1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 #include <sys/dtrace_impl.h> 30 #include <sys/stack.h> 31 #include <sys/frame.h> 32 #include <sys/cmn_err.h> 33 #include <sys/privregs.h> 34 #include <sys/sysmacros.h> 35 36 extern uintptr_t kernelbase; 37 38 int dtrace_ustackdepth_max = 2048; 39 40 void 41 dtrace_getpcstack(pc_t *pcstack, int pcstack_limit, int aframes, 42 uint32_t *intrpc) 43 { 44 struct frame *fp = (struct frame *)dtrace_getfp(); 45 struct frame *nextfp, *minfp, *stacktop; 46 int depth = 0; 47 int on_intr, last = 0; 48 uintptr_t pc; 49 uintptr_t caller = CPU->cpu_dtrace_caller; 50 51 if ((on_intr = CPU_ON_INTR(CPU)) != 0) 52 stacktop = (struct frame *)(CPU->cpu_intr_stack + SA(MINFRAME)); 53 else 54 stacktop = (struct frame *)curthread->t_stk; 55 minfp = fp; 56 57 aframes++; 58 59 if (intrpc != NULL && depth < pcstack_limit) 60 pcstack[depth++] = (pc_t)intrpc; 61 62 while (depth < pcstack_limit) { 63 nextfp = (struct frame *)fp->fr_savfp; 64 pc = fp->fr_savpc; 65 66 if (nextfp <= minfp || nextfp >= stacktop) { 67 if (on_intr) { 68 /* 69 * Hop from interrupt stack to thread stack. 70 */ 71 stacktop = (struct frame *)curthread->t_stk; 72 minfp = (struct frame *)curthread->t_stkbase; 73 on_intr = 0; 74 continue; 75 } 76 77 /* 78 * This is the last frame we can process; indicate 79 * that we should return after processing this frame. 80 */ 81 last = 1; 82 } 83 84 if (aframes > 0) { 85 if (--aframes == 0 && caller != NULL) { 86 /* 87 * We've just run out of artificial frames, 88 * and we have a valid caller -- fill it in 89 * now. 90 */ 91 ASSERT(depth < pcstack_limit); 92 pcstack[depth++] = (pc_t)caller; 93 caller = NULL; 94 } 95 } else { 96 if (depth < pcstack_limit) 97 pcstack[depth++] = (pc_t)pc; 98 } 99 100 if (last) { 101 while (depth < pcstack_limit) 102 pcstack[depth++] = NULL; 103 return; 104 } 105 106 fp = nextfp; 107 minfp = fp; 108 } 109 } 110 111 static int 112 dtrace_getustack_common(uint64_t *pcstack, int pcstack_limit, uintptr_t pc, 113 uintptr_t sp) 114 { 115 klwp_t *lwp = ttolwp(curthread); 116 proc_t *p = curproc; 117 uintptr_t oldcontext = lwp->lwp_oldcontext; 118 uintptr_t oldsp; 119 volatile uint16_t *flags = 120 (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 121 size_t s1, s2; 122 int ret = 0; 123 124 ASSERT(pcstack == NULL || pcstack_limit > 0); 125 ASSERT(dtrace_ustackdepth_max > 0); 126 127 if (p->p_model == DATAMODEL_NATIVE) { 128 s1 = sizeof (struct frame) + 2 * sizeof (long); 129 s2 = s1 + sizeof (siginfo_t); 130 } else { 131 s1 = sizeof (struct frame32) + 3 * sizeof (int); 132 s2 = s1 + sizeof (siginfo32_t); 133 } 134 135 while (pc != 0) { 136 /* 137 * We limit the number of times we can go around this 138 * loop to account for a circular stack. 139 */ 140 if (ret++ >= dtrace_ustackdepth_max) { 141 *flags |= CPU_DTRACE_BADSTACK; 142 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = sp; 143 break; 144 } 145 146 if (pcstack != NULL) { 147 *pcstack++ = (uint64_t)pc; 148 pcstack_limit--; 149 if (pcstack_limit <= 0) 150 break; 151 } 152 153 if (sp == 0) 154 break; 155 156 oldsp = sp; 157 158 if (oldcontext == sp + s1 || oldcontext == sp + s2) { 159 if (p->p_model == DATAMODEL_NATIVE) { 160 ucontext_t *ucp = (ucontext_t *)oldcontext; 161 greg_t *gregs = ucp->uc_mcontext.gregs; 162 163 sp = dtrace_fulword(&gregs[REG_FP]); 164 pc = dtrace_fulword(&gregs[REG_PC]); 165 166 oldcontext = dtrace_fulword(&ucp->uc_link); 167 } else { 168 ucontext32_t *ucp = (ucontext32_t *)oldcontext; 169 greg32_t *gregs = ucp->uc_mcontext.gregs; 170 171 sp = dtrace_fuword32(&gregs[EBP]); 172 pc = dtrace_fuword32(&gregs[EIP]); 173 174 oldcontext = dtrace_fuword32(&ucp->uc_link); 175 } 176 } else { 177 if (p->p_model == DATAMODEL_NATIVE) { 178 struct frame *fr = (struct frame *)sp; 179 180 pc = dtrace_fulword(&fr->fr_savpc); 181 sp = dtrace_fulword(&fr->fr_savfp); 182 } else { 183 struct frame32 *fr = (struct frame32 *)sp; 184 185 pc = dtrace_fuword32(&fr->fr_savpc); 186 sp = dtrace_fuword32(&fr->fr_savfp); 187 } 188 } 189 190 if (sp == oldsp) { 191 *flags |= CPU_DTRACE_BADSTACK; 192 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = sp; 193 break; 194 } 195 196 /* 197 * This is totally bogus: if we faulted, we're going to clear 198 * the fault and break. This is to deal with the apparently 199 * broken Java stacks on x86. 200 */ 201 if (*flags & CPU_DTRACE_FAULT) { 202 *flags &= ~CPU_DTRACE_FAULT; 203 break; 204 } 205 } 206 207 return (ret); 208 } 209 210 void 211 dtrace_getupcstack(uint64_t *pcstack, int pcstack_limit) 212 { 213 klwp_t *lwp = ttolwp(curthread); 214 proc_t *p = curproc; 215 struct regs *rp; 216 uintptr_t pc, sp; 217 int n; 218 219 ASSERT(DTRACE_CPUFLAG_ISSET(CPU_DTRACE_NOFAULT)); 220 221 if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_FAULT)) 222 return; 223 224 if (pcstack_limit <= 0) 225 return; 226 227 /* 228 * If there's no user context we still need to zero the stack. 229 */ 230 if (lwp == NULL || p == NULL || (rp = lwp->lwp_regs) == NULL) 231 goto zero; 232 233 *pcstack++ = (uint64_t)p->p_pid; 234 pcstack_limit--; 235 236 if (pcstack_limit <= 0) 237 return; 238 239 pc = rp->r_pc; 240 sp = rp->r_fp; 241 242 if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_ENTRY)) { 243 *pcstack++ = (uint64_t)pc; 244 pcstack_limit--; 245 if (pcstack_limit <= 0) 246 return; 247 248 if (p->p_model == DATAMODEL_NATIVE) 249 pc = dtrace_fulword((void *)rp->r_sp); 250 else 251 pc = dtrace_fuword32((void *)rp->r_sp); 252 } 253 254 n = dtrace_getustack_common(pcstack, pcstack_limit, pc, sp); 255 ASSERT(n >= 0); 256 ASSERT(n <= pcstack_limit); 257 258 pcstack += n; 259 pcstack_limit -= n; 260 261 zero: 262 while (pcstack_limit-- > 0) 263 *pcstack++ = NULL; 264 } 265 266 int 267 dtrace_getustackdepth(void) 268 { 269 klwp_t *lwp = ttolwp(curthread); 270 proc_t *p = curproc; 271 struct regs *rp; 272 uintptr_t pc, sp; 273 int n = 0; 274 275 if (lwp == NULL || p == NULL || (rp = lwp->lwp_regs) == NULL) 276 return (0); 277 278 if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_FAULT)) 279 return (-1); 280 281 pc = rp->r_pc; 282 sp = rp->r_fp; 283 284 if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_ENTRY)) { 285 n++; 286 287 if (p->p_model == DATAMODEL_NATIVE) 288 pc = dtrace_fulword((void *)rp->r_sp); 289 else 290 pc = dtrace_fuword32((void *)rp->r_sp); 291 } 292 293 n += dtrace_getustack_common(NULL, 0, pc, sp); 294 295 return (n); 296 } 297 298 void 299 dtrace_getufpstack(uint64_t *pcstack, uint64_t *fpstack, int pcstack_limit) 300 { 301 klwp_t *lwp = ttolwp(curthread); 302 proc_t *p = curproc; 303 struct regs *rp; 304 uintptr_t pc, sp, oldcontext; 305 volatile uint16_t *flags = 306 (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags; 307 size_t s1, s2; 308 309 if (*flags & CPU_DTRACE_FAULT) 310 return; 311 312 if (pcstack_limit <= 0) 313 return; 314 315 /* 316 * If there's no user context we still need to zero the stack. 317 */ 318 if (lwp == NULL || p == NULL || (rp = lwp->lwp_regs) == NULL) 319 goto zero; 320 321 *pcstack++ = (uint64_t)p->p_pid; 322 pcstack_limit--; 323 324 if (pcstack_limit <= 0) 325 return; 326 327 pc = rp->r_pc; 328 sp = rp->r_fp; 329 oldcontext = lwp->lwp_oldcontext; 330 331 if (p->p_model == DATAMODEL_NATIVE) { 332 s1 = sizeof (struct frame) + 2 * sizeof (long); 333 s2 = s1 + sizeof (siginfo_t); 334 } else { 335 s1 = sizeof (struct frame32) + 3 * sizeof (int); 336 s2 = s1 + sizeof (siginfo32_t); 337 } 338 339 if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_ENTRY)) { 340 *pcstack++ = (uint64_t)pc; 341 *fpstack++ = 0; 342 pcstack_limit--; 343 if (pcstack_limit <= 0) 344 return; 345 346 if (p->p_model == DATAMODEL_NATIVE) 347 pc = dtrace_fulword((void *)rp->r_sp); 348 else 349 pc = dtrace_fuword32((void *)rp->r_sp); 350 } 351 352 while (pc != 0) { 353 *pcstack++ = (uint64_t)pc; 354 *fpstack++ = sp; 355 pcstack_limit--; 356 if (pcstack_limit <= 0) 357 break; 358 359 if (sp == 0) 360 break; 361 362 if (oldcontext == sp + s1 || oldcontext == sp + s2) { 363 if (p->p_model == DATAMODEL_NATIVE) { 364 ucontext_t *ucp = (ucontext_t *)oldcontext; 365 greg_t *gregs = ucp->uc_mcontext.gregs; 366 367 sp = dtrace_fulword(&gregs[REG_FP]); 368 pc = dtrace_fulword(&gregs[REG_PC]); 369 370 oldcontext = dtrace_fulword(&ucp->uc_link); 371 } else { 372 ucontext_t *ucp = (ucontext_t *)oldcontext; 373 greg_t *gregs = ucp->uc_mcontext.gregs; 374 375 sp = dtrace_fuword32(&gregs[EBP]); 376 pc = dtrace_fuword32(&gregs[EIP]); 377 378 oldcontext = dtrace_fuword32(&ucp->uc_link); 379 } 380 } else { 381 if (p->p_model == DATAMODEL_NATIVE) { 382 struct frame *fr = (struct frame *)sp; 383 384 pc = dtrace_fulword(&fr->fr_savpc); 385 sp = dtrace_fulword(&fr->fr_savfp); 386 } else { 387 struct frame32 *fr = (struct frame32 *)sp; 388 389 pc = dtrace_fuword32(&fr->fr_savpc); 390 sp = dtrace_fuword32(&fr->fr_savfp); 391 } 392 } 393 394 /* 395 * This is totally bogus: if we faulted, we're going to clear 396 * the fault and break. This is to deal with the apparently 397 * broken Java stacks on x86. 398 */ 399 if (*flags & CPU_DTRACE_FAULT) { 400 *flags &= ~CPU_DTRACE_FAULT; 401 break; 402 } 403 } 404 405 zero: 406 while (pcstack_limit-- > 0) 407 *pcstack++ = NULL; 408 } 409 410 /*ARGSUSED*/ 411 uint64_t 412 dtrace_getarg(int arg, int aframes) 413 { 414 uintptr_t val; 415 struct frame *fp = (struct frame *)dtrace_getfp(); 416 uintptr_t *stack; 417 int i; 418 #if defined(__amd64) 419 /* 420 * A total of 6 arguments are passed via registers; any argument with 421 * index of 5 or lower is therefore in a register. 422 */ 423 int inreg = 5; 424 #endif 425 426 for (i = 1; i <= aframes; i++) { 427 fp = (struct frame *)(fp->fr_savfp); 428 429 if (fp->fr_savpc == (pc_t)dtrace_invop_callsite) { 430 #if !defined(__amd64) 431 /* 432 * If we pass through the invalid op handler, we will 433 * use the pointer that it passed to the stack as the 434 * second argument to dtrace_invop() as the pointer to 435 * the stack. When using this stack, we must step 436 * beyond the EIP/RIP that was pushed when the trap was 437 * taken -- hence the "+ 1" below. 438 */ 439 stack = ((uintptr_t **)&fp[1])[1] + 1; 440 #else 441 /* 442 * In the case of amd64, we will use the pointer to the 443 * regs structure that was pushed when we took the 444 * trap. To get this structure, we must increment 445 * beyond the frame structure, and then again beyond 446 * the calling RIP stored in dtrace_invop(). If the 447 * argument that we're seeking is passed on the stack, 448 * we'll pull the true stack pointer out of the saved 449 * registers and decrement our argument by the number 450 * of arguments passed in registers; if the argument 451 * we're seeking is passed in regsiters, we can just 452 * load it directly. 453 */ 454 struct regs *rp = (struct regs *)((uintptr_t)&fp[1] + 455 sizeof (uintptr_t)); 456 457 if (arg <= inreg) { 458 stack = (uintptr_t *)&rp->r_rdi; 459 } else { 460 stack = (uintptr_t *)(rp->r_rsp); 461 arg -= inreg; 462 } 463 #endif 464 goto load; 465 } 466 467 } 468 469 /* 470 * We know that we did not come through a trap to get into 471 * dtrace_probe() -- the provider simply called dtrace_probe() 472 * directly. As this is the case, we need to shift the argument 473 * that we're looking for: the probe ID is the first argument to 474 * dtrace_probe(), so the argument n will actually be found where 475 * one would expect to find argument (n + 1). 476 */ 477 arg++; 478 479 #if defined(__amd64) 480 if (arg <= inreg) { 481 /* 482 * This shouldn't happen. If the argument is passed in a 483 * register then it should have been, well, passed in a 484 * register... 485 */ 486 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 487 return (0); 488 } 489 490 arg -= (inreg + 1); 491 #endif 492 stack = (uintptr_t *)&fp[1]; 493 494 load: 495 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT); 496 val = stack[arg]; 497 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT); 498 499 return (val); 500 } 501 502 /*ARGSUSED*/ 503 int 504 dtrace_getstackdepth(int aframes) 505 { 506 struct frame *fp = (struct frame *)dtrace_getfp(); 507 struct frame *nextfp, *minfp, *stacktop; 508 int depth = 0; 509 int on_intr; 510 511 if ((on_intr = CPU_ON_INTR(CPU)) != 0) 512 stacktop = (struct frame *)(CPU->cpu_intr_stack + SA(MINFRAME)); 513 else 514 stacktop = (struct frame *)curthread->t_stk; 515 minfp = fp; 516 517 aframes++; 518 519 for (;;) { 520 depth++; 521 522 nextfp = (struct frame *)fp->fr_savfp; 523 524 if (nextfp <= minfp || nextfp >= stacktop) { 525 if (on_intr) { 526 /* 527 * Hop from interrupt stack to thread stack. 528 */ 529 stacktop = (struct frame *)curthread->t_stk; 530 minfp = (struct frame *)curthread->t_stkbase; 531 on_intr = 0; 532 continue; 533 } 534 break; 535 } 536 537 fp = nextfp; 538 minfp = fp; 539 } 540 541 if (depth <= aframes) 542 return (0); 543 544 return (depth - aframes); 545 } 546 547 ulong_t 548 dtrace_getreg(struct regs *rp, uint_t reg) 549 { 550 #if defined(__amd64) 551 int regmap[] = { 552 REG_GS, /* GS */ 553 REG_FS, /* FS */ 554 REG_ES, /* ES */ 555 REG_DS, /* DS */ 556 REG_RDI, /* EDI */ 557 REG_RSI, /* ESI */ 558 REG_RBP, /* EBP */ 559 REG_RSP, /* ESP */ 560 REG_RBX, /* EBX */ 561 REG_RDX, /* EDX */ 562 REG_RCX, /* ECX */ 563 REG_RAX, /* EAX */ 564 REG_TRAPNO, /* TRAPNO */ 565 REG_ERR, /* ERR */ 566 REG_RIP, /* EIP */ 567 REG_CS, /* CS */ 568 REG_RFL, /* EFL */ 569 REG_RSP, /* UESP */ 570 REG_SS /* SS */ 571 }; 572 573 if (reg <= SS) { 574 if (reg >= sizeof (regmap) / sizeof (int)) { 575 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 576 return (0); 577 } 578 579 reg = regmap[reg]; 580 } else { 581 reg -= SS + 1; 582 } 583 584 switch (reg) { 585 case REG_RDI: 586 return (rp->r_rdi); 587 case REG_RSI: 588 return (rp->r_rsi); 589 case REG_RDX: 590 return (rp->r_rdx); 591 case REG_RCX: 592 return (rp->r_rcx); 593 case REG_R8: 594 return (rp->r_r8); 595 case REG_R9: 596 return (rp->r_r9); 597 case REG_RAX: 598 return (rp->r_rax); 599 case REG_RBX: 600 return (rp->r_rbx); 601 case REG_RBP: 602 return (rp->r_rbp); 603 case REG_R10: 604 return (rp->r_r10); 605 case REG_R11: 606 return (rp->r_r11); 607 case REG_R12: 608 return (rp->r_r12); 609 case REG_R13: 610 return (rp->r_r13); 611 case REG_R14: 612 return (rp->r_r14); 613 case REG_R15: 614 return (rp->r_r15); 615 case REG_DS: 616 return (rp->r_ds); 617 case REG_ES: 618 return (rp->r_es); 619 case REG_FS: 620 return (rp->r_fs); 621 case REG_GS: 622 return (rp->r_gs); 623 case REG_TRAPNO: 624 return (rp->r_trapno); 625 case REG_ERR: 626 return (rp->r_err); 627 case REG_RIP: 628 return (rp->r_rip); 629 case REG_CS: 630 return (rp->r_cs); 631 case REG_SS: 632 return (rp->r_ss); 633 case REG_RFL: 634 return (rp->r_rfl); 635 case REG_RSP: 636 return (rp->r_rsp); 637 default: 638 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 639 return (0); 640 } 641 642 #else 643 if (reg > SS) { 644 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP); 645 return (0); 646 } 647 648 return ((&rp->r_gs)[reg]); 649 #endif 650 } 651 652 static int 653 dtrace_copycheck(uintptr_t uaddr, uintptr_t kaddr, size_t size) 654 { 655 ASSERT(kaddr >= kernelbase && kaddr + size >= kaddr); 656 657 if (uaddr + size >= kernelbase || uaddr + size < uaddr) { 658 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); 659 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = uaddr; 660 return (0); 661 } 662 663 return (1); 664 } 665 666 /*ARGSUSED*/ 667 void 668 dtrace_copyin(uintptr_t uaddr, uintptr_t kaddr, size_t size, 669 volatile uint16_t *flags) 670 { 671 if (dtrace_copycheck(uaddr, kaddr, size)) 672 dtrace_copy(uaddr, kaddr, size); 673 } 674 675 /*ARGSUSED*/ 676 void 677 dtrace_copyout(uintptr_t kaddr, uintptr_t uaddr, size_t size, 678 volatile uint16_t *flags) 679 { 680 if (dtrace_copycheck(uaddr, kaddr, size)) 681 dtrace_copy(kaddr, uaddr, size); 682 } 683 684 void 685 dtrace_copyinstr(uintptr_t uaddr, uintptr_t kaddr, size_t size, 686 volatile uint16_t *flags) 687 { 688 if (dtrace_copycheck(uaddr, kaddr, size)) 689 dtrace_copystr(uaddr, kaddr, size, flags); 690 } 691 692 void 693 dtrace_copyoutstr(uintptr_t kaddr, uintptr_t uaddr, size_t size, 694 volatile uint16_t *flags) 695 { 696 if (dtrace_copycheck(uaddr, kaddr, size)) 697 dtrace_copystr(kaddr, uaddr, size, flags); 698 } 699 700 uint8_t 701 dtrace_fuword8(void *uaddr) 702 { 703 extern uint8_t dtrace_fuword8_nocheck(void *); 704 if ((uintptr_t)uaddr >= _userlimit) { 705 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); 706 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = (uintptr_t)uaddr; 707 return (0); 708 } 709 return (dtrace_fuword8_nocheck(uaddr)); 710 } 711 712 uint16_t 713 dtrace_fuword16(void *uaddr) 714 { 715 extern uint16_t dtrace_fuword16_nocheck(void *); 716 if ((uintptr_t)uaddr >= _userlimit) { 717 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); 718 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = (uintptr_t)uaddr; 719 return (0); 720 } 721 return (dtrace_fuword16_nocheck(uaddr)); 722 } 723 724 uint32_t 725 dtrace_fuword32(void *uaddr) 726 { 727 extern uint32_t dtrace_fuword32_nocheck(void *); 728 if ((uintptr_t)uaddr >= _userlimit) { 729 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); 730 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = (uintptr_t)uaddr; 731 return (0); 732 } 733 return (dtrace_fuword32_nocheck(uaddr)); 734 } 735 736 uint64_t 737 dtrace_fuword64(void *uaddr) 738 { 739 extern uint64_t dtrace_fuword64_nocheck(void *); 740 if ((uintptr_t)uaddr >= _userlimit) { 741 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR); 742 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = (uintptr_t)uaddr; 743 return (0); 744 } 745 return (dtrace_fuword64_nocheck(uaddr)); 746 } 747