xref: /illumos-gate/usr/src/uts/intel/fs/proc/prmachdep.c (revision 16ade92d9ce9c9ab33a25f7a2fdd00b581b6efda)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright 2005 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 /*	Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T	*/
28 /*	  All Rights Reserved  	*/
29 
30 
31 #pragma ident	"%Z%%M%	%I%	%E% SMI"
32 
33 #include <sys/types.h>
34 #include <sys/t_lock.h>
35 #include <sys/param.h>
36 #include <sys/cred.h>
37 #include <sys/debug.h>
38 #include <sys/inline.h>
39 #include <sys/kmem.h>
40 #include <sys/proc.h>
41 #include <sys/regset.h>
42 #include <sys/privregs.h>
43 #include <sys/sysmacros.h>
44 #include <sys/systm.h>
45 #include <sys/vfs.h>
46 #include <sys/vnode.h>
47 #include <sys/psw.h>
48 #include <sys/pcb.h>
49 #include <sys/buf.h>
50 #include <sys/signal.h>
51 #include <sys/user.h>
52 #include <sys/cpuvar.h>
53 
54 #include <sys/fault.h>
55 #include <sys/syscall.h>
56 #include <sys/procfs.h>
57 #include <sys/cmn_err.h>
58 #include <sys/stack.h>
59 #include <sys/debugreg.h>
60 #include <sys/copyops.h>
61 
62 #include <sys/mmu.h>
63 #include <sys/pte.h>
64 #include <sys/vmem.h>
65 #include <sys/mman.h>
66 #include <sys/vmparam.h>
67 #include <sys/fp.h>
68 #include <sys/archsystm.h>
69 #include <sys/vmsystm.h>
70 #include <vm/hat.h>
71 #include <vm/as.h>
72 #include <vm/seg.h>
73 #include <vm/seg_kmem.h>
74 #include <vm/seg_kp.h>
75 #include <vm/page.h>
76 
77 #include <sys/sysi86.h>
78 
79 #include <fs/proc/prdata.h>
80 
81 int	prnwatch = 10000;	/* maximum number of watched areas */
82 
83 /*
84  * Force a thread into the kernel if it is not already there.
85  * This is a no-op on uniprocessors.
86  */
87 /* ARGSUSED */
88 void
89 prpokethread(kthread_t *t)
90 {
91 	if (t->t_state == TS_ONPROC && t->t_cpu != CPU)
92 		poke_cpu(t->t_cpu->cpu_id);
93 }
94 
95 /*
96  * Return general registers.
97  */
98 void
99 prgetprregs(klwp_t *lwp, prgregset_t prp)
100 {
101 	ASSERT(MUTEX_NOT_HELD(&lwptoproc(lwp)->p_lock));
102 
103 	getgregs(lwp, prp);
104 }
105 
106 /*
107  * Set general registers.
108  * (Note: This can be an alias to setgregs().)
109  */
110 void
111 prsetprregs(klwp_t *lwp, prgregset_t prp, int initial)
112 {
113 	if (initial)		/* set initial values */
114 		lwptoregs(lwp)->r_ps = PSL_USER;
115 	(void) setgregs(lwp, prp);
116 }
117 
118 #ifdef _SYSCALL32_IMPL
119 
120 /*
121  * Convert prgregset32 to native prgregset
122  */
123 void
124 prgregset_32ton(klwp_t *lwp, prgregset32_t src, prgregset_t dst)
125 {
126 	struct regs *rp = lwptoregs(lwp);
127 
128 	dst[REG_GSBASE] = lwp->lwp_pcb.pcb_gsbase;
129 	dst[REG_FSBASE] = lwp->lwp_pcb.pcb_fsbase;
130 
131 	dst[REG_DS] = (uint16_t)src[DS];
132 	dst[REG_ES] = (uint16_t)src[ES];
133 
134 	dst[REG_GS] = (uint16_t)src[GS];
135 	dst[REG_FS] = (uint16_t)src[FS];
136 	dst[REG_SS] = (uint16_t)src[SS];
137 	dst[REG_RSP] = (uint32_t)src[UESP];
138 	dst[REG_RFL] =
139 		(rp->r_ps & ~PSL_USERMASK) | (src[EFL] & PSL_USERMASK);
140 	dst[REG_CS] = (uint16_t)src[CS];
141 	dst[REG_RIP] = (uint32_t)src[EIP];
142 	dst[REG_ERR] = (uint32_t)src[ERR];
143 	dst[REG_TRAPNO] = (uint32_t)src[TRAPNO];
144 	dst[REG_RAX] = (uint32_t)src[EAX];
145 	dst[REG_RCX] = (uint32_t)src[ECX];
146 	dst[REG_RDX] = (uint32_t)src[EDX];
147 	dst[REG_RBX] = (uint32_t)src[EBX];
148 	dst[REG_RBP] = (uint32_t)src[EBP];
149 	dst[REG_RSI] = (uint32_t)src[ESI];
150 	dst[REG_RDI] = (uint32_t)src[EDI];
151 	dst[REG_R8] = dst[REG_R9] = dst[REG_R10] = dst[REG_R11] =
152 	    dst[REG_R12] = dst[REG_R13] = dst[REG_R14] = dst[REG_R15] = 0;
153 }
154 
155 /*
156  * Return 32-bit general registers
157  */
158 void
159 prgetprregs32(klwp_t *lwp, prgregset32_t prp)
160 {
161 	ASSERT(MUTEX_NOT_HELD(&lwptoproc(lwp)->p_lock));
162 	getgregs32(lwp, prp);
163 }
164 
165 #endif	/* _SYSCALL32_IMPL */
166 
167 /*
168  * Get the syscall return values for the lwp.
169  */
170 int
171 prgetrvals(klwp_t *lwp, long *rval1, long *rval2)
172 {
173 	struct regs *r = lwptoregs(lwp);
174 
175 	if (r->r_ps & PS_C)
176 		return (r->r_r0);
177 	if (lwp->lwp_eosys == JUSTRETURN) {
178 		*rval1 = 0;
179 		*rval2 = 0;
180 	} else if (lwp_getdatamodel(lwp) != DATAMODEL_NATIVE) {
181 		/*
182 		 * XX64	Not sure we -really- need to do this, because the
183 		 *	syscall return already masks off the bottom values ..?
184 		 */
185 		*rval1 = r->r_r0 & (uint32_t)0xffffffffu;
186 		*rval2 = r->r_r1 & (uint32_t)0xffffffffu;
187 	} else {
188 		*rval1 = r->r_r0;
189 		*rval2 = r->r_r1;
190 	}
191 	return (0);
192 }
193 
194 /*
195  * Does the system support floating-point, either through hardware
196  * or by trapping and emulating floating-point machine instructions?
197  */
198 int
199 prhasfp(void)
200 {
201 	extern int fp_kind;
202 
203 	return (fp_kind != FP_NO);
204 }
205 
206 /*
207  * Get floating-point registers.
208  */
209 void
210 prgetprfpregs(klwp_t *lwp, prfpregset_t *pfp)
211 {
212 	bzero(pfp, sizeof (prfpregset_t));
213 	getfpregs(lwp, pfp);
214 }
215 
216 #if defined(_SYSCALL32_IMPL)
217 void
218 prgetprfpregs32(klwp_t *lwp, prfpregset32_t *pfp)
219 {
220 	bzero(pfp, sizeof (*pfp));
221 	getfpregs32(lwp, pfp);
222 }
223 #endif	/* _SYSCALL32_IMPL */
224 
225 /*
226  * Set floating-point registers.
227  * (Note: This can be an alias to setfpregs().)
228  */
229 void
230 prsetprfpregs(klwp_t *lwp, prfpregset_t *pfp)
231 {
232 	setfpregs(lwp, pfp);
233 }
234 
235 #if defined(_SYSCALL32_IMPL)
236 void
237 prsetprfpregs32(klwp_t *lwp, prfpregset32_t *pfp)
238 {
239 	setfpregs32(lwp, pfp);
240 }
241 #endif	/* _SYSCALL32_IMPL */
242 
243 /*
244  * Does the system support extra register state?
245  */
246 /* ARGSUSED */
247 int
248 prhasx(proc_t *p)
249 {
250 	return (0);
251 }
252 
253 /*
254  * Get the size of the extra registers.
255  */
256 /* ARGSUSED */
257 int
258 prgetprxregsize(proc_t *p)
259 {
260 	return (0);
261 }
262 
263 /*
264  * Get extra registers.
265  */
266 /*ARGSUSED*/
267 void
268 prgetprxregs(klwp_t *lwp, caddr_t prx)
269 {
270 	/* no extra registers */
271 }
272 
273 /*
274  * Set extra registers.
275  */
276 /*ARGSUSED*/
277 void
278 prsetprxregs(klwp_t *lwp, caddr_t prx)
279 {
280 	/* no extra registers */
281 }
282 
283 /*
284  * Return the base (lower limit) of the process stack.
285  */
286 caddr_t
287 prgetstackbase(proc_t *p)
288 {
289 	return (p->p_usrstack - p->p_stksize);
290 }
291 
292 /*
293  * Return the "addr" field for pr_addr in prpsinfo_t.
294  * This is a vestige of the past, so whatever we return is OK.
295  */
296 caddr_t
297 prgetpsaddr(proc_t *p)
298 {
299 	return ((caddr_t)p);
300 }
301 
302 /*
303  * Arrange to single-step the lwp.
304  */
305 void
306 prstep(klwp_t *lwp, int watchstep)
307 {
308 	struct regs *r = lwptoregs(lwp);
309 
310 	ASSERT(MUTEX_NOT_HELD(&lwptoproc(lwp)->p_lock));
311 
312 	if (watchstep)
313 		lwp->lwp_pcb.pcb_flags |= WATCH_STEP;
314 	else
315 		lwp->lwp_pcb.pcb_flags |= NORMAL_STEP;
316 
317 	r->r_ps |= PS_T;	/* set the trace flag in PSW */
318 }
319 
320 /*
321  * Undo prstep().
322  */
323 void
324 prnostep(klwp_t *lwp)
325 {
326 	struct regs *r = lwptoregs(lwp);
327 
328 	ASSERT(ttolwp(curthread) == lwp ||
329 	    MUTEX_NOT_HELD(&lwptoproc(lwp)->p_lock));
330 
331 	r->r_ps &= ~PS_T;	/* turn off trace flag in PSW */
332 	lwp->lwp_pcb.pcb_flags &= ~(NORMAL_STEP|WATCH_STEP|DEBUG_PENDING);
333 }
334 
335 /*
336  * Return non-zero if a single-step is in effect.
337  */
338 int
339 prisstep(klwp_t *lwp)
340 {
341 	ASSERT(MUTEX_NOT_HELD(&lwptoproc(lwp)->p_lock));
342 
343 	return ((lwp->lwp_pcb.pcb_flags &
344 		(NORMAL_STEP|WATCH_STEP|DEBUG_PENDING)) != 0);
345 }
346 
347 /*
348  * Set the PC to the specified virtual address.
349  */
350 void
351 prsvaddr(klwp_t *lwp, caddr_t vaddr)
352 {
353 	struct regs *r = lwptoregs(lwp);
354 
355 	ASSERT(MUTEX_NOT_HELD(&lwptoproc(lwp)->p_lock));
356 
357 	r->r_pc = (uintptr_t)vaddr;
358 }
359 
360 /*
361  * Map address "addr" in address space "as" into a kernel virtual address.
362  * The memory is guaranteed to be resident and locked down.
363  */
364 caddr_t
365 prmapin(struct as *as, caddr_t addr, int writing)
366 {
367 	page_t *pp;
368 	caddr_t kaddr;
369 	pfn_t pfnum;
370 
371 	/*
372 	 * XXX - Because of past mistakes, we have bits being returned
373 	 * by getpfnum that are actually the page type bits of the pte.
374 	 * When the object we are trying to map is a memory page with
375 	 * a page structure everything is ok and we can use the optimal
376 	 * method, ppmapin.  Otherwise, we have to do something special.
377 	 */
378 	pfnum = hat_getpfnum(as->a_hat, addr);
379 	if (pf_is_memory(pfnum)) {
380 		pp = page_numtopp_nolock(pfnum);
381 		if (pp != NULL) {
382 			ASSERT(PAGE_LOCKED(pp));
383 			kaddr = ppmapin(pp, writing ?
384 			    (PROT_READ | PROT_WRITE) : PROT_READ, (caddr_t)-1);
385 			return (kaddr + ((uintptr_t)addr & PAGEOFFSET));
386 		}
387 	}
388 
389 	/*
390 	 * Oh well, we didn't have a page struct for the object we were
391 	 * trying to map in; ppmapin doesn't handle devices, but allocating a
392 	 * heap address allows ppmapout to free virtual space when done.
393 	 */
394 	kaddr = vmem_alloc(heap_arena, PAGESIZE, VM_SLEEP);
395 
396 	hat_devload(kas.a_hat, kaddr, MMU_PAGESIZE,  pfnum,
397 	    writing ? (PROT_READ | PROT_WRITE) : PROT_READ, 0);
398 
399 	return (kaddr + ((uintptr_t)addr & PAGEOFFSET));
400 }
401 
402 /*
403  * Unmap address "addr" in address space "as"; inverse of prmapin().
404  */
405 /* ARGSUSED */
406 void
407 prmapout(struct as *as, caddr_t addr, caddr_t vaddr, int writing)
408 {
409 	extern void ppmapout(caddr_t);
410 
411 	vaddr = (caddr_t)((uintptr_t)vaddr & PAGEMASK);
412 	ppmapout(vaddr);
413 }
414 
415 /*
416  * Make sure the lwp is in an orderly state
417  * for inspection by a debugger through /proc.
418  * Called from stop() and from syslwp_create().
419  */
420 /* ARGSUSED */
421 void
422 prstop(int why, int what)
423 {
424 	klwp_t *lwp = ttolwp(curthread);
425 	struct regs *r = lwptoregs(lwp);
426 
427 	/*
428 	 * Make sure we don't deadlock on a recursive call to prstop().
429 	 * stop() tests the lwp_nostop_r and lwp_nostop flags.
430 	 */
431 	lwp->lwp_nostop_r++;
432 	lwp->lwp_nostop++;
433 
434 	if (copyin_nowatch((caddr_t)r->r_pc, &lwp->lwp_pcb.pcb_instr,
435 		    sizeof (lwp->lwp_pcb.pcb_instr)) == 0)
436 		lwp->lwp_pcb.pcb_flags |= INSTR_VALID;
437 	else {
438 		lwp->lwp_pcb.pcb_flags &= ~INSTR_VALID;
439 		lwp->lwp_pcb.pcb_instr = 0;
440 	}
441 
442 	(void) save_syscall_args();
443 	lwp->lwp_nostop--;
444 	lwp->lwp_nostop_r--;
445 }
446 
447 /*
448  * Fetch the user-level instruction on which the lwp is stopped.
449  * It was saved by the lwp itself, in prstop().
450  * Return non-zero if the instruction is valid.
451  */
452 int
453 prfetchinstr(klwp_t *lwp, ulong_t *ip)
454 {
455 	*ip = (ulong_t)(instr_t)lwp->lwp_pcb.pcb_instr;
456 	return (lwp->lwp_pcb.pcb_flags & INSTR_VALID);
457 }
458 
459 /*
460  * Called from trap() when a load or store instruction
461  * falls in a watched page but is not a watchpoint.
462  * We emulate the instruction in the kernel.
463  */
464 /* ARGSUSED */
465 int
466 pr_watch_emul(struct regs *rp, caddr_t addr, enum seg_rw rw)
467 {
468 #ifdef SOMEDAY
469 	int res;
470 	proc_t *p = curproc;
471 	char *badaddr = (caddr_t)(-1);
472 	int mapped;
473 
474 	/* prevent recursive calls to pr_watch_emul() */
475 	ASSERT(!(curthread->t_flag & T_WATCHPT));
476 	curthread->t_flag |= T_WATCHPT;
477 
478 	watch_disable_addr(addr, 8, rw);
479 	res = do_unaligned(rp, &badaddr);
480 	watch_enable_addr(addr, 8, rw);
481 
482 	curthread->t_flag &= ~T_WATCHPT;
483 	if (res == SIMU_SUCCESS) {
484 		/* adjust the pc */
485 		return (1);
486 	}
487 #endif
488 	return (0);
489 }
490 
491 /*
492  * Return the number of active entries in the local descriptor table.
493  */
494 int
495 prnldt(proc_t *p)
496 {
497 	int limit, i, n;
498 	user_desc_t *udp;
499 
500 	ASSERT(MUTEX_HELD(&p->p_ldtlock));
501 
502 	/*
503 	 * Currently 64 bit processes cannot have a private ldt.
504 	 */
505 	ASSERT(get_udatamodel() != DATAMODEL_LP64 || p->p_ldt == NULL);
506 
507 
508 	if (p->p_ldt == NULL)
509 		return (0);
510 	n = 0;
511 	limit = p->p_ldtlimit;
512 	ASSERT(limit >= 0 && limit < MAXNLDT);
513 
514 	/*
515 	 * Count all present user descriptors.
516 	 */
517 	for (i = LDT_UDBASE, udp = &p->p_ldt[i]; i <= limit; i++, udp++)
518 		if (udp->usd_type != 0 || udp->usd_dpl != 0 || udp->usd_p != 0)
519 			n++;
520 	return (n);
521 }
522 
523 /*
524  * Fetch the active entries from the local descriptor table.
525  */
526 void
527 prgetldt(proc_t *p, struct ssd *ssd)
528 {
529 	int i, limit;
530 	user_desc_t *udp;
531 
532 	ASSERT(MUTEX_HELD(&p->p_ldtlock));
533 
534 	if (p->p_ldt == NULL)
535 		return;
536 
537 	limit = p->p_ldtlimit;
538 	ASSERT(limit >= 0 && limit < MAXNLDT);
539 
540 	/*
541 	 * All present user descriptors.
542 	 */
543 	for (i = LDT_UDBASE, udp = &p->p_ldt[i]; i <= limit; i++, udp++)
544 		if (udp->usd_type != 0 || udp->usd_dpl != 0 ||
545 		    udp->usd_p != 0)
546 			usd_to_ssd(udp, ssd++, SEL_LDT(i));
547 }
548