1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* 27 * Copyright (c) 2012, Joyent, Inc. All rights reserved. 28 * Copyright (c) 2013, 2014 by Delphix. All rights reserved. 29 */ 30 31 #include <sys/modctl.h> 32 #include <sys/sunddi.h> 33 #include <sys/dtrace.h> 34 #include <sys/kobj.h> 35 #include <sys/stat.h> 36 #include <sys/conf.h> 37 #include <vm/seg_kmem.h> 38 #include <sys/stack.h> 39 #include <sys/frame.h> 40 #include <sys/dtrace_impl.h> 41 #include <sys/cmn_err.h> 42 #include <sys/sysmacros.h> 43 #include <sys/privregs.h> 44 #include <sys/sdt_impl.h> 45 46 #define SDT_PATCHVAL 0xf0 47 #define SDT_ADDR2NDX(addr) ((((uintptr_t)(addr)) >> 4) & sdt_probetab_mask) 48 #define SDT_PROBETAB_SIZE 0x1000 /* 4k entries -- 16K total */ 49 50 static dev_info_t *sdt_devi; 51 static int sdt_verbose = 0; 52 static sdt_probe_t **sdt_probetab; 53 static int sdt_probetab_size; 54 static int sdt_probetab_mask; 55 56 /*ARGSUSED*/ 57 static int 58 sdt_invop(uintptr_t addr, uintptr_t *stack, uintptr_t eax) 59 { 60 uintptr_t stack0, stack1, stack2, stack3, stack4; 61 int i = 0; 62 sdt_probe_t *sdt = sdt_probetab[SDT_ADDR2NDX(addr)]; 63 64 /* 65 * On amd64, stack[0] contains the dereferenced stack pointer, 66 * stack[1] contains savfp, stack[2] contains savpc. We want 67 * to step over these entries. 68 */ 69 i += 3; 70 71 for (; sdt != NULL; sdt = sdt->sdp_hashnext) { 72 if ((uintptr_t)sdt->sdp_patchpoint == addr) { 73 /* 74 * When accessing the arguments on the stack, we must 75 * protect against accessing beyond the stack. We can 76 * safely set NOFAULT here -- we know that interrupts 77 * are already disabled. 78 */ 79 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 80 stack0 = stack[i++]; 81 stack1 = stack[i++]; 82 stack2 = stack[i++]; 83 stack3 = stack[i++]; 84 stack4 = stack[i++]; 85 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT | 86 CPU_DTRACE_BADADDR); 87 88 dtrace_probe(sdt->sdp_id, stack0, stack1, 89 stack2, stack3, stack4); 90 91 return (DTRACE_INVOP_NOP); 92 } 93 } 94 95 return (0); 96 } 97 98 /*ARGSUSED*/ 99 static void 100 sdt_provide_module(void *arg, struct modctl *ctl) 101 { 102 struct module *mp = ctl->mod_mp; 103 char *modname = ctl->mod_modname; 104 sdt_probedesc_t *sdpd; 105 sdt_probe_t *sdp, *old; 106 sdt_provider_t *prov; 107 int len; 108 109 /* 110 * One for all, and all for one: if we haven't yet registered all of 111 * our providers, we'll refuse to provide anything. 112 */ 113 for (prov = sdt_providers; prov->sdtp_name != NULL; prov++) { 114 if (prov->sdtp_id == DTRACE_PROVNONE) 115 return; 116 } 117 118 if (mp->sdt_nprobes != 0 || (sdpd = mp->sdt_probes) == NULL) 119 return; 120 121 for (sdpd = mp->sdt_probes; sdpd != NULL; sdpd = sdpd->sdpd_next) { 122 char *name = sdpd->sdpd_name, *func, *nname; 123 int i, j; 124 sdt_provider_t *prov; 125 ulong_t offs; 126 dtrace_id_t id; 127 128 for (prov = sdt_providers; prov->sdtp_prefix != NULL; prov++) { 129 char *prefix = prov->sdtp_prefix; 130 131 if (strncmp(name, prefix, strlen(prefix)) == 0) { 132 name += strlen(prefix); 133 break; 134 } 135 } 136 137 nname = kmem_alloc(len = strlen(name) + 1, KM_SLEEP); 138 139 for (i = 0, j = 0; name[j] != '\0'; i++) { 140 if (name[j] == '_' && name[j + 1] == '_') { 141 nname[i] = '-'; 142 j += 2; 143 } else { 144 nname[i] = name[j++]; 145 } 146 } 147 148 nname[i] = '\0'; 149 150 sdp = kmem_zalloc(sizeof (sdt_probe_t), KM_SLEEP); 151 sdp->sdp_loadcnt = ctl->mod_loadcnt; 152 sdp->sdp_ctl = ctl; 153 sdp->sdp_name = nname; 154 sdp->sdp_namelen = len; 155 sdp->sdp_provider = prov; 156 157 func = kobj_searchsym(mp, sdpd->sdpd_offset, &offs); 158 159 if (func == NULL) 160 func = "<unknown>"; 161 162 /* 163 * We have our provider. Now create the probe. 164 */ 165 if ((id = dtrace_probe_lookup(prov->sdtp_id, modname, 166 func, nname)) != DTRACE_IDNONE) { 167 old = dtrace_probe_arg(prov->sdtp_id, id); 168 ASSERT(old != NULL); 169 170 sdp->sdp_next = old->sdp_next; 171 sdp->sdp_id = id; 172 old->sdp_next = sdp; 173 } else { 174 sdp->sdp_id = dtrace_probe_create(prov->sdtp_id, 175 modname, func, nname, 3, sdp); 176 177 mp->sdt_nprobes++; 178 } 179 180 sdp->sdp_hashnext = 181 sdt_probetab[SDT_ADDR2NDX(sdpd->sdpd_offset)]; 182 sdt_probetab[SDT_ADDR2NDX(sdpd->sdpd_offset)] = sdp; 183 184 sdp->sdp_patchval = SDT_PATCHVAL; 185 sdp->sdp_patchpoint = (uint8_t *)sdpd->sdpd_offset; 186 sdp->sdp_savedval = *sdp->sdp_patchpoint; 187 } 188 } 189 190 /*ARGSUSED*/ 191 static void 192 sdt_destroy(void *arg, dtrace_id_t id, void *parg) 193 { 194 sdt_probe_t *sdp = parg, *old, *last, *hash; 195 struct modctl *ctl = sdp->sdp_ctl; 196 int ndx; 197 198 if (ctl != NULL && ctl->mod_loadcnt == sdp->sdp_loadcnt) { 199 if ((ctl->mod_loadcnt == sdp->sdp_loadcnt && 200 ctl->mod_loaded)) { 201 ((struct module *)(ctl->mod_mp))->sdt_nprobes--; 202 } 203 } 204 205 while (sdp != NULL) { 206 old = sdp; 207 208 /* 209 * Now we need to remove this probe from the sdt_probetab. 210 */ 211 ndx = SDT_ADDR2NDX(sdp->sdp_patchpoint); 212 last = NULL; 213 hash = sdt_probetab[ndx]; 214 215 while (hash != sdp) { 216 ASSERT(hash != NULL); 217 last = hash; 218 hash = hash->sdp_hashnext; 219 } 220 221 if (last != NULL) { 222 last->sdp_hashnext = sdp->sdp_hashnext; 223 } else { 224 sdt_probetab[ndx] = sdp->sdp_hashnext; 225 } 226 227 kmem_free(sdp->sdp_name, sdp->sdp_namelen); 228 sdp = sdp->sdp_next; 229 kmem_free(old, sizeof (sdt_probe_t)); 230 } 231 } 232 233 /*ARGSUSED*/ 234 static int 235 sdt_enable(void *arg, dtrace_id_t id, void *parg) 236 { 237 sdt_probe_t *sdp = parg; 238 struct modctl *ctl = sdp->sdp_ctl; 239 240 ctl->mod_nenabled++; 241 242 /* 243 * If this module has disappeared since we discovered its probes, 244 * refuse to enable it. 245 */ 246 if (!ctl->mod_loaded) { 247 if (sdt_verbose) { 248 cmn_err(CE_NOTE, "sdt is failing for probe %s " 249 "(module %s unloaded)", 250 sdp->sdp_name, ctl->mod_modname); 251 } 252 goto err; 253 } 254 255 /* 256 * Now check that our modctl has the expected load count. If it 257 * doesn't, this module must have been unloaded and reloaded -- and 258 * we're not going to touch it. 259 */ 260 if (ctl->mod_loadcnt != sdp->sdp_loadcnt) { 261 if (sdt_verbose) { 262 cmn_err(CE_NOTE, "sdt is failing for probe %s " 263 "(module %s reloaded)", 264 sdp->sdp_name, ctl->mod_modname); 265 } 266 goto err; 267 } 268 269 while (sdp != NULL) { 270 *sdp->sdp_patchpoint = sdp->sdp_patchval; 271 sdp = sdp->sdp_next; 272 } 273 err: 274 return (0); 275 } 276 277 /*ARGSUSED*/ 278 static void 279 sdt_disable(void *arg, dtrace_id_t id, void *parg) 280 { 281 sdt_probe_t *sdp = parg; 282 struct modctl *ctl = sdp->sdp_ctl; 283 284 ctl->mod_nenabled--; 285 286 if (!ctl->mod_loaded || ctl->mod_loadcnt != sdp->sdp_loadcnt) 287 goto err; 288 289 while (sdp != NULL) { 290 *sdp->sdp_patchpoint = sdp->sdp_savedval; 291 sdp = sdp->sdp_next; 292 } 293 294 err: 295 ; 296 } 297 298 /*ARGSUSED*/ 299 uint64_t 300 sdt_getarg(void *arg, dtrace_id_t id, void *parg, int argno, int aframes) 301 { 302 uintptr_t val; 303 struct frame *fp = (struct frame *)dtrace_getfp(); 304 uintptr_t *stack; 305 int i; 306 /* 307 * A total of 6 arguments are passed via registers; any argument with 308 * index of 5 or lower is therefore in a register. 309 */ 310 int inreg = 5; 311 312 for (i = 1; i <= aframes; i++) { 313 fp = (struct frame *)(fp->fr_savfp); 314 315 if (fp->fr_savpc == (pc_t)dtrace_invop_callsite) { 316 /* 317 * In the case of amd64, we will use the pointer to the 318 * regs structure that was pushed when we took the 319 * trap. To get this structure, we must increment 320 * beyond the frame structure, the calling RIP, and 321 * padding stored in dtrace_invop(). If the argument 322 * that we're seeking is passed on the stack, we'll 323 * pull the true stack pointer out of the saved 324 * registers and decrement our argument by the number 325 * of arguments passed in registers; if the argument 326 * we're seeking is passed in regsiters, we can just 327 * load it directly. 328 */ 329 struct regs *rp = (struct regs *)((uintptr_t)&fp[1] + 330 sizeof (uintptr_t) * 2); 331 332 if (argno <= inreg) { 333 stack = (uintptr_t *)&rp->r_rdi; 334 } else { 335 stack = (uintptr_t *)(rp->r_rsp); 336 argno -= (inreg + 1); 337 } 338 goto load; 339 } 340 } 341 342 /* 343 * We know that we did not come through a trap to get into 344 * dtrace_probe() -- the provider simply called dtrace_probe() 345 * directly. As this is the case, we need to shift the argument 346 * that we're looking for: the probe ID is the first argument to 347 * dtrace_probe(), so the argument n will actually be found where 348 * one would expect to find argument (n + 1). 349 */ 350 argno++; 351 352 if (argno <= inreg) { 353 /* 354 * This shouldn't happen. If the argument is passed in a 355 * register then it should have been, well, passed in a 356 * register... 357 */ 358 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 359 return (0); 360 } 361 362 argno -= (inreg + 1); 363 stack = (uintptr_t *)&fp[1]; 364 365 load: 366 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 367 val = stack[argno]; 368 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 369 370 return (val); 371 } 372 373 static dtrace_pops_t sdt_pops = { 374 NULL, 375 sdt_provide_module, 376 sdt_enable, 377 sdt_disable, 378 NULL, 379 NULL, 380 sdt_getargdesc, 381 sdt_getarg, 382 NULL, 383 sdt_destroy 384 }; 385 386 /*ARGSUSED*/ 387 static int 388 sdt_attach(dev_info_t *devi, ddi_attach_cmd_t cmd) 389 { 390 sdt_provider_t *prov; 391 392 if (ddi_create_minor_node(devi, "sdt", S_IFCHR, 393 0, DDI_PSEUDO, 0) == DDI_FAILURE) { 394 cmn_err(CE_NOTE, "/dev/sdt couldn't create minor node"); 395 ddi_remove_minor_node(devi, NULL); 396 return (DDI_FAILURE); 397 } 398 399 ddi_report_dev(devi); 400 sdt_devi = devi; 401 402 if (sdt_probetab_size == 0) 403 sdt_probetab_size = SDT_PROBETAB_SIZE; 404 405 sdt_probetab_mask = sdt_probetab_size - 1; 406 sdt_probetab = 407 kmem_zalloc(sdt_probetab_size * sizeof (sdt_probe_t *), KM_SLEEP); 408 dtrace_invop_add(sdt_invop); 409 410 for (prov = sdt_providers; prov->sdtp_name != NULL; prov++) { 411 uint32_t priv; 412 413 if (prov->sdtp_priv == DTRACE_PRIV_NONE) { 414 priv = DTRACE_PRIV_KERNEL; 415 sdt_pops.dtps_mode = NULL; 416 } else { 417 priv = prov->sdtp_priv; 418 ASSERT(priv == DTRACE_PRIV_USER); 419 sdt_pops.dtps_mode = sdt_mode; 420 } 421 422 if (dtrace_register(prov->sdtp_name, prov->sdtp_attr, 423 priv, NULL, &sdt_pops, prov, &prov->sdtp_id) != 0) { 424 cmn_err(CE_WARN, "failed to register sdt provider %s", 425 prov->sdtp_name); 426 } 427 } 428 429 return (DDI_SUCCESS); 430 } 431 432 /*ARGSUSED*/ 433 static int 434 sdt_detach(dev_info_t *dip, ddi_detach_cmd_t cmd) 435 { 436 sdt_provider_t *prov; 437 438 switch (cmd) { 439 case DDI_DETACH: 440 break; 441 442 case DDI_SUSPEND: 443 return (DDI_SUCCESS); 444 445 default: 446 return (DDI_FAILURE); 447 } 448 449 for (prov = sdt_providers; prov->sdtp_name != NULL; prov++) { 450 if (prov->sdtp_id != DTRACE_PROVNONE) { 451 if (dtrace_unregister(prov->sdtp_id) != 0) 452 return (DDI_FAILURE); 453 454 prov->sdtp_id = DTRACE_PROVNONE; 455 } 456 } 457 458 dtrace_invop_remove(sdt_invop); 459 kmem_free(sdt_probetab, sdt_probetab_size * sizeof (sdt_probe_t *)); 460 461 return (DDI_SUCCESS); 462 } 463 464 /*ARGSUSED*/ 465 static int 466 sdt_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result) 467 { 468 int error; 469 470 switch (infocmd) { 471 case DDI_INFO_DEVT2DEVINFO: 472 *result = (void *)sdt_devi; 473 error = DDI_SUCCESS; 474 break; 475 case DDI_INFO_DEVT2INSTANCE: 476 *result = (void *)0; 477 error = DDI_SUCCESS; 478 break; 479 default: 480 error = DDI_FAILURE; 481 } 482 return (error); 483 } 484 485 /*ARGSUSED*/ 486 static int 487 sdt_open(dev_t *devp, int flag, int otyp, cred_t *cred_p) 488 { 489 return (0); 490 } 491 492 static struct cb_ops sdt_cb_ops = { 493 sdt_open, /* open */ 494 nodev, /* close */ 495 nulldev, /* strategy */ 496 nulldev, /* print */ 497 nodev, /* dump */ 498 nodev, /* read */ 499 nodev, /* write */ 500 nodev, /* ioctl */ 501 nodev, /* devmap */ 502 nodev, /* mmap */ 503 nodev, /* segmap */ 504 nochpoll, /* poll */ 505 ddi_prop_op, /* cb_prop_op */ 506 0, /* streamtab */ 507 D_NEW | D_MP /* Driver compatibility flag */ 508 }; 509 510 static struct dev_ops sdt_ops = { 511 DEVO_REV, /* devo_rev, */ 512 0, /* refcnt */ 513 sdt_info, /* get_dev_info */ 514 nulldev, /* identify */ 515 nulldev, /* probe */ 516 sdt_attach, /* attach */ 517 sdt_detach, /* detach */ 518 nodev, /* reset */ 519 &sdt_cb_ops, /* driver operations */ 520 NULL, /* bus operations */ 521 nodev, /* dev power */ 522 ddi_quiesce_not_needed, /* quiesce */ 523 }; 524 525 /* 526 * Module linkage information for the kernel. 527 */ 528 static struct modldrv modldrv = { 529 &mod_driverops, /* module type (this is a pseudo driver) */ 530 "Statically Defined Tracing", /* name of module */ 531 &sdt_ops, /* driver ops */ 532 }; 533 534 static struct modlinkage modlinkage = { 535 MODREV_1, 536 (void *)&modldrv, 537 NULL 538 }; 539 540 int 541 _init(void) 542 { 543 return (mod_install(&modlinkage)); 544 } 545 546 int 547 _info(struct modinfo *modinfop) 548 { 549 return (mod_info(&modlinkage, modinfop)); 550 } 551 552 int 553 _fini(void) 554 { 555 return (mod_remove(&modlinkage)); 556 } 557