xref: /illumos-gate/usr/src/uts/intel/dtrace/sdt.c (revision 4e0cc57d7ff13862aa2a3b1eed78c72355eda972)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*
27  * Copyright (c) 2012, Joyent, Inc. All rights reserved.
28  * Copyright (c) 2013, 2014 by Delphix. All rights reserved.
29  * Copyright 2024 Oxide Computer Company
30  */
31 
32 #include <sys/modctl.h>
33 #include <sys/sunddi.h>
34 #include <sys/dtrace.h>
35 #include <sys/kobj.h>
36 #include <sys/stat.h>
37 #include <sys/conf.h>
38 #include <vm/seg_kmem.h>
39 #include <sys/stack.h>
40 #include <sys/frame.h>
41 #include <sys/dtrace_impl.h>
42 #include <sys/cmn_err.h>
43 #include <sys/sysmacros.h>
44 #include <sys/privregs.h>
45 #include <sys/sdt_impl.h>
46 
47 #define	SDT_PATCHVAL	0xf0
48 #define	SDT_ADDR2NDX(addr)	((((uintptr_t)(addr)) >> 4) & sdt_probetab_mask)
49 #define	SDT_PROBETAB_SIZE	0x1000		/* 4k entries -- 16K total */
50 
51 static dev_info_t		*sdt_devi;
52 static int			sdt_verbose = 0;
53 static sdt_probe_t		**sdt_probetab;
54 static int			sdt_probetab_size;
55 static int			sdt_probetab_mask;
56 
57 /*ARGSUSED*/
58 static int
59 sdt_invop(uintptr_t addr, uintptr_t *stack, uintptr_t eax)
60 {
61 	uintptr_t stack0, stack1, stack2, stack3, stack4;
62 	int i = 0;
63 	sdt_probe_t *sdt = sdt_probetab[SDT_ADDR2NDX(addr)];
64 
65 	/*
66 	 * On amd64, stack[0] contains the dereferenced stack pointer,
67 	 * stack[1] contains savfp, stack[2] contains savpc.  We want
68 	 * to step over these entries.
69 	 */
70 	i += 3;
71 
72 	for (; sdt != NULL; sdt = sdt->sdp_hashnext) {
73 		if ((uintptr_t)sdt->sdp_patchpoint == addr) {
74 			/*
75 			 * When accessing the arguments on the stack, we must
76 			 * protect against accessing beyond the stack.  We can
77 			 * safely set NOFAULT here -- we know that interrupts
78 			 * are already disabled.
79 			 */
80 			DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
81 			stack0 = stack[i++];
82 			stack1 = stack[i++];
83 			stack2 = stack[i++];
84 			stack3 = stack[i++];
85 			stack4 = stack[i++];
86 			DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT |
87 			    CPU_DTRACE_BADADDR);
88 
89 			dtrace_probe(sdt->sdp_id, stack0, stack1,
90 			    stack2, stack3, stack4);
91 
92 			return (DTRACE_INVOP_NOP);
93 		}
94 	}
95 
96 	return (0);
97 }
98 
99 /*ARGSUSED*/
100 static void
101 sdt_provide_module(void *arg, struct modctl *ctl)
102 {
103 	struct module *mp = ctl->mod_mp;
104 	char *modname = ctl->mod_modname;
105 	sdt_probedesc_t *sdpd;
106 	sdt_probe_t *sdp, *old;
107 	sdt_provider_t *prov;
108 	int len;
109 
110 	/*
111 	 * One for all, and all for one:  if we haven't yet registered all of
112 	 * our providers, we'll refuse to provide anything.
113 	 */
114 	for (prov = sdt_providers; prov->sdtp_name != NULL; prov++) {
115 		if (prov->sdtp_id == DTRACE_PROVNONE)
116 			return;
117 	}
118 
119 	if (mp->sdt_nprobes != 0 || (sdpd = mp->sdt_probes) == NULL)
120 		return;
121 
122 	for (sdpd = mp->sdt_probes; sdpd != NULL; sdpd = sdpd->sdpd_next) {
123 		char *name = sdpd->sdpd_name, *func, *nname;
124 		int i, j;
125 		sdt_provider_t *prov;
126 		ulong_t offs;
127 		dtrace_id_t id;
128 
129 		for (prov = sdt_providers; prov->sdtp_prefix != NULL; prov++) {
130 			char *prefix = prov->sdtp_prefix;
131 
132 			if (strncmp(name, prefix, strlen(prefix)) == 0) {
133 				name += strlen(prefix);
134 				break;
135 			}
136 		}
137 
138 		nname = kmem_alloc(len = strlen(name) + 1, KM_SLEEP);
139 
140 		for (i = 0, j = 0; name[j] != '\0'; i++) {
141 			if (name[j] == '_' && name[j + 1] == '_') {
142 				nname[i] = '-';
143 				j += 2;
144 			} else {
145 				nname[i] = name[j++];
146 			}
147 		}
148 
149 		nname[i] = '\0';
150 
151 		sdp = kmem_zalloc(sizeof (sdt_probe_t), KM_SLEEP);
152 		sdp->sdp_loadcnt = ctl->mod_loadcnt;
153 		sdp->sdp_ctl = ctl;
154 		sdp->sdp_name = nname;
155 		sdp->sdp_namelen = len;
156 		sdp->sdp_provider = prov;
157 
158 		func = kobj_searchsym(mp, sdpd->sdpd_offset, &offs);
159 
160 		if (func == NULL)
161 			func = "<unknown>";
162 
163 		/*
164 		 * We have our provider.  Now create the probe.
165 		 */
166 		if ((id = dtrace_probe_lookup(prov->sdtp_id, modname,
167 		    func, nname)) != DTRACE_IDNONE) {
168 			old = dtrace_probe_arg(prov->sdtp_id, id);
169 			ASSERT(old != NULL);
170 
171 			sdp->sdp_next = old->sdp_next;
172 			sdp->sdp_id = id;
173 			old->sdp_next = sdp;
174 		} else {
175 			sdp->sdp_id = dtrace_probe_create(prov->sdtp_id,
176 			    modname, func, nname, 3, sdp);
177 
178 			mp->sdt_nprobes++;
179 		}
180 
181 		sdp->sdp_hashnext =
182 		    sdt_probetab[SDT_ADDR2NDX(sdpd->sdpd_offset)];
183 		sdt_probetab[SDT_ADDR2NDX(sdpd->sdpd_offset)] = sdp;
184 
185 		sdp->sdp_patchval = SDT_PATCHVAL;
186 		sdp->sdp_patchpoint = (uint8_t *)sdpd->sdpd_offset;
187 		sdp->sdp_savedval = *sdp->sdp_patchpoint;
188 		sdp->sdp_is_tailcall =
189 		    sdp->sdp_patchpoint[SDT_OFF_RET_IDX] == SDT_RET;
190 	}
191 }
192 
193 /*ARGSUSED*/
194 static void
195 sdt_destroy(void *arg, dtrace_id_t id, void *parg)
196 {
197 	sdt_probe_t *sdp = parg, *old, *last, *hash;
198 	struct modctl *ctl = sdp->sdp_ctl;
199 	int ndx;
200 
201 	if (ctl != NULL && ctl->mod_loadcnt == sdp->sdp_loadcnt) {
202 		if ((ctl->mod_loadcnt == sdp->sdp_loadcnt &&
203 		    ctl->mod_loaded)) {
204 			((struct module *)(ctl->mod_mp))->sdt_nprobes--;
205 		}
206 	}
207 
208 	while (sdp != NULL) {
209 		old = sdp;
210 
211 		/*
212 		 * Now we need to remove this probe from the sdt_probetab.
213 		 */
214 		ndx = SDT_ADDR2NDX(sdp->sdp_patchpoint);
215 		last = NULL;
216 		hash = sdt_probetab[ndx];
217 
218 		while (hash != sdp) {
219 			ASSERT(hash != NULL);
220 			last = hash;
221 			hash = hash->sdp_hashnext;
222 		}
223 
224 		if (last != NULL) {
225 			last->sdp_hashnext = sdp->sdp_hashnext;
226 		} else {
227 			sdt_probetab[ndx] = sdp->sdp_hashnext;
228 		}
229 
230 		kmem_free(sdp->sdp_name, sdp->sdp_namelen);
231 		sdp = sdp->sdp_next;
232 		kmem_free(old, sizeof (sdt_probe_t));
233 	}
234 }
235 
236 /*ARGSUSED*/
237 static int
238 sdt_enable(void *arg, dtrace_id_t id, void *parg)
239 {
240 	sdt_probe_t *sdp = parg;
241 	struct modctl *ctl = sdp->sdp_ctl;
242 
243 	ctl->mod_nenabled++;
244 
245 	/*
246 	 * If this module has disappeared since we discovered its probes,
247 	 * refuse to enable it.
248 	 */
249 	if (!ctl->mod_loaded) {
250 		if (sdt_verbose) {
251 			cmn_err(CE_NOTE, "sdt is failing for probe %s "
252 			    "(module %s unloaded)",
253 			    sdp->sdp_name, ctl->mod_modname);
254 		}
255 		goto err;
256 	}
257 
258 	/*
259 	 * Now check that our modctl has the expected load count.  If it
260 	 * doesn't, this module must have been unloaded and reloaded -- and
261 	 * we're not going to touch it.
262 	 */
263 	if (ctl->mod_loadcnt != sdp->sdp_loadcnt) {
264 		if (sdt_verbose) {
265 			cmn_err(CE_NOTE, "sdt is failing for probe %s "
266 			    "(module %s reloaded)",
267 			    sdp->sdp_name, ctl->mod_modname);
268 		}
269 		goto err;
270 	}
271 
272 	while (sdp != NULL) {
273 		*sdp->sdp_patchpoint = sdp->sdp_patchval;
274 		sdp = sdp->sdp_next;
275 	}
276 err:
277 	return (0);
278 }
279 
280 /*ARGSUSED*/
281 static void
282 sdt_disable(void *arg, dtrace_id_t id, void *parg)
283 {
284 	sdt_probe_t *sdp = parg;
285 	struct modctl *ctl = sdp->sdp_ctl;
286 
287 	ctl->mod_nenabled--;
288 
289 	if (!ctl->mod_loaded || ctl->mod_loadcnt != sdp->sdp_loadcnt)
290 		goto err;
291 
292 	while (sdp != NULL) {
293 		*sdp->sdp_patchpoint = sdp->sdp_savedval;
294 		sdp = sdp->sdp_next;
295 	}
296 
297 err:
298 	;
299 }
300 
301 /*ARGSUSED*/
302 uint64_t
303 sdt_getarg(void *arg, dtrace_id_t id, void *parg, int argno, int aframes)
304 {
305 	sdt_probe_t *sdp = parg;
306 	uintptr_t val;
307 	struct frame *fp = (struct frame *)dtrace_getfp();
308 	uintptr_t *stack;
309 	int i;
310 	/*
311 	 * A total of 6 arguments are passed via registers; any argument with
312 	 * index of 5 or lower is therefore in a register.
313 	 */
314 	int inreg = 5;
315 
316 	for (i = 1; i <= aframes; i++) {
317 		fp = (struct frame *)(fp->fr_savfp);
318 
319 		if (fp->fr_savpc == (pc_t)dtrace_invop_callsite) {
320 			/*
321 			 * In the case of amd64, we will use the pointer to the
322 			 * regs structure that was pushed when we took the
323 			 * trap.  To get this structure, we must increment
324 			 * beyond the frame structure, the calling RIP, and
325 			 * padding stored in dtrace_invop().  If the argument
326 			 * that we're seeking is passed on the stack, we'll
327 			 * pull the true stack pointer out of the saved
328 			 * registers and decrement our argument by the number
329 			 * of arguments passed in registers; if the argument
330 			 * we're seeking is passed in regsiters, we can just
331 			 * load it directly.
332 			 */
333 			struct regs *rp = (struct regs *)((uintptr_t)&fp[1] +
334 			    sizeof (uintptr_t) * 2);
335 
336 			if (argno <= inreg) {
337 				stack = (uintptr_t *)&rp->r_rdi;
338 			} else {
339 				stack = (uintptr_t *)(rp->r_rsp);
340 				argno -= (inreg + 1);
341 
342 				/*
343 				 * If the probe was invoked as a tail call, the
344 				 * compiler leaves the stack as if we had just
345 				 * entered the fictitious  __dtrace_probe_[name]
346 				 * function, meaning we need to skip over the
347 				 * saved return address to get to the stack
348 				 * arguments.
349 				 */
350 				if (sdp->sdp_is_tailcall)
351 					argno++;
352 			}
353 			goto load;
354 		}
355 	}
356 
357 	/*
358 	 * We know that we did not come through a trap to get into
359 	 * dtrace_probe() -- the provider simply called dtrace_probe()
360 	 * directly.  As this is the case, we need to shift the argument
361 	 * that we're looking for:  the probe ID is the first argument to
362 	 * dtrace_probe(), so the argument n will actually be found where
363 	 * one would expect to find argument (n + 1).
364 	 */
365 	argno++;
366 
367 	if (argno <= inreg) {
368 		/*
369 		 * This shouldn't happen.  If the argument is passed in a
370 		 * register then it should have been, well, passed in a
371 		 * register...
372 		 */
373 		DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
374 		return (0);
375 	}
376 
377 	argno -= (inreg + 1);
378 	stack = (uintptr_t *)&fp[1];
379 
380 load:
381 	DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
382 	val = stack[argno];
383 	DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
384 
385 	return (val);
386 }
387 
388 static dtrace_pops_t sdt_pops = {
389 	NULL,
390 	sdt_provide_module,
391 	sdt_enable,
392 	sdt_disable,
393 	NULL,
394 	NULL,
395 	sdt_getargdesc,
396 	sdt_getarg,
397 	NULL,
398 	sdt_destroy
399 };
400 
401 /*ARGSUSED*/
402 static int
403 sdt_attach(dev_info_t *devi, ddi_attach_cmd_t cmd)
404 {
405 	sdt_provider_t *prov;
406 
407 	if (ddi_create_minor_node(devi, "sdt", S_IFCHR,
408 	    0, DDI_PSEUDO, 0) == DDI_FAILURE) {
409 		cmn_err(CE_NOTE, "/dev/sdt couldn't create minor node");
410 		ddi_remove_minor_node(devi, NULL);
411 		return (DDI_FAILURE);
412 	}
413 
414 	ddi_report_dev(devi);
415 	sdt_devi = devi;
416 
417 	if (sdt_probetab_size == 0)
418 		sdt_probetab_size = SDT_PROBETAB_SIZE;
419 
420 	sdt_probetab_mask = sdt_probetab_size - 1;
421 	sdt_probetab =
422 	    kmem_zalloc(sdt_probetab_size * sizeof (sdt_probe_t *), KM_SLEEP);
423 	dtrace_invop_add(sdt_invop);
424 
425 	for (prov = sdt_providers; prov->sdtp_name != NULL; prov++) {
426 		uint32_t priv;
427 
428 		if (prov->sdtp_priv == DTRACE_PRIV_NONE) {
429 			priv = DTRACE_PRIV_KERNEL;
430 			sdt_pops.dtps_mode = NULL;
431 		} else {
432 			priv = prov->sdtp_priv;
433 			ASSERT(priv == DTRACE_PRIV_USER);
434 			sdt_pops.dtps_mode = sdt_mode;
435 		}
436 
437 		if (dtrace_register(prov->sdtp_name, prov->sdtp_attr,
438 		    priv, NULL, &sdt_pops, prov, &prov->sdtp_id) != 0) {
439 			cmn_err(CE_WARN, "failed to register sdt provider %s",
440 			    prov->sdtp_name);
441 		}
442 	}
443 
444 	return (DDI_SUCCESS);
445 }
446 
447 /*ARGSUSED*/
448 static int
449 sdt_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
450 {
451 	sdt_provider_t *prov;
452 
453 	switch (cmd) {
454 	case DDI_DETACH:
455 		break;
456 
457 	case DDI_SUSPEND:
458 		return (DDI_SUCCESS);
459 
460 	default:
461 		return (DDI_FAILURE);
462 	}
463 
464 	for (prov = sdt_providers; prov->sdtp_name != NULL; prov++) {
465 		if (prov->sdtp_id != DTRACE_PROVNONE) {
466 			if (dtrace_unregister(prov->sdtp_id) != 0)
467 				return (DDI_FAILURE);
468 
469 			prov->sdtp_id = DTRACE_PROVNONE;
470 		}
471 	}
472 
473 	dtrace_invop_remove(sdt_invop);
474 	kmem_free(sdt_probetab, sdt_probetab_size * sizeof (sdt_probe_t *));
475 
476 	return (DDI_SUCCESS);
477 }
478 
479 /*ARGSUSED*/
480 static int
481 sdt_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
482 {
483 	int error;
484 
485 	switch (infocmd) {
486 	case DDI_INFO_DEVT2DEVINFO:
487 		*result = (void *)sdt_devi;
488 		error = DDI_SUCCESS;
489 		break;
490 	case DDI_INFO_DEVT2INSTANCE:
491 		*result = (void *)0;
492 		error = DDI_SUCCESS;
493 		break;
494 	default:
495 		error = DDI_FAILURE;
496 	}
497 	return (error);
498 }
499 
500 /*ARGSUSED*/
501 static int
502 sdt_open(dev_t *devp, int flag, int otyp, cred_t *cred_p)
503 {
504 	return (0);
505 }
506 
507 static struct cb_ops sdt_cb_ops = {
508 	sdt_open,		/* open */
509 	nodev,			/* close */
510 	nulldev,		/* strategy */
511 	nulldev,		/* print */
512 	nodev,			/* dump */
513 	nodev,			/* read */
514 	nodev,			/* write */
515 	nodev,			/* ioctl */
516 	nodev,			/* devmap */
517 	nodev,			/* mmap */
518 	nodev,			/* segmap */
519 	nochpoll,		/* poll */
520 	ddi_prop_op,		/* cb_prop_op */
521 	0,			/* streamtab  */
522 	D_NEW | D_MP		/* Driver compatibility flag */
523 };
524 
525 static struct dev_ops sdt_ops = {
526 	DEVO_REV,		/* devo_rev, */
527 	0,			/* refcnt  */
528 	sdt_info,		/* get_dev_info */
529 	nulldev,		/* identify */
530 	nulldev,		/* probe */
531 	sdt_attach,		/* attach */
532 	sdt_detach,		/* detach */
533 	nodev,			/* reset */
534 	&sdt_cb_ops,		/* driver operations */
535 	NULL,			/* bus operations */
536 	nodev,			/* dev power */
537 	ddi_quiesce_not_needed,		/* quiesce */
538 };
539 
540 /*
541  * Module linkage information for the kernel.
542  */
543 static struct modldrv modldrv = {
544 	&mod_driverops,		/* module type (this is a pseudo driver) */
545 	"Statically Defined Tracing",	/* name of module */
546 	&sdt_ops,		/* driver ops */
547 };
548 
549 static struct modlinkage modlinkage = {
550 	MODREV_1,
551 	(void *)&modldrv,
552 	NULL
553 };
554 
555 int
556 _init(void)
557 {
558 	return (mod_install(&modlinkage));
559 }
560 
561 int
562 _info(struct modinfo *modinfop)
563 {
564 	return (mod_info(&modlinkage, modinfop));
565 }
566 
567 int
568 _fini(void)
569 {
570 	return (mod_remove(&modlinkage));
571 }
572