
1968 	/*
1969 	 * shouldn't be called more than once anyway
1970 	 */
1971 	if (cpu_map_built)
1972 		return (AE_OK);
1973 
1974 	/*
1975 	 * ACPI device configuration driver has built mapping information
1976 	 * among processor id and object handle, no need to probe again.
1977 	 */
1978 	if (acpica_get_devcfg_feature(ACPI_DEVCFG_CPU)) {
1979 		cpu_map_built = 1;
1980 		return (AE_OK);
1981 	}
1982 
1983 	/*
1984 	 * Look for Processor objects
1985 	 */
1986 	status = AcpiWalkNamespace(ACPI_TYPE_PROCESSOR,
1987 	    ACPI_ROOT_OBJECT,
1988 	    4,
1989 	    acpica_probe_processor,
1990 	    NULL,
1991 	    NULL,
1992 	    &rv);
1993 	ASSERT(status == AE_OK);
1994 
1995 	/*
1996 	 * Look for processor Device objects
1997 	 */
1998 	status = AcpiGetDevices("ACPI0007",
1999 	    acpica_probe_processor,
2000 	    NULL,
2001 	    &rv);
2002 	ASSERT(status == AE_OK);
2003 	cpu_map_built = 1;
2004 
2005 	return (status);
2006 }
2007 
2008 /*
2009  * Grow cpu map table on demand.
2010  */
2011 static void
2012 acpica_grow_cpu_map(void)
2013 {
2014 	if (cpu_map_count == cpu_map_count_max) {
2015 		size_t sz;
2016 		struct cpu_map_item **new_map;
2017 
2018 		ASSERT(cpu_map_count_max < INT_MAX / 2);
2019 		cpu_map_count_max += max_ncpus;
2020 		new_map = kmem_zalloc(sizeof (cpu_map[0]) * cpu_map_count_max,
2021 		    KM_SLEEP);
2022 		if (cpu_map_count != 0) {
2023 			ASSERT(cpu_map != NULL);
2024 			sz = sizeof (cpu_map[0]) * cpu_map_count;
2025 			kcopy(cpu_map, new_map, sz);
2026 			kmem_free(cpu_map, sz);
2027 		}
2028 		cpu_map = new_map;
2029 	}
2030 }
2031 
2032 /*
2033  * Maintain mapping information among (cpu id, ACPI processor id, APIC id,
2034  * ACPI handle). The mapping table will be setup in two steps:
2035  * 1) acpica_add_processor_to_map() builds mapping among APIC id, ACPI
2036  *    processor id and ACPI object handle.
2037  * 2) acpica_map_cpu() builds mapping among cpu id and ACPI processor id.
2038  * On systems with which have ACPI device configuration for CPUs enabled,
2039  * acpica_map_cpu() will be called after acpica_add_processor_to_map(),
2040  * otherwise acpica_map_cpu() will be called before
2041  * acpica_add_processor_to_map().
2042  */
2043 ACPI_STATUS
2044 acpica_add_processor_to_map(UINT32 acpi_id, ACPI_HANDLE obj, UINT32 apic_id)
2045 {
2046 	int i;
2047 	ACPI_STATUS rc = AE_OK;
2048 	struct cpu_map_item *item = NULL;
2049 
2050 	ASSERT(obj != NULL);
2051 	if (obj == NULL) {
2052 		return (AE_ERROR);
2053 	}
2054 
2055 	mutex_enter(&cpu_map_lock);
2056 
2057 	/*
2058 	 * Special case for uppc
2059 	 * If we're a uppc system and ACPI device configuration for CPU has
2060 	 * been disabled, there won't be a CPU map yet because uppc psm doesn't
2061 	 * call acpica_map_cpu(). So create one and use the passed-in processor
2062 	 * as CPU 0
2063 	 * Assumption: the first CPU returned by
2064 	 * AcpiGetDevices/AcpiWalkNamespace will be the BSP.
2065 	 * Unfortunately there appears to be no good way to ASSERT this.
2066 	 */
2067 	if (cpu_map == NULL &&
2068 	    !acpica_get_devcfg_feature(ACPI_DEVCFG_CPU)) {
2069 		acpica_grow_cpu_map();
2070 		ASSERT(cpu_map != NULL);
2071 		item = kmem_zalloc(sizeof (*item), KM_SLEEP);
2072 		item->cpu_id = 0;
2073 		item->proc_id = acpi_id;
2074 		item->apic_id = apic_id;
2075 		item->obj = obj;
2076 		cpu_map[0] = item;
2077 		cpu_map_count = 1;
2078 		mutex_exit(&cpu_map_lock);
2079 		return (AE_OK);
2080 	}
2081 
2082 	for (i = 0; i < cpu_map_count; i++) {
2083 		if (cpu_map[i]->obj == obj) {
2084 			rc = AE_ALREADY_EXISTS;
2085 			break;
2086 		} else if (cpu_map[i]->proc_id == acpi_id) {
2087 			ASSERT(item == NULL);
2088 			item = cpu_map[i];
2089 		}
2090 	}
2091 
2092 	if (rc == AE_OK) {
2093 		if (item != NULL) {
2094 			/*
2095 			 * ACPI alias objects may cause more than one objects
2096 			 * with the same ACPI processor id, only remember the
2097 			 * the first object encountered.
2098 			 */
2099 			if (item->obj == NULL) {
2100 				item->obj = obj;
2101 				item->apic_id = apic_id;
2102 			} else {
2103 				rc = AE_ALREADY_EXISTS;
2104 			}
2105 		} else if (cpu_map_count >= INT_MAX / 2) {
2106 			rc = AE_NO_MEMORY;
2107 		} else {
2108 			acpica_grow_cpu_map();
2109 			ASSERT(cpu_map != NULL);
2110 			ASSERT(cpu_map_count < cpu_map_count_max);
2111 			item = kmem_zalloc(sizeof (*item), KM_SLEEP);
2112 			item->cpu_id = -1;
2113 			item->proc_id = acpi_id;
2114 			item->apic_id = apic_id;
2115 			item->obj = obj;
2116 			cpu_map[cpu_map_count] = item;
2117 			cpu_map_count++;
2118 		}
2119 	}
2120 
2121 	mutex_exit(&cpu_map_lock);
2122 
2123 	return (rc);
2124 }
2125 
2126 ACPI_STATUS
2127 acpica_remove_processor_from_map(UINT32 acpi_id)
2128 {
2129 	int i;
2130 	ACPI_STATUS rc = AE_NOT_EXIST;
2131 
2132 	mutex_enter(&cpu_map_lock);
2133 	for (i = 0; i < cpu_map_count; i++) {
2134 		if (cpu_map[i]->proc_id != acpi_id) {
2135 			continue;
2136 		}
2137 		cpu_map[i]->obj = NULL;
2138 		/* Free item if no more reference to it. */
2139 		if (cpu_map[i]->cpu_id == -1) {
2140 			kmem_free(cpu_map[i], sizeof (struct cpu_map_item));
2141 			cpu_map[i] = NULL;
2142 			cpu_map_count--;
2143 			if (i != cpu_map_count) {
2144 				cpu_map[i] = cpu_map[cpu_map_count];
2145 				cpu_map[cpu_map_count] = NULL;
2146 			}
2147 		}
2148 		rc = AE_OK;
2149 		break;
2150 	}
2151 	mutex_exit(&cpu_map_lock);
2152 
2153 	return (rc);
2154 }
2155 
2156 ACPI_STATUS
2157 acpica_map_cpu(processorid_t cpuid, UINT32 acpi_id)
2158 {
2159 	int i;
2160 	ACPI_STATUS rc = AE_OK;
2161 	struct cpu_map_item *item = NULL;
2162 
2163 	ASSERT(cpuid != -1);
2164 	if (cpuid == -1) {
2165 		return (AE_ERROR);
2166 	}
2167 
2168 	mutex_enter(&cpu_map_lock);
2169 	cpu_map_called = 1;
2170 	for (i = 0; i < cpu_map_count; i++) {
2171 		if (cpu_map[i]->cpu_id == cpuid) {
2172 			rc = AE_ALREADY_EXISTS;
2173 			break;
2174 		} else if (cpu_map[i]->proc_id == acpi_id) {
2175 			ASSERT(item == NULL);
2176 			item = cpu_map[i];
2177 		}
2178 	}
2179 	if (rc == AE_OK) {
2180 		if (item != NULL) {
2181 			if (item->cpu_id == -1) {
2182 				item->cpu_id = cpuid;
2183 			} else {
2184 				rc = AE_ALREADY_EXISTS;
2185 			}
2186 		} else if (cpu_map_count >= INT_MAX / 2) {
2187 			rc = AE_NO_MEMORY;
2188 		} else {
2189 			acpica_grow_cpu_map();
2190 			ASSERT(cpu_map != NULL);
2191 			ASSERT(cpu_map_count < cpu_map_count_max);
2192 			item = kmem_zalloc(sizeof (*item), KM_SLEEP);
2193 			item->cpu_id = cpuid;
2194 			item->proc_id = acpi_id;
2195 			item->apic_id = UINT32_MAX;
2196 			item->obj = NULL;
2197 			cpu_map[cpu_map_count] = item;
2198 			cpu_map_count++;
2199 		}
2200 	}
2201 	mutex_exit(&cpu_map_lock);
2202 
2203 	return (rc);
2204 }
2205 
2206 ACPI_STATUS
2207 acpica_unmap_cpu(processorid_t cpuid)
2208 {
2209 	int i;
2210 	ACPI_STATUS rc = AE_NOT_EXIST;
2211 
2212 	ASSERT(cpuid != -1);
2213 	if (cpuid == -1) {
2214 		return (rc);
2215 	}
2216 
2217 	mutex_enter(&cpu_map_lock);
2218 	for (i = 0; i < cpu_map_count; i++) {
2219 		if (cpu_map[i]->cpu_id != cpuid) {
2220 			continue;
2221 		}
2222 		cpu_map[i]->cpu_id = -1;
2223 		/* Free item if no more reference. */
2224 		if (cpu_map[i]->obj == NULL) {
2225 			kmem_free(cpu_map[i], sizeof (struct cpu_map_item));
2226 			cpu_map[i] = NULL;
2227 			cpu_map_count--;
2228 			if (i != cpu_map_count) {
2229 				cpu_map[i] = cpu_map[cpu_map_count];
2230 				cpu_map[cpu_map_count] = NULL;
2231 			}
2232 		}
2233 		rc = AE_OK;
2234 		break;
2235 	}
2236 	mutex_exit(&cpu_map_lock);
2237 
2238 	return (rc);
2239 }
2240 
2241 ACPI_STATUS
2242 acpica_get_cpu_object_by_cpuid(processorid_t cpuid, ACPI_HANDLE *hdlp)
2243 {
2244 	int i;
2245 	ACPI_STATUS rc = AE_NOT_EXIST;
2246 
2247 	ASSERT(cpuid != -1);
2248 	if (cpuid == -1) {
2249 		return (rc);
2250 	}
2251 
2252 	mutex_enter(&cpu_map_lock);
2253 	for (i = 0; i < cpu_map_count; i++) {
2254 		if (cpu_map[i]->cpu_id == cpuid && cpu_map[i]->obj != NULL) {
2255 			*hdlp = cpu_map[i]->obj;
2256 			rc = AE_OK;
2257 			break;
2258 		}
2259 	}
2260 	mutex_exit(&cpu_map_lock);
2261 
2262 	return (rc);
2263 }
2264 
2265 ACPI_STATUS
2266 acpica_get_cpu_object_by_procid(UINT32 procid, ACPI_HANDLE *hdlp)
2267 {
2268 	int i;
2269 	ACPI_STATUS rc = AE_NOT_EXIST;
2270 
2271 	mutex_enter(&cpu_map_lock);
2272 	for (i = 0; i < cpu_map_count; i++) {
2273 		if (cpu_map[i]->proc_id == procid && cpu_map[i]->obj != NULL) {
2274 			*hdlp = cpu_map[i]->obj;
2275 			rc = AE_OK;
2276 			break;
2277 		}
2278 	}
2279 	mutex_exit(&cpu_map_lock);
2280 
2281 	return (rc);
2282 }
2283 
2284 ACPI_STATUS
2285 acpica_get_cpu_object_by_apicid(UINT32 apicid, ACPI_HANDLE *hdlp)
2286 {
2287 	int i;
2288 	ACPI_STATUS rc = AE_NOT_EXIST;
2289 
2290 	ASSERT(apicid != UINT32_MAX);
2291 	if (apicid == UINT32_MAX) {
2292 		return (rc);
2293 	}
2294 
2295 	mutex_enter(&cpu_map_lock);
2296 	for (i = 0; i < cpu_map_count; i++) {
2297 		if (cpu_map[i]->apic_id == apicid && cpu_map[i]->obj != NULL) {
2298 			*hdlp = cpu_map[i]->obj;
2299 			rc = AE_OK;
2300 			break;
2301 		}
2302 	}
2303 	mutex_exit(&cpu_map_lock);
2304 
2305 	return (rc);
2306 }
2307 
2308 ACPI_STATUS
2309 acpica_get_cpu_id_by_object(ACPI_HANDLE hdl, processorid_t *cpuidp)
2310 {
2311 	int i;
2312 	ACPI_STATUS rc = AE_NOT_EXIST;
2313 
2314 	ASSERT(cpuidp != NULL);
2315 	if (hdl == NULL || cpuidp == NULL) {
2316 		return (rc);
2317 	}
2318 
2319 	*cpuidp = -1;
2320 	mutex_enter(&cpu_map_lock);
2321 	for (i = 0; i < cpu_map_count; i++) {
2322 		if (cpu_map[i]->obj == hdl && cpu_map[i]->cpu_id != -1) {
2323 			*cpuidp = cpu_map[i]->cpu_id;
2324 			rc = AE_OK;
2325 			break;
2326 		}
2327 	}
2328 	mutex_exit(&cpu_map_lock);
2329 
2330 	return (rc);
2331 }
2332 
2333 ACPI_STATUS
2334 acpica_get_apicid_by_object(ACPI_HANDLE hdl, UINT32 *rp)
2335 {
2336 	int i;
2337 	ACPI_STATUS rc = AE_NOT_EXIST;
2338 
2339 	ASSERT(rp != NULL);
2340 	if (hdl == NULL || rp == NULL) {
2341 		return (rc);
2342 	}
2343 
2344 	*rp = UINT32_MAX;
2345 	mutex_enter(&cpu_map_lock);
2346 	for (i = 0; i < cpu_map_count; i++) {
2347 		if (cpu_map[i]->obj == hdl &&
2348 		    cpu_map[i]->apic_id != UINT32_MAX) {
2349 			*rp = cpu_map[i]->apic_id;
2350 			rc = AE_OK;
2351 			break;
2352 		}
2353 	}
2354 	mutex_exit(&cpu_map_lock);
2355 
2356 	return (rc);
2357 }
2358 
2359 ACPI_STATUS
2360 acpica_get_procid_by_object(ACPI_HANDLE hdl, UINT32 *rp)
2361 {
2362 	int i;
2363 	ACPI_STATUS rc = AE_NOT_EXIST;
2364 
2365 	ASSERT(rp != NULL);
2366 	if (hdl == NULL || rp == NULL) {
2367 		return (rc);
2368 	}
2369 
2370 	*rp = UINT32_MAX;
2371 	mutex_enter(&cpu_map_lock);
2372 	for (i = 0; i < cpu_map_count; i++) {
2373 		if (cpu_map[i]->obj == hdl) {
2374 			*rp = cpu_map[i]->proc_id;
2375 			rc = AE_OK;
2376 			break;
2377 		}
2378 	}
2379 	mutex_exit(&cpu_map_lock);
2380 
2381 	return (rc);
2382 }
2383 
2384 void
2385 acpica_set_core_feature(uint64_t features)
2386 {
2387 	atomic_or_64(&acpica_core_features, features);
2388 }
2389 
2390 void
2391 acpica_clear_core_feature(uint64_t features)
2392 {
2393 	atomic_and_64(&acpica_core_features, ~features);
2394 }
2395 
2396 uint64_t
2397 acpica_get_core_feature(uint64_t features)
2398 {
2399 	return (acpica_core_features & features);
2400 }
2401 
2402 void
2403 acpica_set_devcfg_feature(uint64_t features)
2404 {
2405 	atomic_or_64(&acpica_devcfg_features, features);
2406 }
2407 
2408 void
2409 acpica_clear_devcfg_feature(uint64_t features)
2410 {
2411 	atomic_and_64(&acpica_devcfg_features, ~features);
2412 }
2413 
2414 uint64_t
2415 acpica_get_devcfg_feature(uint64_t features)
2416 {
2417 	return (acpica_devcfg_features & features);
2418 }
2419 
2420 void
2421 acpica_get_global_FADT(ACPI_TABLE_FADT **gbl_FADT)
2422 {
2423 	*gbl_FADT = &AcpiGbl_FADT;
2424 }
2425 
2426 void
2427 acpica_write_cpupm_capabilities(boolean_t pstates, boolean_t cstates)
2428 {
2429 	if (pstates && AcpiGbl_FADT.PstateControl != 0)
2430 		(void) AcpiHwRegisterWrite(ACPI_REGISTER_SMI_COMMAND_BLOCK,
2431 		    AcpiGbl_FADT.PstateControl);
2432 
2433 	if (cstates && AcpiGbl_FADT.CstControl != 0)
2434 		(void) AcpiHwRegisterWrite(ACPI_REGISTER_SMI_COMMAND_BLOCK,
2435 		    AcpiGbl_FADT.CstControl);
2436 }
2437 
2438 uint32_t
2439 acpi_strtoul(const char *str, char **ep, int base)
2440 {
2441 	ulong_t v;
2442 
2443 	if (ddi_strtoul(str, ep, base, &v) != 0 || v > ACPI_UINT32_MAX) {
2444 		return (ACPI_UINT32_MAX);
2445 	}
2446 
2447 	return ((uint32_t)v);
2448 }
2449 
2450 /*
2451  * In prior versions of ACPI, the AcpiGetObjectInfo() function would provide
2452  * information about the status of the object via the _STA method. This has been
2453  * removed and this function is used to replace.
2454  *
2455  * Not every ACPI object has a _STA method. In cases where it is not found, then
2456  * the OSPM (aka us) is supposed to interpret that as though it indicates that
2457  * the device is present, enabled, shown in the UI, and functioning. This is the
2458  * value 0xF.
2459  */
2460 ACPI_STATUS
2461 acpica_get_object_status(ACPI_HANDLE obj, int *statusp)
2462 {
2463 	ACPI_STATUS status;
2464 	int ival;
2465 
2466 	status = acpica_eval_int(obj, METHOD_NAME__STA, &ival);
2467 	if (ACPI_FAILURE(status)) {
2468 		if (status == AE_NOT_FOUND) {
2469 			*statusp = 0xf;
2470 			return (AE_OK);
2471 		}
2472 
2473 		return (status);
2474 	}
2475 
2476 	/*
2477 	 * This should not be a negative value. However, firmware is often the
2478 	 * enemy. If it does, complain and treat that as a hard failure.
2479 	 */
2480 	if (ival < 0) {
2481 		cmn_err(CE_WARN, "!acpica_get_object_status: encountered "
2482 		    "negative _STA value on obj %p", obj);
2483 		return (AE_ERROR);
2484 	}
2485 
2486 	*statusp = ival;
2487 	return (AE_OK);
2488 }
2489