1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 /* 28 * Copyright (c) 2013, 2014 by Delphix. All rights reserved. 29 * Copyright (c) 2017 Joyent, Inc. 30 */ 31 32 #include <sys/dtrace_impl.h> 33 #include <sys/stack.h> 34 #include <sys/frame.h> 35 #include <sys/cmn_err.h> 36 #include <sys/privregs.h> 37 #include <sys/sysmacros.h> 38 39 extern uintptr_t kernelbase; 40 41 int dtrace_ustackdepth_max = 2048; 42 43 void 44 dtrace_getpcstack(pc_t *pcstack, int pcstack_limit, int aframes, 45 uint32_t *intrpc) 46 { 47 struct frame *fp = (struct frame *)dtrace_getfp(); 48 struct frame *nextfp, *minfp, *stacktop; 49 int depth = 0; 50 int on_intr, last = 0; 51 uintptr_t pc; 52 uintptr_t caller = CPU->cpu_dtrace_caller; 53 54 if ((on_intr = CPU_ON_INTR(CPU)) != 0) 55 stacktop = (struct frame *)(CPU->cpu_intr_stack + SA(MINFRAME)); 56 else 57 stacktop = (struct frame *)curthread->t_stk; 58 minfp = fp; 59 60 aframes++; 61 62 if (intrpc != NULL && depth < pcstack_limit) 63 pcstack[depth++] = (pc_t)intrpc; 64 65 while (depth < pcstack_limit) { 66 nextfp = (struct frame *)fp->fr_savfp; 67 pc = fp->fr_savpc; 68 69 if (nextfp <= minfp || nextfp >= stacktop) { 70 if (on_intr) { 71 /* 72 * Hop from interrupt stack to thread stack. 73 */ 74 stacktop = (struct frame *)curthread->t_stk; 75 minfp = (struct frame *)curthread->t_stkbase; 76 on_intr = 0; 77 continue; 78 } 79 80 /* 81 * This is the last frame we can process; indicate 82 * that we should return after processing this frame. 83 */ 84 last = 1; 85 } 86 87 if (aframes > 0) { 88 if (--aframes == 0 && caller != NULL) { 89 /* 90 * We've just run out of artificial frames, 91 * and we have a valid caller -- fill it in 92 * now. 93 */ 94 ASSERT(depth < pcstack_limit); 95 pcstack[depth++] = (pc_t)caller; 96 caller = NULL; 97 } 98 } else { 99 if (depth < pcstack_limit) 100 pcstack[depth++] = (pc_t)pc; 101 } 102 103 if (last) { 104 while (depth < pcstack_limit) 105 pcstack[depth++] = NULL; 106 return; 107 } 108 109 fp = nextfp; 110 minfp = fp; 111 } 112 } 113 114 static int 115 dtrace_getustack_common(uint64_t *pcstack, int pcstack_limit, uintptr_t pc, 116 uintptr_t sp) 117 { 118 klwp_t *lwp = ttolwp(curthread); 119 proc_t *p = curproc; 120 uintptr_t oldcontext = lwp->lwp_oldcontext; 121 uintptr_t oldsp; 122 volatile uint16_t *flags = 123 (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 124 size_t s1, s2; 125 int ret = 0; 126 127 ASSERT(pcstack == NULL || pcstack_limit > 0); 128 ASSERT(dtrace_ustackdepth_max > 0); 129 130 if (p->p_model == DATAMODEL_NATIVE) { 131 s1 = sizeof (struct frame) + 2 * sizeof (long); 132 s2 = s1 + sizeof (siginfo_t); 133 } else { 134 s1 = sizeof (struct frame32) + 3 * sizeof (int); 135 s2 = s1 + sizeof (siginfo32_t); 136 } 137 138 while (pc != 0) { 139 /* 140 * We limit the number of times we can go around this 141 * loop to account for a circular stack. 142 */ 143 if (ret++ >= dtrace_ustackdepth_max) { 144 *flags |= CPU_DTRACE_BADSTACK; 145 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = sp; 146 break; 147 } 148 149 if (pcstack != NULL) { 150 *pcstack++ = (uint64_t)pc; 151 pcstack_limit--; 152 if (pcstack_limit <= 0) 153 break; 154 } 155 156 if (sp == 0) 157 break; 158 159 oldsp = sp; 160 161 if (oldcontext == sp + s1 || oldcontext == sp + s2) { 162 if (p->p_model == DATAMODEL_NATIVE) { 163 ucontext_t *ucp = (ucontext_t *)oldcontext; 164 greg_t *gregs = ucp->uc_mcontext.gregs; 165 166 sp = dtrace_fulword(&gregs[REG_FP]); 167 pc = dtrace_fulword(&gregs[REG_PC]); 168 169 oldcontext = dtrace_fulword(&ucp->uc_link); 170 } else { 171 ucontext32_t *ucp = (ucontext32_t *)oldcontext; 172 greg32_t *gregs = ucp->uc_mcontext.gregs; 173 174 sp = dtrace_fuword32(&gregs[EBP]); 175 pc = dtrace_fuword32(&gregs[EIP]); 176 177 oldcontext = dtrace_fuword32(&ucp->uc_link); 178 } 179 } else { 180 if (p->p_model == DATAMODEL_NATIVE) { 181 struct frame *fr = (struct frame *)sp; 182 183 pc = dtrace_fulword(&fr->fr_savpc); 184 sp = dtrace_fulword(&fr->fr_savfp); 185 } else { 186 struct frame32 *fr = (struct frame32 *)sp; 187 188 pc = dtrace_fuword32(&fr->fr_savpc); 189 sp = dtrace_fuword32(&fr->fr_savfp); 190 } 191 } 192 193 if (sp == oldsp) { 194 *flags |= CPU_DTRACE_BADSTACK; 195 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = sp; 196 break; 197 } 198 199 /* 200 * This is totally bogus: if we faulted, we're going to clear 201 * the fault and break. This is to deal with the apparently 202 * broken Java stacks on x86. 203 */ 204 if (*flags & CPU_DTRACE_FAULT) { 205 *flags &= ~CPU_DTRACE_FAULT; 206 break; 207 } 208 } 209 210 return (ret); 211 } 212 213 void 214 dtrace_getupcstack(uint64_t *pcstack, int pcstack_limit) 215 { 216 klwp_t *lwp = ttolwp(curthread); 217 proc_t *p = curproc; 218 struct regs *rp; 219 uintptr_t pc, sp; 220 int n; 221 222 ASSERT(DTRACE_CPUFLAG_ISSET(CPU_DTRACE_NOFAULT)); 223 224 if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_FAULT)) 225 return; 226 227 if (pcstack_limit <= 0) 228 return; 229 230 /* 231 * If there's no user context we still need to zero the stack. 232 */ 233 if (lwp == NULL || p == NULL || (rp = lwp->lwp_regs) == NULL) 234 goto zero; 235 236 *pcstack++ = (uint64_t)p->p_pid; 237 pcstack_limit--; 238 239 if (pcstack_limit <= 0) 240 return; 241 242 pc = rp->r_pc; 243 sp = rp->r_fp; 244 245 if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_ENTRY)) { 246 *pcstack++ = (uint64_t)pc; 247 pcstack_limit--; 248 if (pcstack_limit <= 0) 249 return; 250 251 if (p->p_model == DATAMODEL_NATIVE) 252 pc = dtrace_fulword((void *)rp->r_sp); 253 else 254 pc = dtrace_fuword32((void *)rp->r_sp); 255 } 256 257 n = dtrace_getustack_common(pcstack, pcstack_limit, pc, sp); 258 ASSERT(n >= 0); 259 ASSERT(n <= pcstack_limit); 260 261 pcstack += n; 262 pcstack_limit -= n; 263 264 zero: 265 while (pcstack_limit-- > 0) 266 *pcstack++ = NULL; 267 } 268 269 int 270 dtrace_getustackdepth(void) 271 { 272 klwp_t *lwp = ttolwp(curthread); 273 proc_t *p = curproc; 274 struct regs *rp; 275 uintptr_t pc, sp; 276 int n = 0; 277 278 if (lwp == NULL || p == NULL || (rp = lwp->lwp_regs) == NULL) 279 return (0); 280 281 if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_FAULT)) 282 return (-1); 283 284 pc = rp->r_pc; 285 sp = rp->r_fp; 286 287 if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_ENTRY)) { 288 n++; 289 290 if (p->p_model == DATAMODEL_NATIVE) 291 pc = dtrace_fulword((void *)rp->r_sp); 292 else 293 pc = dtrace_fuword32((void *)rp->r_sp); 294 } 295 296 n += dtrace_getustack_common(NULL, 0, pc, sp); 297 298 return (n); 299 } 300 301 void 302 dtrace_getufpstack(uint64_t *pcstack, uint64_t *fpstack, int pcstack_limit) 303 { 304 klwp_t *lwp = ttolwp(curthread); 305 proc_t *p = curproc; 306 struct regs *rp; 307 uintptr_t pc, sp, oldcontext; 308 volatile uint16_t *flags = 309 (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 310 size_t s1, s2; 311 312 if (*flags & CPU_DTRACE_FAULT) 313 return; 314 315 if (pcstack_limit <= 0) 316 return; 317 318 /* 319 * If there's no user context we still need to zero the stack. 320 */ 321 if (lwp == NULL || p == NULL || (rp = lwp->lwp_regs) == NULL) 322 goto zero; 323 324 *pcstack++ = (uint64_t)p->p_pid; 325 pcstack_limit--; 326 327 if (pcstack_limit <= 0) 328 return; 329 330 pc = rp->r_pc; 331 sp = rp->r_fp; 332 oldcontext = lwp->lwp_oldcontext; 333 334 if (p->p_model == DATAMODEL_NATIVE) { 335 s1 = sizeof (struct frame) + 2 * sizeof (long); 336 s2 = s1 + sizeof (siginfo_t); 337 } else { 338 s1 = sizeof (struct frame32) + 3 * sizeof (int); 339 s2 = s1 + sizeof (siginfo32_t); 340 } 341 342 if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_ENTRY)) { 343 *pcstack++ = (uint64_t)pc; 344 *fpstack++ = 0; 345 pcstack_limit--; 346 if (pcstack_limit <= 0) 347 return; 348 349 if (p->p_model == DATAMODEL_NATIVE) 350 pc = dtrace_fulword((void *)rp->r_sp); 351 else 352 pc = dtrace_fuword32((void *)rp->r_sp); 353 } 354 355 while (pc != 0) { 356 *pcstack++ = (uint64_t)pc; 357 *fpstack++ = sp; 358 pcstack_limit--; 359 if (pcstack_limit <= 0) 360 break; 361 362 if (sp == 0) 363 break; 364 365 if (oldcontext == sp + s1 || oldcontext == sp + s2) { 366 if (p->p_model == DATAMODEL_NATIVE) { 367 ucontext_t *ucp = (ucontext_t *)oldcontext; 368 greg_t *gregs = ucp->uc_mcontext.gregs; 369 370 sp = dtrace_fulword(&gregs[REG_FP]); 371 pc = dtrace_fulword(&gregs[REG_PC]); 372 373 oldcontext = dtrace_fulword(&ucp->uc_link); 374 } else { 375 ucontext_t *ucp = (ucontext_t *)oldcontext; 376 greg_t *gregs = ucp->uc_mcontext.gregs; 377 378 sp = dtrace_fuword32(&gregs[EBP]); 379 pc = dtrace_fuword32(&gregs[EIP]); 380 381 oldcontext = dtrace_fuword32(&ucp->uc_link); 382 } 383 } else { 384 if (p->p_model == DATAMODEL_NATIVE) { 385 struct frame *fr = (struct frame *)sp; 386 387 pc = dtrace_fulword(&fr->fr_savpc); 388 sp = dtrace_fulword(&fr->fr_savfp); 389 } else { 390 struct frame32 *fr = (struct frame32 *)sp; 391 392 pc = dtrace_fuword32(&fr->fr_savpc); 393 sp = dtrace_fuword32(&fr->fr_savfp); 394 } 395 } 396 397 /* 398 * This is totally bogus: if we faulted, we're going to clear 399 * the fault and break. This is to deal with the apparently 400 * broken Java stacks on x86. 401 */ 402 if (*flags & CPU_DTRACE_FAULT) { 403 *flags &= ~CPU_DTRACE_FAULT; 404 break; 405 } 406 } 407 408 zero: 409 while (pcstack_limit-- > 0) 410 *pcstack++ = NULL; 411 } 412 413 /*ARGSUSED*/ 414 uint64_t 415 dtrace_getarg(int arg, int aframes) 416 { 417 uintptr_t val; 418 struct frame *fp = (struct frame *)dtrace_getfp(); 419 uintptr_t *stack; 420 int i; 421 #if defined(__amd64) 422 /* 423 * A total of 6 arguments are passed via registers; any argument with 424 * index of 5 or lower is therefore in a register. 425 */ 426 int inreg = 5; 427 #endif 428 429 for (i = 1; i <= aframes; i++) { 430 fp = (struct frame *)(fp->fr_savfp); 431 432 if (fp->fr_savpc == (pc_t)dtrace_invop_callsite) { 433 #if !defined(__amd64) 434 /* 435 * If we pass through the invalid op handler, we will 436 * use the pointer that it passed to the stack as the 437 * second argument to dtrace_invop() as the pointer to 438 * the stack. When using this stack, we must step 439 * beyond the EIP that was pushed when the trap was 440 * taken -- hence the "+ 1" below. 441 */ 442 stack = ((uintptr_t **)&fp[1])[1] + 1; 443 #else 444 /* 445 * In the case of amd64, we will use the pointer to the 446 * regs structure that was pushed when we took the 447 * trap. To get this structure, we must increment 448 * beyond the frame structure, the calling RIP, and 449 * padding stored in dtrace_invop(). If the argument 450 * that we're seeking is passed on the stack, we'll 451 * pull the true stack pointer out of the saved 452 * registers and decrement our argument by the number 453 * of arguments passed in registers; if the argument 454 * we're seeking is passed in regsiters, we can just 455 * load it directly. 456 */ 457 struct regs *rp = (struct regs *)((uintptr_t)&fp[1] + 458 sizeof (uintptr_t) * 2); 459 460 if (arg <= inreg) { 461 stack = (uintptr_t *)&rp->r_rdi; 462 } else { 463 stack = (uintptr_t *)(rp->r_rsp); 464 arg -= inreg; 465 } 466 #endif 467 goto load; 468 } 469 470 } 471 472 /* 473 * We know that we did not come through a trap to get into 474 * dtrace_probe() -- the provider simply called dtrace_probe() 475 * directly. As this is the case, we need to shift the argument 476 * that we're looking for: the probe ID is the first argument to 477 * dtrace_probe(), so the argument n will actually be found where 478 * one would expect to find argument (n + 1). 479 */ 480 arg++; 481 482 #if defined(__amd64) 483 if (arg <= inreg) { 484 /* 485 * This shouldn't happen. If the argument is passed in a 486 * register then it should have been, well, passed in a 487 * register... 488 */ 489 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 490 return (0); 491 } 492 493 arg -= (inreg + 1); 494 #endif 495 stack = (uintptr_t *)&fp[1]; 496 497 load: 498 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 499 val = stack[arg]; 500 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 501 502 return (val); 503 } 504 505 /*ARGSUSED*/ 506 int 507 dtrace_getstackdepth(int aframes) 508 { 509 struct frame *fp = (struct frame *)dtrace_getfp(); 510 struct frame *nextfp, *minfp, *stacktop; 511 int depth = 0; 512 int on_intr; 513 514 if ((on_intr = CPU_ON_INTR(CPU)) != 0) 515 stacktop = (struct frame *)(CPU->cpu_intr_stack + SA(MINFRAME)); 516 else 517 stacktop = (struct frame *)curthread->t_stk; 518 minfp = fp; 519 520 aframes++; 521 522 for (;;) { 523 depth++; 524 525 nextfp = (struct frame *)fp->fr_savfp; 526 527 if (nextfp <= minfp || nextfp >= stacktop) { 528 if (on_intr) { 529 /* 530 * Hop from interrupt stack to thread stack. 531 */ 532 stacktop = (struct frame *)curthread->t_stk; 533 minfp = (struct frame *)curthread->t_stkbase; 534 on_intr = 0; 535 continue; 536 } 537 break; 538 } 539 540 fp = nextfp; 541 minfp = fp; 542 } 543 544 if (depth <= aframes) 545 return (0); 546 547 return (depth - aframes); 548 } 549 550 #if defined(__amd64) 551 static const int dtrace_regmap[] = { 552 REG_GS, /* GS */ 553 REG_FS, /* FS */ 554 REG_ES, /* ES */ 555 REG_DS, /* DS */ 556 REG_RDI, /* EDI */ 557 REG_RSI, /* ESI */ 558 REG_RBP, /* EBP */ 559 REG_RSP, /* ESP */ 560 REG_RBX, /* EBX */ 561 REG_RDX, /* EDX */ 562 REG_RCX, /* ECX */ 563 REG_RAX, /* EAX */ 564 REG_TRAPNO, /* TRAPNO */ 565 REG_ERR, /* ERR */ 566 REG_RIP, /* EIP */ 567 REG_CS, /* CS */ 568 REG_RFL, /* EFL */ 569 REG_RSP, /* UESP */ 570 REG_SS /* SS */ 571 }; 572 #endif 573 574 575 ulong_t 576 dtrace_getreg(struct regs *rp, uint_t reg) 577 { 578 #if defined(__amd64) 579 if (reg <= SS) { 580 if (reg >= sizeof (dtrace_regmap) / sizeof (int)) { 581 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 582 return (0); 583 } 584 585 reg = dtrace_regmap[reg]; 586 } else { 587 reg -= SS + 1; 588 } 589 590 switch (reg) { 591 case REG_RDI: 592 return (rp->r_rdi); 593 case REG_RSI: 594 return (rp->r_rsi); 595 case REG_RDX: 596 return (rp->r_rdx); 597 case REG_RCX: 598 return (rp->r_rcx); 599 case REG_R8: 600 return (rp->r_r8); 601 case REG_R9: 602 return (rp->r_r9); 603 case REG_RAX: 604 return (rp->r_rax); 605 case REG_RBX: 606 return (rp->r_rbx); 607 case REG_RBP: 608 return (rp->r_rbp); 609 case REG_R10: 610 return (rp->r_r10); 611 case REG_R11: 612 return (rp->r_r11); 613 case REG_R12: 614 return (rp->r_r12); 615 case REG_R13: 616 return (rp->r_r13); 617 case REG_R14: 618 return (rp->r_r14); 619 case REG_R15: 620 return (rp->r_r15); 621 case REG_DS: 622 return (rp->r_ds); 623 case REG_ES: 624 return (rp->r_es); 625 case REG_FS: 626 return (rp->r_fs); 627 case REG_GS: 628 return (rp->r_gs); 629 case REG_TRAPNO: 630 return (rp->r_trapno); 631 case REG_ERR: 632 return (rp->r_err); 633 case REG_RIP: 634 return (rp->r_rip); 635 case REG_CS: 636 return (rp->r_cs); 637 case REG_SS: 638 return (rp->r_ss); 639 case REG_RFL: 640 return (rp->r_rfl); 641 case REG_RSP: 642 return (rp->r_rsp); 643 default: 644 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 645 return (0); 646 } 647 648 #else 649 if (reg > SS) { 650 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 651 return (0); 652 } 653 654 return ((&rp->r_gs)[reg]); 655 #endif 656 } 657 658 void 659 dtrace_setreg(struct regs *rp, uint_t reg, ulong_t val) 660 { 661 #if defined(__amd64) 662 if (reg <= SS) { 663 ASSERT(reg < (sizeof (dtrace_regmap) / sizeof (int))); 664 665 reg = dtrace_regmap[reg]; 666 } else { 667 reg -= SS + 1; 668 } 669 670 switch (reg) { 671 case REG_RDI: 672 rp->r_rdi = val; 673 break; 674 case REG_RSI: 675 rp->r_rsi = val; 676 break; 677 case REG_RDX: 678 rp->r_rdx = val; 679 break; 680 case REG_RCX: 681 rp->r_rcx = val; 682 break; 683 case REG_R8: 684 rp->r_r8 = val; 685 break; 686 case REG_R9: 687 rp->r_r9 = val; 688 break; 689 case REG_RAX: 690 rp->r_rax = val; 691 break; 692 case REG_RBX: 693 rp->r_rbx = val; 694 break; 695 case REG_RBP: 696 rp->r_rbp = val; 697 break; 698 case REG_R10: 699 rp->r_r10 = val; 700 break; 701 case REG_R11: 702 rp->r_r11 = val; 703 break; 704 case REG_R12: 705 rp->r_r12 = val; 706 break; 707 case REG_R13: 708 rp->r_r13 = val; 709 break; 710 case REG_R14: 711 rp->r_r14 = val; 712 break; 713 case REG_R15: 714 rp->r_r15 = val; 715 break; 716 case REG_RSP: 717 rp->r_rsp = val; 718 break; 719 default: 720 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 721 return; 722 } 723 724 #else /* defined(__amd64) */ 725 switch (reg) { 726 case EAX: 727 rp->r_eax = val; 728 break; 729 case ECX: 730 rp->r_ecx = val; 731 break; 732 case EDX: 733 rp->r_edx = val; 734 break; 735 case EBX: 736 rp->r_ebx = val; 737 break; 738 case ESP: 739 rp->r_esp = val; 740 break; 741 case EBP: 742 rp->r_ebp = val; 743 break; 744 case ESI: 745 rp->r_esi = val; 746 break; 747 case EDI: 748 rp->r_edi = val; 749 break; 750 default: 751 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 752 return; 753 } 754 #endif /* defined(__amd64) */ 755 } 756 757 static int 758 dtrace_copycheck(uintptr_t uaddr, uintptr_t kaddr, size_t size) 759 { 760 ASSERT(kaddr >= kernelbase && kaddr + size >= kaddr); 761 762 if (uaddr + size >= kernelbase || uaddr + size < uaddr) { 763 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); 764 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = uaddr; 765 return (0); 766 } 767 768 return (1); 769 } 770 771 /*ARGSUSED*/ 772 void 773 dtrace_copyin(uintptr_t uaddr, uintptr_t kaddr, size_t size, 774 volatile uint16_t *flags) 775 { 776 if (dtrace_copycheck(uaddr, kaddr, size)) 777 dtrace_copy(uaddr, kaddr, size); 778 } 779 780 /*ARGSUSED*/ 781 void 782 dtrace_copyout(uintptr_t kaddr, uintptr_t uaddr, size_t size, 783 volatile uint16_t *flags) 784 { 785 if (dtrace_copycheck(uaddr, kaddr, size)) 786 dtrace_copy(kaddr, uaddr, size); 787 } 788 789 void 790 dtrace_copyinstr(uintptr_t uaddr, uintptr_t kaddr, size_t size, 791 volatile uint16_t *flags) 792 { 793 if (dtrace_copycheck(uaddr, kaddr, size)) 794 dtrace_copystr(uaddr, kaddr, size, flags); 795 } 796 797 void 798 dtrace_copyoutstr(uintptr_t kaddr, uintptr_t uaddr, size_t size, 799 volatile uint16_t *flags) 800 { 801 if (dtrace_copycheck(uaddr, kaddr, size)) 802 dtrace_copystr(kaddr, uaddr, size, flags); 803 } 804 805 uint8_t 806 dtrace_fuword8(void *uaddr) 807 { 808 extern uint8_t dtrace_fuword8_nocheck(void *); 809 if ((uintptr_t)uaddr >= _userlimit) { 810 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); 811 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = (uintptr_t)uaddr; 812 return (0); 813 } 814 return (dtrace_fuword8_nocheck(uaddr)); 815 } 816 817 uint16_t 818 dtrace_fuword16(void *uaddr) 819 { 820 extern uint16_t dtrace_fuword16_nocheck(void *); 821 if ((uintptr_t)uaddr >= _userlimit) { 822 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); 823 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = (uintptr_t)uaddr; 824 return (0); 825 } 826 return (dtrace_fuword16_nocheck(uaddr)); 827 } 828 829 uint32_t 830 dtrace_fuword32(void *uaddr) 831 { 832 extern uint32_t dtrace_fuword32_nocheck(void *); 833 if ((uintptr_t)uaddr >= _userlimit) { 834 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); 835 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = (uintptr_t)uaddr; 836 return (0); 837 } 838 return (dtrace_fuword32_nocheck(uaddr)); 839 } 840 841 uint64_t 842 dtrace_fuword64(void *uaddr) 843 { 844 extern uint64_t dtrace_fuword64_nocheck(void *); 845 if ((uintptr_t)uaddr >= _userlimit) { 846 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); 847 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = (uintptr_t)uaddr; 848 return (0); 849 } 850 return (dtrace_fuword64_nocheck(uaddr)); 851 } 852