xref: /illumos-gate/usr/src/uts/i86xpv/os/xpv_panic.c (revision 8a2b682e57a046b828f37bcde1776f131ef4629f)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2012 Gary Mills
23  * Copyright 2016 PALO, Richard.
24  *
25  * Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved.
26  *
27  * Copyright 2018 Joyent, Inc.
28  */
29 
30 #include <sys/types.h>
31 #include <sys/clock.h>
32 #include <sys/psm.h>
33 #include <sys/archsystm.h>
34 #include <sys/machsystm.h>
35 #include <sys/compress.h>
36 #include <sys/modctl.h>
37 #include <sys/trap.h>
38 #include <sys/panic.h>
39 #include <sys/regset.h>
40 #include <sys/frame.h>
41 #include <sys/kobj.h>
42 #include <sys/apic.h>
43 #include <sys/apic_timer.h>
44 #include <sys/dumphdr.h>
45 #include <sys/mem.h>
46 #include <sys/x86_archext.h>
47 #include <sys/xpv_panic.h>
48 #include <sys/boot_console.h>
49 #include <sys/bootsvcs.h>
50 #include <sys/consdev.h>
51 #include <vm/hat_pte.h>
52 #include <vm/hat_i86.h>
53 
54 /* XXX: need to add a PAE version too, if we ever support both PAE and non */
55 #if defined(__i386)
56 #define	XPV_FILENAME	"/boot/xen-syms"
57 #else
58 #define	XPV_FILENAME	"/boot/amd64/xen-syms"
59 #endif
60 #define	XPV_MODNAME	"xpv"
61 
62 int xpv_panicking = 0;
63 
64 struct module *xpv_module;
65 struct modctl *xpv_modctl;
66 
67 #define	ALIGN(x, a)	((a) == 0 ? (uintptr_t)(x) : \
68 	(((uintptr_t)(x) + (uintptr_t)(a) - 1l) & ~((uintptr_t)(a) - 1l)))
69 
70 /* Pointer to the xpv_panic_info structure handed to us by Xen.  */
71 static struct panic_info *xpv_panic_info = NULL;
72 
73 /* Timer support */
74 #define	NSEC_SHIFT 5
75 #define	T_XPV_TIMER	0xd1
76 #define	XPV_TIMER_INTERVAL	1000	/* 1000 microseconds */
77 static uint32_t *xpv_apicadr = NULL;
78 static uint_t	nsec_scale;
79 
80 /* IDT support */
81 #pragma	align	16(xpv_panic_idt)
82 static gate_desc_t	xpv_panic_idt[NIDT];	/* interrupt descriptor table */
83 
84 /* Xen pagetables mapped into our HAT's ptable windows */
85 static pfn_t ptable_pfn[MAX_NUM_LEVEL];
86 
87 /* Number of MMU_PAGESIZE pages we're adding to the Solaris dump */
88 static int xpv_dump_pages;
89 
90 /*
91  * There are up to two large swathes of RAM that we don't want to include
92  * in the dump: those that comprise the Xen version of segkpm.  On 32-bit
93  * systems there is no such region of memory.  On 64-bit systems, there
94  * should be just a single contiguous region that corresponds to all of
95  * physical memory.  The tricky bit is that Xen's heap sometimes lives in
96  * the middle of their segkpm, and is mapped using only kpm-like addresses.
97  * In that case, we need to skip the swathes before and after Xen's heap.
98  */
99 uintptr_t kpm1_low = 0;
100 uintptr_t kpm1_high = 0;
101 uintptr_t kpm2_low = 0;
102 uintptr_t kpm2_high = 0;
103 
104 /*
105  * Some commonly used values that we don't want to recompute over and over.
106  */
107 static int xpv_panic_nptes[MAX_NUM_LEVEL];
108 static ulong_t xpv_panic_cr3;
109 static uintptr_t xpv_end;
110 
111 static void xpv_panic_console_print(const char *fmt, ...);
112 static void (*xpv_panic_printf)(const char *, ...) = xpv_panic_console_print;
113 
114 #define	CONSOLE_BUF_SIZE	256
115 static char console_buffer[CONSOLE_BUF_SIZE];
116 static boolean_t use_polledio;
117 
118 /*
119  * Pointers to machine check panic info (if any).
120  */
121 xpv_mca_panic_data_t *xpv_mca_panic_data = NULL;
122 
123 static void
124 xpv_panic_putc(int m)
125 {
126 	struct cons_polledio *c = cons_polledio;
127 
128 	/* This really shouldn't happen */
129 	if (boot_console_type(NULL) == CONS_HYPERVISOR)
130 		return;
131 
132 	if (use_polledio == B_TRUE)
133 		c->cons_polledio_putchar(c->cons_polledio_argument, m);
134 	else
135 		bcons_putchar(m);
136 }
137 
138 static void
139 xpv_panic_puts(char *msg)
140 {
141 	char *m;
142 
143 	dump_timeleft = dump_timeout;
144 	for (m = msg; *m; m++)
145 		xpv_panic_putc((int)*m);
146 }
147 
148 static void
149 xpv_panic_console_print(const char *fmt, ...)
150 {
151 	va_list ap;
152 
153 	va_start(ap, fmt);
154 	(void) vsnprintf(console_buffer, sizeof (console_buffer), fmt, ap);
155 	va_end(ap);
156 
157 	xpv_panic_puts(console_buffer);
158 }
159 
160 static void
161 xpv_panic_map(int level, pfn_t pfn)
162 {
163 	x86pte_t pte, *pteptr;
164 
165 	/*
166 	 * The provided pfn represents a level 'level' page table.  Map it
167 	 * into the 'level' slot in the list of page table windows.
168 	 */
169 	pteptr = (x86pte_t *)PWIN_PTE_VA(level);
170 	pte = pfn_to_pa(pfn) | PT_VALID;
171 
172 	XPV_ALLOW_PAGETABLE_UPDATES();
173 	if (mmu.pae_hat)
174 		*pteptr = pte;
175 	else
176 		*(x86pte32_t *)pteptr = pte;
177 	XPV_DISALLOW_PAGETABLE_UPDATES();
178 
179 	mmu_flush_tlb_page((uintptr_t)PWIN_VA(level));
180 }
181 
182 /*
183  * Walk the page tables to find the pfn mapped by the given va.
184  */
185 static pfn_t
186 xpv_va_walk(uintptr_t *vaddr)
187 {
188 	int l, idx;
189 	pfn_t pfn;
190 	x86pte_t pte;
191 	x86pte_t *ptep;
192 	uintptr_t va = *vaddr;
193 	uintptr_t scan_va;
194 	caddr_t ptable_window;
195 	static pfn_t toplevel_pfn;
196 	static uintptr_t lastva;
197 
198 	/*
199 	 * If we do anything other than a simple scan through memory, don't
200 	 * trust the mapped page tables.
201 	 */
202 	if (va != lastva + MMU_PAGESIZE)
203 		for (l = mmu.max_level; l >= 0; l--)
204 			ptable_pfn[l] = PFN_INVALID;
205 
206 	toplevel_pfn = mmu_btop(xpv_panic_cr3);
207 
208 	while (va < xpv_end && va >= *vaddr) {
209 		/* Find the lowest table with any entry for va */
210 		pfn = toplevel_pfn;
211 		for (l = mmu.max_level; l >= 0; l--) {
212 			if (ptable_pfn[l] != pfn) {
213 				xpv_panic_map(l, pfn);
214 				ptable_pfn[l] = pfn;
215 			}
216 
217 			/*
218 			 * Search this pagetable for any mapping to an
219 			 * address >= va.
220 			 */
221 			ptable_window = PWIN_VA(l);
222 			if (l == mmu.max_level && mmu.pae_hat)
223 				ptable_window +=
224 				    (xpv_panic_cr3 & MMU_PAGEOFFSET);
225 
226 			idx = (va >> LEVEL_SHIFT(l)) & (xpv_panic_nptes[l] - 1);
227 			scan_va = va;
228 			while (idx < xpv_panic_nptes[l] && scan_va < xpv_end &&
229 			    scan_va >= *vaddr) {
230 				ptep = (x86pte_t *)(ptable_window +
231 				    (idx << mmu.pte_size_shift));
232 				pte = GET_PTE(ptep);
233 				if (pte & PTE_VALID)
234 					break;
235 				idx++;
236 				scan_va += mmu.level_size[l];
237 			}
238 
239 			/*
240 			 * If there are no valid mappings in this table, we
241 			 * can skip to the end of the VA range it covers.
242 			 */
243 			if (idx == xpv_panic_nptes[l]) {
244 				va = NEXT_ENTRY_VA(va, l + 1);
245 				break;
246 			}
247 
248 			va = scan_va;
249 			/*
250 			 * See if we've hit the end of the range.
251 			 */
252 			if (va >= xpv_end || va < *vaddr)
253 				break;
254 
255 			/*
256 			 * If this mapping is for a pagetable, we drop down
257 			 * to the next level in the hierarchy and look for
258 			 * a mapping in it.
259 			 */
260 			pfn = PTE2MFN(pte, l);
261 			if (!PTE_ISPAGE(pte, l))
262 				continue;
263 
264 			/*
265 			 * The APIC page is magic.  Nothing to see here;
266 			 * move along.
267 			 */
268 			if (((uintptr_t)xpv_apicadr & MMU_PAGEMASK) ==
269 			    (va & MMU_PAGEMASK)) {
270 				va += MMU_PAGESIZE;
271 				break;
272 			}
273 
274 			/*
275 			 * See if the address is within one of the two
276 			 * kpm-like regions we want to skip.
277 			 */
278 			if (va >= kpm1_low && va < kpm1_high) {
279 				va = kpm1_high;
280 				break;
281 			}
282 			if (va >= kpm2_low && va < kpm2_high) {
283 				va = kpm2_high;
284 				break;
285 			}
286 
287 			/*
288 			 * The Xen panic code only handles small pages.  If
289 			 * this mapping is for a large page, we need to
290 			 * identify the consituent page that covers the
291 			 * specific VA we were looking for.
292 			 */
293 			if (l > 0) {
294 				if (l > 1)
295 					panic("Xen panic can't cope with "
296 					    "giant pages.");
297 				idx = (va >> LEVEL_SHIFT(0)) &
298 				    (xpv_panic_nptes[0] - 1);
299 				pfn += idx;
300 			}
301 
302 			*vaddr = va;
303 			lastva = va;
304 			return (pfn | PFN_IS_FOREIGN_MFN);
305 		}
306 	}
307 	return (PFN_INVALID);
308 }
309 
310 /*
311  * Walk through the Xen VA space, finding pages that are mapped in.
312  *
313  * These pages all have MFNs rather than PFNs, meaning they may be outside
314  * the physical address space the kernel knows about, or they may collide
315  * with PFNs the kernel is using.
316  *
317  * The obvious trick of just adding the PFN_IS_FOREIGN_MFN bit to the MFNs
318  * to avoid collisions doesn't work.  The pages need to be written to disk
319  * in PFN-order or savecore gets confused.  We can't allocate memory to
320  * contruct a sorted pfn->VA reverse mapping, so we have to write the pages
321  * to disk in VA order.
322  *
323  * To square this circle, we simply make up PFNs for each of Xen's pages.
324  * We assign each mapped page a fake PFN in ascending order.  These fake
325  * PFNs each have the FOREIGN bit set, ensuring that they fall outside the
326  * range of Solaris PFNs written by the kernel.
327  */
328 int
329 dump_xpv_addr()
330 {
331 	uintptr_t va;
332 	mem_vtop_t mem_vtop;
333 
334 	xpv_dump_pages = 0;
335 	va = xen_virt_start;
336 
337 	while (xpv_va_walk(&va) != PFN_INVALID) {
338 		mem_vtop.m_as = &kas;
339 		mem_vtop.m_va = (void *)va;
340 		mem_vtop.m_pfn = (pfn_t)xpv_dump_pages | PFN_IS_FOREIGN_MFN;
341 
342 		dumpvp_write(&mem_vtop, sizeof (mem_vtop_t));
343 		xpv_dump_pages++;
344 
345 		va += MMU_PAGESIZE;
346 	}
347 
348 	/*
349 	 * Add the shared_info page.  This page actually ends up in the
350 	 * dump twice: once for the Xen va and once for the Solaris va.
351 	 * This isn't ideal, but we don't know the address Xen is using for
352 	 * the page, so we can't share it.
353 	 */
354 	mem_vtop.m_as = &kas;
355 	mem_vtop.m_va = HYPERVISOR_shared_info;
356 	mem_vtop.m_pfn = (pfn_t)xpv_dump_pages | PFN_IS_FOREIGN_MFN;
357 	dumpvp_write(&mem_vtop, sizeof (mem_vtop_t));
358 	xpv_dump_pages++;
359 
360 	return (xpv_dump_pages);
361 }
362 
363 void
364 dump_xpv_pfn()
365 {
366 	pfn_t pfn;
367 	int cnt;
368 
369 	for (cnt = 0; cnt < xpv_dump_pages; cnt++) {
370 		pfn = (pfn_t)cnt | PFN_IS_FOREIGN_MFN;
371 		dumpvp_write(&pfn, sizeof (pfn));
372 	}
373 }
374 
375 int
376 dump_xpv_data(void *dump_cbuf)
377 {
378 	uintptr_t va;
379 	uint32_t csize;
380 	int cnt = 0;
381 
382 	/*
383 	 * XXX: we should probably run this data through a UE check.  The
384 	 * catch is that the UE code relies on on_trap() and getpfnum()
385 	 * working.
386 	 */
387 	va = xen_virt_start;
388 
389 	while (xpv_va_walk(&va) != PFN_INVALID) {
390 		csize = (uint32_t)compress((void *)va, dump_cbuf, PAGESIZE);
391 		dumpvp_write(&csize, sizeof (uint32_t));
392 		dumpvp_write(dump_cbuf, csize);
393 		if (dump_ioerr) {
394 			dumphdr->dump_flags &= ~DF_COMPLETE;
395 			return (cnt);
396 		}
397 		cnt++;
398 		va += MMU_PAGESIZE;
399 	}
400 
401 	/*
402 	 * Finally, dump the shared_info page
403 	 */
404 	csize = (uint32_t)compress((void *)HYPERVISOR_shared_info, dump_cbuf,
405 	    PAGESIZE);
406 	dumpvp_write(&csize, sizeof (uint32_t));
407 	dumpvp_write(dump_cbuf, csize);
408 	if (dump_ioerr)
409 		dumphdr->dump_flags &= ~DF_COMPLETE;
410 	cnt++;
411 
412 	return (cnt);
413 }
414 
415 static void *
416 showstack(void *fpreg, int xpv_only)
417 {
418 	struct frame *fpp;
419 	ulong_t off;
420 	char *sym;
421 	uintptr_t pc, fp, lastfp;
422 	uintptr_t minaddr = min(KERNELBASE, xen_virt_start);
423 
424 	fp = (uintptr_t)fpreg;
425 	if (fp < minaddr) {
426 		xpv_panic_printf("Bad frame ptr: 0x%p\n", fpreg);
427 		return (fpreg);
428 	}
429 
430 	do {
431 		fpp = (struct frame *)fp;
432 		pc = fpp->fr_savpc;
433 
434 		if ((xpv_only != 0) &&
435 		    (fp > xpv_end || fp < xen_virt_start))
436 			break;
437 		if ((sym = kobj_getsymname(pc, &off)) != NULL)
438 			xpv_panic_printf("%08lx %s:%s+%lx\n", fp,
439 			    mod_containing_pc((caddr_t)pc), sym, off);
440 		else if ((pc >= xen_virt_start) && (pc <= xpv_end))
441 			xpv_panic_printf("%08lx 0x%lx (in Xen)\n", fp, pc);
442 		else
443 			xpv_panic_printf("%08lx %lx\n", fp, pc);
444 
445 		lastfp = fp;
446 		fp = fpp->fr_savfp;
447 
448 		/*
449 		 * Xen marks an exception frame by inverting the frame
450 		 * pointer.
451 		 */
452 		if (fp < lastfp) {
453 			if ((~fp > minaddr) && ((~fp) ^ lastfp) < 0xfff)
454 				fp = ~fp;
455 		}
456 	} while (fp > lastfp);
457 	return ((void *)fp);
458 }
459 
460 void *
461 xpv_traceback(void *fpreg)
462 {
463 	return (showstack(fpreg, 1));
464 }
465 
466 #if defined(__amd64)
467 static void
468 xpv_panic_hypercall(ulong_t call)
469 {
470 	panic("Illegally issued hypercall %d during panic!\n", (int)call);
471 }
472 #endif
473 
474 void
475 xpv_die(struct regs *rp)
476 {
477 	struct panic_trap_info ti;
478 	struct cregs creg;
479 
480 	ti.trap_regs = rp;
481 	ti.trap_type = rp->r_trapno;
482 
483 	curthread->t_panic_trap = &ti;
484 	if (ti.trap_type == T_PGFLT) {
485 		getcregs(&creg);
486 		ti.trap_addr = (caddr_t)creg.cr_cr2;
487 		panic("Fatal pagefault at 0x%lx.  fault addr=0x%p  rp=0x%p",
488 		    rp->r_pc, (void *)ti.trap_addr, (void *)rp);
489 	} else {
490 		ti.trap_addr = (caddr_t)rp->r_pc;
491 		panic("Fatal trap %ld at 0x%lx.  rp=0x%p", rp->r_trapno,
492 		    rp->r_pc, (void *)rp);
493 	}
494 }
495 
496 /*
497  * Build IDT to handle a Xen panic
498  */
499 static void
500 switch_to_xpv_panic_idt()
501 {
502 	int i;
503 	desctbr_t idtr;
504 	gate_desc_t *idt = xpv_panic_idt;
505 	selector_t cs = get_cs_register();
506 
507 	for (i = 0; i < 32; i++)
508 		set_gatesegd(&idt[i], &xpv_invaltrap, cs, SDT_SYSIGT, TRP_XPL,
509 		    0);
510 
511 	set_gatesegd(&idt[T_ZERODIV], &xpv_div0trap, cs, SDT_SYSIGT, TRP_XPL,
512 	    0);
513 	set_gatesegd(&idt[T_SGLSTP], &xpv_dbgtrap, cs, SDT_SYSIGT, TRP_XPL, 0);
514 	set_gatesegd(&idt[T_NMIFLT], &xpv_nmiint, cs, SDT_SYSIGT, TRP_XPL, 0);
515 	set_gatesegd(&idt[T_BOUNDFLT], &xpv_boundstrap, cs, SDT_SYSIGT,
516 	    TRP_XPL, 0);
517 	set_gatesegd(&idt[T_ILLINST], &xpv_invoptrap, cs, SDT_SYSIGT, TRP_XPL,
518 	    0);
519 	set_gatesegd(&idt[T_NOEXTFLT], &xpv_ndptrap, cs, SDT_SYSIGT, TRP_XPL,
520 	    0);
521 	set_gatesegd(&idt[T_TSSFLT], &xpv_invtsstrap, cs, SDT_SYSIGT, TRP_XPL,
522 	    0);
523 	set_gatesegd(&idt[T_SEGFLT], &xpv_segnptrap, cs, SDT_SYSIGT, TRP_XPL,
524 	    0);
525 	set_gatesegd(&idt[T_STKFLT], &xpv_stktrap, cs, SDT_SYSIGT, TRP_XPL, 0);
526 	set_gatesegd(&idt[T_GPFLT], &xpv_gptrap, cs, SDT_SYSIGT, TRP_XPL, 0);
527 	set_gatesegd(&idt[T_PGFLT], &xpv_pftrap, cs, SDT_SYSIGT, TRP_XPL, 0);
528 	set_gatesegd(&idt[T_EXTERRFLT], &xpv_ndperr, cs, SDT_SYSIGT, TRP_XPL,
529 	    0);
530 	set_gatesegd(&idt[T_ALIGNMENT], &xpv_achktrap, cs, SDT_SYSIGT, TRP_XPL,
531 	    0);
532 	set_gatesegd(&idt[T_MCE], &xpv_mcetrap, cs, SDT_SYSIGT, TRP_XPL, 0);
533 	set_gatesegd(&idt[T_SIMDFPE], &xpv_xmtrap, cs, SDT_SYSIGT, TRP_XPL, 0);
534 
535 	/*
536 	 * We have no double fault handler.  Any single fault represents a
537 	 * catastrophic failure for us, so there is no attempt to handle
538 	 * them cleanly: we just print a message and reboot.  If we
539 	 * encounter a second fault while doing that, there is nothing
540 	 * else we can do.
541 	 */
542 
543 	/*
544 	 * Be prepared to absorb any stray device interrupts received
545 	 * while writing the core to disk.
546 	 */
547 	for (i = 33; i < NIDT; i++)
548 		set_gatesegd(&idt[i], &xpv_surprise_intr, cs, SDT_SYSIGT,
549 		    TRP_XPL, 0);
550 
551 	/* The one interrupt we expect to get is from the APIC timer.  */
552 	set_gatesegd(&idt[T_XPV_TIMER], &xpv_timer_trap, cs, SDT_SYSIGT,
553 	    TRP_XPL, 0);
554 
555 	idtr.dtr_base = (uintptr_t)xpv_panic_idt;
556 	idtr.dtr_limit = sizeof (xpv_panic_idt) - 1;
557 	wr_idtr(&idtr);
558 
559 #if defined(__amd64)
560 	/* Catch any hypercalls. */
561 	wrmsr(MSR_AMD_LSTAR, (uintptr_t)xpv_panic_hypercall);
562 	wrmsr(MSR_AMD_CSTAR, (uintptr_t)xpv_panic_hypercall);
563 #endif
564 }
565 
566 static void
567 xpv_apic_clkinit()
568 {
569 	uint_t		apic_ticks = 0;
570 
571 	/*
572 	 * Measure how many APIC ticks there are within a fixed time
573 	 * period.  We're going to be fairly coarse here.  This timer is
574 	 * just being used to detect a stalled panic, so as long as we have
575 	 * the right order of magnitude, everything should be fine.
576 	 */
577 	xpv_apicadr[APIC_SPUR_INT_REG] = AV_UNIT_ENABLE | APIC_SPUR_INTR;
578 	xpv_apicadr[APIC_LOCAL_TIMER] = AV_MASK;
579 	xpv_apicadr[APIC_INT_VECT0] = AV_MASK;	/* local intr reg 0 */
580 
581 	xpv_apicadr[APIC_DIVIDE_REG] = 0;
582 	xpv_apicadr[APIC_INIT_COUNT] = APIC_MAXVAL;
583 	drv_usecwait(XPV_TIMER_INTERVAL);
584 	apic_ticks = APIC_MAXVAL - xpv_apicadr[APIC_CURR_COUNT];
585 
586 	/*
587 	 * apic_ticks now represents roughly how many apic ticks comprise
588 	 * one timeout interval.  Program the timer to send us an interrupt
589 	 * every time that interval expires.
590 	 */
591 	xpv_apicadr[APIC_LOCAL_TIMER] = T_XPV_TIMER | AV_PERIODIC;
592 	xpv_apicadr[APIC_INIT_COUNT] = apic_ticks;
593 	xpv_apicadr[APIC_EOI_REG] = 0;
594 }
595 
596 void
597 xpv_timer_tick(void)
598 {
599 	static int ticks = 0;
600 
601 	if (ticks++ >= MICROSEC / XPV_TIMER_INTERVAL) {
602 		ticks = 0;
603 		if (dump_timeleft && (--dump_timeleft == 0))
604 			panic("Xen panic timeout\n");
605 	}
606 	xpv_apicadr[APIC_EOI_REG] = 0;
607 }
608 
609 void
610 xpv_interrupt(void)
611 {
612 #ifdef	DEBUG
613 	static int cnt = 0;
614 
615 	if (cnt++ < 10)
616 		xpv_panic_printf("Unexpected interrupt received.\n");
617 	if ((cnt < 1000) && ((cnt % 100) == 0))
618 		xpv_panic_printf("%d unexpected interrupts received.\n", cnt);
619 #endif
620 
621 	xpv_apicadr[APIC_EOI_REG] = 0;
622 }
623 
624 /*
625  * Managing time in panic context is trivial.  We only have a single CPU,
626  * we never get rescheduled, we never get suspended.  We just need to
627  * convert clock ticks into nanoseconds.
628  */
629 static hrtime_t
630 xpv_panic_gethrtime(void)
631 {
632 	hrtime_t tsc, hrt;
633 	unsigned int *l = (unsigned int *)&(tsc);
634 
635 	tsc = __rdtsc_insn();
636 	hrt = (mul32(l[1], nsec_scale) << NSEC_SHIFT) +
637 	    (mul32(l[0], nsec_scale) >> (32 - NSEC_SHIFT));
638 
639 	return (hrt);
640 }
641 
642 static void
643 xpv_panic_time_init()
644 {
645 	nsec_scale =
646 	    CPU->cpu_m.mcpu_vcpu_info->time.tsc_to_system_mul >> NSEC_SHIFT;
647 
648 	gethrtimef = xpv_panic_gethrtime;
649 }
650 
651 static void
652 xpv_panicsys(struct regs *rp, char *fmt, ...)
653 {
654 	extern void panicsys(const char *, va_list, struct regs *, int);
655 	va_list alist;
656 
657 	va_start(alist, fmt);
658 	panicsys(fmt, alist, rp, 1);
659 	va_end(alist);
660 }
661 
662 void
663 xpv_do_panic(void *arg)
664 {
665 	struct panic_info *pip = (struct panic_info *)arg;
666 	int l;
667 	struct cregs creg;
668 #if defined(__amd64)
669 	extern uintptr_t postbootkernelbase;
670 #endif
671 
672 	if (xpv_panicking++ > 0)
673 		panic("multiple calls to xpv_do_panic()");
674 
675 	/*
676 	 * Indicate to the underlying panic framework that a panic has been
677 	 * initiated.  This is ordinarily done as part of vpanic().  Since
678 	 * we already have all the register state saved by the hypervisor,
679 	 * we skip that and jump straight into the panic processing code.
680 	 *
681 	 * XXX If another thread grabs and wins the panic_quiesce trigger
682 	 * then we'll have two threads in panicsys believing they are in
683 	 * charge of the panic attempt!
684 	 */
685 	(void) panic_trigger(&panic_quiesce);
686 
687 #if defined(__amd64)
688 	/*
689 	 * bzero() and bcopy() get unhappy when asked to operate on
690 	 * addresses outside of the kernel.  At this point Xen is really a
691 	 * part of the kernel, so we update the routines' notion of where
692 	 * the kernel starts.
693 	 */
694 	postbootkernelbase = xen_virt_start;
695 #endif
696 
697 #if defined(HYPERVISOR_VIRT_END)
698 	xpv_end = HYPERVISOR_VIRT_END;
699 #else
700 	xpv_end = (uintptr_t)UINTPTR_MAX - sizeof (uintptr_t);
701 #endif
702 
703 	/*
704 	 * If we were redirecting console output to the hypervisor, we have
705 	 * to stop.
706 	 */
707 	use_polledio = B_FALSE;
708 	if (boot_console_type(NULL) == CONS_HYPERVISOR) {
709 		bcons_device_change(CONS_HYPERVISOR);
710 	} else if (cons_polledio != NULL &&
711 	    cons_polledio->cons_polledio_putchar != NULL)  {
712 		if (cons_polledio->cons_polledio_enter != NULL)
713 			cons_polledio->cons_polledio_enter(
714 			    cons_polledio->cons_polledio_argument);
715 		use_polledio = 1;
716 	}
717 
718 	/* Make sure we handle all console output from here on. */
719 	sysp->bsvc_putchar = xpv_panic_putc;
720 
721 	/*
722 	 * If we find an unsupported panic_info structure, there's not much
723 	 * we can do other than complain, plow on, and hope for the best.
724 	 */
725 	if (pip->pi_version != PANIC_INFO_VERSION)
726 		xpv_panic_printf("Warning: Xen is using an unsupported "
727 		    "version of the panic_info structure.\n");
728 
729 	xpv_panic_info = pip;
730 
731 #if defined(__amd64)
732 	kpm1_low = (uintptr_t)xpv_panic_info->pi_ram_start;
733 	if (xpv_panic_info->pi_xen_start == NULL) {
734 		kpm1_high = (uintptr_t)xpv_panic_info->pi_ram_end;
735 	} else {
736 		kpm1_high = (uintptr_t)xpv_panic_info->pi_xen_start;
737 		kpm2_low = (uintptr_t)xpv_panic_info->pi_xen_end;
738 		kpm2_high = (uintptr_t)xpv_panic_info->pi_ram_end;
739 	}
740 #endif
741 
742 	/*
743 	 * Make sure we are running on the Solaris %gs.  The Xen panic code
744 	 * should already have set up the GDT properly.
745 	 */
746 	xpv_panic_resetgs();
747 #if defined(__amd64)
748 	wrmsr(MSR_AMD_GSBASE, (uint64_t)&cpus[0]);
749 #endif
750 
751 	xpv_panic_time_init();
752 
753 	/*
754 	 * Switch to our own IDT, avoiding any accidental returns to Xen
755 	 * world.
756 	 */
757 	switch_to_xpv_panic_idt();
758 
759 	/*
760 	 * Initialize the APIC timer, which is used to detect a hung dump
761 	 * attempt.
762 	 */
763 	xpv_apicadr = pip->pi_apic;
764 	xpv_apic_clkinit();
765 
766 	/*
767 	 * Set up a few values that we'll need repeatedly.
768 	 */
769 	getcregs(&creg);
770 	xpv_panic_cr3 = creg.cr_cr3;
771 	for (l = mmu.max_level; l >= 0; l--)
772 		xpv_panic_nptes[l] = mmu.ptes_per_table;
773 #ifdef __i386
774 	if (mmu.pae_hat)
775 		xpv_panic_nptes[mmu.max_level] = 4;
776 #endif
777 
778 	/* Add the fake Xen module to the module list */
779 	if (xpv_module != NULL) {
780 		extern int last_module_id;
781 
782 		xpv_modctl->mod_id = last_module_id++;
783 		xpv_modctl->mod_next = &modules;
784 		xpv_modctl->mod_prev = modules.mod_prev;
785 		modules.mod_prev->mod_next = xpv_modctl;
786 		modules.mod_prev = xpv_modctl;
787 	}
788 
789 	if (pip->pi_mca.mpd_magic == MCA_PANICDATA_MAGIC)
790 		xpv_mca_panic_data = &pip->pi_mca;
791 
792 	xpv_panic_printf = printf;
793 	xpv_panicsys((struct regs *)pip->pi_regs, pip->pi_panicstr);
794 	xpv_panic_printf("Failed to reboot following panic.\n");
795 	for (;;)
796 		;
797 }
798 
799 /*
800  * Set up the necessary data structures to pretend that the Xen hypervisor
801  * is a loadable module, allowing mdb to find the Xen symbols in a crash
802  * dump.  Since these symbols all map to VA space Solaris doesn't normally
803  * have access to, we don't link these structures into the kernel's lists
804  * until/unless we hit a Xen panic.
805  *
806  * The observant reader will note a striking amount of overlap between this
807  * code and that found in krtld.  While it would be handy if we could just
808  * ask krtld to do this work for us, it's not that simple.  Among the
809  * complications: we're not actually loading the text here (grub did it at
810  * boot), the .text section is writable, there are no relocations to do,
811  * none of the module text/data is in readable memory, etc.  Training krtld
812  * to deal with this weird module is as complicated, and more risky, than
813  * reimplementing the necessary subset of it here.
814  */
815 static void
816 init_xen_module()
817 {
818 	struct _buf *file = NULL;
819 	struct module *mp;
820 	struct modctl *mcp;
821 	int i, shn;
822 	Shdr *shp, *ctf_shp;
823 	char *names = NULL;
824 	size_t n, namesize, text_align, data_align;
825 #if defined(__amd64)
826 	const char machine = EM_AMD64;
827 #else
828 	const char machine = EM_386;
829 #endif
830 
831 	/* Allocate and init the module structure */
832 	mp = kmem_zalloc(sizeof (*mp), KM_SLEEP);
833 	mp->filename = kobj_zalloc(strlen(XPV_FILENAME) + 1, KM_SLEEP);
834 	(void) strcpy(mp->filename, XPV_FILENAME);
835 
836 	/* Allocate and init the modctl structure */
837 	mcp = kmem_zalloc(sizeof (*mcp), KM_SLEEP);
838 	mcp->mod_modname = kobj_zalloc(strlen(XPV_MODNAME) + 1, KM_SLEEP);
839 	(void) strcpy(mcp->mod_modname, XPV_MODNAME);
840 	mcp->mod_filename = kobj_zalloc(strlen(XPV_FILENAME) + 1, KM_SLEEP);
841 	(void) strcpy(mcp->mod_filename, XPV_FILENAME);
842 	mcp->mod_inprogress_thread = (kthread_id_t)-1;
843 	mcp->mod_ref = 1;
844 	mcp->mod_loaded = 1;
845 	mcp->mod_loadcnt = 1;
846 	mcp->mod_mp = mp;
847 
848 	/*
849 	 * Try to open a Xen image that hasn't had its symbol and CTF
850 	 * information stripped off.
851 	 */
852 	file = kobj_open_file(XPV_FILENAME);
853 	if (file == (struct _buf *)-1) {
854 		file = NULL;
855 		goto err;
856 	}
857 
858 	/*
859 	 * Read the header and ensure that this is an ELF file for the
860 	 * proper ISA.  If it's not, somebody has done something very
861 	 * stupid.  Why bother?  See Mencken.
862 	 */
863 	if (kobj_read_file(file, (char *)&mp->hdr, sizeof (mp->hdr), 0) < 0)
864 		goto err;
865 	for (i = 0; i < SELFMAG; i++)
866 		if (mp->hdr.e_ident[i] != ELFMAG[i])
867 			goto err;
868 	if ((mp->hdr.e_ident[EI_DATA] != ELFDATA2LSB) ||
869 	    (mp->hdr.e_machine != machine))
870 		goto err;
871 
872 	/* Read in the section headers */
873 	n = mp->hdr.e_shentsize * mp->hdr.e_shnum;
874 	mp->shdrs = kmem_zalloc(n, KM_SLEEP);
875 	if (kobj_read_file(file, mp->shdrs, n, mp->hdr.e_shoff) < 0)
876 		goto err;
877 
878 	/* Read the section names */
879 	shp = (Shdr *)(mp->shdrs + mp->hdr.e_shstrndx * mp->hdr.e_shentsize);
880 	namesize = shp->sh_size;
881 	names = kmem_zalloc(shp->sh_size, KM_SLEEP);
882 	if (kobj_read_file(file, names, shp->sh_size, shp->sh_offset) < 0)
883 		goto err;
884 
885 	/*
886 	 * Fill in the text and data size fields.
887 	 */
888 	ctf_shp = NULL;
889 	text_align = data_align = 0;
890 	for (shn = 1; shn < mp->hdr.e_shnum; shn++) {
891 		shp = (Shdr *)(mp->shdrs + shn * mp->hdr.e_shentsize);
892 
893 		/* Sanity check the offset of the section name */
894 		if (shp->sh_name >= namesize)
895 			continue;
896 
897 		/* If we find the symtab section, remember it for later. */
898 		if (shp->sh_type == SHT_SYMTAB) {
899 			mp->symtbl_section = shn;
900 			mp->symhdr = shp;
901 			continue;
902 		}
903 
904 		/* If we find the CTF section, remember it for later. */
905 		if ((shp->sh_size != 0) &&
906 		    (strcmp(names + shp->sh_name, ".SUNW_ctf") == 0)) {
907 			ctf_shp = shp;
908 			continue;
909 		}
910 
911 		if (!(shp->sh_flags & SHF_ALLOC))
912 			continue;
913 
914 		/*
915 		 * Xen marks its text section as writable, so we need to
916 		 * look for the name - not just the flag.
917 		 */
918 		if ((strcmp(&names[shp->sh_name], ".text") != 0) &&
919 		    (shp->sh_flags & SHF_WRITE) != 0) {
920 			if (shp->sh_addralign > data_align)
921 				data_align = shp->sh_addralign;
922 			mp->data_size = ALIGN(mp->data_size, data_align);
923 			mp->data_size += ALIGN(shp->sh_size, 8);
924 			if (mp->data == NULL || mp->data > (char *)shp->sh_addr)
925 				mp->data = (char *)shp->sh_addr;
926 		} else {
927 			if (shp->sh_addralign > text_align)
928 				text_align = shp->sh_addralign;
929 			mp->text_size = ALIGN(mp->text_size, text_align);
930 			mp->text_size += ALIGN(shp->sh_size, 8);
931 			if (mp->text == NULL || mp->text > (char *)shp->sh_addr)
932 				mp->text = (char *)shp->sh_addr;
933 		}
934 	}
935 	kmem_free(names, namesize);
936 	names = NULL;
937 	shp = NULL;
938 	mcp->mod_text = mp->text;
939 	mcp->mod_text_size = mp->text_size;
940 
941 	/*
942 	 * If we have symbol table and string table sections, read them in
943 	 * now.  If we don't, we just plow on.  We'll still get a valid
944 	 * core dump, but finding anything useful will be just a bit
945 	 * harder.
946 	 *
947 	 * Note: we don't bother with a hash table.  We'll never do a
948 	 * symbol lookup unless we crash, and then mdb creates its own.  We
949 	 * also don't try to perform any relocations.  Xen should be loaded
950 	 * exactly where the ELF file indicates, and the symbol information
951 	 * in the file should be complete and correct already.  Static
952 	 * linking ain't all bad.
953 	 */
954 	if ((mp->symhdr != NULL) && (mp->symhdr->sh_link < mp->hdr.e_shnum)) {
955 		mp->strhdr = (Shdr *)
956 		    (mp->shdrs + mp->symhdr->sh_link * mp->hdr.e_shentsize);
957 		mp->nsyms = mp->symhdr->sh_size / mp->symhdr->sh_entsize;
958 
959 		/* Allocate space for the symbol table and strings.  */
960 		mp->symsize = mp->symhdr->sh_size +
961 		    mp->nsyms * sizeof (symid_t) + mp->strhdr->sh_size;
962 		mp->symspace = kmem_zalloc(mp->symsize, KM_SLEEP);
963 		mp->symtbl = mp->symspace;
964 		mp->strings = (char *)(mp->symtbl + mp->symhdr->sh_size);
965 
966 		if ((kobj_read_file(file, mp->symtbl,
967 		    mp->symhdr->sh_size, mp->symhdr->sh_offset) < 0) ||
968 		    (kobj_read_file(file, mp->strings,
969 		    mp->strhdr->sh_size, mp->strhdr->sh_offset) < 0))
970 			goto err;
971 	}
972 
973 	/*
974 	 * Read in the CTF section
975 	 */
976 	if ((ctf_shp != NULL) && ((moddebug & MODDEBUG_NOCTF) == 0)) {
977 		mp->ctfdata = kmem_zalloc(ctf_shp->sh_size, KM_SLEEP);
978 		mp->ctfsize = ctf_shp->sh_size;
979 		if (kobj_read_file(file, mp->ctfdata, mp->ctfsize,
980 		    ctf_shp->sh_offset) < 0)
981 			goto err;
982 	}
983 
984 	kobj_close_file(file);
985 
986 	xpv_module = mp;
987 	xpv_modctl = mcp;
988 	return;
989 
990 err:
991 	cmn_err(CE_WARN, "Failed to initialize xpv module.");
992 	if (file != NULL)
993 		kobj_close_file(file);
994 
995 	kmem_free(mp->filename, strlen(XPV_FILENAME) + 1);
996 	if (mp->shdrs != NULL)
997 		kmem_free(mp->shdrs, mp->hdr.e_shentsize * mp->hdr.e_shnum);
998 	if (mp->symspace != NULL)
999 		kmem_free(mp->symspace, mp->symsize);
1000 	if (mp->ctfdata != NULL)
1001 		kmem_free(mp->ctfdata, mp->ctfsize);
1002 	kmem_free(mp, sizeof (*mp));
1003 	kmem_free(mcp->mod_filename, strlen(XPV_FILENAME) + 1);
1004 	kmem_free(mcp->mod_modname, strlen(XPV_MODNAME) + 1);
1005 	kmem_free(mcp, sizeof (*mcp));
1006 	if (names != NULL)
1007 		kmem_free(names, namesize);
1008 }
1009 
1010 void
1011 xpv_panic_init()
1012 {
1013 	xen_platform_op_t op;
1014 	int i;
1015 
1016 	ASSERT(DOMAIN_IS_INITDOMAIN(xen_info));
1017 
1018 	for (i = 0; i < mmu.num_level; i++)
1019 		ptable_pfn[i] = PFN_INVALID;
1020 
1021 	/* Let Xen know where to jump if/when it panics. */
1022 	op.cmd = XENPF_panic_init;
1023 	op.interface_version = XENPF_INTERFACE_VERSION;
1024 	op.u.panic_init.panic_addr = (unsigned long)xpv_panic_hdlr;
1025 
1026 	(void) HYPERVISOR_platform_op(&op);
1027 
1028 	init_xen_module();
1029 }
1030