xref: /illumos-gate/usr/src/uts/intel/fs/proc/prmachdep.c (revision 826ac02a0def83e0a41b29321470d299c7389aab)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 /*	Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T	*/
28 /*	  All Rights Reserved  	*/
29 
30 #include <sys/types.h>
31 #include <sys/t_lock.h>
32 #include <sys/param.h>
33 #include <sys/cred.h>
34 #include <sys/debug.h>
35 #include <sys/inline.h>
36 #include <sys/kmem.h>
37 #include <sys/proc.h>
38 #include <sys/regset.h>
39 #include <sys/privregs.h>
40 #include <sys/sysmacros.h>
41 #include <sys/systm.h>
42 #include <sys/vfs.h>
43 #include <sys/vnode.h>
44 #include <sys/psw.h>
45 #include <sys/pcb.h>
46 #include <sys/buf.h>
47 #include <sys/signal.h>
48 #include <sys/user.h>
49 #include <sys/cpuvar.h>
50 
51 #include <sys/fault.h>
52 #include <sys/syscall.h>
53 #include <sys/procfs.h>
54 #include <sys/cmn_err.h>
55 #include <sys/stack.h>
56 #include <sys/debugreg.h>
57 #include <sys/copyops.h>
58 
59 #include <sys/vmem.h>
60 #include <sys/mman.h>
61 #include <sys/vmparam.h>
62 #include <sys/fp.h>
63 #include <sys/archsystm.h>
64 #include <sys/vmsystm.h>
65 #include <vm/hat.h>
66 #include <vm/as.h>
67 #include <vm/seg.h>
68 #include <vm/seg_kmem.h>
69 #include <vm/seg_kp.h>
70 #include <vm/page.h>
71 
72 #include <sys/sysi86.h>
73 
74 #include <fs/proc/prdata.h>
75 
76 int	prnwatch = 10000;	/* maximum number of watched areas */
77 
78 /*
79  * Force a thread into the kernel if it is not already there.
80  * This is a no-op on uniprocessors.
81  */
82 /* ARGSUSED */
83 void
84 prpokethread(kthread_t *t)
85 {
86 	if (t->t_state == TS_ONPROC && t->t_cpu != CPU)
87 		poke_cpu(t->t_cpu->cpu_id);
88 }
89 
90 /*
91  * Return general registers.
92  */
93 void
94 prgetprregs(klwp_t *lwp, prgregset_t prp)
95 {
96 	ASSERT(MUTEX_NOT_HELD(&lwptoproc(lwp)->p_lock));
97 
98 	getgregs(lwp, prp);
99 }
100 
101 /*
102  * Set general registers.
103  * (Note: This can be an alias to setgregs().)
104  */
105 void
106 prsetprregs(klwp_t *lwp, prgregset_t prp, int initial)
107 {
108 	if (initial)		/* set initial values */
109 		lwptoregs(lwp)->r_ps = PSL_USER;
110 	(void) setgregs(lwp, prp);
111 }
112 
113 #ifdef _SYSCALL32_IMPL
114 
115 /*
116  * Convert prgregset32 to native prgregset
117  */
118 void
119 prgregset_32ton(klwp_t *lwp, prgregset32_t src, prgregset_t dst)
120 {
121 	struct regs *rp = lwptoregs(lwp);
122 
123 	dst[REG_GSBASE] = lwp->lwp_pcb.pcb_gsbase;
124 	dst[REG_FSBASE] = lwp->lwp_pcb.pcb_fsbase;
125 
126 	dst[REG_DS] = (uint16_t)src[DS];
127 	dst[REG_ES] = (uint16_t)src[ES];
128 
129 	dst[REG_GS] = (uint16_t)src[GS];
130 	dst[REG_FS] = (uint16_t)src[FS];
131 	dst[REG_SS] = (uint16_t)src[SS];
132 	dst[REG_RSP] = (uint32_t)src[UESP];
133 	dst[REG_RFL] =
134 	    (rp->r_ps & ~PSL_USERMASK) | (src[EFL] & PSL_USERMASK);
135 	dst[REG_CS] = (uint16_t)src[CS];
136 	dst[REG_RIP] = (uint32_t)src[EIP];
137 	dst[REG_ERR] = (uint32_t)src[ERR];
138 	dst[REG_TRAPNO] = (uint32_t)src[TRAPNO];
139 	dst[REG_RAX] = (uint32_t)src[EAX];
140 	dst[REG_RCX] = (uint32_t)src[ECX];
141 	dst[REG_RDX] = (uint32_t)src[EDX];
142 	dst[REG_RBX] = (uint32_t)src[EBX];
143 	dst[REG_RBP] = (uint32_t)src[EBP];
144 	dst[REG_RSI] = (uint32_t)src[ESI];
145 	dst[REG_RDI] = (uint32_t)src[EDI];
146 	dst[REG_R8] = dst[REG_R9] = dst[REG_R10] = dst[REG_R11] =
147 	    dst[REG_R12] = dst[REG_R13] = dst[REG_R14] = dst[REG_R15] = 0;
148 }
149 
150 /*
151  * Return 32-bit general registers
152  */
153 void
154 prgetprregs32(klwp_t *lwp, prgregset32_t prp)
155 {
156 	ASSERT(MUTEX_NOT_HELD(&lwptoproc(lwp)->p_lock));
157 	getgregs32(lwp, prp);
158 }
159 
160 #endif	/* _SYSCALL32_IMPL */
161 
162 /*
163  * Get the syscall return values for the lwp.
164  */
165 int
166 prgetrvals(klwp_t *lwp, long *rval1, long *rval2)
167 {
168 	struct regs *r = lwptoregs(lwp);
169 
170 	if (r->r_ps & PS_C)
171 		return (r->r_r0);
172 	if (lwp->lwp_eosys == JUSTRETURN) {
173 		*rval1 = 0;
174 		*rval2 = 0;
175 	} else if (lwp_getdatamodel(lwp) != DATAMODEL_NATIVE) {
176 		/*
177 		 * XX64	Not sure we -really- need to do this, because the
178 		 *	syscall return already masks off the bottom values ..?
179 		 */
180 		*rval1 = r->r_r0 & (uint32_t)0xffffffffu;
181 		*rval2 = r->r_r1 & (uint32_t)0xffffffffu;
182 	} else {
183 		*rval1 = r->r_r0;
184 		*rval2 = r->r_r1;
185 	}
186 	return (0);
187 }
188 
189 /*
190  * Does the system support floating-point, either through hardware
191  * or by trapping and emulating floating-point machine instructions?
192  */
193 int
194 prhasfp(void)
195 {
196 	extern int fp_kind;
197 
198 	return (fp_kind != FP_NO);
199 }
200 
201 /*
202  * Get floating-point registers.
203  */
204 void
205 prgetprfpregs(klwp_t *lwp, prfpregset_t *pfp)
206 {
207 	bzero(pfp, sizeof (prfpregset_t));
208 	getfpregs(lwp, pfp);
209 }
210 
211 #if defined(_SYSCALL32_IMPL)
212 void
213 prgetprfpregs32(klwp_t *lwp, prfpregset32_t *pfp)
214 {
215 	bzero(pfp, sizeof (*pfp));
216 	getfpregs32(lwp, pfp);
217 }
218 #endif	/* _SYSCALL32_IMPL */
219 
220 /*
221  * Set floating-point registers.
222  * (Note: This can be an alias to setfpregs().)
223  */
224 void
225 prsetprfpregs(klwp_t *lwp, prfpregset_t *pfp)
226 {
227 	setfpregs(lwp, pfp);
228 }
229 
230 #if defined(_SYSCALL32_IMPL)
231 void
232 prsetprfpregs32(klwp_t *lwp, prfpregset32_t *pfp)
233 {
234 	setfpregs32(lwp, pfp);
235 }
236 #endif	/* _SYSCALL32_IMPL */
237 
238 /*
239  * Does the system support extra register state?
240  */
241 /* ARGSUSED */
242 int
243 prhasx(proc_t *p)
244 {
245 	return (0);
246 }
247 
248 /*
249  * Get the size of the extra registers.
250  */
251 /* ARGSUSED */
252 int
253 prgetprxregsize(proc_t *p)
254 {
255 	return (0);
256 }
257 
258 /*
259  * Get extra registers.
260  */
261 /*ARGSUSED*/
262 void
263 prgetprxregs(klwp_t *lwp, caddr_t prx)
264 {
265 	/* no extra registers */
266 }
267 
268 /*
269  * Set extra registers.
270  */
271 /*ARGSUSED*/
272 void
273 prsetprxregs(klwp_t *lwp, caddr_t prx)
274 {
275 	/* no extra registers */
276 }
277 
278 /*
279  * Return the base (lower limit) of the process stack.
280  */
281 caddr_t
282 prgetstackbase(proc_t *p)
283 {
284 	return (p->p_usrstack - p->p_stksize);
285 }
286 
287 /*
288  * Return the "addr" field for pr_addr in prpsinfo_t.
289  * This is a vestige of the past, so whatever we return is OK.
290  */
291 caddr_t
292 prgetpsaddr(proc_t *p)
293 {
294 	return ((caddr_t)p);
295 }
296 
297 /*
298  * Arrange to single-step the lwp.
299  */
300 void
301 prstep(klwp_t *lwp, int watchstep)
302 {
303 	ASSERT(MUTEX_NOT_HELD(&lwptoproc(lwp)->p_lock));
304 
305 	/*
306 	 * flag LWP so that its r_efl trace bit (PS_T) will be set on
307 	 * next return to usermode.
308 	 */
309 	lwp->lwp_pcb.pcb_flags |= REQUEST_STEP;
310 	lwp->lwp_pcb.pcb_flags &= ~REQUEST_NOSTEP;
311 
312 	if (watchstep)
313 		lwp->lwp_pcb.pcb_flags |= WATCH_STEP;
314 	else
315 		lwp->lwp_pcb.pcb_flags |= NORMAL_STEP;
316 
317 	aston(lwptot(lwp));	/* let trap() set PS_T in rp->r_efl */
318 }
319 
320 /*
321  * Undo prstep().
322  */
323 void
324 prnostep(klwp_t *lwp)
325 {
326 	ASSERT(ttolwp(curthread) == lwp ||
327 	    MUTEX_NOT_HELD(&lwptoproc(lwp)->p_lock));
328 
329 	/*
330 	 * flag LWP so that its r_efl trace bit (PS_T) will be cleared on
331 	 * next return to usermode.
332 	 */
333 	lwp->lwp_pcb.pcb_flags |= REQUEST_NOSTEP;
334 
335 	lwp->lwp_pcb.pcb_flags &=
336 	    ~(REQUEST_STEP|NORMAL_STEP|WATCH_STEP|DEBUG_PENDING);
337 
338 	aston(lwptot(lwp));	/* let trap() clear PS_T in rp->r_efl */
339 }
340 
341 /*
342  * Return non-zero if a single-step is in effect.
343  */
344 int
345 prisstep(klwp_t *lwp)
346 {
347 	ASSERT(MUTEX_NOT_HELD(&lwptoproc(lwp)->p_lock));
348 
349 	return ((lwp->lwp_pcb.pcb_flags &
350 	    (NORMAL_STEP|WATCH_STEP|DEBUG_PENDING)) != 0);
351 }
352 
353 /*
354  * Set the PC to the specified virtual address.
355  */
356 void
357 prsvaddr(klwp_t *lwp, caddr_t vaddr)
358 {
359 	struct regs *r = lwptoregs(lwp);
360 
361 	ASSERT(MUTEX_NOT_HELD(&lwptoproc(lwp)->p_lock));
362 
363 	r->r_pc = (uintptr_t)vaddr;
364 }
365 
366 /*
367  * Map address "addr" in address space "as" into a kernel virtual address.
368  * The memory is guaranteed to be resident and locked down.
369  */
370 caddr_t
371 prmapin(struct as *as, caddr_t addr, int writing)
372 {
373 	page_t *pp;
374 	caddr_t kaddr;
375 	pfn_t pfnum;
376 
377 	/*
378 	 * XXX - Because of past mistakes, we have bits being returned
379 	 * by getpfnum that are actually the page type bits of the pte.
380 	 * When the object we are trying to map is a memory page with
381 	 * a page structure everything is ok and we can use the optimal
382 	 * method, ppmapin.  Otherwise, we have to do something special.
383 	 */
384 	pfnum = hat_getpfnum(as->a_hat, addr);
385 	if (pf_is_memory(pfnum)) {
386 		pp = page_numtopp_nolock(pfnum);
387 		if (pp != NULL) {
388 			ASSERT(PAGE_LOCKED(pp));
389 			kaddr = ppmapin(pp, writing ?
390 			    (PROT_READ | PROT_WRITE) : PROT_READ, (caddr_t)-1);
391 			return (kaddr + ((uintptr_t)addr & PAGEOFFSET));
392 		}
393 	}
394 
395 	/*
396 	 * Oh well, we didn't have a page struct for the object we were
397 	 * trying to map in; ppmapin doesn't handle devices, but allocating a
398 	 * heap address allows ppmapout to free virtual space when done.
399 	 */
400 	kaddr = vmem_alloc(heap_arena, PAGESIZE, VM_SLEEP);
401 
402 	hat_devload(kas.a_hat, kaddr, MMU_PAGESIZE,  pfnum,
403 	    writing ? (PROT_READ | PROT_WRITE) : PROT_READ, 0);
404 
405 	return (kaddr + ((uintptr_t)addr & PAGEOFFSET));
406 }
407 
408 /*
409  * Unmap address "addr" in address space "as"; inverse of prmapin().
410  */
411 /* ARGSUSED */
412 void
413 prmapout(struct as *as, caddr_t addr, caddr_t vaddr, int writing)
414 {
415 	extern void ppmapout(caddr_t);
416 
417 	vaddr = (caddr_t)((uintptr_t)vaddr & PAGEMASK);
418 	ppmapout(vaddr);
419 }
420 
421 /*
422  * Make sure the lwp is in an orderly state
423  * for inspection by a debugger through /proc.
424  *
425  * This needs to be called only once while the current thread remains in the
426  * kernel and needs to be called while holding no resources (mutex locks, etc).
427  *
428  * As a hedge against these conditions, if prstop() is called repeatedly
429  * before prunstop() is called, it does nothing and just returns.
430  *
431  * prunstop() must be called before the thread returns to user level.
432  */
433 /* ARGSUSED */
434 void
435 prstop(int why, int what)
436 {
437 	klwp_t *lwp = ttolwp(curthread);
438 	struct regs *r = lwptoregs(lwp);
439 
440 	if (lwp->lwp_pcb.pcb_flags & PRSTOP_CALLED)
441 		return;
442 
443 	/*
444 	 * Make sure we don't deadlock on a recursive call
445 	 * to prstop().  stop() tests the lwp_nostop flag.
446 	 */
447 	ASSERT(lwp->lwp_nostop == 0);
448 	lwp->lwp_nostop = 1;
449 
450 	if (copyin_nowatch((caddr_t)r->r_pc, &lwp->lwp_pcb.pcb_instr,
451 	    sizeof (lwp->lwp_pcb.pcb_instr)) == 0)
452 		lwp->lwp_pcb.pcb_flags |= INSTR_VALID;
453 	else {
454 		lwp->lwp_pcb.pcb_flags &= ~INSTR_VALID;
455 		lwp->lwp_pcb.pcb_instr = 0;
456 	}
457 
458 	(void) save_syscall_args();
459 	ASSERT(lwp->lwp_nostop == 1);
460 	lwp->lwp_nostop = 0;
461 
462 	lwp->lwp_pcb.pcb_flags |= PRSTOP_CALLED;
463 	aston(curthread);	/* so prunstop() will be called */
464 }
465 
466 /*
467  * Inform prstop() that it should do its work again
468  * the next time it is called.
469  */
470 void
471 prunstop(void)
472 {
473 	ttolwp(curthread)->lwp_pcb.pcb_flags &= ~PRSTOP_CALLED;
474 }
475 
476 /*
477  * Fetch the user-level instruction on which the lwp is stopped.
478  * It was saved by the lwp itself, in prstop().
479  * Return non-zero if the instruction is valid.
480  */
481 int
482 prfetchinstr(klwp_t *lwp, ulong_t *ip)
483 {
484 	*ip = (ulong_t)(instr_t)lwp->lwp_pcb.pcb_instr;
485 	return (lwp->lwp_pcb.pcb_flags & INSTR_VALID);
486 }
487 
488 /*
489  * Called from trap() when a load or store instruction
490  * falls in a watched page but is not a watchpoint.
491  * We emulate the instruction in the kernel.
492  */
493 /* ARGSUSED */
494 int
495 pr_watch_emul(struct regs *rp, caddr_t addr, enum seg_rw rw)
496 {
497 #ifdef SOMEDAY
498 	int res;
499 	proc_t *p = curproc;
500 	char *badaddr = (caddr_t)(-1);
501 	int mapped;
502 
503 	/* prevent recursive calls to pr_watch_emul() */
504 	ASSERT(!(curthread->t_flag & T_WATCHPT));
505 	curthread->t_flag |= T_WATCHPT;
506 
507 	watch_disable_addr(addr, 8, rw);
508 	res = do_unaligned(rp, &badaddr);
509 	watch_enable_addr(addr, 8, rw);
510 
511 	curthread->t_flag &= ~T_WATCHPT;
512 	if (res == SIMU_SUCCESS) {
513 		/* adjust the pc */
514 		return (1);
515 	}
516 #endif
517 	return (0);
518 }
519 
520 /*
521  * Return the number of active entries in the local descriptor table.
522  */
523 int
524 prnldt(proc_t *p)
525 {
526 	int limit, i, n;
527 	user_desc_t *udp;
528 
529 	ASSERT(MUTEX_HELD(&p->p_ldtlock));
530 
531 	/*
532 	 * Currently 64 bit processes cannot have private LDTs.
533 	 */
534 	ASSERT(p->p_model != DATAMODEL_LP64 || p->p_ldt == NULL);
535 
536 	if (p->p_ldt == NULL)
537 		return (0);
538 	n = 0;
539 	limit = p->p_ldtlimit;
540 	ASSERT(limit >= 0 && limit < MAXNLDT);
541 
542 	/*
543 	 * Count all present user descriptors.
544 	 */
545 	for (i = LDT_UDBASE, udp = &p->p_ldt[i]; i <= limit; i++, udp++)
546 		if (udp->usd_type != 0 || udp->usd_dpl != 0 || udp->usd_p != 0)
547 			n++;
548 	return (n);
549 }
550 
551 /*
552  * Fetch the active entries from the local descriptor table.
553  */
554 void
555 prgetldt(proc_t *p, struct ssd *ssd)
556 {
557 	int i, limit;
558 	user_desc_t *udp;
559 
560 	ASSERT(MUTEX_HELD(&p->p_ldtlock));
561 
562 	if (p->p_ldt == NULL)
563 		return;
564 
565 	limit = p->p_ldtlimit;
566 	ASSERT(limit >= 0 && limit < MAXNLDT);
567 
568 	/*
569 	 * All present user descriptors.
570 	 */
571 	for (i = LDT_UDBASE, udp = &p->p_ldt[i]; i <= limit; i++, udp++)
572 		if (udp->usd_type != 0 || udp->usd_dpl != 0 ||
573 		    udp->usd_p != 0)
574 			usd_to_ssd(udp, ssd++, SEL_LDT(i));
575 }
576