1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 1992, 2010, Oracle and/or its affiliates. All rights reserved. 23 */ 24 /* 25 * Copyright (c) 2010, Intel Corporation. 26 * All rights reserved. 27 */ 28 29 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */ 30 /* All Rights Reserved */ 31 32 /* 33 * Portions of this source code were derived from Berkeley 4.3 BSD 34 * under license from the Regents of the University of California. 35 */ 36 37 /* 38 * UNIX machine dependent virtual memory support. 39 */ 40 41 #include <sys/types.h> 42 #include <sys/param.h> 43 #include <sys/systm.h> 44 #include <sys/user.h> 45 #include <sys/proc.h> 46 #include <sys/kmem.h> 47 #include <sys/vmem.h> 48 #include <sys/buf.h> 49 #include <sys/cpuvar.h> 50 #include <sys/lgrp.h> 51 #include <sys/disp.h> 52 #include <sys/vm.h> 53 #include <sys/mman.h> 54 #include <sys/vnode.h> 55 #include <sys/cred.h> 56 #include <sys/exec.h> 57 #include <sys/exechdr.h> 58 #include <sys/debug.h> 59 #include <sys/vmsystm.h> 60 #include <sys/swap.h> 61 62 #include <vm/hat.h> 63 #include <vm/as.h> 64 #include <vm/seg.h> 65 #include <vm/seg_kp.h> 66 #include <vm/seg_vn.h> 67 #include <vm/page.h> 68 #include <vm/seg_kmem.h> 69 #include <vm/seg_kpm.h> 70 #include <vm/vm_dep.h> 71 72 #include <sys/cpu.h> 73 #include <sys/vm_machparam.h> 74 #include <sys/memlist.h> 75 #include <sys/bootconf.h> /* XXX the memlist stuff belongs in memlist_plat.h */ 76 #include <vm/hat_i86.h> 77 #include <sys/x86_archext.h> 78 #include <sys/elf_386.h> 79 #include <sys/cmn_err.h> 80 #include <sys/archsystm.h> 81 #include <sys/machsystm.h> 82 83 #include <sys/vtrace.h> 84 #include <sys/ddidmareq.h> 85 #include <sys/promif.h> 86 #include <sys/memnode.h> 87 #include <sys/stack.h> 88 #include <util/qsort.h> 89 #include <sys/taskq.h> 90 #include <sys/kflt_mem.h> 91 92 #ifdef __xpv 93 94 #include <sys/hypervisor.h> 95 #include <sys/xen_mmu.h> 96 #include <sys/balloon_impl.h> 97 98 /* 99 * domain 0 pages usable for DMA are kept pre-allocated and kept in 100 * distinct lists, ordered by increasing mfn. 101 */ 102 static kmutex_t io_pool_lock; 103 static kmutex_t contig_list_lock; 104 static page_t *io_pool_4g; /* pool for 32 bit dma limited devices */ 105 static page_t *io_pool_16m; /* pool for 24 bit dma limited legacy devices */ 106 static long io_pool_cnt; 107 static long io_pool_cnt_max = 0; 108 #define DEFAULT_IO_POOL_MIN 128 109 static long io_pool_cnt_min = DEFAULT_IO_POOL_MIN; 110 static long io_pool_cnt_lowater = 0; 111 static long io_pool_shrink_attempts; /* how many times did we try to shrink */ 112 static long io_pool_shrinks; /* how many times did we really shrink */ 113 static long io_pool_grows; /* how many times did we grow */ 114 static mfn_t start_mfn = 1; 115 static caddr_t io_pool_kva; /* use to alloc pages when needed */ 116 117 static int create_contig_pfnlist(uint_t); 118 119 /* 120 * percentage of phys mem to hold in the i/o pool 121 */ 122 #define DEFAULT_IO_POOL_PCT 2 123 static long io_pool_physmem_pct = DEFAULT_IO_POOL_PCT; 124 static void page_io_pool_sub(page_t **, page_t *, page_t *); 125 int ioalloc_dbg = 0; 126 127 #endif /* __xpv */ 128 129 uint_t vac_colors = 1; 130 131 int largepagesupport = 0; 132 extern uint_t page_create_new; 133 extern uint_t page_create_exists; 134 extern uint_t page_create_putbacks; 135 /* 136 * Allow users to disable the kernel's use of SSE. 137 */ 138 extern int use_sse_pagecopy, use_sse_pagezero; 139 140 /* 141 * As the PC architecture evolved memory up was clumped into several 142 * ranges for various historical I/O devices to do DMA. 143 * < 16Meg - ISA bus 144 * < 2Gig - ??? 145 * < 4Gig - PCI bus or drivers that don't understand PAE mode 146 * 147 * These are listed in reverse order, so that we can skip over unused 148 * ranges on machines with small memories. 149 * 150 * For now under the Hypervisor, we'll only ever have one memrange. 151 */ 152 #define PFN_4GIG 0x100000 153 #define PFN_16MEG 0x1000 154 /* Indices into the memory range (arch_memranges) array. */ 155 #define MRI_4G 0 156 #define MRI_2G 1 157 #define MRI_16M 2 158 #define MRI_0 3 159 static pfn_t arch_memranges[NUM_MEM_RANGES] = { 160 PFN_4GIG, /* pfn range for 4G and above */ 161 0x80000, /* pfn range for 2G-4G */ 162 PFN_16MEG, /* pfn range for 16M-2G */ 163 0x00000, /* pfn range for 0-16M */ 164 }; 165 pfn_t *memranges = &arch_memranges[0]; 166 int nranges = NUM_MEM_RANGES; 167 168 /* 169 * This combines mem_node_config and memranges into one data 170 * structure to be used for page list management. 171 */ 172 mnoderange_t *mnoderanges; 173 int mnoderangecnt; 174 int mtype4g; 175 int mtype16m; 176 int mtypetop; /* index of highest pfn'ed mnoderange */ 177 178 /* 179 * 4g memory management variables for systems with more than 4g of memory: 180 * 181 * physical memory below 4g is required for 32bit dma devices and, currently, 182 * for kmem memory. On systems with more than 4g of memory, the pool of memory 183 * below 4g can be depleted without any paging activity given that there is 184 * likely to be sufficient memory above 4g. 185 * 186 * physmax4g is set true if the largest pfn is over 4g. The rest of the 187 * 4g memory management code is enabled only when physmax4g is true. 188 * 189 * maxmem4g is the count of the maximum number of pages on the page lists 190 * with physical addresses below 4g. It can be a lot less then 4g given that 191 * BIOS may reserve large chunks of space below 4g for hot plug pci devices, 192 * agp aperture etc. 193 * 194 * freemem4g maintains the count of the number of available pages on the 195 * page lists with physical addresses below 4g. 196 * 197 * DESFREE4G specifies the desired amount of below 4g memory. It defaults to 198 * 6% (desfree4gshift = 4) of maxmem4g. 199 * 200 * RESTRICT4G_ALLOC returns true if freemem4g falls below DESFREE4G 201 * and the amount of physical memory above 4g is greater than freemem4g. 202 * In this case, page_get_* routines will restrict below 4g allocations 203 * for requests that don't specifically require it. 204 */ 205 206 #define DESFREE4G (maxmem4g >> desfree4gshift) 207 208 #define RESTRICT4G_ALLOC \ 209 (physmax4g && (freemem4g < DESFREE4G) && ((freemem4g << 1) < freemem)) 210 211 static pgcnt_t maxmem4g; 212 static pgcnt_t freemem4g; 213 static int physmax4g; 214 static int desfree4gshift = 4; /* maxmem4g shift to derive DESFREE4G */ 215 216 /* 217 * 16m memory management: 218 * 219 * reserve some amount of physical memory below 16m for legacy devices. 220 * 221 * RESTRICT16M_ALLOC returns true if an there are sufficient free pages above 222 * 16m or if the 16m pool drops below DESFREE16M. 223 * 224 * In this case, general page allocations via page_get_{free,cache}list 225 * routines will be restricted from allocating from the 16m pool. Allocations 226 * that require specific pfn ranges (page_get_anylist) and PG_PANIC allocations 227 * are not restricted. 228 */ 229 230 #define FREEMEM16M MTYPE_FREEMEM(mtype16m) 231 #define DESFREE16M desfree16m 232 #define RESTRICT16M_ALLOC(freemem, pgcnt, flags) \ 233 ((freemem != 0) && ((flags & PG_PANIC) == 0) && \ 234 ((freemem >= (FREEMEM16M)) || \ 235 (FREEMEM16M < (DESFREE16M + pgcnt)))) 236 237 static pgcnt_t desfree16m = 0x380; 238 239 /* 240 * This can be patched via /etc/system to allow old non-PAE aware device 241 * drivers to use kmem_alloc'd memory on 32 bit systems with > 4Gig RAM. 242 */ 243 int restricted_kmemalloc = 0; 244 245 #ifdef VM_STATS 246 struct { 247 ulong_t pga_alloc; 248 ulong_t pga_notfullrange; 249 ulong_t pga_nulldmaattr; 250 ulong_t pga_allocok; 251 ulong_t pga_allocfailed; 252 ulong_t pgma_alloc; 253 ulong_t pgma_allocok; 254 ulong_t pgma_allocfailed; 255 ulong_t pgma_allocempty; 256 } pga_vmstats; 257 #endif 258 259 uint_t mmu_page_sizes; 260 261 /* How many page sizes the users can see */ 262 uint_t mmu_exported_page_sizes; 263 264 /* page sizes that legacy applications can see */ 265 uint_t mmu_legacy_page_sizes; 266 267 /* 268 * Number of pages in 1 GB. Don't enable automatic large pages if we have 269 * fewer than this many pages. 270 */ 271 pgcnt_t shm_lpg_min_physmem = 1 << (30 - MMU_PAGESHIFT); 272 pgcnt_t privm_lpg_min_physmem = 1 << (30 - MMU_PAGESHIFT); 273 274 /* 275 * Maximum and default segment size tunables for user private 276 * and shared anon memory, and user text and initialized data. 277 * These can be patched via /etc/system to allow large pages 278 * to be used for mapping application private and shared anon memory. 279 */ 280 size_t mcntl0_lpsize = MMU_PAGESIZE; 281 size_t max_uheap_lpsize = MMU_PAGESIZE; 282 size_t default_uheap_lpsize = MMU_PAGESIZE; 283 size_t max_ustack_lpsize = MMU_PAGESIZE; 284 size_t default_ustack_lpsize = MMU_PAGESIZE; 285 size_t max_privmap_lpsize = MMU_PAGESIZE; 286 size_t max_uidata_lpsize = MMU_PAGESIZE; 287 size_t max_utext_lpsize = MMU_PAGESIZE; 288 size_t max_shm_lpsize = MMU_PAGESIZE; 289 290 291 /* 292 * initialized by page_coloring_init(). 293 */ 294 uint_t page_colors; 295 uint_t page_colors_mask; 296 uint_t page_coloring_shift; 297 int cpu_page_colors; 298 static uint_t l2_colors; 299 300 /* 301 * Page freelists and cachelists are dynamically allocated once mnoderangecnt 302 * and page_colors are calculated from the l2 cache n-way set size. Within a 303 * mnode range, the page freelist and cachelist are hashed into bins based on 304 * color. This makes it easier to search for a page within a specific memory 305 * range. 306 */ 307 #define PAGE_COLORS_MIN 16 308 309 page_t ****page_freelists; 310 page_t ***page_cachelists; 311 312 313 /* 314 * Used by page layer to know about page sizes 315 */ 316 hw_pagesize_t hw_page_array[MAX_NUM_LEVEL + 1]; 317 318 kmutex_t *fpc_mutex[NPC_MUTEX]; /* user page freelist mutexes */ 319 kmutex_t *kfpc_mutex[NPC_MUTEX]; /* kernel page freelist mutexes */ 320 kmutex_t *cpc_mutex[NPC_MUTEX]; /* page cachelist mutexes */ 321 322 /* Lock to protect mnoderanges array for memory DR operations. */ 323 static kmutex_t mnoderange_lock; 324 325 /* 326 * Only let one thread at a time try to coalesce large pages, to 327 * prevent them from working against each other. 328 */ 329 static kmutex_t contig_lock; 330 #define CONTIG_LOCK() mutex_enter(&contig_lock); 331 #define CONTIG_UNLOCK() mutex_exit(&contig_lock); 332 333 #define PFN_16M (mmu_btop((uint64_t)0x1000000)) 334 335 /* 336 * Return the optimum page size for a given mapping 337 */ 338 /*ARGSUSED*/ 339 size_t 340 map_pgsz(int maptype, struct proc *p, caddr_t addr, size_t len, int memcntl) 341 { 342 level_t l = 0; 343 size_t pgsz = MMU_PAGESIZE; 344 size_t max_lpsize; 345 uint_t mszc; 346 347 ASSERT(maptype != MAPPGSZ_VA); 348 349 if (maptype != MAPPGSZ_ISM && physmem < privm_lpg_min_physmem) { 350 return (MMU_PAGESIZE); 351 } 352 353 switch (maptype) { 354 case MAPPGSZ_HEAP: 355 case MAPPGSZ_STK: 356 max_lpsize = memcntl ? mcntl0_lpsize : (maptype == 357 MAPPGSZ_HEAP ? max_uheap_lpsize : max_ustack_lpsize); 358 if (max_lpsize == MMU_PAGESIZE) { 359 return (MMU_PAGESIZE); 360 } 361 if (len == 0) { 362 len = (maptype == MAPPGSZ_HEAP) ? p->p_brkbase + 363 p->p_brksize - p->p_bssbase : p->p_stksize; 364 } 365 len = (maptype == MAPPGSZ_HEAP) ? MAX(len, 366 default_uheap_lpsize) : MAX(len, default_ustack_lpsize); 367 368 /* 369 * use the pages size that best fits len 370 */ 371 for (l = mmu.umax_page_level; l > 0; --l) { 372 if (LEVEL_SIZE(l) > max_lpsize || len < LEVEL_SIZE(l)) { 373 continue; 374 } else { 375 pgsz = LEVEL_SIZE(l); 376 } 377 break; 378 } 379 380 mszc = (maptype == MAPPGSZ_HEAP ? p->p_brkpageszc : 381 p->p_stkpageszc); 382 if (addr == 0 && (pgsz < hw_page_array[mszc].hp_size)) { 383 pgsz = hw_page_array[mszc].hp_size; 384 } 385 return (pgsz); 386 387 case MAPPGSZ_ISM: 388 for (l = mmu.umax_page_level; l > 0; --l) { 389 if (len >= LEVEL_SIZE(l)) 390 return (LEVEL_SIZE(l)); 391 } 392 return (LEVEL_SIZE(0)); 393 } 394 return (pgsz); 395 } 396 397 static uint_t 398 map_szcvec(caddr_t addr, size_t size, uintptr_t off, size_t max_lpsize, 399 size_t min_physmem) 400 { 401 caddr_t eaddr = addr + size; 402 uint_t szcvec = 0; 403 caddr_t raddr; 404 caddr_t readdr; 405 size_t pgsz; 406 int i; 407 408 if (physmem < min_physmem || max_lpsize <= MMU_PAGESIZE) { 409 return (0); 410 } 411 412 for (i = mmu_exported_page_sizes - 1; i > 0; i--) { 413 pgsz = page_get_pagesize(i); 414 if (pgsz > max_lpsize) { 415 continue; 416 } 417 raddr = (caddr_t)P2ROUNDUP((uintptr_t)addr, pgsz); 418 readdr = (caddr_t)P2ALIGN((uintptr_t)eaddr, pgsz); 419 if (raddr < addr || raddr >= readdr) { 420 continue; 421 } 422 if (P2PHASE((uintptr_t)addr ^ off, pgsz)) { 423 continue; 424 } 425 /* 426 * Set szcvec to the remaining page sizes. 427 */ 428 szcvec = ((1 << (i + 1)) - 1) & ~1; 429 break; 430 } 431 return (szcvec); 432 } 433 434 /* 435 * Return a bit vector of large page size codes that 436 * can be used to map [addr, addr + len) region. 437 */ 438 /*ARGSUSED*/ 439 uint_t 440 map_pgszcvec(caddr_t addr, size_t size, uintptr_t off, int flags, int type, 441 int memcntl) 442 { 443 size_t max_lpsize = mcntl0_lpsize; 444 445 if (mmu.max_page_level == 0) 446 return (0); 447 448 if (flags & MAP_TEXT) { 449 if (!memcntl) 450 max_lpsize = max_utext_lpsize; 451 return (map_szcvec(addr, size, off, max_lpsize, 452 shm_lpg_min_physmem)); 453 454 } else if (flags & MAP_INITDATA) { 455 if (!memcntl) 456 max_lpsize = max_uidata_lpsize; 457 return (map_szcvec(addr, size, off, max_lpsize, 458 privm_lpg_min_physmem)); 459 460 } else if (type == MAPPGSZC_SHM) { 461 if (!memcntl) 462 max_lpsize = max_shm_lpsize; 463 return (map_szcvec(addr, size, off, max_lpsize, 464 shm_lpg_min_physmem)); 465 466 } else if (type == MAPPGSZC_HEAP) { 467 if (!memcntl) 468 max_lpsize = max_uheap_lpsize; 469 return (map_szcvec(addr, size, off, max_lpsize, 470 privm_lpg_min_physmem)); 471 472 } else if (type == MAPPGSZC_STACK) { 473 if (!memcntl) 474 max_lpsize = max_ustack_lpsize; 475 return (map_szcvec(addr, size, off, max_lpsize, 476 privm_lpg_min_physmem)); 477 478 } else { 479 if (!memcntl) 480 max_lpsize = max_privmap_lpsize; 481 return (map_szcvec(addr, size, off, max_lpsize, 482 privm_lpg_min_physmem)); 483 } 484 } 485 486 /* 487 * Handle a pagefault. 488 */ 489 faultcode_t 490 pagefault( 491 caddr_t addr, 492 enum fault_type type, 493 enum seg_rw rw, 494 int iskernel) 495 { 496 struct as *as; 497 struct hat *hat; 498 struct proc *p; 499 kthread_t *t; 500 faultcode_t res; 501 caddr_t base; 502 size_t len; 503 int err; 504 int mapped_red; 505 uintptr_t ea; 506 507 ASSERT_STACK_ALIGNED(); 508 509 if (INVALID_VADDR(addr)) 510 return (FC_NOMAP); 511 512 mapped_red = segkp_map_red(); 513 514 if (iskernel) { 515 as = &kas; 516 hat = as->a_hat; 517 } else { 518 t = curthread; 519 p = ttoproc(t); 520 as = p->p_as; 521 hat = as->a_hat; 522 } 523 524 /* 525 * Dispatch pagefault. 526 */ 527 res = as_fault(hat, as, addr, 1, type, rw); 528 529 /* 530 * If this isn't a potential unmapped hole in the user's 531 * UNIX data or stack segments, just return status info. 532 */ 533 if (res != FC_NOMAP || iskernel) 534 goto out; 535 536 /* 537 * Check to see if we happened to faulted on a currently unmapped 538 * part of the UNIX data or stack segments. If so, create a zfod 539 * mapping there and then try calling the fault routine again. 540 */ 541 base = p->p_brkbase; 542 len = p->p_brksize; 543 544 if (addr < base || addr >= base + len) { /* data seg? */ 545 base = (caddr_t)p->p_usrstack - p->p_stksize; 546 len = p->p_stksize; 547 if (addr < base || addr >= p->p_usrstack) { /* stack seg? */ 548 /* not in either UNIX data or stack segments */ 549 res = FC_NOMAP; 550 goto out; 551 } 552 } 553 554 /* 555 * the rest of this function implements a 3.X 4.X 5.X compatibility 556 * This code is probably not needed anymore 557 */ 558 if (p->p_model == DATAMODEL_ILP32) { 559 560 /* expand the gap to the page boundaries on each side */ 561 ea = P2ROUNDUP((uintptr_t)base + len, MMU_PAGESIZE); 562 base = (caddr_t)P2ALIGN((uintptr_t)base, MMU_PAGESIZE); 563 len = ea - (uintptr_t)base; 564 565 as_rangelock(as); 566 if (as_gap(as, MMU_PAGESIZE, &base, &len, AH_CONTAIN, addr) == 567 0) { 568 err = as_map(as, base, len, segvn_create, zfod_argsp); 569 as_rangeunlock(as); 570 if (err) { 571 res = FC_MAKE_ERR(err); 572 goto out; 573 } 574 } else { 575 /* 576 * This page is already mapped by another thread after 577 * we returned from as_fault() above. We just fall 578 * through as_fault() below. 579 */ 580 as_rangeunlock(as); 581 } 582 583 res = as_fault(hat, as, addr, 1, F_INVAL, rw); 584 } 585 586 out: 587 if (mapped_red) 588 segkp_unmap_red(); 589 590 return (res); 591 } 592 593 void 594 map_addr(caddr_t *addrp, size_t len, offset_t off, int vacalign, uint_t flags) 595 { 596 struct proc *p = curproc; 597 caddr_t userlimit = (flags & _MAP_LOW32) ? 598 (caddr_t)_userlimit32 : p->p_as->a_userlimit; 599 600 map_addr_proc(addrp, len, off, vacalign, userlimit, curproc, flags); 601 } 602 603 /*ARGSUSED*/ 604 int 605 map_addr_vacalign_check(caddr_t addr, u_offset_t off) 606 { 607 return (0); 608 } 609 610 /* 611 * map_addr_proc() is the routine called when the system is to 612 * choose an address for the user. We will pick an address 613 * range which is the highest available below userlimit. 614 * 615 * Every mapping will have a redzone of a single page on either side of 616 * the request. This is done to leave one page unmapped between segments. 617 * This is not required, but it's useful for the user because if their 618 * program strays across a segment boundary, it will catch a fault 619 * immediately making debugging a little easier. Currently the redzone 620 * is mandatory. 621 * 622 * addrp is a value/result parameter. 623 * On input it is a hint from the user to be used in a completely 624 * machine dependent fashion. We decide to completely ignore this hint. 625 * If MAP_ALIGN was specified, addrp contains the minimal alignment, which 626 * must be some "power of two" multiple of pagesize. 627 * 628 * On output it is NULL if no address can be found in the current 629 * processes address space or else an address that is currently 630 * not mapped for len bytes with a page of red zone on either side. 631 * 632 * vacalign is not needed on x86 (it's for viturally addressed caches) 633 */ 634 /*ARGSUSED*/ 635 void 636 map_addr_proc( 637 caddr_t *addrp, 638 size_t len, 639 offset_t off, 640 int vacalign, 641 caddr_t userlimit, 642 struct proc *p, 643 uint_t flags) 644 { 645 struct as *as = p->p_as; 646 caddr_t addr; 647 caddr_t base; 648 size_t slen; 649 size_t align_amount; 650 651 ASSERT32(userlimit == as->a_userlimit); 652 653 base = p->p_brkbase; 654 #if defined(__amd64) 655 /* 656 * XX64 Yes, this needs more work. 657 */ 658 if (p->p_model == DATAMODEL_NATIVE) { 659 if (userlimit < as->a_userlimit) { 660 /* 661 * This happens when a program wants to map 662 * something in a range that's accessible to a 663 * program in a smaller address space. For example, 664 * a 64-bit program calling mmap32(2) to guarantee 665 * that the returned address is below 4Gbytes. 666 */ 667 ASSERT((uintptr_t)userlimit < ADDRESS_C(0xffffffff)); 668 669 if (userlimit > base) 670 slen = userlimit - base; 671 else { 672 *addrp = NULL; 673 return; 674 } 675 } else { 676 /* 677 * XX64 This layout is probably wrong .. but in 678 * the event we make the amd64 address space look 679 * like sparcv9 i.e. with the stack -above- the 680 * heap, this bit of code might even be correct. 681 */ 682 slen = p->p_usrstack - base - 683 ((p->p_stk_ctl + PAGEOFFSET) & PAGEMASK); 684 } 685 } else 686 #endif 687 slen = userlimit - base; 688 689 /* Make len be a multiple of PAGESIZE */ 690 len = (len + PAGEOFFSET) & PAGEMASK; 691 692 /* 693 * figure out what the alignment should be 694 * 695 * XX64 -- is there an ELF_AMD64_MAXPGSZ or is it the same???? 696 */ 697 if (len <= ELF_386_MAXPGSZ) { 698 /* 699 * Align virtual addresses to ensure that ELF shared libraries 700 * are mapped with the appropriate alignment constraints by 701 * the run-time linker. 702 */ 703 align_amount = ELF_386_MAXPGSZ; 704 } else { 705 /* 706 * For 32-bit processes, only those which have specified 707 * MAP_ALIGN and an addr will be aligned on a larger page size. 708 * Not doing so can potentially waste up to 1G of process 709 * address space. 710 */ 711 int lvl = (p->p_model == DATAMODEL_ILP32) ? 1 : 712 mmu.umax_page_level; 713 714 while (lvl && len < LEVEL_SIZE(lvl)) 715 --lvl; 716 717 align_amount = LEVEL_SIZE(lvl); 718 } 719 if ((flags & MAP_ALIGN) && ((uintptr_t)*addrp > align_amount)) 720 align_amount = (uintptr_t)*addrp; 721 722 ASSERT(ISP2(align_amount)); 723 ASSERT(align_amount == 0 || align_amount >= PAGESIZE); 724 725 off = off & (align_amount - 1); 726 /* 727 * Look for a large enough hole starting below userlimit. 728 * After finding it, use the upper part. 729 */ 730 if (as_gap_aligned(as, len, &base, &slen, AH_HI, NULL, align_amount, 731 PAGESIZE, off) == 0) { 732 caddr_t as_addr; 733 734 /* 735 * addr is the highest possible address to use since we have 736 * a PAGESIZE redzone at the beginning and end. 737 */ 738 addr = base + slen - (PAGESIZE + len); 739 as_addr = addr; 740 /* 741 * Round address DOWN to the alignment amount and 742 * add the offset in. 743 * If addr is greater than as_addr, len would not be large 744 * enough to include the redzone, so we must adjust down 745 * by the alignment amount. 746 */ 747 addr = (caddr_t)((uintptr_t)addr & (~(align_amount - 1))); 748 addr += (uintptr_t)off; 749 if (addr > as_addr) { 750 addr -= align_amount; 751 } 752 753 ASSERT(addr > base); 754 ASSERT(addr + len < base + slen); 755 ASSERT(((uintptr_t)addr & (align_amount - 1)) == 756 ((uintptr_t)(off))); 757 *addrp = addr; 758 } else { 759 *addrp = NULL; /* no more virtual space */ 760 } 761 } 762 763 int valid_va_range_aligned_wraparound; 764 765 /* 766 * Determine whether [*basep, *basep + *lenp) contains a mappable range of 767 * addresses at least "minlen" long, where the base of the range is at "off" 768 * phase from an "align" boundary and there is space for a "redzone"-sized 769 * redzone on either side of the range. On success, 1 is returned and *basep 770 * and *lenp are adjusted to describe the acceptable range (including 771 * the redzone). On failure, 0 is returned. 772 */ 773 /*ARGSUSED3*/ 774 int 775 valid_va_range_aligned(caddr_t *basep, size_t *lenp, size_t minlen, int dir, 776 size_t align, size_t redzone, size_t off) 777 { 778 uintptr_t hi, lo; 779 size_t tot_len; 780 781 ASSERT(align == 0 ? off == 0 : off < align); 782 ASSERT(ISP2(align)); 783 ASSERT(align == 0 || align >= PAGESIZE); 784 785 lo = (uintptr_t)*basep; 786 hi = lo + *lenp; 787 tot_len = minlen + 2 * redzone; /* need at least this much space */ 788 789 /* 790 * If hi rolled over the top, try cutting back. 791 */ 792 if (hi < lo) { 793 *lenp = 0UL - lo - 1UL; 794 /* See if this really happens. If so, then we figure out why */ 795 valid_va_range_aligned_wraparound++; 796 hi = lo + *lenp; 797 } 798 if (*lenp < tot_len) { 799 return (0); 800 } 801 802 #if defined(__amd64) 803 /* 804 * Deal with a possible hole in the address range between 805 * hole_start and hole_end that should never be mapped. 806 */ 807 if (lo < hole_start) { 808 if (hi > hole_start) { 809 if (hi < hole_end) { 810 hi = hole_start; 811 } else { 812 /* lo < hole_start && hi >= hole_end */ 813 if (dir == AH_LO) { 814 /* 815 * prefer lowest range 816 */ 817 if (hole_start - lo >= tot_len) 818 hi = hole_start; 819 else if (hi - hole_end >= tot_len) 820 lo = hole_end; 821 else 822 return (0); 823 } else { 824 /* 825 * prefer highest range 826 */ 827 if (hi - hole_end >= tot_len) 828 lo = hole_end; 829 else if (hole_start - lo >= tot_len) 830 hi = hole_start; 831 else 832 return (0); 833 } 834 } 835 } 836 } else { 837 /* lo >= hole_start */ 838 if (hi < hole_end) 839 return (0); 840 if (lo < hole_end) 841 lo = hole_end; 842 } 843 #endif 844 845 if (hi - lo < tot_len) 846 return (0); 847 848 if (align > 1) { 849 uintptr_t tlo = lo + redzone; 850 uintptr_t thi = hi - redzone; 851 tlo = (uintptr_t)P2PHASEUP(tlo, align, off); 852 if (tlo < lo + redzone) { 853 return (0); 854 } 855 if (thi < tlo || thi - tlo < minlen) { 856 return (0); 857 } 858 } 859 860 *basep = (caddr_t)lo; 861 *lenp = hi - lo; 862 return (1); 863 } 864 865 /* 866 * Determine whether [*basep, *basep + *lenp) contains a mappable range of 867 * addresses at least "minlen" long. On success, 1 is returned and *basep 868 * and *lenp are adjusted to describe the acceptable range. On failure, 0 869 * is returned. 870 */ 871 int 872 valid_va_range(caddr_t *basep, size_t *lenp, size_t minlen, int dir) 873 { 874 return (valid_va_range_aligned(basep, lenp, minlen, dir, 0, 0, 0)); 875 } 876 877 /* 878 * Determine whether [addr, addr+len] are valid user addresses. 879 */ 880 /*ARGSUSED*/ 881 int 882 valid_usr_range(caddr_t addr, size_t len, uint_t prot, struct as *as, 883 caddr_t userlimit) 884 { 885 caddr_t eaddr = addr + len; 886 887 if (eaddr <= addr || addr >= userlimit || eaddr > userlimit) 888 return (RANGE_BADADDR); 889 890 #if defined(__amd64) 891 /* 892 * Check for the VA hole 893 */ 894 if (eaddr > (caddr_t)hole_start && addr < (caddr_t)hole_end) 895 return (RANGE_BADADDR); 896 #endif 897 898 return (RANGE_OKAY); 899 } 900 901 /* 902 * Return 1 if the page frame is onboard memory, else 0. 903 */ 904 int 905 pf_is_memory(pfn_t pf) 906 { 907 if (pfn_is_foreign(pf)) 908 return (0); 909 return (address_in_memlist(phys_install, pfn_to_pa(pf), 1)); 910 } 911 912 /* 913 * return the memrange containing pfn 914 */ 915 int 916 memrange_num(pfn_t pfn) 917 { 918 int n; 919 920 for (n = 0; n < nranges - 1; ++n) { 921 if (pfn >= memranges[n]) 922 break; 923 } 924 return (n); 925 } 926 927 /* 928 * return the mnoderange containing pfn 929 */ 930 /*ARGSUSED*/ 931 int 932 pfn_2_mtype(pfn_t pfn) 933 { 934 #if defined(__xpv) 935 return (0); 936 #else 937 int n; 938 939 /* Always start from highest pfn and work our way down */ 940 for (n = mtypetop; n != -1; n = mnoderanges[n].mnr_next) { 941 if (pfn >= mnoderanges[n].mnr_pfnlo) { 942 break; 943 } 944 } 945 return (n); 946 #endif 947 } 948 949 #if !defined(__xpv) 950 /* 951 * is_contigpage_free: 952 * returns a page list of contiguous pages. It minimally has to return 953 * minctg pages. Caller determines minctg based on the scatter-gather 954 * list length. 955 * 956 * pfnp is set to the next page frame to search on return. 957 */ 958 static page_t * 959 is_contigpage_free( 960 pfn_t *pfnp, 961 pgcnt_t *pgcnt, 962 pgcnt_t minctg, 963 uint64_t pfnseg, 964 int iolock) 965 { 966 int i = 0; 967 pfn_t pfn = *pfnp; 968 page_t *pp; 969 page_t *plist = NULL; 970 971 /* 972 * fail if pfn + minctg crosses a segment boundary. 973 * Adjust for next starting pfn to begin at segment boundary. 974 */ 975 976 if (((*pfnp + minctg - 1) & pfnseg) < (*pfnp & pfnseg)) { 977 *pfnp = roundup(*pfnp, pfnseg + 1); 978 return (NULL); 979 } 980 981 do { 982 retry: 983 pp = page_numtopp_nolock(pfn + i); 984 if ((pp == NULL) || 985 (page_trylock(pp, SE_EXCL) == 0)) { 986 (*pfnp)++; 987 break; 988 } 989 if (page_pptonum(pp) != pfn + i) { 990 page_unlock(pp); 991 goto retry; 992 } 993 994 if (!(PP_ISFREE(pp))) { 995 page_unlock(pp); 996 (*pfnp)++; 997 break; 998 } 999 1000 if (!PP_ISAGED(pp)) { 1001 page_list_sub(pp, PG_CACHE_LIST); 1002 page_hashout(pp, (kmutex_t *)NULL); 1003 } else { 1004 page_list_sub(pp, PG_FREE_LIST); 1005 } 1006 1007 if (iolock) 1008 page_io_lock(pp); 1009 page_list_concat(&plist, &pp); 1010 1011 /* 1012 * exit loop when pgcnt satisfied or segment boundary reached. 1013 */ 1014 1015 } while ((++i < *pgcnt) && ((pfn + i) & pfnseg)); 1016 1017 *pfnp += i; /* set to next pfn to search */ 1018 1019 if (i >= minctg) { 1020 *pgcnt -= i; 1021 return (plist); 1022 } 1023 1024 /* 1025 * failure: minctg not satisfied. 1026 * 1027 * if next request crosses segment boundary, set next pfn 1028 * to search from the segment boundary. 1029 */ 1030 if (((*pfnp + minctg - 1) & pfnseg) < (*pfnp & pfnseg)) 1031 *pfnp = roundup(*pfnp, pfnseg + 1); 1032 1033 /* clean up any pages already allocated */ 1034 1035 while (plist) { 1036 pp = plist; 1037 page_sub(&plist, pp); 1038 page_list_add(pp, PG_FREE_LIST | PG_LIST_TAIL); 1039 if (iolock) 1040 page_io_unlock(pp); 1041 page_unlock(pp); 1042 } 1043 1044 return (NULL); 1045 } 1046 #endif /* !__xpv */ 1047 1048 /* 1049 * verify that pages being returned from allocator have correct DMA attribute 1050 */ 1051 #ifndef DEBUG 1052 #define check_dma(a, b, c) (void)(0) 1053 #else 1054 static void 1055 check_dma(ddi_dma_attr_t *dma_attr, page_t *pp, int cnt) 1056 { 1057 if (dma_attr == NULL) 1058 return; 1059 1060 while (cnt-- > 0) { 1061 if (pa_to_ma(pfn_to_pa(pp->p_pagenum)) < 1062 dma_attr->dma_attr_addr_lo) 1063 panic("PFN (pp=%p) below dma_attr_addr_lo", (void *)pp); 1064 if (pa_to_ma(pfn_to_pa(pp->p_pagenum)) >= 1065 dma_attr->dma_attr_addr_hi) 1066 panic("PFN (pp=%p) above dma_attr_addr_hi", (void *)pp); 1067 pp = pp->p_next; 1068 } 1069 } 1070 #endif 1071 1072 #if !defined(__xpv) 1073 static page_t * 1074 page_get_contigpage(pgcnt_t *pgcnt, ddi_dma_attr_t *mattr, int iolock) 1075 { 1076 pfn_t pfn; 1077 int sgllen; 1078 uint64_t pfnseg; 1079 pgcnt_t minctg; 1080 page_t *pplist = NULL, *plist; 1081 uint64_t lo, hi; 1082 pgcnt_t pfnalign = 0; 1083 static pfn_t startpfn; 1084 static pgcnt_t lastctgcnt; 1085 uintptr_t align; 1086 1087 CONTIG_LOCK(); 1088 1089 if (mattr) { 1090 lo = mmu_btop((mattr->dma_attr_addr_lo + MMU_PAGEOFFSET)); 1091 hi = mmu_btop(mattr->dma_attr_addr_hi); 1092 if (hi >= physmax) 1093 hi = physmax - 1; 1094 sgllen = mattr->dma_attr_sgllen; 1095 pfnseg = mmu_btop(mattr->dma_attr_seg); 1096 1097 align = maxbit(mattr->dma_attr_align, mattr->dma_attr_minxfer); 1098 if (align > MMU_PAGESIZE) 1099 pfnalign = mmu_btop(align); 1100 1101 /* 1102 * in order to satisfy the request, must minimally 1103 * acquire minctg contiguous pages 1104 */ 1105 minctg = howmany(*pgcnt, sgllen); 1106 1107 ASSERT(hi >= lo); 1108 1109 /* 1110 * start from where last searched if the minctg >= lastctgcnt 1111 */ 1112 if (minctg < lastctgcnt || startpfn < lo || startpfn > hi) 1113 startpfn = lo; 1114 } else { 1115 hi = physmax - 1; 1116 lo = 0; 1117 sgllen = 1; 1118 pfnseg = mmu.highest_pfn; 1119 minctg = *pgcnt; 1120 1121 if (minctg < lastctgcnt) 1122 startpfn = lo; 1123 } 1124 lastctgcnt = minctg; 1125 1126 ASSERT(pfnseg + 1 >= (uint64_t)minctg); 1127 1128 /* conserve 16m memory - start search above 16m when possible */ 1129 if (hi > PFN_16M && startpfn < PFN_16M) 1130 startpfn = PFN_16M; 1131 1132 pfn = startpfn; 1133 if (pfnalign) 1134 pfn = P2ROUNDUP(pfn, pfnalign); 1135 1136 while (pfn + minctg - 1 <= hi) { 1137 1138 plist = is_contigpage_free(&pfn, pgcnt, minctg, pfnseg, iolock); 1139 if (plist) { 1140 page_list_concat(&pplist, &plist); 1141 sgllen--; 1142 /* 1143 * return when contig pages no longer needed 1144 */ 1145 if (!*pgcnt || ((*pgcnt <= sgllen) && !pfnalign)) { 1146 startpfn = pfn; 1147 CONTIG_UNLOCK(); 1148 #ifdef DEBUG 1149 check_dma(mattr, pplist, *pgcnt); 1150 #endif 1151 return (pplist); 1152 } 1153 minctg = howmany(*pgcnt, sgllen); 1154 } 1155 if (pfnalign) 1156 pfn = P2ROUNDUP(pfn, pfnalign); 1157 } 1158 1159 /* cannot find contig pages in specified range */ 1160 if (startpfn == lo) { 1161 CONTIG_UNLOCK(); 1162 return (NULL); 1163 } 1164 1165 /* did not start with lo previously */ 1166 pfn = lo; 1167 if (pfnalign) 1168 pfn = P2ROUNDUP(pfn, pfnalign); 1169 1170 /* allow search to go above startpfn */ 1171 while (pfn < startpfn) { 1172 1173 plist = is_contigpage_free(&pfn, pgcnt, minctg, pfnseg, iolock); 1174 if (plist != NULL) { 1175 1176 page_list_concat(&pplist, &plist); 1177 sgllen--; 1178 1179 /* 1180 * return when contig pages no longer needed 1181 */ 1182 if (!*pgcnt || ((*pgcnt <= sgllen) && !pfnalign)) { 1183 startpfn = pfn; 1184 CONTIG_UNLOCK(); 1185 #ifdef DEBUG 1186 check_dma(mattr, pplist, *pgcnt); 1187 #endif 1188 return (pplist); 1189 } 1190 minctg = howmany(*pgcnt, sgllen); 1191 } 1192 if (pfnalign) 1193 pfn = P2ROUNDUP(pfn, pfnalign); 1194 } 1195 CONTIG_UNLOCK(); 1196 return (NULL); 1197 } 1198 #endif /* !__xpv */ 1199 1200 /* 1201 * mnode_range_cnt() calculates the number of memory ranges for mnode and 1202 * memranges[]. Used to determine the size of page lists and mnoderanges. 1203 */ 1204 int 1205 mnode_range_cnt(int mnode) 1206 { 1207 #if defined(__xpv) 1208 ASSERT(mnode == 0); 1209 return (1); 1210 #else /* __xpv */ 1211 int mri; 1212 int mnrcnt = 0; 1213 1214 if (mem_node_config[mnode].exists != 0) { 1215 mri = nranges - 1; 1216 1217 /* find the memranges index below contained in mnode range */ 1218 1219 while (MEMRANGEHI(mri) < mem_node_config[mnode].physbase) 1220 mri--; 1221 1222 /* 1223 * increment mnode range counter when memranges or mnode 1224 * boundary is reached. 1225 */ 1226 while (mri >= 0 && 1227 mem_node_config[mnode].physmax >= MEMRANGELO(mri)) { 1228 mnrcnt++; 1229 if (mem_node_config[mnode].physmax > MEMRANGEHI(mri)) 1230 mri--; 1231 else 1232 break; 1233 } 1234 } 1235 ASSERT(mnrcnt <= MAX_MNODE_MRANGES); 1236 return (mnrcnt); 1237 #endif /* __xpv */ 1238 } 1239 1240 /* 1241 * mnode_range_setup() initializes mnoderanges. 1242 */ 1243 void 1244 mnode_range_setup(mnoderange_t *mnoderanges) 1245 { 1246 mnoderange_t *mp = mnoderanges; 1247 int mnode, mri; 1248 int mindex = 0; /* current index into mnoderanges array */ 1249 int i, j; 1250 pfn_t hipfn; 1251 int last, hi; 1252 1253 for (mnode = 0; mnode < max_mem_nodes; mnode++) { 1254 if (mem_node_config[mnode].exists == 0) 1255 continue; 1256 1257 mri = nranges - 1; 1258 1259 while (MEMRANGEHI(mri) < mem_node_config[mnode].physbase) 1260 mri--; 1261 1262 while (mri >= 0 && mem_node_config[mnode].physmax >= 1263 MEMRANGELO(mri)) { 1264 mnoderanges->mnr_pfnlo = MAX(MEMRANGELO(mri), 1265 mem_node_config[mnode].physbase); 1266 mnoderanges->mnr_pfnhi = MIN(MEMRANGEHI(mri), 1267 mem_node_config[mnode].physmax); 1268 mnoderanges->mnr_mnode = mnode; 1269 mnoderanges->mnr_memrange = mri; 1270 mnoderanges->mnr_exists = 1; 1271 mnoderanges++; 1272 mindex++; 1273 if (mem_node_config[mnode].physmax > MEMRANGEHI(mri)) 1274 mri--; 1275 else 1276 break; 1277 } 1278 } 1279 1280 /* 1281 * For now do a simple sort of the mnoderanges array to fill in 1282 * the mnr_next fields. Since mindex is expected to be relatively 1283 * small, using a simple O(N^2) algorithm. 1284 */ 1285 for (i = 0; i < mindex; i++) { 1286 if (mp[i].mnr_pfnlo == 0) /* find lowest */ 1287 break; 1288 } 1289 ASSERT(i < mindex); 1290 last = i; 1291 mtype16m = last; 1292 mp[last].mnr_next = -1; 1293 for (i = 0; i < mindex - 1; i++) { 1294 hipfn = (pfn_t)(-1); 1295 hi = -1; 1296 /* find next highest mnode range */ 1297 for (j = 0; j < mindex; j++) { 1298 if (mp[j].mnr_pfnlo > mp[last].mnr_pfnlo && 1299 mp[j].mnr_pfnlo < hipfn) { 1300 hipfn = mp[j].mnr_pfnlo; 1301 hi = j; 1302 } 1303 } 1304 mp[hi].mnr_next = last; 1305 last = hi; 1306 } 1307 mtypetop = last; 1308 } 1309 1310 #ifndef __xpv 1311 /* 1312 * Update mnoderanges for memory hot-add DR operations. 1313 */ 1314 static void 1315 mnode_range_add(int mnode) 1316 { 1317 int *prev; 1318 int n, mri; 1319 pfn_t start, end; 1320 extern void membar_sync(void); 1321 1322 ASSERT(0 <= mnode && mnode < max_mem_nodes); 1323 ASSERT(mem_node_config[mnode].exists); 1324 start = mem_node_config[mnode].physbase; 1325 end = mem_node_config[mnode].physmax; 1326 ASSERT(start <= end); 1327 mutex_enter(&mnoderange_lock); 1328 1329 #ifdef DEBUG 1330 /* Check whether it interleaves with other memory nodes. */ 1331 for (n = mtypetop; n != -1; n = mnoderanges[n].mnr_next) { 1332 ASSERT(mnoderanges[n].mnr_exists); 1333 if (mnoderanges[n].mnr_mnode == mnode) 1334 continue; 1335 ASSERT(start > mnoderanges[n].mnr_pfnhi || 1336 end < mnoderanges[n].mnr_pfnlo); 1337 } 1338 #endif /* DEBUG */ 1339 1340 mri = nranges - 1; 1341 while (MEMRANGEHI(mri) < mem_node_config[mnode].physbase) 1342 mri--; 1343 while (mri >= 0 && mem_node_config[mnode].physmax >= MEMRANGELO(mri)) { 1344 /* Check whether mtype already exists. */ 1345 for (n = mtypetop; n != -1; n = mnoderanges[n].mnr_next) { 1346 if (mnoderanges[n].mnr_mnode == mnode && 1347 mnoderanges[n].mnr_memrange == mri) { 1348 mnoderanges[n].mnr_pfnlo = MAX(MEMRANGELO(mri), 1349 start); 1350 mnoderanges[n].mnr_pfnhi = MIN(MEMRANGEHI(mri), 1351 end); 1352 break; 1353 } 1354 } 1355 1356 /* Add a new entry if it doesn't exist yet. */ 1357 if (n == -1) { 1358 /* Try to find an unused entry in mnoderanges array. */ 1359 for (n = 0; n < mnoderangecnt; n++) { 1360 if (mnoderanges[n].mnr_exists == 0) 1361 break; 1362 } 1363 ASSERT(n < mnoderangecnt); 1364 mnoderanges[n].mnr_pfnlo = MAX(MEMRANGELO(mri), start); 1365 mnoderanges[n].mnr_pfnhi = MIN(MEMRANGEHI(mri), end); 1366 mnoderanges[n].mnr_mnode = mnode; 1367 mnoderanges[n].mnr_memrange = mri; 1368 mnoderanges[n].mnr_exists = 1; 1369 /* Page 0 should always be present. */ 1370 for (prev = &mtypetop; 1371 mnoderanges[*prev].mnr_pfnlo > start; 1372 prev = &mnoderanges[*prev].mnr_next) { 1373 ASSERT(mnoderanges[*prev].mnr_next >= 0); 1374 ASSERT(mnoderanges[*prev].mnr_pfnlo > end); 1375 } 1376 mnoderanges[n].mnr_next = *prev; 1377 membar_sync(); 1378 *prev = n; 1379 } 1380 1381 if (mem_node_config[mnode].physmax > MEMRANGEHI(mri)) 1382 mri--; 1383 else 1384 break; 1385 } 1386 1387 mutex_exit(&mnoderange_lock); 1388 } 1389 1390 /* 1391 * Update mnoderanges for memory hot-removal DR operations. 1392 */ 1393 static void 1394 mnode_range_del(int mnode) 1395 { 1396 _NOTE(ARGUNUSED(mnode)); 1397 ASSERT(0 <= mnode && mnode < max_mem_nodes); 1398 /* TODO: support deletion operation. */ 1399 ASSERT(0); 1400 } 1401 1402 void 1403 plat_slice_add(pfn_t start, pfn_t end) 1404 { 1405 mem_node_add_slice(start, end); 1406 if (plat_dr_enabled()) { 1407 mnode_range_add(PFN_2_MEM_NODE(start)); 1408 } 1409 } 1410 1411 void 1412 plat_slice_del(pfn_t start, pfn_t end) 1413 { 1414 ASSERT(PFN_2_MEM_NODE(start) == PFN_2_MEM_NODE(end)); 1415 ASSERT(plat_dr_enabled()); 1416 mnode_range_del(PFN_2_MEM_NODE(start)); 1417 mem_node_del_slice(start, end); 1418 } 1419 #endif /* __xpv */ 1420 1421 /*ARGSUSED*/ 1422 int 1423 mtype_init(vnode_t *vp, caddr_t vaddr, uint_t *flags, size_t pgsz) 1424 { 1425 int mtype = mtypetop; 1426 1427 #if !defined(__xpv) 1428 #if defined(__i386) 1429 /* 1430 * set the mtype range 1431 * - kmem requests need to be below 4g if restricted_kmemalloc is set. 1432 * - for non kmem requests, set range to above 4g if memory below 4g 1433 * runs low. 1434 */ 1435 if (restricted_kmemalloc && VN_ISKAS(vp) && 1436 (caddr_t)(vaddr) >= kernelheap && 1437 (caddr_t)(vaddr) < ekernelheap) { 1438 ASSERT(physmax4g); 1439 mtype = mtype4g; 1440 if (RESTRICT16M_ALLOC(freemem4g - btop(pgsz), 1441 btop(pgsz), *flags)) { 1442 *flags |= PGI_MT_RANGE16M; 1443 } else { 1444 VM_STAT_ADD(vmm_vmstats.unrestrict16mcnt); 1445 VM_STAT_COND_ADD((*flags & PG_PANIC), 1446 vmm_vmstats.pgpanicalloc); 1447 *flags |= PGI_MT_RANGE0; 1448 } 1449 return (mtype); 1450 } 1451 #endif /* __i386 */ 1452 1453 if (RESTRICT4G_ALLOC) { 1454 VM_STAT_ADD(vmm_vmstats.restrict4gcnt); 1455 /* here only for > 4g systems */ 1456 *flags |= PGI_MT_RANGE4G; 1457 } else if (RESTRICT16M_ALLOC(freemem, btop(pgsz), *flags)) { 1458 *flags |= PGI_MT_RANGE16M; 1459 } else { 1460 VM_STAT_ADD(vmm_vmstats.unrestrict16mcnt); 1461 VM_STAT_COND_ADD((*flags & PG_PANIC), vmm_vmstats.pgpanicalloc); 1462 *flags |= PGI_MT_RANGE0; 1463 } 1464 #endif /* !__xpv */ 1465 return (mtype); 1466 } 1467 1468 1469 /* mtype init for page_get_replacement_page */ 1470 /*ARGSUSED*/ 1471 int 1472 mtype_pgr_init(int *flags, page_t *pp, int mnode, pgcnt_t pgcnt) 1473 { 1474 int mtype = mtypetop; 1475 #if !defined(__xpv) 1476 if (RESTRICT16M_ALLOC(freemem, pgcnt, *flags)) { 1477 *flags |= PGI_MT_RANGE16M; 1478 } else { 1479 VM_STAT_ADD(vmm_vmstats.unrestrict16mcnt); 1480 *flags |= PGI_MT_RANGE0; 1481 } 1482 #endif 1483 return (mtype); 1484 } 1485 1486 /* 1487 * Determine if the mnode range specified in mtype contains memory belonging 1488 * to memory node mnode. If flags & PGI_MT_RANGE is set then mtype contains 1489 * the range from high pfn to 0, 16m or 4g. 1490 * 1491 * Return first mnode range type index found otherwise return -1 if none found. 1492 */ 1493 int 1494 mtype_func(int mnode, int mtype, uint_t flags) 1495 { 1496 if (flags & PGI_MT_RANGE) { 1497 int mnr_lim = MRI_0; 1498 1499 if (flags & PGI_MT_NEXT) { 1500 mtype = mnoderanges[mtype].mnr_next; 1501 } 1502 if (flags & PGI_MT_RANGE4G) 1503 mnr_lim = MRI_4G; /* exclude 0-4g range */ 1504 else if (flags & PGI_MT_RANGE16M) 1505 mnr_lim = MRI_16M; /* exclude 0-16m range */ 1506 while (mtype != -1 && 1507 mnoderanges[mtype].mnr_memrange <= mnr_lim) { 1508 if (mnoderanges[mtype].mnr_mnode == mnode) 1509 return (mtype); 1510 mtype = mnoderanges[mtype].mnr_next; 1511 } 1512 } else if (mnoderanges[mtype].mnr_mnode == mnode) { 1513 return (mtype); 1514 } 1515 return (-1); 1516 } 1517 1518 /* 1519 * Update the page list max counts with the pfn range specified by the 1520 * input parameters. 1521 */ 1522 void 1523 mtype_modify_max(pfn_t startpfn, long cnt) 1524 { 1525 int mtype; 1526 pgcnt_t inc; 1527 spgcnt_t scnt = (spgcnt_t)(cnt); 1528 pgcnt_t acnt = ABS(scnt); 1529 pfn_t endpfn = startpfn + acnt; 1530 pfn_t pfn, lo; 1531 1532 if (!physmax4g) 1533 return; 1534 1535 mtype = mtypetop; 1536 for (pfn = endpfn; pfn > startpfn; ) { 1537 ASSERT(mtype != -1); 1538 lo = mnoderanges[mtype].mnr_pfnlo; 1539 if (pfn > lo) { 1540 if (startpfn >= lo) { 1541 inc = pfn - startpfn; 1542 } else { 1543 inc = pfn - lo; 1544 } 1545 if (mnoderanges[mtype].mnr_memrange != MRI_4G) { 1546 if (scnt > 0) 1547 maxmem4g += inc; 1548 else 1549 maxmem4g -= inc; 1550 } 1551 pfn -= inc; 1552 } 1553 mtype = mnoderanges[mtype].mnr_next; 1554 } 1555 } 1556 1557 int 1558 mtype_2_mrange(int mtype) 1559 { 1560 return (mnoderanges[mtype].mnr_memrange); 1561 } 1562 1563 void 1564 mnodetype_2_pfn(int mnode, int mtype, pfn_t *pfnlo, pfn_t *pfnhi) 1565 { 1566 _NOTE(ARGUNUSED(mnode)); 1567 ASSERT(mnoderanges[mtype].mnr_mnode == mnode); 1568 *pfnlo = mnoderanges[mtype].mnr_pfnlo; 1569 *pfnhi = mnoderanges[mtype].mnr_pfnhi; 1570 } 1571 1572 size_t 1573 plcnt_sz(size_t ctrs_sz) 1574 { 1575 #ifdef DEBUG 1576 int szc, colors; 1577 1578 ctrs_sz += mnoderangecnt * sizeof (struct mnr_mts) * mmu_page_sizes; 1579 for (szc = 0; szc < mmu_page_sizes; szc++) { 1580 colors = page_get_pagecolors(szc); 1581 ctrs_sz += mnoderangecnt * sizeof (pgcnt_t) * colors; 1582 } 1583 #endif 1584 return (ctrs_sz); 1585 } 1586 1587 caddr_t 1588 plcnt_init(caddr_t addr) 1589 { 1590 #ifdef DEBUG 1591 int mt, szc, colors; 1592 1593 for (mt = 0; mt < mnoderangecnt; mt++) { 1594 mnoderanges[mt].mnr_mts = (struct mnr_mts *)addr; 1595 addr += (sizeof (struct mnr_mts) * mmu_page_sizes); 1596 for (szc = 0; szc < mmu_page_sizes; szc++) { 1597 colors = page_get_pagecolors(szc); 1598 mnoderanges[mt].mnr_mts[szc].mnr_mts_colors = colors; 1599 mnoderanges[mt].mnr_mts[szc].mnr_mtsc_pgcnt = 1600 (pgcnt_t *)addr; 1601 addr += (sizeof (pgcnt_t) * colors); 1602 } 1603 } 1604 #endif 1605 return (addr); 1606 } 1607 1608 void 1609 plcnt_inc_dec(page_t *pp, int mtype, int szc, long cnt, int flags) 1610 { 1611 _NOTE(ARGUNUSED(pp)); 1612 #ifdef DEBUG 1613 int bin = PP_2_BIN(pp); 1614 1615 atomic_add_long(&mnoderanges[mtype].mnr_mts[szc].mnr_mts_pgcnt, cnt); 1616 atomic_add_long(&mnoderanges[mtype].mnr_mts[szc].mnr_mtsc_pgcnt[bin], 1617 cnt); 1618 #endif 1619 ASSERT(mtype == PP_2_MTYPE(pp)); 1620 if (physmax4g && mnoderanges[mtype].mnr_memrange != MRI_4G) 1621 atomic_add_long(&freemem4g, cnt); 1622 if (flags & PG_CACHE_LIST) 1623 atomic_add_long(&mnoderanges[mtype].mnr_mt_clpgcnt, cnt); 1624 else 1625 atomic_add_long(&mnoderanges[mtype].mnr_mt_flpgcnt[szc], cnt); 1626 atomic_add_long(&mnoderanges[mtype].mnr_mt_totcnt, cnt); 1627 } 1628 1629 /* 1630 * Returns the free page count for mnode 1631 */ 1632 int 1633 mnode_pgcnt(int mnode) 1634 { 1635 int mtype = mtypetop; 1636 int flags = PGI_MT_RANGE0; 1637 pgcnt_t pgcnt = 0; 1638 1639 mtype = mtype_func(mnode, mtype, flags); 1640 1641 while (mtype != -1) { 1642 pgcnt += MTYPE_FREEMEM(mtype); 1643 mtype = mtype_func(mnode, mtype, flags | PGI_MT_NEXT); 1644 } 1645 return (pgcnt); 1646 } 1647 1648 /* 1649 * Initialize page coloring variables based on the l2 cache parameters. 1650 * Calculate and return memory needed for page coloring data structures. 1651 */ 1652 size_t 1653 page_coloring_init(uint_t l2_sz, int l2_linesz, int l2_assoc) 1654 { 1655 _NOTE(ARGUNUSED(l2_linesz)); 1656 size_t colorsz = 0; 1657 int i; 1658 int colors; 1659 1660 #if defined(__xpv) 1661 /* 1662 * Hypervisor domains currently don't have any concept of NUMA. 1663 * Hence we'll act like there is only 1 memrange. 1664 */ 1665 i = memrange_num(1); 1666 #else /* !__xpv */ 1667 /* 1668 * Reduce the memory ranges lists if we don't have large amounts 1669 * of memory. This avoids searching known empty free lists. 1670 * To support memory DR operations, we need to keep memory ranges 1671 * for possible memory hot-add operations. 1672 */ 1673 if (plat_dr_physmax > physmax) 1674 i = memrange_num(plat_dr_physmax); 1675 else 1676 i = memrange_num(physmax); 1677 #if defined(__i386) 1678 if (i > MRI_4G) 1679 restricted_kmemalloc = 0; 1680 #endif 1681 /* physmax greater than 4g */ 1682 if (i == MRI_4G) 1683 physmax4g = 1; 1684 #endif /* !__xpv */ 1685 memranges += i; 1686 nranges -= i; 1687 1688 ASSERT(mmu_page_sizes <= MMU_PAGE_SIZES); 1689 1690 ASSERT(ISP2(l2_linesz)); 1691 ASSERT(l2_sz > MMU_PAGESIZE); 1692 1693 /* l2_assoc is 0 for fully associative l2 cache */ 1694 if (l2_assoc) 1695 l2_colors = MAX(1, l2_sz / (l2_assoc * MMU_PAGESIZE)); 1696 else 1697 l2_colors = 1; 1698 1699 ASSERT(ISP2(l2_colors)); 1700 1701 /* for scalability, configure at least PAGE_COLORS_MIN color bins */ 1702 page_colors = MAX(l2_colors, PAGE_COLORS_MIN); 1703 1704 /* 1705 * cpu_page_colors is non-zero when a page color may be spread across 1706 * multiple bins. 1707 */ 1708 if (l2_colors < page_colors) 1709 cpu_page_colors = l2_colors; 1710 1711 ASSERT(ISP2(page_colors)); 1712 1713 page_colors_mask = page_colors - 1; 1714 1715 ASSERT(ISP2(CPUSETSIZE())); 1716 page_coloring_shift = lowbit(CPUSETSIZE()); 1717 1718 /* initialize number of colors per page size */ 1719 for (i = 0; i <= mmu.max_page_level; i++) { 1720 hw_page_array[i].hp_size = LEVEL_SIZE(i); 1721 hw_page_array[i].hp_shift = LEVEL_SHIFT(i); 1722 hw_page_array[i].hp_pgcnt = LEVEL_SIZE(i) >> LEVEL_SHIFT(0); 1723 hw_page_array[i].hp_colors = (page_colors_mask >> 1724 (hw_page_array[i].hp_shift - hw_page_array[0].hp_shift)) 1725 + 1; 1726 colorequivszc[i] = 0; 1727 } 1728 1729 /* 1730 * The value of cpu_page_colors determines if additional color bins 1731 * need to be checked for a particular color in the page_get routines. 1732 */ 1733 if (cpu_page_colors != 0) { 1734 1735 int a = lowbit(page_colors) - lowbit(cpu_page_colors); 1736 ASSERT(a > 0); 1737 ASSERT(a < 16); 1738 1739 for (i = 0; i <= mmu.max_page_level; i++) { 1740 if ((colors = hw_page_array[i].hp_colors) <= 1) { 1741 colorequivszc[i] = 0; 1742 continue; 1743 } 1744 while ((colors >> a) == 0) 1745 a--; 1746 ASSERT(a >= 0); 1747 1748 /* higher 4 bits encodes color equiv mask */ 1749 colorequivszc[i] = (a << 4); 1750 } 1751 } 1752 1753 /* factor in colorequiv to check additional 'equivalent' bins. */ 1754 if (colorequiv > 1) { 1755 1756 int a = lowbit(colorequiv) - 1; 1757 if (a > 15) 1758 a = 15; 1759 1760 for (i = 0; i <= mmu.max_page_level; i++) { 1761 if ((colors = hw_page_array[i].hp_colors) <= 1) { 1762 continue; 1763 } 1764 while ((colors >> a) == 0) 1765 a--; 1766 if ((a << 4) > colorequivszc[i]) { 1767 colorequivszc[i] = (a << 4); 1768 } 1769 } 1770 } 1771 1772 /* size for mnoderanges */ 1773 for (mnoderangecnt = 0, i = 0; i < max_mem_nodes; i++) 1774 mnoderangecnt += mnode_range_cnt(i); 1775 if (plat_dr_support_memory()) { 1776 /* 1777 * Reserve enough space for memory DR operations. 1778 * Two extra mnoderanges for possbile fragmentations, 1779 * one for the 2G boundary and the other for the 4G boundary. 1780 * We don't expect a memory board crossing the 16M boundary 1781 * for memory hot-add operations on x86 platforms. 1782 */ 1783 mnoderangecnt += 2 + max_mem_nodes - lgrp_plat_node_cnt; 1784 } 1785 colorsz = mnoderangecnt * sizeof (mnoderange_t); 1786 1787 if (!kflt_disable) { 1788 /* size for kernel page freelists */ 1789 colorsz += mnoderangecnt * sizeof (page_t ***); 1790 colorsz += (mnoderangecnt * KFLT_PAGE_COLORS * 1791 sizeof (page_t *)); 1792 1793 /* size for kfpc_mutex */ 1794 colorsz += (max_mem_nodes * sizeof (kmutex_t) * NPC_MUTEX); 1795 } 1796 /* size for fpc_mutex and cpc_mutex */ 1797 colorsz += (2 * max_mem_nodes * sizeof (kmutex_t) * NPC_MUTEX); 1798 1799 /* size of page_freelists */ 1800 colorsz += mnoderangecnt * sizeof (page_t ***); 1801 colorsz += mnoderangecnt * mmu_page_sizes * sizeof (page_t **); 1802 1803 for (i = 0; i < mmu_page_sizes; i++) { 1804 colors = page_get_pagecolors(i); 1805 colorsz += mnoderangecnt * colors * sizeof (page_t *); 1806 } 1807 1808 /* size of page_cachelists */ 1809 colorsz += mnoderangecnt * sizeof (page_t **); 1810 colorsz += mnoderangecnt * page_colors * sizeof (page_t *); 1811 1812 return (colorsz); 1813 } 1814 1815 /* 1816 * Called once at startup to configure page_coloring data structures and 1817 * does the 1st page_free()/page_freelist_add(). 1818 */ 1819 void 1820 page_coloring_setup(caddr_t pcmemaddr) 1821 { 1822 int i; 1823 int j; 1824 int k; 1825 caddr_t addr; 1826 int colors; 1827 1828 /* 1829 * do page coloring setup 1830 */ 1831 addr = pcmemaddr; 1832 1833 mnoderanges = (mnoderange_t *)addr; 1834 addr += (mnoderangecnt * sizeof (mnoderange_t)); 1835 1836 mnode_range_setup(mnoderanges); 1837 1838 if (physmax4g) 1839 mtype4g = pfn_2_mtype(0xfffff); 1840 1841 for (k = 0; k < NPC_MUTEX; k++) { 1842 fpc_mutex[k] = (kmutex_t *)addr; 1843 addr += (max_mem_nodes * sizeof (kmutex_t)); 1844 } 1845 if (!kflt_disable) { 1846 for (k = 0; k < NPC_MUTEX; k++) { 1847 kfpc_mutex[k] = (kmutex_t *)addr; 1848 addr += (max_mem_nodes * sizeof (kmutex_t)); 1849 } 1850 } 1851 for (k = 0; k < NPC_MUTEX; k++) { 1852 cpc_mutex[k] = (kmutex_t *)addr; 1853 addr += (max_mem_nodes * sizeof (kmutex_t)); 1854 } 1855 ufltp->pflt_freelists = (page_t ****)addr; 1856 addr += (mnoderangecnt * sizeof (page_t ***)); 1857 1858 page_cachelists = (page_t ***)addr; 1859 addr += (mnoderangecnt * sizeof (page_t **)); 1860 1861 for (i = 0; i < mnoderangecnt; i++) { 1862 ufltp->pflt_freelists[i] = (page_t ***)addr; 1863 addr += (mmu_page_sizes * sizeof (page_t **)); 1864 1865 for (j = 0; j < mmu_page_sizes; j++) { 1866 colors = page_get_pagecolors(j); 1867 ufltp->pflt_freelists[i][j] = (page_t **)addr; 1868 addr += (colors * sizeof (page_t *)); 1869 } 1870 page_cachelists[i] = (page_t **)addr; 1871 addr += (page_colors * sizeof (page_t *)); 1872 } 1873 1874 if (!kflt_disable) { 1875 kfltp->pflt_freelists = (page_t ****)addr; 1876 addr += (mnoderangecnt * sizeof (page_t ***)); 1877 for (i = 0; i < mnoderangecnt; i++) { 1878 kfltp->pflt_freelists[i] = (page_t ***)addr; 1879 addr += (KFLT_PAGE_COLORS * sizeof (page_t *)); 1880 } 1881 } 1882 page_flt_init(ufltp, kfltp); 1883 } 1884 1885 #if defined(__xpv) 1886 /* 1887 * Give back 10% of the io_pool pages to the free list. 1888 * Don't shrink the pool below some absolute minimum. 1889 */ 1890 static void 1891 page_io_pool_shrink() 1892 { 1893 int retcnt; 1894 page_t *pp, *pp_first, *pp_last, **curpool; 1895 mfn_t mfn; 1896 int bothpools = 0; 1897 1898 mutex_enter(&io_pool_lock); 1899 io_pool_shrink_attempts++; /* should be a kstat? */ 1900 retcnt = io_pool_cnt / 10; 1901 if (io_pool_cnt - retcnt < io_pool_cnt_min) 1902 retcnt = io_pool_cnt - io_pool_cnt_min; 1903 if (retcnt <= 0) 1904 goto done; 1905 io_pool_shrinks++; /* should be a kstat? */ 1906 curpool = &io_pool_4g; 1907 domore: 1908 /* 1909 * Loop through taking pages from the end of the list 1910 * (highest mfns) till amount to return reached. 1911 */ 1912 for (pp = *curpool; pp && retcnt > 0; ) { 1913 pp_first = pp_last = pp->p_prev; 1914 if (pp_first == *curpool) 1915 break; 1916 retcnt--; 1917 io_pool_cnt--; 1918 page_io_pool_sub(curpool, pp_first, pp_last); 1919 if ((mfn = pfn_to_mfn(pp->p_pagenum)) < start_mfn) 1920 start_mfn = mfn; 1921 page_free(pp_first, 1); 1922 pp = *curpool; 1923 } 1924 if (retcnt != 0 && !bothpools) { 1925 /* 1926 * If not enough found in less constrained pool try the 1927 * more constrained one. 1928 */ 1929 curpool = &io_pool_16m; 1930 bothpools = 1; 1931 goto domore; 1932 } 1933 done: 1934 mutex_exit(&io_pool_lock); 1935 } 1936 1937 #endif /* __xpv */ 1938 1939 uint_t 1940 page_create_update_flags_x86(uint_t flags) 1941 { 1942 #if defined(__xpv) 1943 /* 1944 * Check this is an urgent allocation and free pages are depleted. 1945 */ 1946 if (!(flags & PG_WAIT) && freemem < desfree) 1947 page_io_pool_shrink(); 1948 #else /* !__xpv */ 1949 /* 1950 * page_create_get_something may call this because 4g memory may be 1951 * depleted. Set flags to allow for relocation of base page below 1952 * 4g if necessary. 1953 */ 1954 if (physmax4g) 1955 flags |= (PGI_PGCPSZC0 | PGI_PGCPHIPRI); 1956 #endif /* __xpv */ 1957 return (flags); 1958 } 1959 1960 int 1961 kernel_page_update_flags_x86(uint_t *flags) 1962 { 1963 /* 1964 * page_get_kflt() calls this after walking the kernel pagelists and 1965 * not finding a free page to allocate. If the PGI_MT_RANGE4G flag is 1966 * set then we only walk mnodes in the greater than 4g range, so if we 1967 * didn't find a page there must be free kernel memory below this range. 1968 * 1969 * kflt_expand() calls this before trying to allocate large pages for 1970 * kernel memory. 1971 */ 1972 if (physmax4g) { 1973 if (*flags & PGI_MT_RANGE4G) { 1974 *flags &= ~PGI_MT_RANGE4G; 1975 *flags |= PGI_MT_RANGE0; 1976 return (1); 1977 } else { 1978 return (0); 1979 } 1980 } 1981 return (0); 1982 } 1983 1984 /*ARGSUSED*/ 1985 int 1986 bp_color(struct buf *bp) 1987 { 1988 return (0); 1989 } 1990 1991 #if defined(__xpv) 1992 1993 /* 1994 * Take pages out of an io_pool 1995 */ 1996 static void 1997 page_io_pool_sub(page_t **poolp, page_t *pp_first, page_t *pp_last) 1998 { 1999 if (*poolp == pp_first) { 2000 *poolp = pp_last->p_next; 2001 if (*poolp == pp_first) 2002 *poolp = NULL; 2003 } 2004 pp_first->p_prev->p_next = pp_last->p_next; 2005 pp_last->p_next->p_prev = pp_first->p_prev; 2006 pp_first->p_prev = pp_last; 2007 pp_last->p_next = pp_first; 2008 } 2009 2010 /* 2011 * Put a page on the io_pool list. The list is ordered by increasing MFN. 2012 */ 2013 static void 2014 page_io_pool_add(page_t **poolp, page_t *pp) 2015 { 2016 page_t *look; 2017 mfn_t mfn = mfn_list[pp->p_pagenum]; 2018 2019 if (*poolp == NULL) { 2020 *poolp = pp; 2021 pp->p_next = pp; 2022 pp->p_prev = pp; 2023 return; 2024 } 2025 2026 /* 2027 * Since we try to take pages from the high end of the pool 2028 * chances are good that the pages to be put on the list will 2029 * go at or near the end of the list. so start at the end and 2030 * work backwards. 2031 */ 2032 look = (*poolp)->p_prev; 2033 while (mfn < mfn_list[look->p_pagenum]) { 2034 look = look->p_prev; 2035 if (look == (*poolp)->p_prev) 2036 break; /* backed all the way to front of list */ 2037 } 2038 2039 /* insert after look */ 2040 pp->p_prev = look; 2041 pp->p_next = look->p_next; 2042 pp->p_next->p_prev = pp; 2043 look->p_next = pp; 2044 if (mfn < mfn_list[(*poolp)->p_pagenum]) { 2045 /* 2046 * we inserted a new first list element 2047 * adjust pool pointer to newly inserted element 2048 */ 2049 *poolp = pp; 2050 } 2051 } 2052 2053 /* 2054 * Add a page to the io_pool. Setting the force flag will force the page 2055 * into the io_pool no matter what. 2056 */ 2057 static void 2058 add_page_to_pool(page_t *pp, int force) 2059 { 2060 page_t *highest; 2061 page_t *freep = NULL; 2062 2063 mutex_enter(&io_pool_lock); 2064 /* 2065 * Always keep the scarce low memory pages 2066 */ 2067 if (mfn_list[pp->p_pagenum] < PFN_16MEG) { 2068 ++io_pool_cnt; 2069 page_io_pool_add(&io_pool_16m, pp); 2070 goto done; 2071 } 2072 if (io_pool_cnt < io_pool_cnt_max || force || io_pool_4g == NULL) { 2073 ++io_pool_cnt; 2074 page_io_pool_add(&io_pool_4g, pp); 2075 } else { 2076 highest = io_pool_4g->p_prev; 2077 if (mfn_list[pp->p_pagenum] < mfn_list[highest->p_pagenum]) { 2078 page_io_pool_sub(&io_pool_4g, highest, highest); 2079 page_io_pool_add(&io_pool_4g, pp); 2080 freep = highest; 2081 } else { 2082 freep = pp; 2083 } 2084 } 2085 done: 2086 mutex_exit(&io_pool_lock); 2087 if (freep) 2088 page_free(freep, 1); 2089 } 2090 2091 2092 int contig_pfn_cnt; /* no of pfns in the contig pfn list */ 2093 int contig_pfn_max; /* capacity of the contig pfn list */ 2094 int next_alloc_pfn; /* next position in list to start a contig search */ 2095 int contig_pfnlist_updates; /* pfn list update count */ 2096 int contig_pfnlist_builds; /* how many times have we (re)built list */ 2097 int contig_pfnlist_buildfailed; /* how many times has list build failed */ 2098 int create_contig_pending; /* nonzero means taskq creating contig list */ 2099 pfn_t *contig_pfn_list = NULL; /* list of contig pfns in ascending mfn order */ 2100 2101 /* 2102 * Function to use in sorting a list of pfns by their underlying mfns. 2103 */ 2104 static int 2105 mfn_compare(const void *pfnp1, const void *pfnp2) 2106 { 2107 mfn_t mfn1 = mfn_list[*(pfn_t *)pfnp1]; 2108 mfn_t mfn2 = mfn_list[*(pfn_t *)pfnp2]; 2109 2110 if (mfn1 > mfn2) 2111 return (1); 2112 if (mfn1 < mfn2) 2113 return (-1); 2114 return (0); 2115 } 2116 2117 /* 2118 * Compact the contig_pfn_list by tossing all the non-contiguous 2119 * elements from the list. 2120 */ 2121 static void 2122 compact_contig_pfn_list(void) 2123 { 2124 pfn_t pfn, lapfn, prev_lapfn; 2125 mfn_t mfn; 2126 int i, newcnt = 0; 2127 2128 prev_lapfn = 0; 2129 for (i = 0; i < contig_pfn_cnt - 1; i++) { 2130 pfn = contig_pfn_list[i]; 2131 lapfn = contig_pfn_list[i + 1]; 2132 mfn = mfn_list[pfn]; 2133 /* 2134 * See if next pfn is for a contig mfn 2135 */ 2136 if (mfn_list[lapfn] != mfn + 1) 2137 continue; 2138 /* 2139 * pfn and lookahead are both put in list 2140 * unless pfn is the previous lookahead. 2141 */ 2142 if (pfn != prev_lapfn) 2143 contig_pfn_list[newcnt++] = pfn; 2144 contig_pfn_list[newcnt++] = lapfn; 2145 prev_lapfn = lapfn; 2146 } 2147 for (i = newcnt; i < contig_pfn_cnt; i++) 2148 contig_pfn_list[i] = 0; 2149 contig_pfn_cnt = newcnt; 2150 } 2151 2152 /*ARGSUSED*/ 2153 static void 2154 call_create_contiglist(void *arg) 2155 { 2156 (void) create_contig_pfnlist(PG_WAIT); 2157 } 2158 2159 /* 2160 * Create list of freelist pfns that have underlying 2161 * contiguous mfns. The list is kept in ascending mfn order. 2162 * returns 1 if list created else 0. 2163 */ 2164 static int 2165 create_contig_pfnlist(uint_t flags) 2166 { 2167 pfn_t pfn; 2168 page_t *pp; 2169 int ret = 1; 2170 2171 mutex_enter(&contig_list_lock); 2172 if (contig_pfn_list != NULL) 2173 goto out; 2174 contig_pfn_max = freemem + (freemem / 10); 2175 contig_pfn_list = kmem_zalloc(contig_pfn_max * sizeof (pfn_t), 2176 (flags & PG_WAIT) ? KM_SLEEP : KM_NOSLEEP); 2177 if (contig_pfn_list == NULL) { 2178 /* 2179 * If we could not create the contig list (because 2180 * we could not sleep for memory). Dispatch a taskq that can 2181 * sleep to get the memory. 2182 */ 2183 if (!create_contig_pending) { 2184 if (taskq_dispatch(system_taskq, call_create_contiglist, 2185 NULL, TQ_NOSLEEP) != NULL) 2186 create_contig_pending = 1; 2187 } 2188 contig_pfnlist_buildfailed++; /* count list build failures */ 2189 ret = 0; 2190 goto out; 2191 } 2192 create_contig_pending = 0; 2193 ASSERT(contig_pfn_cnt == 0); 2194 for (pfn = 0; pfn < mfn_count; pfn++) { 2195 pp = page_numtopp_nolock(pfn); 2196 if (pp == NULL || !PP_ISFREE(pp)) 2197 continue; 2198 contig_pfn_list[contig_pfn_cnt] = pfn; 2199 if (++contig_pfn_cnt == contig_pfn_max) 2200 break; 2201 } 2202 /* 2203 * Sanity check the new list. 2204 */ 2205 if (contig_pfn_cnt < 2) { /* no contig pfns */ 2206 contig_pfn_cnt = 0; 2207 contig_pfnlist_buildfailed++; 2208 kmem_free(contig_pfn_list, contig_pfn_max * sizeof (pfn_t)); 2209 contig_pfn_list = NULL; 2210 contig_pfn_max = 0; 2211 ret = 0; 2212 goto out; 2213 } 2214 qsort(contig_pfn_list, contig_pfn_cnt, sizeof (pfn_t), mfn_compare); 2215 compact_contig_pfn_list(); 2216 /* 2217 * Make sure next search of the newly created contiguous pfn 2218 * list starts at the beginning of the list. 2219 */ 2220 next_alloc_pfn = 0; 2221 contig_pfnlist_builds++; /* count list builds */ 2222 out: 2223 mutex_exit(&contig_list_lock); 2224 return (ret); 2225 } 2226 2227 2228 /* 2229 * Toss the current contig pfnlist. Someone is about to do a massive 2230 * update to pfn<->mfn mappings. So we have them destroy the list and lock 2231 * it till they are done with their update. 2232 */ 2233 void 2234 clear_and_lock_contig_pfnlist() 2235 { 2236 pfn_t *listp = NULL; 2237 size_t listsize; 2238 2239 mutex_enter(&contig_list_lock); 2240 if (contig_pfn_list != NULL) { 2241 listp = contig_pfn_list; 2242 listsize = contig_pfn_max * sizeof (pfn_t); 2243 contig_pfn_list = NULL; 2244 contig_pfn_max = contig_pfn_cnt = 0; 2245 } 2246 if (listp != NULL) 2247 kmem_free(listp, listsize); 2248 } 2249 2250 /* 2251 * Unlock the contig_pfn_list. The next attempted use of it will cause 2252 * it to be re-created. 2253 */ 2254 void 2255 unlock_contig_pfnlist() 2256 { 2257 mutex_exit(&contig_list_lock); 2258 } 2259 2260 /* 2261 * Update the contiguous pfn list in response to a pfn <-> mfn reassignment 2262 */ 2263 void 2264 update_contig_pfnlist(pfn_t pfn, mfn_t oldmfn, mfn_t newmfn) 2265 { 2266 int probe_hi, probe_lo, probe_pos, insert_after, insert_point; 2267 pfn_t probe_pfn; 2268 mfn_t probe_mfn; 2269 int drop_lock = 0; 2270 2271 if (mutex_owner(&contig_list_lock) != curthread) { 2272 drop_lock = 1; 2273 mutex_enter(&contig_list_lock); 2274 } 2275 if (contig_pfn_list == NULL) 2276 goto done; 2277 contig_pfnlist_updates++; 2278 /* 2279 * Find the pfn in the current list. Use a binary chop to locate it. 2280 */ 2281 probe_hi = contig_pfn_cnt - 1; 2282 probe_lo = 0; 2283 probe_pos = (probe_hi + probe_lo) / 2; 2284 while ((probe_pfn = contig_pfn_list[probe_pos]) != pfn) { 2285 if (probe_pos == probe_lo) { /* pfn not in list */ 2286 probe_pos = -1; 2287 break; 2288 } 2289 if (pfn_to_mfn(probe_pfn) <= oldmfn) 2290 probe_lo = probe_pos; 2291 else 2292 probe_hi = probe_pos; 2293 probe_pos = (probe_hi + probe_lo) / 2; 2294 } 2295 if (probe_pos >= 0) { 2296 /* 2297 * Remove pfn from list and ensure next alloc 2298 * position stays in bounds. 2299 */ 2300 if (--contig_pfn_cnt <= next_alloc_pfn) 2301 next_alloc_pfn = 0; 2302 if (contig_pfn_cnt < 2) { /* no contig pfns */ 2303 contig_pfn_cnt = 0; 2304 kmem_free(contig_pfn_list, 2305 contig_pfn_max * sizeof (pfn_t)); 2306 contig_pfn_list = NULL; 2307 contig_pfn_max = 0; 2308 goto done; 2309 } 2310 ovbcopy(&contig_pfn_list[probe_pos + 1], 2311 &contig_pfn_list[probe_pos], 2312 (contig_pfn_cnt - probe_pos) * sizeof (pfn_t)); 2313 } 2314 if (newmfn == MFN_INVALID) 2315 goto done; 2316 /* 2317 * Check if new mfn has adjacent mfns in the list 2318 */ 2319 probe_hi = contig_pfn_cnt - 1; 2320 probe_lo = 0; 2321 insert_after = -2; 2322 do { 2323 probe_pos = (probe_hi + probe_lo) / 2; 2324 probe_mfn = pfn_to_mfn(contig_pfn_list[probe_pos]); 2325 if (newmfn == probe_mfn + 1) 2326 insert_after = probe_pos; 2327 else if (newmfn == probe_mfn - 1) 2328 insert_after = probe_pos - 1; 2329 if (probe_pos == probe_lo) 2330 break; 2331 if (probe_mfn <= newmfn) 2332 probe_lo = probe_pos; 2333 else 2334 probe_hi = probe_pos; 2335 } while (insert_after == -2); 2336 /* 2337 * If there is space in the list and there are adjacent mfns 2338 * insert the pfn in to its proper place in the list. 2339 */ 2340 if (insert_after != -2 && contig_pfn_cnt + 1 <= contig_pfn_max) { 2341 insert_point = insert_after + 1; 2342 ovbcopy(&contig_pfn_list[insert_point], 2343 &contig_pfn_list[insert_point + 1], 2344 (contig_pfn_cnt - insert_point) * sizeof (pfn_t)); 2345 contig_pfn_list[insert_point] = pfn; 2346 contig_pfn_cnt++; 2347 } 2348 done: 2349 if (drop_lock) 2350 mutex_exit(&contig_list_lock); 2351 } 2352 2353 /* 2354 * Called to (re-)populate the io_pool from the free page lists. 2355 */ 2356 long 2357 populate_io_pool(void) 2358 { 2359 pfn_t pfn; 2360 mfn_t mfn, max_mfn; 2361 page_t *pp; 2362 2363 /* 2364 * Figure out the bounds of the pool on first invocation. 2365 * We use a percentage of memory for the io pool size. 2366 * we allow that to shrink, but not to less than a fixed minimum 2367 */ 2368 if (io_pool_cnt_max == 0) { 2369 io_pool_cnt_max = physmem / (100 / io_pool_physmem_pct); 2370 io_pool_cnt_lowater = io_pool_cnt_max; 2371 /* 2372 * This is the first time in populate_io_pool, grab a va to use 2373 * when we need to allocate pages. 2374 */ 2375 io_pool_kva = vmem_alloc(heap_arena, PAGESIZE, VM_SLEEP); 2376 } 2377 /* 2378 * If we are out of pages in the pool, then grow the size of the pool 2379 */ 2380 if (io_pool_cnt == 0) { 2381 /* 2382 * Grow the max size of the io pool by 5%, but never more than 2383 * 25% of physical memory. 2384 */ 2385 if (io_pool_cnt_max < physmem / 4) 2386 io_pool_cnt_max += io_pool_cnt_max / 20; 2387 } 2388 io_pool_grows++; /* should be a kstat? */ 2389 2390 /* 2391 * Get highest mfn on this platform, but limit to the 32 bit DMA max. 2392 */ 2393 (void) mfn_to_pfn(start_mfn); 2394 max_mfn = MIN(cached_max_mfn, PFN_4GIG); 2395 for (mfn = start_mfn; mfn < max_mfn; start_mfn = ++mfn) { 2396 pfn = mfn_to_pfn(mfn); 2397 if (pfn & PFN_IS_FOREIGN_MFN) 2398 continue; 2399 /* 2400 * try to allocate it from free pages 2401 */ 2402 pp = page_numtopp_alloc(pfn); 2403 if (pp == NULL) 2404 continue; 2405 PP_CLRFREE(pp); 2406 add_page_to_pool(pp, 1); 2407 if (io_pool_cnt >= io_pool_cnt_max) 2408 break; 2409 } 2410 2411 return (io_pool_cnt); 2412 } 2413 2414 /* 2415 * Destroy a page that was being used for DMA I/O. It may or 2416 * may not actually go back to the io_pool. 2417 */ 2418 void 2419 page_destroy_io(page_t *pp) 2420 { 2421 mfn_t mfn = mfn_list[pp->p_pagenum]; 2422 2423 /* 2424 * When the page was alloc'd a reservation was made, release it now 2425 */ 2426 page_unresv(1); 2427 /* 2428 * Unload translations, if any, then hash out the 2429 * page to erase its identity. 2430 */ 2431 (void) hat_pageunload(pp, HAT_FORCE_PGUNLOAD); 2432 page_hashout(pp, NULL); 2433 2434 /* 2435 * If the page came from the free lists, just put it back to them. 2436 * DomU pages always go on the free lists as well. 2437 */ 2438 if (!DOMAIN_IS_INITDOMAIN(xen_info) || mfn >= PFN_4GIG) { 2439 page_free(pp, 1); 2440 return; 2441 } 2442 2443 add_page_to_pool(pp, 0); 2444 } 2445 2446 2447 long contig_searches; /* count of times contig pages requested */ 2448 long contig_search_restarts; /* count of contig ranges tried */ 2449 long contig_search_failed; /* count of contig alloc failures */ 2450 2451 /* 2452 * Free partial page list 2453 */ 2454 static void 2455 free_partial_list(page_t **pplist) 2456 { 2457 page_t *pp; 2458 2459 while (*pplist != NULL) { 2460 pp = *pplist; 2461 page_io_pool_sub(pplist, pp, pp); 2462 page_free(pp, 1); 2463 } 2464 } 2465 2466 /* 2467 * Look thru the contiguous pfns that are not part of the io_pool for 2468 * contiguous free pages. Return a list of the found pages or NULL. 2469 */ 2470 page_t * 2471 find_contig_free(uint_t npages, uint_t flags, uint64_t pfnseg, 2472 pgcnt_t pfnalign) 2473 { 2474 page_t *pp, *plist = NULL; 2475 mfn_t mfn, prev_mfn, start_mfn; 2476 pfn_t pfn; 2477 int pages_needed, pages_requested; 2478 int search_start; 2479 2480 /* 2481 * create the contig pfn list if not already done 2482 */ 2483 retry: 2484 mutex_enter(&contig_list_lock); 2485 if (contig_pfn_list == NULL) { 2486 mutex_exit(&contig_list_lock); 2487 if (!create_contig_pfnlist(flags)) { 2488 return (NULL); 2489 } 2490 goto retry; 2491 } 2492 contig_searches++; 2493 /* 2494 * Search contiguous pfn list for physically contiguous pages not in 2495 * the io_pool. Start the search where the last search left off. 2496 */ 2497 pages_requested = pages_needed = npages; 2498 search_start = next_alloc_pfn; 2499 start_mfn = prev_mfn = 0; 2500 while (pages_needed) { 2501 pfn = contig_pfn_list[next_alloc_pfn]; 2502 mfn = pfn_to_mfn(pfn); 2503 /* 2504 * Check if mfn is first one or contig to previous one and 2505 * if page corresponding to mfn is free and that mfn 2506 * range is not crossing a segment boundary. 2507 */ 2508 if ((prev_mfn == 0 || mfn == prev_mfn + 1) && 2509 (pp = page_numtopp_alloc(pfn)) != NULL && 2510 !((mfn & pfnseg) < (start_mfn & pfnseg))) { 2511 PP_CLRFREE(pp); 2512 page_io_pool_add(&plist, pp); 2513 pages_needed--; 2514 if (prev_mfn == 0) { 2515 if (pfnalign && 2516 mfn != P2ROUNDUP(mfn, pfnalign)) { 2517 /* 2518 * not properly aligned 2519 */ 2520 contig_search_restarts++; 2521 free_partial_list(&plist); 2522 pages_needed = pages_requested; 2523 start_mfn = prev_mfn = 0; 2524 goto skip; 2525 } 2526 start_mfn = mfn; 2527 } 2528 prev_mfn = mfn; 2529 } else { 2530 contig_search_restarts++; 2531 free_partial_list(&plist); 2532 pages_needed = pages_requested; 2533 start_mfn = prev_mfn = 0; 2534 } 2535 skip: 2536 if (++next_alloc_pfn == contig_pfn_cnt) 2537 next_alloc_pfn = 0; 2538 if (next_alloc_pfn == search_start) 2539 break; /* all pfns searched */ 2540 } 2541 mutex_exit(&contig_list_lock); 2542 if (pages_needed) { 2543 contig_search_failed++; 2544 /* 2545 * Failed to find enough contig pages. 2546 * free partial page list 2547 */ 2548 free_partial_list(&plist); 2549 } 2550 return (plist); 2551 } 2552 2553 /* 2554 * Search the reserved io pool pages for a page range with the 2555 * desired characteristics. 2556 */ 2557 page_t * 2558 page_io_pool_alloc(ddi_dma_attr_t *mattr, int contig, pgcnt_t minctg) 2559 { 2560 page_t *pp_first, *pp_last; 2561 page_t *pp, **poolp; 2562 pgcnt_t nwanted, pfnalign; 2563 uint64_t pfnseg; 2564 mfn_t mfn, tmfn, hi_mfn, lo_mfn; 2565 int align, attempt = 0; 2566 2567 if (minctg == 1) 2568 contig = 0; 2569 lo_mfn = mmu_btop(mattr->dma_attr_addr_lo); 2570 hi_mfn = mmu_btop(mattr->dma_attr_addr_hi); 2571 pfnseg = mmu_btop(mattr->dma_attr_seg); 2572 align = maxbit(mattr->dma_attr_align, mattr->dma_attr_minxfer); 2573 if (align > MMU_PAGESIZE) 2574 pfnalign = mmu_btop(align); 2575 else 2576 pfnalign = 0; 2577 2578 try_again: 2579 /* 2580 * See if we want pages for a legacy device 2581 */ 2582 if (hi_mfn < PFN_16MEG) 2583 poolp = &io_pool_16m; 2584 else 2585 poolp = &io_pool_4g; 2586 try_smaller: 2587 /* 2588 * Take pages from I/O pool. We'll use pages from the highest 2589 * MFN range possible. 2590 */ 2591 pp_first = pp_last = NULL; 2592 mutex_enter(&io_pool_lock); 2593 nwanted = minctg; 2594 for (pp = *poolp; pp && nwanted > 0; ) { 2595 pp = pp->p_prev; 2596 2597 /* 2598 * skip pages above allowable range 2599 */ 2600 mfn = mfn_list[pp->p_pagenum]; 2601 if (hi_mfn < mfn) 2602 goto skip; 2603 2604 /* 2605 * stop at pages below allowable range 2606 */ 2607 if (lo_mfn > mfn) 2608 break; 2609 restart: 2610 if (pp_last == NULL) { 2611 /* 2612 * Check alignment 2613 */ 2614 tmfn = mfn - (minctg - 1); 2615 if (pfnalign && tmfn != P2ROUNDUP(tmfn, pfnalign)) 2616 goto skip; /* not properly aligned */ 2617 /* 2618 * Check segment 2619 */ 2620 if ((mfn & pfnseg) < (tmfn & pfnseg)) 2621 goto skip; /* crosses seg boundary */ 2622 /* 2623 * Start building page list 2624 */ 2625 pp_first = pp_last = pp; 2626 nwanted--; 2627 } else { 2628 /* 2629 * check physical contiguity if required 2630 */ 2631 if (contig && 2632 mfn_list[pp_first->p_pagenum] != mfn + 1) { 2633 /* 2634 * not a contiguous page, restart list. 2635 */ 2636 pp_last = NULL; 2637 nwanted = minctg; 2638 goto restart; 2639 } else { /* add page to list */ 2640 pp_first = pp; 2641 nwanted--; 2642 } 2643 } 2644 skip: 2645 if (pp == *poolp) 2646 break; 2647 } 2648 2649 /* 2650 * If we didn't find memory. Try the more constrained pool, then 2651 * sweep free pages into the DMA pool and try again. 2652 */ 2653 if (nwanted != 0) { 2654 mutex_exit(&io_pool_lock); 2655 /* 2656 * If we were looking in the less constrained pool and 2657 * didn't find pages, try the more constrained pool. 2658 */ 2659 if (poolp == &io_pool_4g) { 2660 poolp = &io_pool_16m; 2661 goto try_smaller; 2662 } 2663 kmem_reap(); 2664 if (++attempt < 4) { 2665 /* 2666 * Grab some more io_pool pages 2667 */ 2668 (void) populate_io_pool(); 2669 goto try_again; /* go around and retry */ 2670 } 2671 return (NULL); 2672 } 2673 /* 2674 * Found the pages, now snip them from the list 2675 */ 2676 page_io_pool_sub(poolp, pp_first, pp_last); 2677 io_pool_cnt -= minctg; 2678 /* 2679 * reset low water mark 2680 */ 2681 if (io_pool_cnt < io_pool_cnt_lowater) 2682 io_pool_cnt_lowater = io_pool_cnt; 2683 mutex_exit(&io_pool_lock); 2684 return (pp_first); 2685 } 2686 2687 page_t * 2688 page_swap_with_hypervisor(struct vnode *vp, u_offset_t off, caddr_t vaddr, 2689 ddi_dma_attr_t *mattr, uint_t flags, pgcnt_t minctg) 2690 { 2691 uint_t kflags; 2692 int order, extra, extpages, i, contig, nbits, extents; 2693 page_t *pp, *expp, *pp_first, **pplist = NULL; 2694 mfn_t *mfnlist = NULL; 2695 2696 contig = flags & PG_PHYSCONTIG; 2697 if (minctg == 1) 2698 contig = 0; 2699 flags &= ~PG_PHYSCONTIG; 2700 kflags = flags & PG_WAIT ? KM_SLEEP : KM_NOSLEEP; 2701 /* 2702 * Hypervisor will allocate extents, if we want contig 2703 * pages extent must be >= minctg 2704 */ 2705 if (contig) { 2706 order = highbit(minctg) - 1; 2707 if (minctg & ((1 << order) - 1)) 2708 order++; 2709 extpages = 1 << order; 2710 } else { 2711 order = 0; 2712 extpages = minctg; 2713 } 2714 if (extpages > minctg) { 2715 extra = extpages - minctg; 2716 if (!page_resv(extra, kflags)) 2717 return (NULL); 2718 } 2719 pp_first = NULL; 2720 pplist = kmem_alloc(extpages * sizeof (page_t *), kflags); 2721 if (pplist == NULL) 2722 goto balloon_fail; 2723 mfnlist = kmem_alloc(extpages * sizeof (mfn_t), kflags); 2724 if (mfnlist == NULL) 2725 goto balloon_fail; 2726 pp = page_create_va(vp, off, minctg * PAGESIZE, flags, &kvseg, vaddr); 2727 if (pp == NULL) 2728 goto balloon_fail; 2729 pp_first = pp; 2730 if (extpages > minctg) { 2731 /* 2732 * fill out the rest of extent pages to swap 2733 * with the hypervisor 2734 */ 2735 for (i = 0; i < extra; i++) { 2736 expp = page_create_va(vp, 2737 (u_offset_t)(uintptr_t)io_pool_kva, 2738 PAGESIZE, flags, &kvseg, io_pool_kva); 2739 if (expp == NULL) 2740 goto balloon_fail; 2741 (void) hat_pageunload(expp, HAT_FORCE_PGUNLOAD); 2742 page_io_unlock(expp); 2743 page_hashout(expp, NULL); 2744 page_io_lock(expp); 2745 /* 2746 * add page to end of list 2747 */ 2748 expp->p_prev = pp_first->p_prev; 2749 expp->p_next = pp_first; 2750 expp->p_prev->p_next = expp; 2751 pp_first->p_prev = expp; 2752 } 2753 2754 } 2755 for (i = 0; i < extpages; i++) { 2756 pplist[i] = pp; 2757 pp = pp->p_next; 2758 } 2759 nbits = highbit(mattr->dma_attr_addr_hi); 2760 extents = contig ? 1 : minctg; 2761 if (balloon_replace_pages(extents, pplist, nbits, order, 2762 mfnlist) != extents) { 2763 if (ioalloc_dbg) 2764 cmn_err(CE_NOTE, "request to hypervisor" 2765 " for %d pages, maxaddr %" PRIx64 " failed", 2766 extpages, mattr->dma_attr_addr_hi); 2767 goto balloon_fail; 2768 } 2769 2770 kmem_free(pplist, extpages * sizeof (page_t *)); 2771 kmem_free(mfnlist, extpages * sizeof (mfn_t)); 2772 /* 2773 * Return any excess pages to free list 2774 */ 2775 if (extpages > minctg) { 2776 for (i = 0; i < extra; i++) { 2777 pp = pp_first->p_prev; 2778 page_sub(&pp_first, pp); 2779 page_io_unlock(pp); 2780 page_unresv(1); 2781 page_free(pp, 1); 2782 } 2783 } 2784 return (pp_first); 2785 balloon_fail: 2786 /* 2787 * Return pages to free list and return failure 2788 */ 2789 while (pp_first != NULL) { 2790 pp = pp_first; 2791 page_sub(&pp_first, pp); 2792 page_io_unlock(pp); 2793 if (pp->p_vnode != NULL) 2794 page_hashout(pp, NULL); 2795 page_free(pp, 1); 2796 } 2797 if (pplist) 2798 kmem_free(pplist, extpages * sizeof (page_t *)); 2799 if (mfnlist) 2800 kmem_free(mfnlist, extpages * sizeof (mfn_t)); 2801 page_unresv(extpages - minctg); 2802 return (NULL); 2803 } 2804 2805 static void 2806 return_partial_alloc(page_t *plist) 2807 { 2808 page_t *pp; 2809 2810 while (plist != NULL) { 2811 pp = plist; 2812 page_sub(&plist, pp); 2813 page_io_unlock(pp); 2814 page_destroy_io(pp); 2815 } 2816 } 2817 2818 static page_t * 2819 page_get_contigpages( 2820 struct vnode *vp, 2821 u_offset_t off, 2822 int *npagesp, 2823 uint_t flags, 2824 caddr_t vaddr, 2825 ddi_dma_attr_t *mattr) 2826 { 2827 mfn_t max_mfn = HYPERVISOR_memory_op(XENMEM_maximum_ram_page, NULL); 2828 page_t *plist; /* list to return */ 2829 page_t *pp, *mcpl; 2830 int contig, anyaddr, npages, getone = 0; 2831 mfn_t lo_mfn; 2832 mfn_t hi_mfn; 2833 pgcnt_t pfnalign = 0; 2834 int align, sgllen; 2835 uint64_t pfnseg; 2836 pgcnt_t minctg; 2837 2838 npages = *npagesp; 2839 ASSERT(mattr != NULL); 2840 lo_mfn = mmu_btop(mattr->dma_attr_addr_lo); 2841 hi_mfn = mmu_btop(mattr->dma_attr_addr_hi); 2842 sgllen = mattr->dma_attr_sgllen; 2843 pfnseg = mmu_btop(mattr->dma_attr_seg); 2844 align = maxbit(mattr->dma_attr_align, mattr->dma_attr_minxfer); 2845 if (align > MMU_PAGESIZE) 2846 pfnalign = mmu_btop(align); 2847 2848 contig = flags & PG_PHYSCONTIG; 2849 if (npages == -1) { 2850 npages = 1; 2851 pfnalign = 0; 2852 } 2853 /* 2854 * Clear the contig flag if only one page is needed. 2855 */ 2856 if (npages == 1) { 2857 getone = 1; 2858 contig = 0; 2859 } 2860 2861 /* 2862 * Check if any page in the system is fine. 2863 */ 2864 anyaddr = lo_mfn == 0 && hi_mfn >= max_mfn; 2865 if (!contig && anyaddr && !pfnalign) { 2866 flags &= ~PG_PHYSCONTIG; 2867 plist = page_create_va(vp, off, npages * MMU_PAGESIZE, 2868 flags, &kvseg, vaddr); 2869 if (plist != NULL) { 2870 *npagesp = 0; 2871 return (plist); 2872 } 2873 } 2874 plist = NULL; 2875 minctg = howmany(npages, sgllen); 2876 while (npages > sgllen || getone) { 2877 if (minctg > npages) 2878 minctg = npages; 2879 mcpl = NULL; 2880 /* 2881 * We could want contig pages with no address range limits. 2882 */ 2883 if (anyaddr && contig) { 2884 /* 2885 * Look for free contig pages to satisfy the request. 2886 */ 2887 mcpl = find_contig_free(minctg, flags, pfnseg, 2888 pfnalign); 2889 } 2890 /* 2891 * Try the reserved io pools next 2892 */ 2893 if (mcpl == NULL) 2894 mcpl = page_io_pool_alloc(mattr, contig, minctg); 2895 if (mcpl != NULL) { 2896 pp = mcpl; 2897 do { 2898 if (!page_hashin(pp, vp, off, NULL)) { 2899 panic("page_get_contigpages:" 2900 " hashin failed" 2901 " pp %p, vp %p, off %llx", 2902 (void *)pp, (void *)vp, off); 2903 } 2904 off += MMU_PAGESIZE; 2905 PP_CLRFREE(pp); 2906 PP_CLRAGED(pp); 2907 page_set_props(pp, P_REF); 2908 page_io_lock(pp); 2909 pp = pp->p_next; 2910 } while (pp != mcpl); 2911 } else { 2912 /* 2913 * Hypervisor exchange doesn't handle segment or 2914 * alignment constraints 2915 */ 2916 if (mattr->dma_attr_seg < mattr->dma_attr_addr_hi || 2917 pfnalign) 2918 goto fail; 2919 /* 2920 * Try exchanging pages with the hypervisor 2921 */ 2922 mcpl = page_swap_with_hypervisor(vp, off, vaddr, mattr, 2923 flags, minctg); 2924 if (mcpl == NULL) 2925 goto fail; 2926 off += minctg * MMU_PAGESIZE; 2927 } 2928 #ifdef DEBUG 2929 check_dma(mattr, mcpl, minctg); 2930 #endif 2931 /* 2932 * Here with a minctg run of contiguous pages, add them to the 2933 * list we will return for this request. 2934 */ 2935 page_list_concat(&plist, &mcpl); 2936 npages -= minctg; 2937 *npagesp = npages; 2938 sgllen--; 2939 if (getone) 2940 break; 2941 } 2942 return (plist); 2943 fail: 2944 return_partial_alloc(plist); 2945 return (NULL); 2946 } 2947 2948 /* 2949 * Allocator for domain 0 I/O pages. We match the required 2950 * DMA attributes and contiguity constraints. 2951 */ 2952 /*ARGSUSED*/ 2953 page_t * 2954 page_create_io( 2955 struct vnode *vp, 2956 u_offset_t off, 2957 uint_t bytes, 2958 uint_t flags, 2959 struct as *as, 2960 caddr_t vaddr, 2961 ddi_dma_attr_t *mattr) 2962 { 2963 page_t *plist = NULL, *pp; 2964 int npages = 0, contig, anyaddr, pages_req; 2965 mfn_t lo_mfn; 2966 mfn_t hi_mfn; 2967 pgcnt_t pfnalign = 0; 2968 int align; 2969 int is_domu = 0; 2970 int dummy, bytes_got; 2971 mfn_t max_mfn = HYPERVISOR_memory_op(XENMEM_maximum_ram_page, NULL); 2972 2973 ASSERT(mattr != NULL); 2974 lo_mfn = mmu_btop(mattr->dma_attr_addr_lo); 2975 hi_mfn = mmu_btop(mattr->dma_attr_addr_hi); 2976 align = maxbit(mattr->dma_attr_align, mattr->dma_attr_minxfer); 2977 if (align > MMU_PAGESIZE) 2978 pfnalign = mmu_btop(align); 2979 2980 /* 2981 * Clear the contig flag if only one page is needed or the scatter 2982 * gather list length is >= npages. 2983 */ 2984 pages_req = npages = mmu_btopr(bytes); 2985 contig = (flags & PG_PHYSCONTIG); 2986 bytes = P2ROUNDUP(bytes, MMU_PAGESIZE); 2987 if (bytes == MMU_PAGESIZE || mattr->dma_attr_sgllen >= npages) 2988 contig = 0; 2989 2990 /* 2991 * Check if any old page in the system is fine. 2992 * DomU should always go down this path. 2993 */ 2994 is_domu = !DOMAIN_IS_INITDOMAIN(xen_info); 2995 anyaddr = lo_mfn == 0 && hi_mfn >= max_mfn && !pfnalign; 2996 if ((!contig && anyaddr) || is_domu) { 2997 flags &= ~PG_PHYSCONTIG; 2998 plist = page_create_va(vp, off, bytes, flags, &kvseg, vaddr); 2999 if (plist != NULL) 3000 return (plist); 3001 else if (is_domu) 3002 return (NULL); /* no memory available */ 3003 } 3004 /* 3005 * DomU should never reach here 3006 */ 3007 if (contig) { 3008 plist = page_get_contigpages(vp, off, &npages, flags, vaddr, 3009 mattr); 3010 if (plist == NULL) 3011 goto fail; 3012 bytes_got = (pages_req - npages) << MMU_PAGESHIFT; 3013 vaddr += bytes_got; 3014 off += bytes_got; 3015 /* 3016 * We now have all the contiguous pages we need, but 3017 * we may still need additional non-contiguous pages. 3018 */ 3019 } 3020 /* 3021 * now loop collecting the requested number of pages, these do 3022 * not have to be contiguous pages but we will use the contig 3023 * page alloc code to get the pages since it will honor any 3024 * other constraints the pages may have. 3025 */ 3026 while (npages--) { 3027 dummy = -1; 3028 pp = page_get_contigpages(vp, off, &dummy, flags, vaddr, mattr); 3029 if (pp == NULL) 3030 goto fail; 3031 page_add(&plist, pp); 3032 vaddr += MMU_PAGESIZE; 3033 off += MMU_PAGESIZE; 3034 } 3035 return (plist); 3036 fail: 3037 /* 3038 * Failed to get enough pages, return ones we did get 3039 */ 3040 return_partial_alloc(plist); 3041 return (NULL); 3042 } 3043 3044 /* 3045 * Lock and return the page with the highest mfn that we can find. last_mfn 3046 * holds the last one found, so the next search can start from there. We 3047 * also keep a counter so that we don't loop forever if the machine has no 3048 * free pages. 3049 * 3050 * This is called from the balloon thread to find pages to give away. new_high 3051 * is used when new mfn's have been added to the system - we will reset our 3052 * search if the new mfn's are higher than our current search position. 3053 */ 3054 page_t * 3055 page_get_high_mfn(mfn_t new_high) 3056 { 3057 static mfn_t last_mfn = 0; 3058 pfn_t pfn; 3059 page_t *pp; 3060 ulong_t loop_count = 0; 3061 3062 if (new_high > last_mfn) 3063 last_mfn = new_high; 3064 3065 for (; loop_count < mfn_count; loop_count++, last_mfn--) { 3066 if (last_mfn == 0) { 3067 last_mfn = cached_max_mfn; 3068 } 3069 3070 pfn = mfn_to_pfn(last_mfn); 3071 if (pfn & PFN_IS_FOREIGN_MFN) 3072 continue; 3073 3074 /* See if the page is free. If so, lock it. */ 3075 pp = page_numtopp_alloc(pfn); 3076 if (pp == NULL) 3077 continue; 3078 PP_CLRFREE(pp); 3079 3080 ASSERT(PAGE_EXCL(pp)); 3081 ASSERT(pp->p_vnode == NULL); 3082 ASSERT(!hat_page_is_mapped(pp)); 3083 last_mfn--; 3084 return (pp); 3085 } 3086 return (NULL); 3087 } 3088 3089 #else /* !__xpv */ 3090 3091 /* 3092 * get a page from any list with the given mnode 3093 */ 3094 static page_t * 3095 page_get_mnode_anylist(ulong_t origbin, uchar_t szc, uint_t flags, 3096 int mnode, int mtype, ddi_dma_attr_t *dma_attr) 3097 { 3098 kmutex_t *pcm; 3099 int i; 3100 page_t *pp; 3101 page_t *first_pp; 3102 uint64_t pgaddr; 3103 ulong_t bin; 3104 int mtypestart; 3105 int plw_initialized; 3106 page_list_walker_t plw; 3107 3108 VM_STAT_ADD(pga_vmstats.pgma_alloc); 3109 3110 ASSERT((flags & PG_MATCH_COLOR) == 0); 3111 ASSERT(szc == 0); 3112 ASSERT(dma_attr != NULL); 3113 3114 MTYPE_START(mnode, mtype, flags); 3115 if (mtype < 0) { 3116 VM_STAT_ADD(pga_vmstats.pgma_allocempty); 3117 return (NULL); 3118 } 3119 3120 mtypestart = mtype; 3121 3122 bin = origbin; 3123 3124 /* 3125 * check up to page_colors + 1 bins - origbin may be checked twice 3126 * because of BIN_STEP skip 3127 */ 3128 do { 3129 plw_initialized = 0; 3130 3131 for (plw.plw_count = 0; 3132 plw.plw_count < page_colors; plw.plw_count++) { 3133 3134 if (PAGE_FREELISTS(PFLT_USER, mnode, szc, bin, mtype) 3135 == NULL) 3136 goto nextfreebin; 3137 3138 pcm = PC_FREELIST_BIN_MUTEX(PFLT_USER, mnode, bin, 3139 PG_FREE_LIST); 3140 mutex_enter(pcm); 3141 pp = PAGE_FREELISTS(PFLT_USER, mnode, szc, bin, mtype); 3142 first_pp = pp; 3143 while (pp != NULL) { 3144 if (page_trylock(pp, SE_EXCL) == 0) { 3145 pp = pp->p_next; 3146 if (pp == first_pp) { 3147 pp = NULL; 3148 } 3149 continue; 3150 } 3151 3152 ASSERT(PP_ISFREE(pp)); 3153 ASSERT(PP_ISAGED(pp)); 3154 ASSERT(pp->p_vnode == NULL); 3155 ASSERT(pp->p_hash == NULL); 3156 ASSERT(pp->p_offset == (u_offset_t)-1); 3157 ASSERT(pp->p_szc == szc); 3158 ASSERT(PFN_2_MEM_NODE(pp->p_pagenum) == mnode); 3159 /* check if page within DMA attributes */ 3160 pgaddr = pa_to_ma(pfn_to_pa(pp->p_pagenum)); 3161 if ((pgaddr >= dma_attr->dma_attr_addr_lo) && 3162 (pgaddr + MMU_PAGESIZE - 1 <= 3163 dma_attr->dma_attr_addr_hi)) { 3164 break; 3165 } 3166 3167 /* continue looking */ 3168 page_unlock(pp); 3169 pp = pp->p_next; 3170 if (pp == first_pp) 3171 pp = NULL; 3172 3173 } 3174 if (pp != NULL) { 3175 ASSERT(mtype == PP_2_MTYPE(pp)); 3176 ASSERT(pp->p_szc == 0); 3177 3178 /* found a page with specified DMA attributes */ 3179 page_sub(PAGE_FREELISTP(PFLT_USER, mnode, szc, 3180 bin, mtype), pp); 3181 page_ctr_sub(mnode, mtype, pp, PG_FREE_LIST); 3182 3183 if ((PP_ISFREE(pp) == 0) || 3184 (PP_ISAGED(pp) == 0)) { 3185 cmn_err(CE_PANIC, "page %p is not free", 3186 (void *)pp); 3187 } 3188 3189 mutex_exit(pcm); 3190 #ifdef DEBUG 3191 check_dma(dma_attr, pp, 1); 3192 #endif 3193 VM_STAT_ADD(pga_vmstats.pgma_allocok); 3194 return (pp); 3195 } 3196 mutex_exit(pcm); 3197 nextfreebin: 3198 if (plw_initialized == 0) { 3199 page_list_walk_init(szc, 0, bin, 1, 0, &plw); 3200 ASSERT(plw.plw_ceq_dif == page_colors); 3201 plw_initialized = 1; 3202 } 3203 3204 if (plw.plw_do_split) { 3205 pp = page_freelist_split(szc, bin, mnode, 3206 mtype, 3207 mmu_btop(dma_attr->dma_attr_addr_lo), 3208 mmu_btop(dma_attr->dma_attr_addr_hi + 1), 3209 &plw); 3210 if (pp != NULL) { 3211 #ifdef DEBUG 3212 check_dma(dma_attr, pp, 1); 3213 #endif 3214 return (pp); 3215 } 3216 } 3217 3218 bin = page_list_walk_next_bin(szc, bin, &plw); 3219 } 3220 3221 MTYPE_NEXT(mnode, mtype, flags); 3222 } while (mtype >= 0); 3223 3224 /* failed to find a page in the freelist; try it in the cachelist */ 3225 3226 /* reset mtype start for cachelist search */ 3227 mtype = mtypestart; 3228 ASSERT(mtype >= 0); 3229 3230 /* start with the bin of matching color */ 3231 bin = origbin; 3232 3233 do { 3234 for (i = 0; i <= page_colors; i++) { 3235 if (PAGE_CACHELISTS(mnode, bin, mtype) == NULL) 3236 goto nextcachebin; 3237 pcm = PC_BIN_MUTEX(PFLT_USER, mnode, bin, 3238 PG_CACHE_LIST); 3239 mutex_enter(pcm); 3240 pp = PAGE_CACHELISTS(mnode, bin, mtype); 3241 first_pp = pp; 3242 while (pp != NULL) { 3243 if (page_trylock(pp, SE_EXCL) == 0) { 3244 pp = pp->p_next; 3245 if (pp == first_pp) 3246 pp = NULL; 3247 continue; 3248 } 3249 ASSERT(pp->p_vnode); 3250 ASSERT(PP_ISAGED(pp) == 0); 3251 ASSERT(pp->p_szc == 0); 3252 ASSERT(PFN_2_MEM_NODE(pp->p_pagenum) == mnode); 3253 3254 /* check if page within DMA attributes */ 3255 3256 pgaddr = pa_to_ma(pfn_to_pa(pp->p_pagenum)); 3257 if ((pgaddr >= dma_attr->dma_attr_addr_lo) && 3258 (pgaddr + MMU_PAGESIZE - 1 <= 3259 dma_attr->dma_attr_addr_hi)) { 3260 break; 3261 } 3262 3263 /* continue looking */ 3264 page_unlock(pp); 3265 pp = pp->p_next; 3266 if (pp == first_pp) 3267 pp = NULL; 3268 } 3269 3270 if (pp != NULL) { 3271 ASSERT(mtype == PP_2_MTYPE(pp)); 3272 ASSERT(pp->p_szc == 0); 3273 3274 /* found a page with specified DMA attributes */ 3275 page_sub(&PAGE_CACHELISTS(mnode, bin, 3276 mtype), pp); 3277 page_ctr_sub(mnode, mtype, pp, PG_CACHE_LIST); 3278 3279 mutex_exit(pcm); 3280 ASSERT(pp->p_vnode); 3281 ASSERT(PP_ISAGED(pp) == 0); 3282 #ifdef DEBUG 3283 check_dma(dma_attr, pp, 1); 3284 #endif 3285 VM_STAT_ADD(pga_vmstats.pgma_allocok); 3286 return (pp); 3287 } 3288 mutex_exit(pcm); 3289 nextcachebin: 3290 bin += (i == 0) ? BIN_STEP : 1; 3291 bin &= page_colors_mask; 3292 } 3293 MTYPE_NEXT(mnode, mtype, flags); 3294 } while (mtype >= 0); 3295 3296 VM_STAT_ADD(pga_vmstats.pgma_allocfailed); 3297 return (NULL); 3298 } 3299 3300 /* 3301 * This function is similar to page_get_freelist()/page_get_cachelist() 3302 * but it searches both the lists to find a page with the specified 3303 * color (or no color) and DMA attributes. The search is done in the 3304 * freelist first and then in the cache list within the highest memory 3305 * range (based on DMA attributes) before searching in the lower 3306 * memory ranges. 3307 * 3308 * Note: This function is called only by page_create_io(). 3309 */ 3310 /*ARGSUSED*/ 3311 static page_t * 3312 page_get_anylist(struct vnode *vp, u_offset_t off, struct as *as, caddr_t vaddr, 3313 size_t size, uint_t flags, ddi_dma_attr_t *dma_attr, lgrp_t *lgrp) 3314 { 3315 uint_t bin; 3316 int mtype; 3317 page_t *pp; 3318 int n; 3319 int m; 3320 int szc; 3321 int fullrange; 3322 int mnode; 3323 int local_failed_stat = 0; 3324 lgrp_mnode_cookie_t lgrp_cookie; 3325 3326 VM_STAT_ADD(pga_vmstats.pga_alloc); 3327 3328 /* only base pagesize currently supported */ 3329 if (size != MMU_PAGESIZE) 3330 return (NULL); 3331 3332 /* 3333 * If we're passed a specific lgroup, we use it. Otherwise, 3334 * assume first-touch placement is desired. 3335 */ 3336 if (!LGRP_EXISTS(lgrp)) 3337 lgrp = lgrp_home_lgrp(); 3338 3339 /* LINTED */ 3340 AS_2_BIN(PFLT_USER, as, seg, vp, vaddr, bin, 0); 3341 3342 /* 3343 * Only hold one freelist or cachelist lock at a time, that way we 3344 * can start anywhere and not have to worry about lock 3345 * ordering. 3346 */ 3347 if (dma_attr == NULL) { 3348 n = mtype16m; 3349 m = mtypetop; 3350 fullrange = 1; 3351 VM_STAT_ADD(pga_vmstats.pga_nulldmaattr); 3352 } else { 3353 pfn_t pfnlo = mmu_btop(dma_attr->dma_attr_addr_lo); 3354 pfn_t pfnhi = mmu_btop(dma_attr->dma_attr_addr_hi); 3355 3356 /* 3357 * We can guarantee alignment only for page boundary. 3358 */ 3359 if (dma_attr->dma_attr_align > MMU_PAGESIZE) 3360 return (NULL); 3361 3362 /* Sanity check the dma_attr */ 3363 if (pfnlo > pfnhi) 3364 return (NULL); 3365 3366 n = pfn_2_mtype(pfnlo); 3367 m = pfn_2_mtype(pfnhi); 3368 3369 fullrange = ((pfnlo == mnoderanges[n].mnr_pfnlo) && 3370 (pfnhi >= mnoderanges[m].mnr_pfnhi)); 3371 } 3372 VM_STAT_COND_ADD(fullrange == 0, pga_vmstats.pga_notfullrange); 3373 3374 szc = 0; 3375 3376 /* cylcing thru mtype handled by RANGE0 if n == mtype16m */ 3377 if (n == mtype16m) { 3378 flags |= PGI_MT_RANGE0; 3379 n = m; 3380 } 3381 3382 /* 3383 * Try local memory node first, but try remote if we can't 3384 * get a page of the right color. 3385 */ 3386 LGRP_MNODE_COOKIE_INIT(lgrp_cookie, lgrp, LGRP_SRCH_HIER); 3387 while ((mnode = lgrp_memnode_choose(&lgrp_cookie)) >= 0) { 3388 /* 3389 * allocate pages from high pfn to low. 3390 */ 3391 mtype = m; 3392 do { 3393 if (fullrange != 0) { 3394 pp = page_get_mnode_freelist(ufltp, mnode, 3395 bin, mtype, szc, flags); 3396 if (pp == NULL) { 3397 pp = page_get_mnode_cachelist( 3398 bin, flags, mnode, mtype); 3399 } 3400 } else { 3401 pp = page_get_mnode_anylist(bin, szc, 3402 flags, mnode, mtype, dma_attr); 3403 } 3404 if (pp != NULL) { 3405 VM_STAT_ADD(pga_vmstats.pga_allocok); 3406 #ifdef DEBUG 3407 check_dma(dma_attr, pp, 1); 3408 #endif 3409 return (pp); 3410 } 3411 } while (mtype != n && 3412 (mtype = mnoderanges[mtype].mnr_next) != -1); 3413 if (!local_failed_stat) { 3414 lgrp_stat_add(lgrp->lgrp_id, LGRP_NUM_ALLOC_FAIL, 1); 3415 local_failed_stat = 1; 3416 } 3417 } 3418 VM_STAT_ADD(pga_vmstats.pga_allocfailed); 3419 3420 return (NULL); 3421 } 3422 3423 /* 3424 * page_create_io() 3425 * 3426 * This function is a copy of page_create_va() with an additional 3427 * argument 'mattr' that specifies DMA memory requirements to 3428 * the page list functions. This function is used by the segkmem 3429 * allocator so it is only to create new pages (i.e PG_EXCL is 3430 * set). 3431 * 3432 * Note: This interface is currently used by x86 PSM only and is 3433 * not fully specified so the commitment level is only for 3434 * private interface specific to x86. This interface uses PSM 3435 * specific page_get_anylist() interface. 3436 */ 3437 3438 #define PAGE_HASH_SEARCH(index, pp, vp, off) { \ 3439 for ((pp) = page_hash[(index)]; (pp); (pp) = (pp)->p_hash) { \ 3440 if ((pp)->p_vnode == (vp) && (pp)->p_offset == (off)) \ 3441 break; \ 3442 } \ 3443 } 3444 3445 3446 page_t * 3447 page_create_io( 3448 struct vnode *vp, 3449 u_offset_t off, 3450 uint_t bytes, 3451 uint_t flags, 3452 struct as *as, 3453 caddr_t vaddr, 3454 ddi_dma_attr_t *mattr) /* DMA memory attributes if any */ 3455 { 3456 page_t *plist = NULL; 3457 uint_t plist_len = 0; 3458 pgcnt_t npages; 3459 page_t *npp = NULL; 3460 uint_t pages_req; 3461 page_t *pp; 3462 kmutex_t *phm = NULL; 3463 uint_t index; 3464 3465 TRACE_4(TR_FAC_VM, TR_PAGE_CREATE_START, 3466 "page_create_start:vp %p off %llx bytes %u flags %x", 3467 vp, off, bytes, flags); 3468 3469 ASSERT((flags & ~(PG_EXCL | PG_WAIT | PG_PHYSCONTIG)) == 0); 3470 3471 pages_req = npages = mmu_btopr(bytes); 3472 3473 /* 3474 * Do the freemem and pcf accounting. 3475 */ 3476 if (!page_create_wait(npages, flags)) { 3477 return (NULL); 3478 } 3479 3480 TRACE_2(TR_FAC_VM, TR_PAGE_CREATE_SUCCESS, 3481 "page_create_success:vp %p off %llx", vp, off); 3482 3483 /* 3484 * If satisfying this request has left us with too little 3485 * memory, start the wheels turning to get some back. The 3486 * first clause of the test prevents waking up the pageout 3487 * daemon in situations where it would decide that there's 3488 * nothing to do. 3489 */ 3490 if (nscan < desscan && freemem < minfree) { 3491 TRACE_1(TR_FAC_VM, TR_PAGEOUT_CV_SIGNAL, 3492 "pageout_cv_signal:freemem %ld", freemem); 3493 cv_signal(&proc_pageout->p_cv); 3494 } 3495 3496 if (flags & PG_PHYSCONTIG) { 3497 3498 plist = page_get_contigpage(&npages, mattr, 1); 3499 if (plist == NULL) { 3500 page_create_putback(npages); 3501 return (NULL); 3502 } 3503 3504 pp = plist; 3505 3506 do { 3507 if (!page_hashin(pp, vp, off, NULL)) { 3508 panic("pg_creat_io: hashin failed %p %p %llx", 3509 (void *)pp, (void *)vp, off); 3510 } 3511 VM_STAT_ADD(page_create_new); 3512 off += MMU_PAGESIZE; 3513 PP_CLRFREE(pp); 3514 PP_CLRAGED(pp); 3515 page_set_props(pp, P_REF); 3516 pp = pp->p_next; 3517 } while (pp != plist); 3518 3519 if (!npages) { 3520 #ifdef DEBUG 3521 check_dma(mattr, plist, pages_req); 3522 #endif 3523 return (plist); 3524 } else { 3525 vaddr += (pages_req - npages) << MMU_PAGESHIFT; 3526 } 3527 3528 /* 3529 * fall-thru: 3530 * 3531 * page_get_contigpage returns when npages <= sgllen. 3532 * Grab the rest of the non-contig pages below from anylist. 3533 */ 3534 } 3535 3536 /* 3537 * Loop around collecting the requested number of pages. 3538 * Most of the time, we have to `create' a new page. With 3539 * this in mind, pull the page off the free list before 3540 * getting the hash lock. This will minimize the hash 3541 * lock hold time, nesting, and the like. If it turns 3542 * out we don't need the page, we put it back at the end. 3543 */ 3544 while (npages--) { 3545 phm = NULL; 3546 3547 index = PAGE_HASH_FUNC(vp, off); 3548 top: 3549 ASSERT(phm == NULL); 3550 ASSERT(index == PAGE_HASH_FUNC(vp, off)); 3551 ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp))); 3552 3553 if (npp == NULL) { 3554 /* 3555 * Try to get the page of any color either from 3556 * the freelist or from the cache list. 3557 */ 3558 npp = page_get_anylist(vp, off, as, vaddr, MMU_PAGESIZE, 3559 flags & ~PG_MATCH_COLOR, mattr, NULL); 3560 if (npp == NULL) { 3561 if (mattr == NULL) { 3562 /* 3563 * Not looking for a special page; 3564 * panic! 3565 */ 3566 panic("no page found %d", (int)npages); 3567 } 3568 /* 3569 * No page found! This can happen 3570 * if we are looking for a page 3571 * within a specific memory range 3572 * for DMA purposes. If PG_WAIT is 3573 * specified then we wait for a 3574 * while and then try again. The 3575 * wait could be forever if we 3576 * don't get the page(s) we need. 3577 * 3578 * Note: XXX We really need a mechanism 3579 * to wait for pages in the desired 3580 * range. For now, we wait for any 3581 * pages and see if we can use it. 3582 */ 3583 3584 if ((mattr != NULL) && (flags & PG_WAIT)) { 3585 delay(10); 3586 goto top; 3587 } 3588 goto fail; /* undo accounting stuff */ 3589 } 3590 3591 if (PP_ISAGED(npp) == 0) { 3592 /* 3593 * Since this page came from the 3594 * cachelist, we must destroy the 3595 * old vnode association. 3596 */ 3597 page_hashout(npp, (kmutex_t *)NULL); 3598 } 3599 } 3600 3601 /* 3602 * We own this page! 3603 */ 3604 ASSERT(PAGE_EXCL(npp)); 3605 ASSERT(npp->p_vnode == NULL); 3606 ASSERT(!hat_page_is_mapped(npp)); 3607 PP_CLRFREE(npp); 3608 PP_CLRAGED(npp); 3609 3610 /* 3611 * Here we have a page in our hot little mits and are 3612 * just waiting to stuff it on the appropriate lists. 3613 * Get the mutex and check to see if it really does 3614 * not exist. 3615 */ 3616 phm = PAGE_HASH_MUTEX(index); 3617 mutex_enter(phm); 3618 PAGE_HASH_SEARCH(index, pp, vp, off); 3619 if (pp == NULL) { 3620 VM_STAT_ADD(page_create_new); 3621 pp = npp; 3622 npp = NULL; 3623 if (!page_hashin(pp, vp, off, phm)) { 3624 /* 3625 * Since we hold the page hash mutex and 3626 * just searched for this page, page_hashin 3627 * had better not fail. If it does, that 3628 * means somethread did not follow the 3629 * page hash mutex rules. Panic now and 3630 * get it over with. As usual, go down 3631 * holding all the locks. 3632 */ 3633 ASSERT(MUTEX_HELD(phm)); 3634 panic("page_create: hashin fail %p %p %llx %p", 3635 (void *)pp, (void *)vp, off, (void *)phm); 3636 3637 } 3638 ASSERT(MUTEX_HELD(phm)); 3639 mutex_exit(phm); 3640 phm = NULL; 3641 3642 /* 3643 * Hat layer locking need not be done to set 3644 * the following bits since the page is not hashed 3645 * and was on the free list (i.e., had no mappings). 3646 * 3647 * Set the reference bit to protect 3648 * against immediate pageout 3649 * 3650 * XXXmh modify freelist code to set reference 3651 * bit so we don't have to do it here. 3652 */ 3653 page_set_props(pp, P_REF); 3654 } else { 3655 ASSERT(MUTEX_HELD(phm)); 3656 mutex_exit(phm); 3657 phm = NULL; 3658 /* 3659 * NOTE: This should not happen for pages associated 3660 * with kernel vnode 'kvp'. 3661 */ 3662 /* XX64 - to debug why this happens! */ 3663 ASSERT(!VN_ISKAS(vp)); 3664 if (VN_ISKAS(vp)) 3665 cmn_err(CE_NOTE, 3666 "page_create: page not expected " 3667 "in hash list for kernel vnode - pp 0x%p", 3668 (void *)pp); 3669 VM_STAT_ADD(page_create_exists); 3670 goto fail; 3671 } 3672 3673 /* 3674 * Got a page! It is locked. Acquire the i/o 3675 * lock since we are going to use the p_next and 3676 * p_prev fields to link the requested pages together. 3677 */ 3678 page_io_lock(pp); 3679 page_add(&plist, pp); 3680 plist = plist->p_next; 3681 off += MMU_PAGESIZE; 3682 vaddr += MMU_PAGESIZE; 3683 } 3684 3685 #ifdef DEBUG 3686 check_dma(mattr, plist, pages_req); 3687 #endif 3688 return (plist); 3689 3690 fail: 3691 if (npp != NULL) { 3692 /* 3693 * Did not need this page after all. 3694 * Put it back on the free list. 3695 */ 3696 VM_STAT_ADD(page_create_putbacks); 3697 PP_SETFREE(npp); 3698 PP_SETAGED(npp); 3699 npp->p_offset = (u_offset_t)-1; 3700 page_list_add(npp, PG_FREE_LIST | PG_LIST_TAIL); 3701 page_unlock(npp); 3702 } 3703 3704 /* 3705 * Give up the pages we already got. 3706 */ 3707 while (plist != NULL) { 3708 pp = plist; 3709 page_sub(&plist, pp); 3710 page_io_unlock(pp); 3711 plist_len++; 3712 /*LINTED: constant in conditional ctx*/ 3713 VN_DISPOSE(pp, B_INVAL, 0, kcred); 3714 } 3715 3716 /* 3717 * VN_DISPOSE does freemem accounting for the pages in plist 3718 * by calling page_free. So, we need to undo the pcf accounting 3719 * for only the remaining pages. 3720 */ 3721 VM_STAT_ADD(page_create_putbacks); 3722 page_create_putback(pages_req - plist_len); 3723 3724 return (NULL); 3725 } 3726 #endif /* !__xpv */ 3727 3728 3729 /* 3730 * Copy the data from the physical page represented by "frompp" to 3731 * that represented by "topp". ppcopy uses CPU->cpu_caddr1 and 3732 * CPU->cpu_caddr2. It assumes that no one uses either map at interrupt 3733 * level and no one sleeps with an active mapping there. 3734 * 3735 * Note that the ref/mod bits in the page_t's are not affected by 3736 * this operation, hence it is up to the caller to update them appropriately. 3737 */ 3738 int 3739 ppcopy(page_t *frompp, page_t *topp) 3740 { 3741 caddr_t pp_addr1; 3742 caddr_t pp_addr2; 3743 hat_mempte_t pte1; 3744 hat_mempte_t pte2; 3745 kmutex_t *ppaddr_mutex; 3746 label_t ljb; 3747 int ret = 1; 3748 3749 ASSERT_STACK_ALIGNED(); 3750 ASSERT(PAGE_LOCKED(frompp)); 3751 ASSERT(PAGE_LOCKED(topp)); 3752 3753 if (kpm_enable) { 3754 pp_addr1 = hat_kpm_page2va(frompp, 0); 3755 pp_addr2 = hat_kpm_page2va(topp, 0); 3756 kpreempt_disable(); 3757 } else { 3758 /* 3759 * disable pre-emption so that CPU can't change 3760 */ 3761 kpreempt_disable(); 3762 3763 pp_addr1 = CPU->cpu_caddr1; 3764 pp_addr2 = CPU->cpu_caddr2; 3765 pte1 = CPU->cpu_caddr1pte; 3766 pte2 = CPU->cpu_caddr2pte; 3767 3768 ppaddr_mutex = &CPU->cpu_ppaddr_mutex; 3769 mutex_enter(ppaddr_mutex); 3770 3771 hat_mempte_remap(page_pptonum(frompp), pp_addr1, pte1, 3772 PROT_READ | HAT_STORECACHING_OK, HAT_LOAD_NOCONSIST); 3773 hat_mempte_remap(page_pptonum(topp), pp_addr2, pte2, 3774 PROT_READ | PROT_WRITE | HAT_STORECACHING_OK, 3775 HAT_LOAD_NOCONSIST); 3776 } 3777 3778 if (on_fault(&ljb)) { 3779 ret = 0; 3780 goto faulted; 3781 } 3782 if (use_sse_pagecopy) 3783 #ifdef __xpv 3784 page_copy_no_xmm(pp_addr2, pp_addr1); 3785 #else 3786 hwblkpagecopy(pp_addr1, pp_addr2); 3787 #endif 3788 else 3789 bcopy(pp_addr1, pp_addr2, PAGESIZE); 3790 3791 no_fault(); 3792 faulted: 3793 if (!kpm_enable) { 3794 #ifdef __xpv 3795 /* 3796 * We can't leave unused mappings laying about under the 3797 * hypervisor, so blow them away. 3798 */ 3799 if (HYPERVISOR_update_va_mapping((uintptr_t)pp_addr1, 0, 3800 UVMF_INVLPG | UVMF_LOCAL) < 0) 3801 panic("HYPERVISOR_update_va_mapping() failed"); 3802 if (HYPERVISOR_update_va_mapping((uintptr_t)pp_addr2, 0, 3803 UVMF_INVLPG | UVMF_LOCAL) < 0) 3804 panic("HYPERVISOR_update_va_mapping() failed"); 3805 #endif 3806 mutex_exit(ppaddr_mutex); 3807 } 3808 kpreempt_enable(); 3809 return (ret); 3810 } 3811 3812 void 3813 pagezero(page_t *pp, uint_t off, uint_t len) 3814 { 3815 ASSERT(PAGE_LOCKED(pp)); 3816 pfnzero(page_pptonum(pp), off, len); 3817 } 3818 3819 /* 3820 * Zero the physical page from off to off + len given by pfn 3821 * without changing the reference and modified bits of page. 3822 * 3823 * We use this using CPU private page address #2, see ppcopy() for more info. 3824 * pfnzero() must not be called at interrupt level. 3825 */ 3826 void 3827 pfnzero(pfn_t pfn, uint_t off, uint_t len) 3828 { 3829 caddr_t pp_addr2; 3830 hat_mempte_t pte2; 3831 kmutex_t *ppaddr_mutex = NULL; 3832 3833 ASSERT_STACK_ALIGNED(); 3834 ASSERT(len <= MMU_PAGESIZE); 3835 ASSERT(off <= MMU_PAGESIZE); 3836 ASSERT(off + len <= MMU_PAGESIZE); 3837 3838 if (kpm_enable && !pfn_is_foreign(pfn)) { 3839 pp_addr2 = hat_kpm_pfn2va(pfn); 3840 kpreempt_disable(); 3841 } else { 3842 kpreempt_disable(); 3843 3844 pp_addr2 = CPU->cpu_caddr2; 3845 pte2 = CPU->cpu_caddr2pte; 3846 3847 ppaddr_mutex = &CPU->cpu_ppaddr_mutex; 3848 mutex_enter(ppaddr_mutex); 3849 3850 hat_mempte_remap(pfn, pp_addr2, pte2, 3851 PROT_READ | PROT_WRITE | HAT_STORECACHING_OK, 3852 HAT_LOAD_NOCONSIST); 3853 } 3854 3855 if (use_sse_pagezero) { 3856 #ifdef __xpv 3857 uint_t rem; 3858 3859 /* 3860 * zero a byte at a time until properly aligned for 3861 * block_zero_no_xmm(). 3862 */ 3863 while (!P2NPHASE(off, ((uint_t)BLOCKZEROALIGN)) && len-- > 0) 3864 pp_addr2[off++] = 0; 3865 3866 /* 3867 * Now use faster block_zero_no_xmm() for any range 3868 * that is properly aligned and sized. 3869 */ 3870 rem = P2PHASE(len, ((uint_t)BLOCKZEROALIGN)); 3871 len -= rem; 3872 if (len != 0) { 3873 block_zero_no_xmm(pp_addr2 + off, len); 3874 off += len; 3875 } 3876 3877 /* 3878 * zero remainder with byte stores. 3879 */ 3880 while (rem-- > 0) 3881 pp_addr2[off++] = 0; 3882 #else 3883 hwblkclr(pp_addr2 + off, len); 3884 #endif 3885 } else { 3886 bzero(pp_addr2 + off, len); 3887 } 3888 3889 if (!kpm_enable || pfn_is_foreign(pfn)) { 3890 #ifdef __xpv 3891 /* 3892 * On the hypervisor this page might get used for a page 3893 * table before any intervening change to this mapping, 3894 * so blow it away. 3895 */ 3896 if (HYPERVISOR_update_va_mapping((uintptr_t)pp_addr2, 0, 3897 UVMF_INVLPG) < 0) 3898 panic("HYPERVISOR_update_va_mapping() failed"); 3899 #endif 3900 mutex_exit(ppaddr_mutex); 3901 } 3902 3903 kpreempt_enable(); 3904 } 3905 3906 /* 3907 * Platform-dependent page scrub call. 3908 */ 3909 void 3910 pagescrub(page_t *pp, uint_t off, uint_t len) 3911 { 3912 /* 3913 * For now, we rely on the fact that pagezero() will 3914 * always clear UEs. 3915 */ 3916 pagezero(pp, off, len); 3917 } 3918 3919 /* 3920 * set up two private addresses for use on a given CPU for use in ppcopy() 3921 */ 3922 void 3923 setup_vaddr_for_ppcopy(struct cpu *cpup) 3924 { 3925 void *addr; 3926 hat_mempte_t pte_pa; 3927 3928 addr = vmem_alloc(heap_arena, mmu_ptob(1), VM_SLEEP); 3929 pte_pa = hat_mempte_setup(addr); 3930 cpup->cpu_caddr1 = addr; 3931 cpup->cpu_caddr1pte = pte_pa; 3932 3933 addr = vmem_alloc(heap_arena, mmu_ptob(1), VM_SLEEP); 3934 pte_pa = hat_mempte_setup(addr); 3935 cpup->cpu_caddr2 = addr; 3936 cpup->cpu_caddr2pte = pte_pa; 3937 3938 mutex_init(&cpup->cpu_ppaddr_mutex, NULL, MUTEX_DEFAULT, NULL); 3939 } 3940 3941 /* 3942 * Undo setup_vaddr_for_ppcopy 3943 */ 3944 void 3945 teardown_vaddr_for_ppcopy(struct cpu *cpup) 3946 { 3947 mutex_destroy(&cpup->cpu_ppaddr_mutex); 3948 3949 hat_mempte_release(cpup->cpu_caddr2, cpup->cpu_caddr2pte); 3950 cpup->cpu_caddr2pte = 0; 3951 vmem_free(heap_arena, cpup->cpu_caddr2, mmu_ptob(1)); 3952 cpup->cpu_caddr2 = 0; 3953 3954 hat_mempte_release(cpup->cpu_caddr1, cpup->cpu_caddr1pte); 3955 cpup->cpu_caddr1pte = 0; 3956 vmem_free(heap_arena, cpup->cpu_caddr1, mmu_ptob(1)); 3957 cpup->cpu_caddr1 = 0; 3958 } 3959 3960 /* 3961 * Function for flushing D-cache when performing module relocations 3962 * to an alternate mapping. Unnecessary on Intel / AMD platforms. 3963 */ 3964 void 3965 dcache_flushall() 3966 {} 3967 3968 size_t 3969 exec_get_spslew(void) 3970 { 3971 return (0); 3972 } 3973 3974 /* 3975 * Allocate a memory page. The argument 'seed' can be any pseudo-random 3976 * number to vary where the pages come from. This is quite a hacked up 3977 * method -- it works for now, but really needs to be fixed up a bit. 3978 * 3979 * We currently use page_create_va() on the kvp with fake offsets, 3980 * segments and virt address. This is pretty bogus, but was copied from the 3981 * old hat_i86.c code. A better approach would be to specify either mnode 3982 * random or mnode local and takes a page from whatever color has the MOST 3983 * available - this would have a minimal impact on page coloring. 3984 */ 3985 page_t * 3986 page_get_physical(uintptr_t seed) 3987 { 3988 page_t *pp; 3989 u_offset_t offset; 3990 static struct seg tmpseg; 3991 static uintptr_t ctr = 0; 3992 3993 /* 3994 * This code is gross, we really need a simpler page allocator. 3995 * 3996 * We need to assign an offset for the page to call page_create_va() 3997 * To avoid conflicts with other pages, we get creative with the offset. 3998 * For 32 bits, we need an offset > 4Gig 3999 * For 64 bits, need an offset somewhere in the VA hole. 4000 */ 4001 offset = seed; 4002 if (offset > kernelbase) 4003 offset -= kernelbase; 4004 offset <<= MMU_PAGESHIFT; 4005 #if defined(__amd64) 4006 offset += mmu.hole_start; /* something in VA hole */ 4007 #else 4008 offset += 1ULL << 40; /* something > 4 Gig */ 4009 #endif 4010 4011 if (page_resv(1, KM_NOSLEEP) == 0) 4012 return (NULL); 4013 4014 #ifdef DEBUG 4015 pp = page_exists(&kvp, offset); 4016 if (pp != NULL) 4017 panic("page already exists %p", (void *)pp); 4018 #endif 4019 4020 pp = page_create_va(&kvp, offset, MMU_PAGESIZE, PG_EXCL, 4021 &tmpseg, (caddr_t)(ctr += MMU_PAGESIZE)); /* changing VA usage */ 4022 if (pp != NULL) { 4023 page_io_unlock(pp); 4024 page_hashout(pp, NULL); 4025 page_downgrade(pp); 4026 } 4027 return (pp); 4028 } 4029 4030 /* 4031 * Initializes the user and kernel page freelist type structures. 4032 */ 4033 /* ARGSUSED */ 4034 void 4035 page_flt_init(page_freelist_type_t *ufp, page_freelist_type_t *kfp) 4036 { 4037 ufp->pflt_type = PFLT_USER; 4038 ufp->pflt_get_free = &page_get_uflt; 4039 ufp->pflt_walk_init = page_list_walk_init; 4040 ufp->pflt_walk_next = page_list_walk_next_bin; 4041 ufp->pflt_policy[0] = page_get_mnode_freelist; 4042 ufp->pflt_policy[1] = page_get_contig_pages; 4043 ufp->pflt_num_policies = 2; 4044 #if defined(__amd64) && !defined(__xpv) 4045 if (!kflt_disable) { 4046 ufp->pflt_num_policies = 3; 4047 ufp->pflt_policy[1] = page_user_alloc_kflt; 4048 ufp->pflt_policy[2] = page_get_contig_pages; 4049 4050 kfp->pflt_type = PFLT_KMEM; 4051 kfp->pflt_get_free = &page_get_kflt; 4052 kfp->pflt_walk_init = page_kflt_walk_init; 4053 kfp->pflt_walk_next = page_list_walk_next_bin; 4054 kfp->pflt_num_policies = 1; 4055 kfp->pflt_policy[0] = page_get_mnode_freelist; 4056 } 4057 #endif /* __amd64 && !__xpv */ 4058 } 4059