xref: /illumos-gate/usr/src/uts/i86xpv/os/xpv_panic.c (revision c73799dd86c25c27f5183e83584212d06d1ecebc)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2012 Gary Mills
23  * Copyright 2016 PALO, Richard.
24  *
25  * Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved.
26  */
27 
28 #include <sys/types.h>
29 #include <sys/clock.h>
30 #include <sys/psm.h>
31 #include <sys/archsystm.h>
32 #include <sys/machsystm.h>
33 #include <sys/compress.h>
34 #include <sys/modctl.h>
35 #include <sys/trap.h>
36 #include <sys/panic.h>
37 #include <sys/regset.h>
38 #include <sys/frame.h>
39 #include <sys/kobj.h>
40 #include <sys/apic.h>
41 #include <sys/apic_timer.h>
42 #include <sys/dumphdr.h>
43 #include <sys/mem.h>
44 #include <sys/x86_archext.h>
45 #include <sys/xpv_panic.h>
46 #include <sys/boot_console.h>
47 #include <sys/bootsvcs.h>
48 #include <sys/consdev.h>
49 #include <vm/hat_pte.h>
50 #include <vm/hat_i86.h>
51 
52 /* XXX: need to add a PAE version too, if we ever support both PAE and non */
53 #if defined(__i386)
54 #define	XPV_FILENAME	"/boot/xen-syms"
55 #else
56 #define	XPV_FILENAME	"/boot/amd64/xen-syms"
57 #endif
58 #define	XPV_MODNAME	"xpv"
59 
60 int xpv_panicking = 0;
61 
62 struct module *xpv_module;
63 struct modctl *xpv_modctl;
64 
65 #define	ALIGN(x, a)	((a) == 0 ? (uintptr_t)(x) : \
66 	(((uintptr_t)(x) + (uintptr_t)(a) - 1l) & ~((uintptr_t)(a) - 1l)))
67 
68 /* Pointer to the xpv_panic_info structure handed to us by Xen.  */
69 static struct panic_info *xpv_panic_info = NULL;
70 
71 /* Timer support */
72 #define	NSEC_SHIFT 5
73 #define	T_XPV_TIMER	0xd1
74 #define	XPV_TIMER_INTERVAL	1000	/* 1000 microseconds */
75 static uint32_t *xpv_apicadr = NULL;
76 static uint_t	nsec_scale;
77 
78 /* IDT support */
79 #pragma	align	16(xpv_panic_idt)
80 static gate_desc_t	xpv_panic_idt[NIDT];	/* interrupt descriptor table */
81 
82 /* Xen pagetables mapped into our HAT's ptable windows */
83 static pfn_t ptable_pfn[MAX_NUM_LEVEL];
84 
85 /* Number of MMU_PAGESIZE pages we're adding to the Solaris dump */
86 static int xpv_dump_pages;
87 
88 /*
89  * There are up to two large swathes of RAM that we don't want to include
90  * in the dump: those that comprise the Xen version of segkpm.  On 32-bit
91  * systems there is no such region of memory.  On 64-bit systems, there
92  * should be just a single contiguous region that corresponds to all of
93  * physical memory.  The tricky bit is that Xen's heap sometimes lives in
94  * the middle of their segkpm, and is mapped using only kpm-like addresses.
95  * In that case, we need to skip the swathes before and after Xen's heap.
96  */
97 uintptr_t kpm1_low = 0;
98 uintptr_t kpm1_high = 0;
99 uintptr_t kpm2_low = 0;
100 uintptr_t kpm2_high = 0;
101 
102 /*
103  * Some commonly used values that we don't want to recompute over and over.
104  */
105 static int xpv_panic_nptes[MAX_NUM_LEVEL];
106 static ulong_t xpv_panic_cr3;
107 static uintptr_t xpv_end;
108 
109 static void xpv_panic_console_print(const char *fmt, ...);
110 static void (*xpv_panic_printf)(const char *, ...) = xpv_panic_console_print;
111 
112 #define	CONSOLE_BUF_SIZE	256
113 static char console_buffer[CONSOLE_BUF_SIZE];
114 static boolean_t use_polledio;
115 
116 /*
117  * Pointers to machine check panic info (if any).
118  */
119 xpv_mca_panic_data_t *xpv_mca_panic_data = NULL;
120 
121 static void
122 xpv_panic_putc(int m)
123 {
124 	struct cons_polledio *c = cons_polledio;
125 
126 	/* This really shouldn't happen */
127 	if (boot_console_type(NULL) == CONS_HYPERVISOR)
128 		return;
129 
130 	if (use_polledio == B_TRUE)
131 		c->cons_polledio_putchar(c->cons_polledio_argument, m);
132 	else
133 		bcons_putchar(m);
134 }
135 
136 static void
137 xpv_panic_puts(char *msg)
138 {
139 	char *m;
140 
141 	dump_timeleft = dump_timeout;
142 	for (m = msg; *m; m++)
143 		xpv_panic_putc((int)*m);
144 }
145 
146 static void
147 xpv_panic_console_print(const char *fmt, ...)
148 {
149 	va_list ap;
150 
151 	va_start(ap, fmt);
152 	(void) vsnprintf(console_buffer, sizeof (console_buffer), fmt, ap);
153 	va_end(ap);
154 
155 	xpv_panic_puts(console_buffer);
156 }
157 
158 static void
159 xpv_panic_map(int level, pfn_t pfn)
160 {
161 	x86pte_t pte, *pteptr;
162 
163 	/*
164 	 * The provided pfn represents a level 'level' page table.  Map it
165 	 * into the 'level' slot in the list of page table windows.
166 	 */
167 	pteptr = (x86pte_t *)PWIN_PTE_VA(level);
168 	pte = pfn_to_pa(pfn) | PT_VALID;
169 
170 	XPV_ALLOW_PAGETABLE_UPDATES();
171 	if (mmu.pae_hat)
172 		*pteptr = pte;
173 	else
174 		*(x86pte32_t *)pteptr = pte;
175 	XPV_DISALLOW_PAGETABLE_UPDATES();
176 
177 	mmu_tlbflush_entry(PWIN_VA(level));
178 }
179 
180 /*
181  * Walk the page tables to find the pfn mapped by the given va.
182  */
183 static pfn_t
184 xpv_va_walk(uintptr_t *vaddr)
185 {
186 	int l, idx;
187 	pfn_t pfn;
188 	x86pte_t pte;
189 	x86pte_t *ptep;
190 	uintptr_t va = *vaddr;
191 	uintptr_t scan_va;
192 	caddr_t ptable_window;
193 	static pfn_t toplevel_pfn;
194 	static uintptr_t lastva;
195 
196 	/*
197 	 * If we do anything other than a simple scan through memory, don't
198 	 * trust the mapped page tables.
199 	 */
200 	if (va != lastva + MMU_PAGESIZE)
201 		for (l = mmu.max_level; l >= 0; l--)
202 			ptable_pfn[l] = PFN_INVALID;
203 
204 	toplevel_pfn = mmu_btop(xpv_panic_cr3);
205 
206 	while (va < xpv_end && va >= *vaddr) {
207 		/* Find the lowest table with any entry for va */
208 		pfn = toplevel_pfn;
209 		for (l = mmu.max_level; l >= 0; l--) {
210 			if (ptable_pfn[l] != pfn) {
211 				xpv_panic_map(l, pfn);
212 				ptable_pfn[l] = pfn;
213 			}
214 
215 			/*
216 			 * Search this pagetable for any mapping to an
217 			 * address >= va.
218 			 */
219 			ptable_window = PWIN_VA(l);
220 			if (l == mmu.max_level && mmu.pae_hat)
221 				ptable_window +=
222 				    (xpv_panic_cr3 & MMU_PAGEOFFSET);
223 
224 			idx = (va >> LEVEL_SHIFT(l)) & (xpv_panic_nptes[l] - 1);
225 			scan_va = va;
226 			while (idx < xpv_panic_nptes[l] && scan_va < xpv_end &&
227 			    scan_va >= *vaddr) {
228 				ptep = (x86pte_t *)(ptable_window +
229 				    (idx << mmu.pte_size_shift));
230 				pte = GET_PTE(ptep);
231 				if (pte & PTE_VALID)
232 					break;
233 				idx++;
234 				scan_va += mmu.level_size[l];
235 			}
236 
237 			/*
238 			 * If there are no valid mappings in this table, we
239 			 * can skip to the end of the VA range it covers.
240 			 */
241 			if (idx == xpv_panic_nptes[l]) {
242 				va = NEXT_ENTRY_VA(va, l + 1);
243 				break;
244 			}
245 
246 			va = scan_va;
247 			/*
248 			 * See if we've hit the end of the range.
249 			 */
250 			if (va >= xpv_end || va < *vaddr)
251 				break;
252 
253 			/*
254 			 * If this mapping is for a pagetable, we drop down
255 			 * to the next level in the hierarchy and look for
256 			 * a mapping in it.
257 			 */
258 			pfn = PTE2MFN(pte, l);
259 			if (!PTE_ISPAGE(pte, l))
260 				continue;
261 
262 			/*
263 			 * The APIC page is magic.  Nothing to see here;
264 			 * move along.
265 			 */
266 			if (((uintptr_t)xpv_apicadr & MMU_PAGEMASK) ==
267 			    (va & MMU_PAGEMASK)) {
268 				va += MMU_PAGESIZE;
269 				break;
270 			}
271 
272 			/*
273 			 * See if the address is within one of the two
274 			 * kpm-like regions we want to skip.
275 			 */
276 			if (va >= kpm1_low && va < kpm1_high) {
277 				va = kpm1_high;
278 				break;
279 			}
280 			if (va >= kpm2_low && va < kpm2_high) {
281 				va = kpm2_high;
282 				break;
283 			}
284 
285 			/*
286 			 * The Xen panic code only handles small pages.  If
287 			 * this mapping is for a large page, we need to
288 			 * identify the consituent page that covers the
289 			 * specific VA we were looking for.
290 			 */
291 			if (l > 0) {
292 				if (l > 1)
293 					panic("Xen panic can't cope with "
294 					    "giant pages.");
295 				idx = (va >> LEVEL_SHIFT(0)) &
296 				    (xpv_panic_nptes[0] - 1);
297 				pfn += idx;
298 			}
299 
300 			*vaddr = va;
301 			lastva = va;
302 			return (pfn | PFN_IS_FOREIGN_MFN);
303 		}
304 	}
305 	return (PFN_INVALID);
306 }
307 
308 /*
309  * Walk through the Xen VA space, finding pages that are mapped in.
310  *
311  * These pages all have MFNs rather than PFNs, meaning they may be outside
312  * the physical address space the kernel knows about, or they may collide
313  * with PFNs the kernel is using.
314  *
315  * The obvious trick of just adding the PFN_IS_FOREIGN_MFN bit to the MFNs
316  * to avoid collisions doesn't work.  The pages need to be written to disk
317  * in PFN-order or savecore gets confused.  We can't allocate memory to
318  * contruct a sorted pfn->VA reverse mapping, so we have to write the pages
319  * to disk in VA order.
320  *
321  * To square this circle, we simply make up PFNs for each of Xen's pages.
322  * We assign each mapped page a fake PFN in ascending order.  These fake
323  * PFNs each have the FOREIGN bit set, ensuring that they fall outside the
324  * range of Solaris PFNs written by the kernel.
325  */
326 int
327 dump_xpv_addr()
328 {
329 	uintptr_t va;
330 	mem_vtop_t mem_vtop;
331 
332 	xpv_dump_pages = 0;
333 	va = xen_virt_start;
334 
335 	while (xpv_va_walk(&va) != PFN_INVALID) {
336 		mem_vtop.m_as = &kas;
337 		mem_vtop.m_va = (void *)va;
338 		mem_vtop.m_pfn = (pfn_t)xpv_dump_pages | PFN_IS_FOREIGN_MFN;
339 
340 		dumpvp_write(&mem_vtop, sizeof (mem_vtop_t));
341 		xpv_dump_pages++;
342 
343 		va += MMU_PAGESIZE;
344 	}
345 
346 	/*
347 	 * Add the shared_info page.  This page actually ends up in the
348 	 * dump twice: once for the Xen va and once for the Solaris va.
349 	 * This isn't ideal, but we don't know the address Xen is using for
350 	 * the page, so we can't share it.
351 	 */
352 	mem_vtop.m_as = &kas;
353 	mem_vtop.m_va = HYPERVISOR_shared_info;
354 	mem_vtop.m_pfn = (pfn_t)xpv_dump_pages | PFN_IS_FOREIGN_MFN;
355 	dumpvp_write(&mem_vtop, sizeof (mem_vtop_t));
356 	xpv_dump_pages++;
357 
358 	return (xpv_dump_pages);
359 }
360 
361 void
362 dump_xpv_pfn()
363 {
364 	pfn_t pfn;
365 	int cnt;
366 
367 	for (cnt = 0; cnt < xpv_dump_pages; cnt++) {
368 		pfn = (pfn_t)cnt | PFN_IS_FOREIGN_MFN;
369 		dumpvp_write(&pfn, sizeof (pfn));
370 	}
371 }
372 
373 int
374 dump_xpv_data(void *dump_cbuf)
375 {
376 	uintptr_t va;
377 	uint32_t csize;
378 	int cnt = 0;
379 
380 	/*
381 	 * XXX: we should probably run this data through a UE check.  The
382 	 * catch is that the UE code relies on on_trap() and getpfnum()
383 	 * working.
384 	 */
385 	va = xen_virt_start;
386 
387 	while (xpv_va_walk(&va) != PFN_INVALID) {
388 		csize = (uint32_t)compress((void *)va, dump_cbuf, PAGESIZE);
389 		dumpvp_write(&csize, sizeof (uint32_t));
390 		dumpvp_write(dump_cbuf, csize);
391 		if (dump_ioerr) {
392 			dumphdr->dump_flags &= ~DF_COMPLETE;
393 			return (cnt);
394 		}
395 		cnt++;
396 		va += MMU_PAGESIZE;
397 	}
398 
399 	/*
400 	 * Finally, dump the shared_info page
401 	 */
402 	csize = (uint32_t)compress((void *)HYPERVISOR_shared_info, dump_cbuf,
403 	    PAGESIZE);
404 	dumpvp_write(&csize, sizeof (uint32_t));
405 	dumpvp_write(dump_cbuf, csize);
406 	if (dump_ioerr)
407 		dumphdr->dump_flags &= ~DF_COMPLETE;
408 	cnt++;
409 
410 	return (cnt);
411 }
412 
413 static void *
414 showstack(void *fpreg, int xpv_only)
415 {
416 	struct frame *fpp;
417 	ulong_t off;
418 	char *sym;
419 	uintptr_t pc, fp, lastfp;
420 	uintptr_t minaddr = min(KERNELBASE, xen_virt_start);
421 
422 	fp = (uintptr_t)fpreg;
423 	if (fp < minaddr) {
424 		xpv_panic_printf("Bad frame ptr: 0x%p\n", fpreg);
425 		return (fpreg);
426 	}
427 
428 	do {
429 		fpp = (struct frame *)fp;
430 		pc = fpp->fr_savpc;
431 
432 		if ((xpv_only != 0) &&
433 		    (fp > xpv_end || fp < xen_virt_start))
434 			break;
435 		if ((sym = kobj_getsymname(pc, &off)) != NULL)
436 			xpv_panic_printf("%08lx %s:%s+%lx\n", fp,
437 			    mod_containing_pc((caddr_t)pc), sym, off);
438 		else if ((pc >= xen_virt_start) && (pc <= xpv_end))
439 			xpv_panic_printf("%08lx 0x%lx (in Xen)\n", fp, pc);
440 		else
441 			xpv_panic_printf("%08lx %lx\n", fp, pc);
442 
443 		lastfp = fp;
444 		fp = fpp->fr_savfp;
445 
446 		/*
447 		 * Xen marks an exception frame by inverting the frame
448 		 * pointer.
449 		 */
450 		if (fp < lastfp) {
451 			if ((~fp > minaddr) && ((~fp) ^ lastfp) < 0xfff)
452 				fp = ~fp;
453 		}
454 	} while (fp > lastfp);
455 	return ((void *)fp);
456 }
457 
458 void *
459 xpv_traceback(void *fpreg)
460 {
461 	return (showstack(fpreg, 1));
462 }
463 
464 #if defined(__amd64)
465 static void
466 xpv_panic_hypercall(ulong_t call)
467 {
468 	panic("Illegally issued hypercall %d during panic!\n", (int)call);
469 }
470 #endif
471 
472 void
473 xpv_die(struct regs *rp)
474 {
475 	struct panic_trap_info ti;
476 	struct cregs creg;
477 
478 	ti.trap_regs = rp;
479 	ti.trap_type = rp->r_trapno;
480 
481 	curthread->t_panic_trap = &ti;
482 	if (ti.trap_type == T_PGFLT) {
483 		getcregs(&creg);
484 		ti.trap_addr = (caddr_t)creg.cr_cr2;
485 		panic("Fatal pagefault at 0x%lx.  fault addr=0x%p  rp=0x%p",
486 		    rp->r_pc, (void *)ti.trap_addr, (void *)rp);
487 	} else {
488 		ti.trap_addr = (caddr_t)rp->r_pc;
489 		panic("Fatal trap %ld at 0x%lx.  rp=0x%p", rp->r_trapno,
490 		    rp->r_pc, (void *)rp);
491 	}
492 }
493 
494 /*
495  * Build IDT to handle a Xen panic
496  */
497 static void
498 switch_to_xpv_panic_idt()
499 {
500 	int i;
501 	desctbr_t idtr;
502 	gate_desc_t *idt = xpv_panic_idt;
503 	selector_t cs = get_cs_register();
504 
505 	for (i = 0; i < 32; i++)
506 		set_gatesegd(&idt[i], &xpv_invaltrap, cs, SDT_SYSIGT, TRP_XPL,
507 		    0);
508 
509 	set_gatesegd(&idt[T_ZERODIV], &xpv_div0trap, cs, SDT_SYSIGT, TRP_XPL,
510 	    0);
511 	set_gatesegd(&idt[T_SGLSTP], &xpv_dbgtrap, cs, SDT_SYSIGT, TRP_XPL, 0);
512 	set_gatesegd(&idt[T_NMIFLT], &xpv_nmiint, cs, SDT_SYSIGT, TRP_XPL, 0);
513 	set_gatesegd(&idt[T_BOUNDFLT], &xpv_boundstrap, cs, SDT_SYSIGT,
514 	    TRP_XPL, 0);
515 	set_gatesegd(&idt[T_ILLINST], &xpv_invoptrap, cs, SDT_SYSIGT, TRP_XPL,
516 	    0);
517 	set_gatesegd(&idt[T_NOEXTFLT], &xpv_ndptrap, cs, SDT_SYSIGT, TRP_XPL,
518 	    0);
519 	set_gatesegd(&idt[T_TSSFLT], &xpv_invtsstrap, cs, SDT_SYSIGT, TRP_XPL,
520 	    0);
521 	set_gatesegd(&idt[T_SEGFLT], &xpv_segnptrap, cs, SDT_SYSIGT, TRP_XPL,
522 	    0);
523 	set_gatesegd(&idt[T_STKFLT], &xpv_stktrap, cs, SDT_SYSIGT, TRP_XPL, 0);
524 	set_gatesegd(&idt[T_GPFLT], &xpv_gptrap, cs, SDT_SYSIGT, TRP_XPL, 0);
525 	set_gatesegd(&idt[T_PGFLT], &xpv_pftrap, cs, SDT_SYSIGT, TRP_XPL, 0);
526 	set_gatesegd(&idt[T_EXTERRFLT], &xpv_ndperr, cs, SDT_SYSIGT, TRP_XPL,
527 	    0);
528 	set_gatesegd(&idt[T_ALIGNMENT], &xpv_achktrap, cs, SDT_SYSIGT, TRP_XPL,
529 	    0);
530 	set_gatesegd(&idt[T_MCE], &xpv_mcetrap, cs, SDT_SYSIGT, TRP_XPL, 0);
531 	set_gatesegd(&idt[T_SIMDFPE], &xpv_xmtrap, cs, SDT_SYSIGT, TRP_XPL, 0);
532 
533 	/*
534 	 * We have no double fault handler.  Any single fault represents a
535 	 * catastrophic failure for us, so there is no attempt to handle
536 	 * them cleanly: we just print a message and reboot.  If we
537 	 * encounter a second fault while doing that, there is nothing
538 	 * else we can do.
539 	 */
540 
541 	/*
542 	 * Be prepared to absorb any stray device interrupts received
543 	 * while writing the core to disk.
544 	 */
545 	for (i = 33; i < NIDT; i++)
546 		set_gatesegd(&idt[i], &xpv_surprise_intr, cs, SDT_SYSIGT,
547 		    TRP_XPL, 0);
548 
549 	/* The one interrupt we expect to get is from the APIC timer.  */
550 	set_gatesegd(&idt[T_XPV_TIMER], &xpv_timer_trap, cs, SDT_SYSIGT,
551 	    TRP_XPL, 0);
552 
553 	idtr.dtr_base = (uintptr_t)xpv_panic_idt;
554 	idtr.dtr_limit = sizeof (xpv_panic_idt) - 1;
555 	wr_idtr(&idtr);
556 
557 #if defined(__amd64)
558 	/* Catch any hypercalls. */
559 	wrmsr(MSR_AMD_LSTAR, (uintptr_t)xpv_panic_hypercall);
560 	wrmsr(MSR_AMD_CSTAR, (uintptr_t)xpv_panic_hypercall);
561 #endif
562 }
563 
564 static void
565 xpv_apic_clkinit()
566 {
567 	uint_t		apic_ticks = 0;
568 
569 	/*
570 	 * Measure how many APIC ticks there are within a fixed time
571 	 * period.  We're going to be fairly coarse here.  This timer is
572 	 * just being used to detect a stalled panic, so as long as we have
573 	 * the right order of magnitude, everything should be fine.
574 	 */
575 	xpv_apicadr[APIC_SPUR_INT_REG] = AV_UNIT_ENABLE | APIC_SPUR_INTR;
576 	xpv_apicadr[APIC_LOCAL_TIMER] = AV_MASK;
577 	xpv_apicadr[APIC_INT_VECT0] = AV_MASK;	/* local intr reg 0 */
578 
579 	xpv_apicadr[APIC_DIVIDE_REG] = 0;
580 	xpv_apicadr[APIC_INIT_COUNT] = APIC_MAXVAL;
581 	drv_usecwait(XPV_TIMER_INTERVAL);
582 	apic_ticks = APIC_MAXVAL - xpv_apicadr[APIC_CURR_COUNT];
583 
584 	/*
585 	 * apic_ticks now represents roughly how many apic ticks comprise
586 	 * one timeout interval.  Program the timer to send us an interrupt
587 	 * every time that interval expires.
588 	 */
589 	xpv_apicadr[APIC_LOCAL_TIMER] = T_XPV_TIMER | AV_PERIODIC;
590 	xpv_apicadr[APIC_INIT_COUNT] = apic_ticks;
591 	xpv_apicadr[APIC_EOI_REG] = 0;
592 }
593 
594 void
595 xpv_timer_tick(void)
596 {
597 	static int ticks = 0;
598 
599 	if (ticks++ >= MICROSEC / XPV_TIMER_INTERVAL) {
600 		ticks = 0;
601 		if (dump_timeleft && (--dump_timeleft == 0))
602 			panic("Xen panic timeout\n");
603 	}
604 	xpv_apicadr[APIC_EOI_REG] = 0;
605 }
606 
607 void
608 xpv_interrupt(void)
609 {
610 #ifdef	DEBUG
611 	static int cnt = 0;
612 
613 	if (cnt++ < 10)
614 		xpv_panic_printf("Unexpected interrupt received.\n");
615 	if ((cnt < 1000) && ((cnt % 100) == 0))
616 		xpv_panic_printf("%d unexpected interrupts received.\n", cnt);
617 #endif
618 
619 	xpv_apicadr[APIC_EOI_REG] = 0;
620 }
621 
622 /*
623  * Managing time in panic context is trivial.  We only have a single CPU,
624  * we never get rescheduled, we never get suspended.  We just need to
625  * convert clock ticks into nanoseconds.
626  */
627 static hrtime_t
628 xpv_panic_gethrtime(void)
629 {
630 	hrtime_t tsc, hrt;
631 	unsigned int *l = (unsigned int *)&(tsc);
632 
633 	tsc = __rdtsc_insn();
634 	hrt = (mul32(l[1], nsec_scale) << NSEC_SHIFT) +
635 	    (mul32(l[0], nsec_scale) >> (32 - NSEC_SHIFT));
636 
637 	return (hrt);
638 }
639 
640 static void
641 xpv_panic_time_init()
642 {
643 	nsec_scale =
644 	    CPU->cpu_m.mcpu_vcpu_info->time.tsc_to_system_mul >> NSEC_SHIFT;
645 
646 	gethrtimef = xpv_panic_gethrtime;
647 }
648 
649 static void
650 xpv_panicsys(struct regs *rp, char *fmt, ...)
651 {
652 	extern void panicsys(const char *, va_list, struct regs *, int);
653 	va_list alist;
654 
655 	va_start(alist, fmt);
656 	panicsys(fmt, alist, rp, 1);
657 	va_end(alist);
658 }
659 
660 void
661 xpv_do_panic(void *arg)
662 {
663 	struct panic_info *pip = (struct panic_info *)arg;
664 	int l;
665 	struct cregs creg;
666 #if defined(__amd64)
667 	extern uintptr_t postbootkernelbase;
668 #endif
669 
670 	if (xpv_panicking++ > 0)
671 		panic("multiple calls to xpv_do_panic()");
672 
673 	/*
674 	 * Indicate to the underlying panic framework that a panic has been
675 	 * initiated.  This is ordinarily done as part of vpanic().  Since
676 	 * we already have all the register state saved by the hypervisor,
677 	 * we skip that and jump straight into the panic processing code.
678 	 *
679 	 * XXX If another thread grabs and wins the panic_quiesce trigger
680 	 * then we'll have two threads in panicsys believing they are in
681 	 * charge of the panic attempt!
682 	 */
683 	(void) panic_trigger(&panic_quiesce);
684 
685 #if defined(__amd64)
686 	/*
687 	 * bzero() and bcopy() get unhappy when asked to operate on
688 	 * addresses outside of the kernel.  At this point Xen is really a
689 	 * part of the kernel, so we update the routines' notion of where
690 	 * the kernel starts.
691 	 */
692 	postbootkernelbase = xen_virt_start;
693 #endif
694 
695 #if defined(HYPERVISOR_VIRT_END)
696 	xpv_end = HYPERVISOR_VIRT_END;
697 #else
698 	xpv_end = (uintptr_t)UINTPTR_MAX - sizeof (uintptr_t);
699 #endif
700 
701 	/*
702 	 * If we were redirecting console output to the hypervisor, we have
703 	 * to stop.
704 	 */
705 	use_polledio = B_FALSE;
706 	if (boot_console_type(NULL) == CONS_HYPERVISOR) {
707 		bcons_device_change(CONS_HYPERVISOR);
708 	} else if (cons_polledio != NULL &&
709 	    cons_polledio->cons_polledio_putchar != NULL)  {
710 		if (cons_polledio->cons_polledio_enter != NULL)
711 			cons_polledio->cons_polledio_enter(
712 			    cons_polledio->cons_polledio_argument);
713 		use_polledio = 1;
714 	}
715 
716 	/* Make sure we handle all console output from here on. */
717 	sysp->bsvc_putchar = xpv_panic_putc;
718 
719 	/*
720 	 * If we find an unsupported panic_info structure, there's not much
721 	 * we can do other than complain, plow on, and hope for the best.
722 	 */
723 	if (pip->pi_version != PANIC_INFO_VERSION)
724 		xpv_panic_printf("Warning: Xen is using an unsupported "
725 		    "version of the panic_info structure.\n");
726 
727 	xpv_panic_info = pip;
728 
729 #if defined(__amd64)
730 	kpm1_low = (uintptr_t)xpv_panic_info->pi_ram_start;
731 	if (xpv_panic_info->pi_xen_start == NULL) {
732 		kpm1_high = (uintptr_t)xpv_panic_info->pi_ram_end;
733 	} else {
734 		kpm1_high = (uintptr_t)xpv_panic_info->pi_xen_start;
735 		kpm2_low = (uintptr_t)xpv_panic_info->pi_xen_end;
736 		kpm2_high = (uintptr_t)xpv_panic_info->pi_ram_end;
737 	}
738 #endif
739 
740 	/*
741 	 * Make sure we are running on the Solaris %gs.  The Xen panic code
742 	 * should already have set up the GDT properly.
743 	 */
744 	xpv_panic_resetgs();
745 #if defined(__amd64)
746 	wrmsr(MSR_AMD_GSBASE, (uint64_t)&cpus[0]);
747 #endif
748 
749 	xpv_panic_time_init();
750 
751 	/*
752 	 * Switch to our own IDT, avoiding any accidental returns to Xen
753 	 * world.
754 	 */
755 	switch_to_xpv_panic_idt();
756 
757 	/*
758 	 * Initialize the APIC timer, which is used to detect a hung dump
759 	 * attempt.
760 	 */
761 	xpv_apicadr = pip->pi_apic;
762 	xpv_apic_clkinit();
763 
764 	/*
765 	 * Set up a few values that we'll need repeatedly.
766 	 */
767 	getcregs(&creg);
768 	xpv_panic_cr3 = creg.cr_cr3;
769 	for (l = mmu.max_level; l >= 0; l--)
770 		xpv_panic_nptes[l] = mmu.ptes_per_table;
771 #ifdef __i386
772 	if (mmu.pae_hat)
773 		xpv_panic_nptes[mmu.max_level] = 4;
774 #endif
775 
776 	/* Add the fake Xen module to the module list */
777 	if (xpv_module != NULL) {
778 		extern int last_module_id;
779 
780 		xpv_modctl->mod_id = last_module_id++;
781 		xpv_modctl->mod_next = &modules;
782 		xpv_modctl->mod_prev = modules.mod_prev;
783 		modules.mod_prev->mod_next = xpv_modctl;
784 		modules.mod_prev = xpv_modctl;
785 	}
786 
787 	if (pip->pi_mca.mpd_magic == MCA_PANICDATA_MAGIC)
788 		xpv_mca_panic_data = &pip->pi_mca;
789 
790 	xpv_panic_printf = printf;
791 	xpv_panicsys((struct regs *)pip->pi_regs, pip->pi_panicstr);
792 	xpv_panic_printf("Failed to reboot following panic.\n");
793 	for (;;)
794 		;
795 }
796 
797 /*
798  * Set up the necessary data structures to pretend that the Xen hypervisor
799  * is a loadable module, allowing mdb to find the Xen symbols in a crash
800  * dump.  Since these symbols all map to VA space Solaris doesn't normally
801  * have access to, we don't link these structures into the kernel's lists
802  * until/unless we hit a Xen panic.
803  *
804  * The observant reader will note a striking amount of overlap between this
805  * code and that found in krtld.  While it would be handy if we could just
806  * ask krtld to do this work for us, it's not that simple.  Among the
807  * complications: we're not actually loading the text here (grub did it at
808  * boot), the .text section is writable, there are no relocations to do,
809  * none of the module text/data is in readable memory, etc.  Training krtld
810  * to deal with this weird module is as complicated, and more risky, than
811  * reimplementing the necessary subset of it here.
812  */
813 static void
814 init_xen_module()
815 {
816 	struct _buf *file = NULL;
817 	struct module *mp;
818 	struct modctl *mcp;
819 	int i, shn;
820 	Shdr *shp, *ctf_shp;
821 	char *names = NULL;
822 	size_t n, namesize, text_align, data_align;
823 #if defined(__amd64)
824 	const char machine = EM_AMD64;
825 #else
826 	const char machine = EM_386;
827 #endif
828 
829 	/* Allocate and init the module structure */
830 	mp = kmem_zalloc(sizeof (*mp), KM_SLEEP);
831 	mp->filename = kobj_zalloc(strlen(XPV_FILENAME) + 1, KM_SLEEP);
832 	(void) strcpy(mp->filename, XPV_FILENAME);
833 
834 	/* Allocate and init the modctl structure */
835 	mcp = kmem_zalloc(sizeof (*mcp), KM_SLEEP);
836 	mcp->mod_modname = kobj_zalloc(strlen(XPV_MODNAME) + 1, KM_SLEEP);
837 	(void) strcpy(mcp->mod_modname, XPV_MODNAME);
838 	mcp->mod_filename = kobj_zalloc(strlen(XPV_FILENAME) + 1, KM_SLEEP);
839 	(void) strcpy(mcp->mod_filename, XPV_FILENAME);
840 	mcp->mod_inprogress_thread = (kthread_id_t)-1;
841 	mcp->mod_ref = 1;
842 	mcp->mod_loaded = 1;
843 	mcp->mod_loadcnt = 1;
844 	mcp->mod_mp = mp;
845 
846 	/*
847 	 * Try to open a Xen image that hasn't had its symbol and CTF
848 	 * information stripped off.
849 	 */
850 	file = kobj_open_file(XPV_FILENAME);
851 	if (file == (struct _buf *)-1) {
852 		file = NULL;
853 		goto err;
854 	}
855 
856 	/*
857 	 * Read the header and ensure that this is an ELF file for the
858 	 * proper ISA.  If it's not, somebody has done something very
859 	 * stupid.  Why bother?  See Mencken.
860 	 */
861 	if (kobj_read_file(file, (char *)&mp->hdr, sizeof (mp->hdr), 0) < 0)
862 		goto err;
863 	for (i = 0; i < SELFMAG; i++)
864 		if (mp->hdr.e_ident[i] != ELFMAG[i])
865 			goto err;
866 	if ((mp->hdr.e_ident[EI_DATA] != ELFDATA2LSB) ||
867 	    (mp->hdr.e_machine != machine))
868 		goto err;
869 
870 	/* Read in the section headers */
871 	n = mp->hdr.e_shentsize * mp->hdr.e_shnum;
872 	mp->shdrs = kmem_zalloc(n, KM_SLEEP);
873 	if (kobj_read_file(file, mp->shdrs, n, mp->hdr.e_shoff) < 0)
874 		goto err;
875 
876 	/* Read the section names */
877 	shp = (Shdr *)(mp->shdrs + mp->hdr.e_shstrndx * mp->hdr.e_shentsize);
878 	namesize = shp->sh_size;
879 	names = kmem_zalloc(shp->sh_size, KM_SLEEP);
880 	if (kobj_read_file(file, names, shp->sh_size, shp->sh_offset) < 0)
881 		goto err;
882 
883 	/*
884 	 * Fill in the text and data size fields.
885 	 */
886 	ctf_shp = NULL;
887 	text_align = data_align = 0;
888 	for (shn = 1; shn < mp->hdr.e_shnum; shn++) {
889 		shp = (Shdr *)(mp->shdrs + shn * mp->hdr.e_shentsize);
890 
891 		/* Sanity check the offset of the section name */
892 		if (shp->sh_name >= namesize)
893 			continue;
894 
895 		/* If we find the symtab section, remember it for later. */
896 		if (shp->sh_type == SHT_SYMTAB) {
897 			mp->symtbl_section = shn;
898 			mp->symhdr = shp;
899 			continue;
900 		}
901 
902 		/* If we find the CTF section, remember it for later. */
903 		if ((shp->sh_size != 0) &&
904 		    (strcmp(names + shp->sh_name, ".SUNW_ctf") == 0)) {
905 			ctf_shp = shp;
906 			continue;
907 		}
908 
909 		if (!(shp->sh_flags & SHF_ALLOC))
910 			continue;
911 
912 		/*
913 		 * Xen marks its text section as writable, so we need to
914 		 * look for the name - not just the flag.
915 		 */
916 		if ((strcmp(&names[shp->sh_name], ".text") != 0) &&
917 		    (shp->sh_flags & SHF_WRITE) != 0) {
918 			if (shp->sh_addralign > data_align)
919 				data_align = shp->sh_addralign;
920 			mp->data_size = ALIGN(mp->data_size, data_align);
921 			mp->data_size += ALIGN(shp->sh_size, 8);
922 			if (mp->data == NULL || mp->data > (char *)shp->sh_addr)
923 				mp->data = (char *)shp->sh_addr;
924 		} else {
925 			if (shp->sh_addralign > text_align)
926 				text_align = shp->sh_addralign;
927 			mp->text_size = ALIGN(mp->text_size, text_align);
928 			mp->text_size += ALIGN(shp->sh_size, 8);
929 			if (mp->text == NULL || mp->text > (char *)shp->sh_addr)
930 				mp->text = (char *)shp->sh_addr;
931 		}
932 	}
933 	kmem_free(names, namesize);
934 	names = NULL;
935 	shp = NULL;
936 	mcp->mod_text = mp->text;
937 	mcp->mod_text_size = mp->text_size;
938 
939 	/*
940 	 * If we have symbol table and string table sections, read them in
941 	 * now.  If we don't, we just plow on.  We'll still get a valid
942 	 * core dump, but finding anything useful will be just a bit
943 	 * harder.
944 	 *
945 	 * Note: we don't bother with a hash table.  We'll never do a
946 	 * symbol lookup unless we crash, and then mdb creates its own.  We
947 	 * also don't try to perform any relocations.  Xen should be loaded
948 	 * exactly where the ELF file indicates, and the symbol information
949 	 * in the file should be complete and correct already.  Static
950 	 * linking ain't all bad.
951 	 */
952 	if ((mp->symhdr != NULL) && (mp->symhdr->sh_link < mp->hdr.e_shnum)) {
953 		mp->strhdr = (Shdr *)
954 		    (mp->shdrs + mp->symhdr->sh_link * mp->hdr.e_shentsize);
955 		mp->nsyms = mp->symhdr->sh_size / mp->symhdr->sh_entsize;
956 
957 		/* Allocate space for the symbol table and strings.  */
958 		mp->symsize = mp->symhdr->sh_size +
959 		    mp->nsyms * sizeof (symid_t) + mp->strhdr->sh_size;
960 		mp->symspace = kmem_zalloc(mp->symsize, KM_SLEEP);
961 		mp->symtbl = mp->symspace;
962 		mp->strings = (char *)(mp->symtbl + mp->symhdr->sh_size);
963 
964 		if ((kobj_read_file(file, mp->symtbl,
965 		    mp->symhdr->sh_size, mp->symhdr->sh_offset) < 0) ||
966 		    (kobj_read_file(file, mp->strings,
967 		    mp->strhdr->sh_size, mp->strhdr->sh_offset) < 0))
968 			goto err;
969 	}
970 
971 	/*
972 	 * Read in the CTF section
973 	 */
974 	if ((ctf_shp != NULL) && ((moddebug & MODDEBUG_NOCTF) == 0)) {
975 		mp->ctfdata = kmem_zalloc(ctf_shp->sh_size, KM_SLEEP);
976 		mp->ctfsize = ctf_shp->sh_size;
977 		if (kobj_read_file(file, mp->ctfdata, mp->ctfsize,
978 		    ctf_shp->sh_offset) < 0)
979 			goto err;
980 	}
981 
982 	kobj_close_file(file);
983 
984 	xpv_module = mp;
985 	xpv_modctl = mcp;
986 	return;
987 
988 err:
989 	cmn_err(CE_WARN, "Failed to initialize xpv module.");
990 	if (file != NULL)
991 		kobj_close_file(file);
992 
993 	kmem_free(mp->filename, strlen(XPV_FILENAME) + 1);
994 	if (mp->shdrs != NULL)
995 		kmem_free(mp->shdrs, mp->hdr.e_shentsize * mp->hdr.e_shnum);
996 	if (mp->symspace != NULL)
997 		kmem_free(mp->symspace, mp->symsize);
998 	if (mp->ctfdata != NULL)
999 		kmem_free(mp->ctfdata, mp->ctfsize);
1000 	kmem_free(mp, sizeof (*mp));
1001 	kmem_free(mcp->mod_filename, strlen(XPV_FILENAME) + 1);
1002 	kmem_free(mcp->mod_modname, strlen(XPV_MODNAME) + 1);
1003 	kmem_free(mcp, sizeof (*mcp));
1004 	if (names != NULL)
1005 		kmem_free(names, namesize);
1006 }
1007 
1008 void
1009 xpv_panic_init()
1010 {
1011 	xen_platform_op_t op;
1012 	int i;
1013 
1014 	ASSERT(DOMAIN_IS_INITDOMAIN(xen_info));
1015 
1016 	for (i = 0; i < mmu.num_level; i++)
1017 		ptable_pfn[i] = PFN_INVALID;
1018 
1019 	/* Let Xen know where to jump if/when it panics. */
1020 	op.cmd = XENPF_panic_init;
1021 	op.interface_version = XENPF_INTERFACE_VERSION;
1022 	op.u.panic_init.panic_addr = (unsigned long)xpv_panic_hdlr;
1023 
1024 	(void) HYPERVISOR_platform_op(&op);
1025 
1026 	init_xen_module();
1027 }
1028