1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 27 #include <sys/modctl.h> 28 #include <sys/dtrace.h> 29 #include <sys/kobj.h> 30 #include <sys/stat.h> 31 #include <sys/ddi.h> 32 #include <sys/sunddi.h> 33 #include <sys/conf.h> 34 35 #define FBT_PUSHL_EBP 0x55 36 #define FBT_MOVL_ESP_EBP0_V0 0x8b 37 #define FBT_MOVL_ESP_EBP1_V0 0xec 38 #define FBT_MOVL_ESP_EBP0_V1 0x89 39 #define FBT_MOVL_ESP_EBP1_V1 0xe5 40 #define FBT_REX_RSP_RBP 0x48 41 42 #define FBT_POPL_EBP 0x5d 43 #define FBT_RET 0xc3 44 #define FBT_RET_IMM16 0xc2 45 #define FBT_LEAVE 0xc9 46 47 #define FBT_PATCHVAL 0xcc 48 49 #define FBT_ENTRY "entry" 50 #define FBT_RETURN "return" 51 #define FBT_ADDR2NDX(addr) ((((uintptr_t)(addr)) >> 4) & fbt_probetab_mask) 52 #define FBT_PROBETAB_SIZE 0x8000 /* 32k entries -- 128K total */ 53 54 typedef struct fbt_probe { 55 struct fbt_probe *fbtp_hashnext; 56 uint8_t *fbtp_patchpoint; 57 int8_t fbtp_rval; 58 uint8_t fbtp_patchval; 59 uint8_t fbtp_savedval; 60 uintptr_t fbtp_roffset; 61 dtrace_id_t fbtp_id; 62 char *fbtp_name; 63 struct modctl *fbtp_ctl; 64 int fbtp_loadcnt; 65 int fbtp_symndx; 66 int fbtp_primary; 67 struct fbt_probe *fbtp_next; 68 } fbt_probe_t; 69 70 static dev_info_t *fbt_devi; 71 static dtrace_provider_id_t fbt_id; 72 static fbt_probe_t **fbt_probetab; 73 static int fbt_probetab_size; 74 static int fbt_probetab_mask; 75 static int fbt_verbose = 0; 76 77 static int 78 fbt_invop(uintptr_t addr, uintptr_t *stack, uintptr_t rval) 79 { 80 uintptr_t stack0, stack1, stack2, stack3, stack4; 81 fbt_probe_t *fbt = fbt_probetab[FBT_ADDR2NDX(addr)]; 82 83 for (; fbt != NULL; fbt = fbt->fbtp_hashnext) { 84 if ((uintptr_t)fbt->fbtp_patchpoint == addr) { 85 if (fbt->fbtp_roffset == 0) { 86 int i = 0; 87 /* 88 * When accessing the arguments on the stack, 89 * we must protect against accessing beyond 90 * the stack. We can safely set NOFAULT here 91 * -- we know that interrupts are already 92 * disabled. 93 */ 94 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 95 CPU->cpu_dtrace_caller = stack[i++]; 96 /* 97 * On amd64, stack[0] contains the dereferenced 98 * stack pointer, stack[1] contains savfp, 99 * stack[2] contains savpc. We want to step 100 * over these entries. 101 */ 102 i += 2; 103 stack0 = stack[i++]; 104 stack1 = stack[i++]; 105 stack2 = stack[i++]; 106 stack3 = stack[i++]; 107 stack4 = stack[i++]; 108 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT | 109 CPU_DTRACE_BADADDR); 110 111 dtrace_probe(fbt->fbtp_id, stack0, stack1, 112 stack2, stack3, stack4); 113 114 CPU->cpu_dtrace_caller = 0; 115 } else { 116 /* 117 * On amd64, we instrument the ret, not the 118 * leave. We therefore need to set the caller 119 * to assure that the top frame of a stack() 120 * action is correct. 121 */ 122 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 123 CPU->cpu_dtrace_caller = stack[0]; 124 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT | 125 CPU_DTRACE_BADADDR); 126 127 dtrace_probe(fbt->fbtp_id, fbt->fbtp_roffset, 128 rval, 0, 0, 0); 129 CPU->cpu_dtrace_caller = 0; 130 } 131 132 return (fbt->fbtp_rval); 133 } 134 } 135 136 return (0); 137 } 138 139 /*ARGSUSED*/ 140 static void 141 fbt_provide_module(void *arg, struct modctl *ctl) 142 { 143 struct module *mp = ctl->mod_mp; 144 char *str = mp->strings; 145 int nsyms = mp->nsyms; 146 Shdr *symhdr = mp->symhdr; 147 char *modname = ctl->mod_modname; 148 char *name; 149 fbt_probe_t *fbt, *retfbt; 150 size_t symsize; 151 int i, size; 152 153 /* 154 * Employees of dtrace and their families are ineligible. Void 155 * where prohibited. 156 */ 157 if (strcmp(modname, "dtrace") == 0) 158 return; 159 160 if (ctl->mod_requisites != NULL) { 161 struct modctl_list *list; 162 163 list = (struct modctl_list *)ctl->mod_requisites; 164 165 for (; list != NULL; list = list->modl_next) { 166 if (strcmp(list->modl_modp->mod_modname, "dtrace") == 0) 167 return; 168 } 169 } 170 171 /* 172 * KMDB is ineligible for instrumentation -- it may execute in 173 * any context, including probe context. 174 */ 175 if (strcmp(modname, "kmdbmod") == 0) 176 return; 177 178 if (str == NULL || symhdr == NULL || symhdr->sh_addr == 0) { 179 /* 180 * If this module doesn't (yet) have its string or symbol 181 * table allocated, clear out. 182 */ 183 return; 184 } 185 186 symsize = symhdr->sh_entsize; 187 188 if (mp->fbt_nentries) { 189 /* 190 * This module has some FBT entries allocated; we're afraid 191 * to screw with it. 192 */ 193 return; 194 } 195 196 for (i = 1; i < nsyms; i++) { 197 uint8_t *instr, *limit; 198 Sym *sym = (Sym *)(symhdr->sh_addr + i * symsize); 199 int j; 200 201 if (ELF_ST_TYPE(sym->st_info) != STT_FUNC) 202 continue; 203 204 /* 205 * Weak symbols are not candidates. This could be made to 206 * work (where weak functions and their underlying function 207 * appear as two disjoint probes), but it's not simple. 208 */ 209 if (ELF_ST_BIND(sym->st_info) == STB_WEAK) 210 continue; 211 212 name = str + sym->st_name; 213 214 if (strstr(name, "dtrace_") == name && 215 strstr(name, "dtrace_safe_") != name) { 216 /* 217 * Anything beginning with "dtrace_" may be called 218 * from probe context unless it explitly indicates 219 * that it won't be called from probe context by 220 * using the prefix "dtrace_safe_". 221 */ 222 continue; 223 } 224 225 if (strstr(name, "kdi_") == name || 226 strstr(name, "_kdi_") != NULL) { 227 /* 228 * Any function name beginning with "kdi_" or 229 * containing the string "_kdi_" is a part of the 230 * kernel debugger interface and may be called in 231 * arbitrary context -- including probe context. 232 */ 233 continue; 234 } 235 236 /* 237 * Due to 4524008, _init and _fini may have a bloated st_size. 238 * While this bug was fixed quite some time ago, old drivers 239 * may be lurking. We need to develop a better solution to 240 * this problem, such that correct _init and _fini functions 241 * (the vast majority) may be correctly traced. One solution 242 * may be to scan through the entire symbol table to see if 243 * any symbol overlaps with _init. If none does, set a bit in 244 * the module structure that this module has correct _init and 245 * _fini sizes. This will cause some pain the first time a 246 * module is scanned, but at least it would be O(N) instead of 247 * O(N log N)... 248 */ 249 if (strcmp(name, "_init") == 0) 250 continue; 251 252 if (strcmp(name, "_fini") == 0) 253 continue; 254 255 /* 256 * In order to be eligible, the function must begin with the 257 * following sequence: 258 * 259 * pushl %esp 260 * movl %esp, %ebp 261 * 262 * Note that there are two variants of encodings that generate 263 * the movl; we must check for both. For 64-bit, we would 264 * normally insist that a function begin with the following 265 * sequence: 266 * 267 * pushq %rbp 268 * movq %rsp, %rbp 269 * 270 * However, the compiler for 64-bit often splits these two 271 * instructions -- and the first instruction in the function 272 * is often not the pushq. As a result, on 64-bit we look 273 * for any "pushq %rbp" in the function and we instrument 274 * this with a breakpoint instruction. 275 */ 276 instr = (uint8_t *)sym->st_value; 277 limit = (uint8_t *)(sym->st_value + sym->st_size); 278 279 while (instr < limit) { 280 if (*instr == FBT_PUSHL_EBP) 281 break; 282 283 if ((size = dtrace_instr_size(instr)) <= 0) 284 break; 285 286 instr += size; 287 } 288 289 if (instr >= limit || *instr != FBT_PUSHL_EBP) { 290 /* 291 * We either don't save the frame pointer in this 292 * function, or we ran into some disassembly 293 * screw-up. Either way, we bail. 294 */ 295 continue; 296 } 297 298 fbt = kmem_zalloc(sizeof (fbt_probe_t), KM_SLEEP); 299 fbt->fbtp_name = name; 300 fbt->fbtp_id = dtrace_probe_create(fbt_id, modname, 301 name, FBT_ENTRY, 3, fbt); 302 fbt->fbtp_patchpoint = instr; 303 fbt->fbtp_ctl = ctl; 304 fbt->fbtp_loadcnt = ctl->mod_loadcnt; 305 fbt->fbtp_rval = DTRACE_INVOP_PUSHL_EBP; 306 fbt->fbtp_savedval = *instr; 307 fbt->fbtp_patchval = FBT_PATCHVAL; 308 309 fbt->fbtp_hashnext = fbt_probetab[FBT_ADDR2NDX(instr)]; 310 fbt->fbtp_symndx = i; 311 fbt_probetab[FBT_ADDR2NDX(instr)] = fbt; 312 313 mp->fbt_nentries++; 314 315 retfbt = NULL; 316 again: 317 if (instr >= limit) 318 continue; 319 320 /* 321 * If this disassembly fails, then we've likely walked off into 322 * a jump table or some other unsuitable area. Bail out of the 323 * disassembly now. 324 */ 325 if ((size = dtrace_instr_size(instr)) <= 0) 326 continue; 327 328 /* 329 * We only instrument "ret" on amd64 -- we don't yet instrument 330 * ret imm16, largely because the compiler doesn't seem to 331 * (yet) emit them in the kernel... 332 */ 333 if (*instr != FBT_RET) { 334 instr += size; 335 goto again; 336 } 337 338 /* 339 * We (desperately) want to avoid erroneously instrumenting a 340 * jump table, especially given that our markers are pretty 341 * short: two bytes on x86, and just one byte on amd64. To 342 * determine if we're looking at a true instruction sequence 343 * or an inline jump table that happens to contain the same 344 * byte sequences, we resort to some heuristic sleeze: we 345 * treat this instruction as being contained within a pointer, 346 * and see if that pointer points to within the body of the 347 * function. If it does, we refuse to instrument it. 348 */ 349 for (j = 0; j < sizeof (uintptr_t); j++) { 350 uintptr_t check = (uintptr_t)instr - j; 351 uint8_t *ptr; 352 353 if (check < sym->st_value) 354 break; 355 356 if (check + sizeof (uintptr_t) > (uintptr_t)limit) 357 continue; 358 359 ptr = *(uint8_t **)check; 360 361 if (ptr >= (uint8_t *)sym->st_value && ptr < limit) { 362 instr += size; 363 goto again; 364 } 365 } 366 367 /* 368 * We have a winner! 369 */ 370 fbt = kmem_zalloc(sizeof (fbt_probe_t), KM_SLEEP); 371 fbt->fbtp_name = name; 372 373 if (retfbt == NULL) { 374 fbt->fbtp_id = dtrace_probe_create(fbt_id, modname, 375 name, FBT_RETURN, 3, fbt); 376 } else { 377 retfbt->fbtp_next = fbt; 378 fbt->fbtp_id = retfbt->fbtp_id; 379 } 380 381 retfbt = fbt; 382 fbt->fbtp_patchpoint = instr; 383 fbt->fbtp_ctl = ctl; 384 fbt->fbtp_loadcnt = ctl->mod_loadcnt; 385 386 ASSERT(*instr == FBT_RET); 387 fbt->fbtp_rval = DTRACE_INVOP_RET; 388 fbt->fbtp_roffset = 389 (uintptr_t)(instr - (uint8_t *)sym->st_value); 390 391 fbt->fbtp_savedval = *instr; 392 fbt->fbtp_patchval = FBT_PATCHVAL; 393 fbt->fbtp_hashnext = fbt_probetab[FBT_ADDR2NDX(instr)]; 394 fbt->fbtp_symndx = i; 395 fbt_probetab[FBT_ADDR2NDX(instr)] = fbt; 396 397 mp->fbt_nentries++; 398 399 instr += size; 400 goto again; 401 } 402 } 403 404 /*ARGSUSED*/ 405 static void 406 fbt_destroy(void *arg, dtrace_id_t id, void *parg) 407 { 408 fbt_probe_t *fbt = parg, *next, *hash, *last; 409 struct modctl *ctl = fbt->fbtp_ctl; 410 int ndx; 411 412 do { 413 if (ctl != NULL && ctl->mod_loadcnt == fbt->fbtp_loadcnt) { 414 if ((ctl->mod_loadcnt == fbt->fbtp_loadcnt && 415 ctl->mod_loaded)) { 416 ((struct module *) 417 (ctl->mod_mp))->fbt_nentries--; 418 } 419 } 420 421 /* 422 * Now we need to remove this probe from the fbt_probetab. 423 */ 424 ndx = FBT_ADDR2NDX(fbt->fbtp_patchpoint); 425 last = NULL; 426 hash = fbt_probetab[ndx]; 427 428 while (hash != fbt) { 429 ASSERT(hash != NULL); 430 last = hash; 431 hash = hash->fbtp_hashnext; 432 } 433 434 if (last != NULL) { 435 last->fbtp_hashnext = fbt->fbtp_hashnext; 436 } else { 437 fbt_probetab[ndx] = fbt->fbtp_hashnext; 438 } 439 440 next = fbt->fbtp_next; 441 kmem_free(fbt, sizeof (fbt_probe_t)); 442 443 fbt = next; 444 } while (fbt != NULL); 445 } 446 447 /*ARGSUSED*/ 448 static int 449 fbt_enable(void *arg, dtrace_id_t id, void *parg) 450 { 451 fbt_probe_t *fbt = parg; 452 struct modctl *ctl = fbt->fbtp_ctl; 453 454 ctl->mod_nenabled++; 455 456 if (!ctl->mod_loaded) { 457 if (fbt_verbose) { 458 cmn_err(CE_NOTE, "fbt is failing for probe %s " 459 "(module %s unloaded)", 460 fbt->fbtp_name, ctl->mod_modname); 461 } 462 463 return (0); 464 } 465 466 /* 467 * Now check that our modctl has the expected load count. If it 468 * doesn't, this module must have been unloaded and reloaded -- and 469 * we're not going to touch it. 470 */ 471 if (ctl->mod_loadcnt != fbt->fbtp_loadcnt) { 472 if (fbt_verbose) { 473 cmn_err(CE_NOTE, "fbt is failing for probe %s " 474 "(module %s reloaded)", 475 fbt->fbtp_name, ctl->mod_modname); 476 } 477 478 return (0); 479 } 480 481 for (; fbt != NULL; fbt = fbt->fbtp_next) 482 *fbt->fbtp_patchpoint = fbt->fbtp_patchval; 483 484 return (0); 485 } 486 487 /*ARGSUSED*/ 488 static void 489 fbt_disable(void *arg, dtrace_id_t id, void *parg) 490 { 491 fbt_probe_t *fbt = parg; 492 struct modctl *ctl = fbt->fbtp_ctl; 493 494 ASSERT(ctl->mod_nenabled > 0); 495 ctl->mod_nenabled--; 496 497 if (!ctl->mod_loaded || (ctl->mod_loadcnt != fbt->fbtp_loadcnt)) 498 return; 499 500 for (; fbt != NULL; fbt = fbt->fbtp_next) 501 *fbt->fbtp_patchpoint = fbt->fbtp_savedval; 502 } 503 504 /*ARGSUSED*/ 505 static void 506 fbt_suspend(void *arg, dtrace_id_t id, void *parg) 507 { 508 fbt_probe_t *fbt = parg; 509 struct modctl *ctl = fbt->fbtp_ctl; 510 511 ASSERT(ctl->mod_nenabled > 0); 512 513 if (!ctl->mod_loaded || (ctl->mod_loadcnt != fbt->fbtp_loadcnt)) 514 return; 515 516 for (; fbt != NULL; fbt = fbt->fbtp_next) 517 *fbt->fbtp_patchpoint = fbt->fbtp_savedval; 518 } 519 520 /*ARGSUSED*/ 521 static void 522 fbt_resume(void *arg, dtrace_id_t id, void *parg) 523 { 524 fbt_probe_t *fbt = parg; 525 struct modctl *ctl = fbt->fbtp_ctl; 526 527 ASSERT(ctl->mod_nenabled > 0); 528 529 if (!ctl->mod_loaded || (ctl->mod_loadcnt != fbt->fbtp_loadcnt)) 530 return; 531 532 for (; fbt != NULL; fbt = fbt->fbtp_next) 533 *fbt->fbtp_patchpoint = fbt->fbtp_patchval; 534 } 535 536 /*ARGSUSED*/ 537 static void 538 fbt_getargdesc(void *arg, dtrace_id_t id, void *parg, dtrace_argdesc_t *desc) 539 { 540 fbt_probe_t *fbt = parg; 541 struct modctl *ctl = fbt->fbtp_ctl; 542 struct module *mp = ctl->mod_mp; 543 ctf_file_t *fp = NULL, *pfp; 544 ctf_funcinfo_t f; 545 int error; 546 ctf_id_t argv[32], type; 547 int argc = sizeof (argv) / sizeof (ctf_id_t); 548 const char *parent; 549 550 if (!ctl->mod_loaded || (ctl->mod_loadcnt != fbt->fbtp_loadcnt)) 551 goto err; 552 553 if (fbt->fbtp_roffset != 0 && desc->dtargd_ndx == 0) { 554 (void) strcpy(desc->dtargd_native, "int"); 555 return; 556 } 557 558 if ((fp = ctf_modopen(mp, &error)) == NULL) { 559 /* 560 * We have no CTF information for this module -- and therefore 561 * no args[] information. 562 */ 563 goto err; 564 } 565 566 /* 567 * If we have a parent container, we must manually import it. 568 */ 569 if ((parent = ctf_parent_name(fp)) != NULL) { 570 struct modctl *mp = &modules; 571 struct modctl *mod = NULL; 572 573 /* 574 * We must iterate over all modules to find the module that 575 * is our parent. 576 */ 577 do { 578 if (strcmp(mp->mod_modname, parent) == 0) { 579 mod = mp; 580 break; 581 } 582 } while ((mp = mp->mod_next) != &modules); 583 584 if (mod == NULL) 585 goto err; 586 587 if ((pfp = ctf_modopen(mod->mod_mp, &error)) == NULL) { 588 goto err; 589 } 590 591 if (ctf_import(fp, pfp) != 0) { 592 ctf_close(pfp); 593 goto err; 594 } 595 596 ctf_close(pfp); 597 } 598 599 if (ctf_func_info(fp, fbt->fbtp_symndx, &f) == CTF_ERR) 600 goto err; 601 602 if (fbt->fbtp_roffset != 0) { 603 if (desc->dtargd_ndx > 1) 604 goto err; 605 606 ASSERT(desc->dtargd_ndx == 1); 607 type = f.ctc_return; 608 } else { 609 if (desc->dtargd_ndx + 1 > f.ctc_argc) 610 goto err; 611 612 if (ctf_func_args(fp, fbt->fbtp_symndx, argc, argv) == CTF_ERR) 613 goto err; 614 615 type = argv[desc->dtargd_ndx]; 616 } 617 618 if (ctf_type_name(fp, type, desc->dtargd_native, 619 DTRACE_ARGTYPELEN) != NULL) { 620 ctf_close(fp); 621 return; 622 } 623 err: 624 if (fp != NULL) 625 ctf_close(fp); 626 627 desc->dtargd_ndx = DTRACE_ARGNONE; 628 } 629 630 static dtrace_pattr_t fbt_attr = { 631 { DTRACE_STABILITY_EVOLVING, DTRACE_STABILITY_EVOLVING, DTRACE_CLASS_ISA }, 632 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN }, 633 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN }, 634 { DTRACE_STABILITY_EVOLVING, DTRACE_STABILITY_EVOLVING, DTRACE_CLASS_ISA }, 635 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_ISA }, 636 }; 637 638 static dtrace_pops_t fbt_pops = { 639 NULL, 640 fbt_provide_module, 641 fbt_enable, 642 fbt_disable, 643 fbt_suspend, 644 fbt_resume, 645 fbt_getargdesc, 646 NULL, 647 NULL, 648 fbt_destroy 649 }; 650 651 static void 652 fbt_cleanup(dev_info_t *devi) 653 { 654 dtrace_invop_remove(fbt_invop); 655 ddi_remove_minor_node(devi, NULL); 656 kmem_free(fbt_probetab, fbt_probetab_size * sizeof (fbt_probe_t *)); 657 fbt_probetab = NULL; 658 fbt_probetab_mask = 0; 659 } 660 661 static int 662 fbt_attach(dev_info_t *devi, ddi_attach_cmd_t cmd) 663 { 664 switch (cmd) { 665 case DDI_ATTACH: 666 break; 667 case DDI_RESUME: 668 return (DDI_SUCCESS); 669 default: 670 return (DDI_FAILURE); 671 } 672 673 if (fbt_probetab_size == 0) 674 fbt_probetab_size = FBT_PROBETAB_SIZE; 675 676 fbt_probetab_mask = fbt_probetab_size - 1; 677 fbt_probetab = 678 kmem_zalloc(fbt_probetab_size * sizeof (fbt_probe_t *), KM_SLEEP); 679 680 dtrace_invop_add(fbt_invop); 681 682 if (ddi_create_minor_node(devi, "fbt", S_IFCHR, 0, 683 DDI_PSEUDO, 0) == DDI_FAILURE || 684 dtrace_register("fbt", &fbt_attr, DTRACE_PRIV_KERNEL, NULL, 685 &fbt_pops, NULL, &fbt_id) != 0) { 686 fbt_cleanup(devi); 687 return (DDI_FAILURE); 688 } 689 690 ddi_report_dev(devi); 691 fbt_devi = devi; 692 693 return (DDI_SUCCESS); 694 } 695 696 static int 697 fbt_detach(dev_info_t *devi, ddi_detach_cmd_t cmd) 698 { 699 switch (cmd) { 700 case DDI_DETACH: 701 break; 702 case DDI_SUSPEND: 703 return (DDI_SUCCESS); 704 default: 705 return (DDI_FAILURE); 706 } 707 708 if (dtrace_unregister(fbt_id) != 0) 709 return (DDI_FAILURE); 710 711 fbt_cleanup(devi); 712 713 return (DDI_SUCCESS); 714 } 715 716 /*ARGSUSED*/ 717 static int 718 fbt_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result) 719 { 720 int error; 721 722 switch (infocmd) { 723 case DDI_INFO_DEVT2DEVINFO: 724 *result = (void *)fbt_devi; 725 error = DDI_SUCCESS; 726 break; 727 case DDI_INFO_DEVT2INSTANCE: 728 *result = (void *)0; 729 error = DDI_SUCCESS; 730 break; 731 default: 732 error = DDI_FAILURE; 733 } 734 return (error); 735 } 736 737 /*ARGSUSED*/ 738 static int 739 fbt_open(dev_t *devp, int flag, int otyp, cred_t *cred_p) 740 { 741 return (0); 742 } 743 744 static struct cb_ops fbt_cb_ops = { 745 fbt_open, /* open */ 746 nodev, /* close */ 747 nulldev, /* strategy */ 748 nulldev, /* print */ 749 nodev, /* dump */ 750 nodev, /* read */ 751 nodev, /* write */ 752 nodev, /* ioctl */ 753 nodev, /* devmap */ 754 nodev, /* mmap */ 755 nodev, /* segmap */ 756 nochpoll, /* poll */ 757 ddi_prop_op, /* cb_prop_op */ 758 0, /* streamtab */ 759 D_NEW | D_MP /* Driver compatibility flag */ 760 }; 761 762 static struct dev_ops fbt_ops = { 763 DEVO_REV, /* devo_rev */ 764 0, /* refcnt */ 765 fbt_info, /* get_dev_info */ 766 nulldev, /* identify */ 767 nulldev, /* probe */ 768 fbt_attach, /* attach */ 769 fbt_detach, /* detach */ 770 nodev, /* reset */ 771 &fbt_cb_ops, /* driver operations */ 772 NULL, /* bus operations */ 773 nodev, /* dev power */ 774 ddi_quiesce_not_needed, /* quiesce */ 775 }; 776 777 /* 778 * Module linkage information for the kernel. 779 */ 780 static struct modldrv modldrv = { 781 &mod_driverops, /* module type (this is a pseudo driver) */ 782 "Function Boundary Tracing", /* name of module */ 783 &fbt_ops, /* driver ops */ 784 }; 785 786 static struct modlinkage modlinkage = { 787 MODREV_1, 788 (void *)&modldrv, 789 NULL 790 }; 791 792 int 793 _init(void) 794 { 795 return (mod_install(&modlinkage)); 796 } 797 798 int 799 _info(struct modinfo *modinfop) 800 { 801 return (mod_info(&modlinkage, modinfop)); 802 } 803 804 int 805 _fini(void) 806 { 807 return (mod_remove(&modlinkage)); 808 } 809