xref: /illumos-gate/usr/src/uts/i86pc/vm/vm_machdep.c (revision d0f40dc6a997c84bacf5f9ba83d57a95495c399b)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2010 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 /*
26  * Copyright (c) 2010, Intel Corporation.
27  * All rights reserved.
28  */
29 
30 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */
31 /*	All Rights Reserved   */
32 
33 /*
34  * Portions of this source code were derived from Berkeley 4.3 BSD
35  * under license from the Regents of the University of California.
36  */
37 
38 /*
39  * UNIX machine dependent virtual memory support.
40  */
41 
42 #include <sys/types.h>
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/user.h>
46 #include <sys/proc.h>
47 #include <sys/kmem.h>
48 #include <sys/vmem.h>
49 #include <sys/buf.h>
50 #include <sys/cpuvar.h>
51 #include <sys/lgrp.h>
52 #include <sys/disp.h>
53 #include <sys/vm.h>
54 #include <sys/mman.h>
55 #include <sys/vnode.h>
56 #include <sys/cred.h>
57 #include <sys/exec.h>
58 #include <sys/exechdr.h>
59 #include <sys/debug.h>
60 #include <sys/vmsystm.h>
61 
62 #include <vm/hat.h>
63 #include <vm/as.h>
64 #include <vm/seg.h>
65 #include <vm/seg_kp.h>
66 #include <vm/seg_vn.h>
67 #include <vm/page.h>
68 #include <vm/seg_kmem.h>
69 #include <vm/seg_kpm.h>
70 #include <vm/vm_dep.h>
71 
72 #include <sys/cpu.h>
73 #include <sys/vm_machparam.h>
74 #include <sys/memlist.h>
75 #include <sys/bootconf.h> /* XXX the memlist stuff belongs in memlist_plat.h */
76 #include <vm/hat_i86.h>
77 #include <sys/x86_archext.h>
78 #include <sys/elf_386.h>
79 #include <sys/cmn_err.h>
80 #include <sys/archsystm.h>
81 #include <sys/machsystm.h>
82 
83 #include <sys/vtrace.h>
84 #include <sys/ddidmareq.h>
85 #include <sys/promif.h>
86 #include <sys/memnode.h>
87 #include <sys/stack.h>
88 #include <util/qsort.h>
89 #include <sys/taskq.h>
90 
91 #ifdef __xpv
92 
93 #include <sys/hypervisor.h>
94 #include <sys/xen_mmu.h>
95 #include <sys/balloon_impl.h>
96 
97 /*
98  * domain 0 pages usable for DMA are kept pre-allocated and kept in
99  * distinct lists, ordered by increasing mfn.
100  */
101 static kmutex_t io_pool_lock;
102 static kmutex_t contig_list_lock;
103 static page_t *io_pool_4g;	/* pool for 32 bit dma limited devices */
104 static page_t *io_pool_16m;	/* pool for 24 bit dma limited legacy devices */
105 static long io_pool_cnt;
106 static long io_pool_cnt_max = 0;
107 #define	DEFAULT_IO_POOL_MIN	128
108 static long io_pool_cnt_min = DEFAULT_IO_POOL_MIN;
109 static long io_pool_cnt_lowater = 0;
110 static long io_pool_shrink_attempts; /* how many times did we try to shrink */
111 static long io_pool_shrinks;	/* how many times did we really shrink */
112 static long io_pool_grows;	/* how many times did we grow */
113 static mfn_t start_mfn = 1;
114 static caddr_t io_pool_kva;	/* use to alloc pages when needed */
115 
116 static int create_contig_pfnlist(uint_t);
117 
118 /*
119  * percentage of phys mem to hold in the i/o pool
120  */
121 #define	DEFAULT_IO_POOL_PCT	2
122 static long io_pool_physmem_pct = DEFAULT_IO_POOL_PCT;
123 static void page_io_pool_sub(page_t **, page_t *, page_t *);
124 int ioalloc_dbg = 0;
125 
126 #endif /* __xpv */
127 
128 uint_t vac_colors = 1;
129 
130 int largepagesupport = 0;
131 extern uint_t page_create_new;
132 extern uint_t page_create_exists;
133 extern uint_t page_create_putbacks;
134 /*
135  * Allow users to disable the kernel's use of SSE.
136  */
137 extern int use_sse_pagecopy, use_sse_pagezero;
138 
139 /*
140  * combined memory ranges from mnode and memranges[] to manage single
141  * mnode/mtype dimension in the page lists.
142  */
143 typedef struct {
144 	pfn_t	mnr_pfnlo;
145 	pfn_t	mnr_pfnhi;
146 	int	mnr_mnode;
147 	int	mnr_memrange;		/* index into memranges[] */
148 	int	mnr_next;		/* next lower PA mnoderange */
149 	int	mnr_exists;
150 	/* maintain page list stats */
151 	pgcnt_t	mnr_mt_clpgcnt;		/* cache list cnt */
152 	pgcnt_t	mnr_mt_flpgcnt[MMU_PAGE_SIZES];	/* free list cnt per szc */
153 	pgcnt_t	mnr_mt_totcnt;		/* sum of cache and free lists */
154 #ifdef DEBUG
155 	struct mnr_mts {		/* mnode/mtype szc stats */
156 		pgcnt_t	mnr_mts_pgcnt;
157 		int	mnr_mts_colors;
158 		pgcnt_t *mnr_mtsc_pgcnt;
159 	} 	*mnr_mts;
160 #endif
161 } mnoderange_t;
162 
163 #define	MEMRANGEHI(mtype)						\
164 	((mtype > 0) ? memranges[mtype - 1] - 1: physmax)
165 #define	MEMRANGELO(mtype)	(memranges[mtype])
166 
167 #define	MTYPE_FREEMEM(mt)	(mnoderanges[mt].mnr_mt_totcnt)
168 
169 /*
170  * As the PC architecture evolved memory up was clumped into several
171  * ranges for various historical I/O devices to do DMA.
172  * < 16Meg - ISA bus
173  * < 2Gig - ???
174  * < 4Gig - PCI bus or drivers that don't understand PAE mode
175  *
176  * These are listed in reverse order, so that we can skip over unused
177  * ranges on machines with small memories.
178  *
179  * For now under the Hypervisor, we'll only ever have one memrange.
180  */
181 #define	PFN_4GIG	0x100000
182 #define	PFN_16MEG	0x1000
183 /* Indices into the memory range (arch_memranges) array. */
184 #define	MRI_4G		0
185 #define	MRI_2G		1
186 #define	MRI_16M		2
187 #define	MRI_0		3
188 static pfn_t arch_memranges[NUM_MEM_RANGES] = {
189     PFN_4GIG,	/* pfn range for 4G and above */
190     0x80000,	/* pfn range for 2G-4G */
191     PFN_16MEG,	/* pfn range for 16M-2G */
192     0x00000,	/* pfn range for 0-16M */
193 };
194 pfn_t *memranges = &arch_memranges[0];
195 int nranges = NUM_MEM_RANGES;
196 
197 /*
198  * This combines mem_node_config and memranges into one data
199  * structure to be used for page list management.
200  */
201 mnoderange_t	*mnoderanges;
202 int		mnoderangecnt;
203 int		mtype4g;
204 int		mtype16m;
205 int		mtypetop;	/* index of highest pfn'ed mnoderange */
206 
207 /*
208  * 4g memory management variables for systems with more than 4g of memory:
209  *
210  * physical memory below 4g is required for 32bit dma devices and, currently,
211  * for kmem memory. On systems with more than 4g of memory, the pool of memory
212  * below 4g can be depleted without any paging activity given that there is
213  * likely to be sufficient memory above 4g.
214  *
215  * physmax4g is set true if the largest pfn is over 4g. The rest of the
216  * 4g memory management code is enabled only when physmax4g is true.
217  *
218  * maxmem4g is the count of the maximum number of pages on the page lists
219  * with physical addresses below 4g. It can be a lot less then 4g given that
220  * BIOS may reserve large chunks of space below 4g for hot plug pci devices,
221  * agp aperture etc.
222  *
223  * freemem4g maintains the count of the number of available pages on the
224  * page lists with physical addresses below 4g.
225  *
226  * DESFREE4G specifies the desired amount of below 4g memory. It defaults to
227  * 6% (desfree4gshift = 4) of maxmem4g.
228  *
229  * RESTRICT4G_ALLOC returns true if freemem4g falls below DESFREE4G
230  * and the amount of physical memory above 4g is greater than freemem4g.
231  * In this case, page_get_* routines will restrict below 4g allocations
232  * for requests that don't specifically require it.
233  */
234 
235 #define	DESFREE4G	(maxmem4g >> desfree4gshift)
236 
237 #define	RESTRICT4G_ALLOC					\
238 	(physmax4g && (freemem4g < DESFREE4G) && ((freemem4g << 1) < freemem))
239 
240 static pgcnt_t	maxmem4g;
241 static pgcnt_t	freemem4g;
242 static int	physmax4g;
243 static int	desfree4gshift = 4;	/* maxmem4g shift to derive DESFREE4G */
244 
245 /*
246  * 16m memory management:
247  *
248  * reserve some amount of physical memory below 16m for legacy devices.
249  *
250  * RESTRICT16M_ALLOC returns true if an there are sufficient free pages above
251  * 16m or if the 16m pool drops below DESFREE16M.
252  *
253  * In this case, general page allocations via page_get_{free,cache}list
254  * routines will be restricted from allocating from the 16m pool. Allocations
255  * that require specific pfn ranges (page_get_anylist) and PG_PANIC allocations
256  * are not restricted.
257  */
258 
259 #define	FREEMEM16M	MTYPE_FREEMEM(mtype16m)
260 #define	DESFREE16M	desfree16m
261 #define	RESTRICT16M_ALLOC(freemem, pgcnt, flags)		\
262 	((freemem != 0) && ((flags & PG_PANIC) == 0) &&		\
263 	    ((freemem >= (FREEMEM16M)) ||			\
264 	    (FREEMEM16M  < (DESFREE16M + pgcnt))))
265 
266 static pgcnt_t	desfree16m = 0x380;
267 
268 /*
269  * This can be patched via /etc/system to allow old non-PAE aware device
270  * drivers to use kmem_alloc'd memory on 32 bit systems with > 4Gig RAM.
271  */
272 int restricted_kmemalloc = 0;
273 
274 #ifdef VM_STATS
275 struct {
276 	ulong_t	pga_alloc;
277 	ulong_t	pga_notfullrange;
278 	ulong_t	pga_nulldmaattr;
279 	ulong_t	pga_allocok;
280 	ulong_t	pga_allocfailed;
281 	ulong_t	pgma_alloc;
282 	ulong_t	pgma_allocok;
283 	ulong_t	pgma_allocfailed;
284 	ulong_t	pgma_allocempty;
285 } pga_vmstats;
286 #endif
287 
288 uint_t mmu_page_sizes;
289 
290 /* How many page sizes the users can see */
291 uint_t mmu_exported_page_sizes;
292 
293 /* page sizes that legacy applications can see */
294 uint_t mmu_legacy_page_sizes;
295 
296 /*
297  * Number of pages in 1 GB.  Don't enable automatic large pages if we have
298  * fewer than this many pages.
299  */
300 pgcnt_t shm_lpg_min_physmem = 1 << (30 - MMU_PAGESHIFT);
301 pgcnt_t privm_lpg_min_physmem = 1 << (30 - MMU_PAGESHIFT);
302 
303 /*
304  * Maximum and default segment size tunables for user private
305  * and shared anon memory, and user text and initialized data.
306  * These can be patched via /etc/system to allow large pages
307  * to be used for mapping application private and shared anon memory.
308  */
309 size_t mcntl0_lpsize = MMU_PAGESIZE;
310 size_t max_uheap_lpsize = MMU_PAGESIZE;
311 size_t default_uheap_lpsize = MMU_PAGESIZE;
312 size_t max_ustack_lpsize = MMU_PAGESIZE;
313 size_t default_ustack_lpsize = MMU_PAGESIZE;
314 size_t max_privmap_lpsize = MMU_PAGESIZE;
315 size_t max_uidata_lpsize = MMU_PAGESIZE;
316 size_t max_utext_lpsize = MMU_PAGESIZE;
317 size_t max_shm_lpsize = MMU_PAGESIZE;
318 
319 
320 /*
321  * initialized by page_coloring_init().
322  */
323 uint_t	page_colors;
324 uint_t	page_colors_mask;
325 uint_t	page_coloring_shift;
326 int	cpu_page_colors;
327 static uint_t	l2_colors;
328 
329 /*
330  * Page freelists and cachelists are dynamically allocated once mnoderangecnt
331  * and page_colors are calculated from the l2 cache n-way set size.  Within a
332  * mnode range, the page freelist and cachelist are hashed into bins based on
333  * color. This makes it easier to search for a page within a specific memory
334  * range.
335  */
336 #define	PAGE_COLORS_MIN	16
337 
338 page_t ****page_freelists;
339 page_t ***page_cachelists;
340 
341 
342 /*
343  * Used by page layer to know about page sizes
344  */
345 hw_pagesize_t hw_page_array[MAX_NUM_LEVEL + 1];
346 
347 kmutex_t	*fpc_mutex[NPC_MUTEX];
348 kmutex_t	*cpc_mutex[NPC_MUTEX];
349 
350 /* Lock to protect mnoderanges array for memory DR operations. */
351 static kmutex_t mnoderange_lock;
352 
353 /*
354  * Only let one thread at a time try to coalesce large pages, to
355  * prevent them from working against each other.
356  */
357 static kmutex_t	contig_lock;
358 #define	CONTIG_LOCK()	mutex_enter(&contig_lock);
359 #define	CONTIG_UNLOCK()	mutex_exit(&contig_lock);
360 
361 #define	PFN_16M		(mmu_btop((uint64_t)0x1000000))
362 
363 /*
364  * Return the optimum page size for a given mapping
365  */
366 /*ARGSUSED*/
367 size_t
368 map_pgsz(int maptype, struct proc *p, caddr_t addr, size_t len, int memcntl)
369 {
370 	level_t l = 0;
371 	size_t pgsz = MMU_PAGESIZE;
372 	size_t max_lpsize;
373 	uint_t mszc;
374 
375 	ASSERT(maptype != MAPPGSZ_VA);
376 
377 	if (maptype != MAPPGSZ_ISM && physmem < privm_lpg_min_physmem) {
378 		return (MMU_PAGESIZE);
379 	}
380 
381 	switch (maptype) {
382 	case MAPPGSZ_HEAP:
383 	case MAPPGSZ_STK:
384 		max_lpsize = memcntl ? mcntl0_lpsize : (maptype ==
385 		    MAPPGSZ_HEAP ? max_uheap_lpsize : max_ustack_lpsize);
386 		if (max_lpsize == MMU_PAGESIZE) {
387 			return (MMU_PAGESIZE);
388 		}
389 		if (len == 0) {
390 			len = (maptype == MAPPGSZ_HEAP) ? p->p_brkbase +
391 			    p->p_brksize - p->p_bssbase : p->p_stksize;
392 		}
393 		len = (maptype == MAPPGSZ_HEAP) ? MAX(len,
394 		    default_uheap_lpsize) : MAX(len, default_ustack_lpsize);
395 
396 		/*
397 		 * use the pages size that best fits len
398 		 */
399 		for (l = mmu.umax_page_level; l > 0; --l) {
400 			if (LEVEL_SIZE(l) > max_lpsize || len < LEVEL_SIZE(l)) {
401 				continue;
402 			} else {
403 				pgsz = LEVEL_SIZE(l);
404 			}
405 			break;
406 		}
407 
408 		mszc = (maptype == MAPPGSZ_HEAP ? p->p_brkpageszc :
409 		    p->p_stkpageszc);
410 		if (addr == 0 && (pgsz < hw_page_array[mszc].hp_size)) {
411 			pgsz = hw_page_array[mszc].hp_size;
412 		}
413 		return (pgsz);
414 
415 	case MAPPGSZ_ISM:
416 		for (l = mmu.umax_page_level; l > 0; --l) {
417 			if (len >= LEVEL_SIZE(l))
418 				return (LEVEL_SIZE(l));
419 		}
420 		return (LEVEL_SIZE(0));
421 	}
422 	return (pgsz);
423 }
424 
425 static uint_t
426 map_szcvec(caddr_t addr, size_t size, uintptr_t off, size_t max_lpsize,
427     size_t min_physmem)
428 {
429 	caddr_t eaddr = addr + size;
430 	uint_t szcvec = 0;
431 	caddr_t raddr;
432 	caddr_t readdr;
433 	size_t	pgsz;
434 	int i;
435 
436 	if (physmem < min_physmem || max_lpsize <= MMU_PAGESIZE) {
437 		return (0);
438 	}
439 
440 	for (i = mmu_exported_page_sizes - 1; i > 0; i--) {
441 		pgsz = page_get_pagesize(i);
442 		if (pgsz > max_lpsize) {
443 			continue;
444 		}
445 		raddr = (caddr_t)P2ROUNDUP((uintptr_t)addr, pgsz);
446 		readdr = (caddr_t)P2ALIGN((uintptr_t)eaddr, pgsz);
447 		if (raddr < addr || raddr >= readdr) {
448 			continue;
449 		}
450 		if (P2PHASE((uintptr_t)addr ^ off, pgsz)) {
451 			continue;
452 		}
453 		/*
454 		 * Set szcvec to the remaining page sizes.
455 		 */
456 		szcvec = ((1 << (i + 1)) - 1) & ~1;
457 		break;
458 	}
459 	return (szcvec);
460 }
461 
462 /*
463  * Return a bit vector of large page size codes that
464  * can be used to map [addr, addr + len) region.
465  */
466 /*ARGSUSED*/
467 uint_t
468 map_pgszcvec(caddr_t addr, size_t size, uintptr_t off, int flags, int type,
469     int memcntl)
470 {
471 	size_t max_lpsize = mcntl0_lpsize;
472 
473 	if (mmu.max_page_level == 0)
474 		return (0);
475 
476 	if (flags & MAP_TEXT) {
477 		if (!memcntl)
478 			max_lpsize = max_utext_lpsize;
479 		return (map_szcvec(addr, size, off, max_lpsize,
480 		    shm_lpg_min_physmem));
481 
482 	} else if (flags & MAP_INITDATA) {
483 		if (!memcntl)
484 			max_lpsize = max_uidata_lpsize;
485 		return (map_szcvec(addr, size, off, max_lpsize,
486 		    privm_lpg_min_physmem));
487 
488 	} else if (type == MAPPGSZC_SHM) {
489 		if (!memcntl)
490 			max_lpsize = max_shm_lpsize;
491 		return (map_szcvec(addr, size, off, max_lpsize,
492 		    shm_lpg_min_physmem));
493 
494 	} else if (type == MAPPGSZC_HEAP) {
495 		if (!memcntl)
496 			max_lpsize = max_uheap_lpsize;
497 		return (map_szcvec(addr, size, off, max_lpsize,
498 		    privm_lpg_min_physmem));
499 
500 	} else if (type == MAPPGSZC_STACK) {
501 		if (!memcntl)
502 			max_lpsize = max_ustack_lpsize;
503 		return (map_szcvec(addr, size, off, max_lpsize,
504 		    privm_lpg_min_physmem));
505 
506 	} else {
507 		if (!memcntl)
508 			max_lpsize = max_privmap_lpsize;
509 		return (map_szcvec(addr, size, off, max_lpsize,
510 		    privm_lpg_min_physmem));
511 	}
512 }
513 
514 /*
515  * Handle a pagefault.
516  */
517 faultcode_t
518 pagefault(
519 	caddr_t addr,
520 	enum fault_type type,
521 	enum seg_rw rw,
522 	int iskernel)
523 {
524 	struct as *as;
525 	struct hat *hat;
526 	struct proc *p;
527 	kthread_t *t;
528 	faultcode_t res;
529 	caddr_t base;
530 	size_t len;
531 	int err;
532 	int mapped_red;
533 	uintptr_t ea;
534 
535 	ASSERT_STACK_ALIGNED();
536 
537 	if (INVALID_VADDR(addr))
538 		return (FC_NOMAP);
539 
540 	mapped_red = segkp_map_red();
541 
542 	if (iskernel) {
543 		as = &kas;
544 		hat = as->a_hat;
545 	} else {
546 		t = curthread;
547 		p = ttoproc(t);
548 		as = p->p_as;
549 		hat = as->a_hat;
550 	}
551 
552 	/*
553 	 * Dispatch pagefault.
554 	 */
555 	res = as_fault(hat, as, addr, 1, type, rw);
556 
557 	/*
558 	 * If this isn't a potential unmapped hole in the user's
559 	 * UNIX data or stack segments, just return status info.
560 	 */
561 	if (res != FC_NOMAP || iskernel)
562 		goto out;
563 
564 	/*
565 	 * Check to see if we happened to faulted on a currently unmapped
566 	 * part of the UNIX data or stack segments.  If so, create a zfod
567 	 * mapping there and then try calling the fault routine again.
568 	 */
569 	base = p->p_brkbase;
570 	len = p->p_brksize;
571 
572 	if (addr < base || addr >= base + len) {		/* data seg? */
573 		base = (caddr_t)p->p_usrstack - p->p_stksize;
574 		len = p->p_stksize;
575 		if (addr < base || addr >= p->p_usrstack) {	/* stack seg? */
576 			/* not in either UNIX data or stack segments */
577 			res = FC_NOMAP;
578 			goto out;
579 		}
580 	}
581 
582 	/*
583 	 * the rest of this function implements a 3.X 4.X 5.X compatibility
584 	 * This code is probably not needed anymore
585 	 */
586 	if (p->p_model == DATAMODEL_ILP32) {
587 
588 		/* expand the gap to the page boundaries on each side */
589 		ea = P2ROUNDUP((uintptr_t)base + len, MMU_PAGESIZE);
590 		base = (caddr_t)P2ALIGN((uintptr_t)base, MMU_PAGESIZE);
591 		len = ea - (uintptr_t)base;
592 
593 		as_rangelock(as);
594 		if (as_gap(as, MMU_PAGESIZE, &base, &len, AH_CONTAIN, addr) ==
595 		    0) {
596 			err = as_map(as, base, len, segvn_create, zfod_argsp);
597 			as_rangeunlock(as);
598 			if (err) {
599 				res = FC_MAKE_ERR(err);
600 				goto out;
601 			}
602 		} else {
603 			/*
604 			 * This page is already mapped by another thread after
605 			 * we returned from as_fault() above.  We just fall
606 			 * through as_fault() below.
607 			 */
608 			as_rangeunlock(as);
609 		}
610 
611 		res = as_fault(hat, as, addr, 1, F_INVAL, rw);
612 	}
613 
614 out:
615 	if (mapped_red)
616 		segkp_unmap_red();
617 
618 	return (res);
619 }
620 
621 void
622 map_addr(caddr_t *addrp, size_t len, offset_t off, int vacalign, uint_t flags)
623 {
624 	struct proc *p = curproc;
625 	caddr_t userlimit = (flags & _MAP_LOW32) ?
626 	    (caddr_t)_userlimit32 : p->p_as->a_userlimit;
627 
628 	map_addr_proc(addrp, len, off, vacalign, userlimit, curproc, flags);
629 }
630 
631 /*ARGSUSED*/
632 int
633 map_addr_vacalign_check(caddr_t addr, u_offset_t off)
634 {
635 	return (0);
636 }
637 
638 /*
639  * map_addr_proc() is the routine called when the system is to
640  * choose an address for the user.  We will pick an address
641  * range which is the highest available below userlimit.
642  *
643  * Every mapping will have a redzone of a single page on either side of
644  * the request. This is done to leave one page unmapped between segments.
645  * This is not required, but it's useful for the user because if their
646  * program strays across a segment boundary, it will catch a fault
647  * immediately making debugging a little easier.  Currently the redzone
648  * is mandatory.
649  *
650  * addrp is a value/result parameter.
651  *	On input it is a hint from the user to be used in a completely
652  *	machine dependent fashion.  We decide to completely ignore this hint.
653  *	If MAP_ALIGN was specified, addrp contains the minimal alignment, which
654  *	must be some "power of two" multiple of pagesize.
655  *
656  *	On output it is NULL if no address can be found in the current
657  *	processes address space or else an address that is currently
658  *	not mapped for len bytes with a page of red zone on either side.
659  *
660  *	vacalign is not needed on x86 (it's for viturally addressed caches)
661  */
662 /*ARGSUSED*/
663 void
664 map_addr_proc(
665 	caddr_t *addrp,
666 	size_t len,
667 	offset_t off,
668 	int vacalign,
669 	caddr_t userlimit,
670 	struct proc *p,
671 	uint_t flags)
672 {
673 	struct as *as = p->p_as;
674 	caddr_t addr;
675 	caddr_t base;
676 	size_t slen;
677 	size_t align_amount;
678 
679 	ASSERT32(userlimit == as->a_userlimit);
680 
681 	base = p->p_brkbase;
682 #if defined(__amd64)
683 	/*
684 	 * XX64 Yes, this needs more work.
685 	 */
686 	if (p->p_model == DATAMODEL_NATIVE) {
687 		if (userlimit < as->a_userlimit) {
688 			/*
689 			 * This happens when a program wants to map
690 			 * something in a range that's accessible to a
691 			 * program in a smaller address space.  For example,
692 			 * a 64-bit program calling mmap32(2) to guarantee
693 			 * that the returned address is below 4Gbytes.
694 			 */
695 			ASSERT((uintptr_t)userlimit < ADDRESS_C(0xffffffff));
696 
697 			if (userlimit > base)
698 				slen = userlimit - base;
699 			else {
700 				*addrp = NULL;
701 				return;
702 			}
703 		} else {
704 			/*
705 			 * XX64 This layout is probably wrong .. but in
706 			 * the event we make the amd64 address space look
707 			 * like sparcv9 i.e. with the stack -above- the
708 			 * heap, this bit of code might even be correct.
709 			 */
710 			slen = p->p_usrstack - base -
711 			    ((p->p_stk_ctl + PAGEOFFSET) & PAGEMASK);
712 		}
713 	} else
714 #endif
715 		slen = userlimit - base;
716 
717 	/* Make len be a multiple of PAGESIZE */
718 	len = (len + PAGEOFFSET) & PAGEMASK;
719 
720 	/*
721 	 * figure out what the alignment should be
722 	 *
723 	 * XX64 -- is there an ELF_AMD64_MAXPGSZ or is it the same????
724 	 */
725 	if (len <= ELF_386_MAXPGSZ) {
726 		/*
727 		 * Align virtual addresses to ensure that ELF shared libraries
728 		 * are mapped with the appropriate alignment constraints by
729 		 * the run-time linker.
730 		 */
731 		align_amount = ELF_386_MAXPGSZ;
732 	} else {
733 		/*
734 		 * For 32-bit processes, only those which have specified
735 		 * MAP_ALIGN and an addr will be aligned on a larger page size.
736 		 * Not doing so can potentially waste up to 1G of process
737 		 * address space.
738 		 */
739 		int lvl = (p->p_model == DATAMODEL_ILP32) ? 1 :
740 		    mmu.umax_page_level;
741 
742 		while (lvl && len < LEVEL_SIZE(lvl))
743 			--lvl;
744 
745 		align_amount = LEVEL_SIZE(lvl);
746 	}
747 	if ((flags & MAP_ALIGN) && ((uintptr_t)*addrp > align_amount))
748 		align_amount = (uintptr_t)*addrp;
749 
750 	ASSERT(ISP2(align_amount));
751 	ASSERT(align_amount == 0 || align_amount >= PAGESIZE);
752 
753 	off = off & (align_amount - 1);
754 	/*
755 	 * Look for a large enough hole starting below userlimit.
756 	 * After finding it, use the upper part.
757 	 */
758 	if (as_gap_aligned(as, len, &base, &slen, AH_HI, NULL, align_amount,
759 	    PAGESIZE, off) == 0) {
760 		caddr_t as_addr;
761 
762 		/*
763 		 * addr is the highest possible address to use since we have
764 		 * a PAGESIZE redzone at the beginning and end.
765 		 */
766 		addr = base + slen - (PAGESIZE + len);
767 		as_addr = addr;
768 		/*
769 		 * Round address DOWN to the alignment amount and
770 		 * add the offset in.
771 		 * If addr is greater than as_addr, len would not be large
772 		 * enough to include the redzone, so we must adjust down
773 		 * by the alignment amount.
774 		 */
775 		addr = (caddr_t)((uintptr_t)addr & (~(align_amount - 1)));
776 		addr += (uintptr_t)off;
777 		if (addr > as_addr) {
778 			addr -= align_amount;
779 		}
780 
781 		ASSERT(addr > base);
782 		ASSERT(addr + len < base + slen);
783 		ASSERT(((uintptr_t)addr & (align_amount - 1)) ==
784 		    ((uintptr_t)(off)));
785 		*addrp = addr;
786 	} else {
787 		*addrp = NULL;	/* no more virtual space */
788 	}
789 }
790 
791 int valid_va_range_aligned_wraparound;
792 
793 /*
794  * Determine whether [*basep, *basep + *lenp) contains a mappable range of
795  * addresses at least "minlen" long, where the base of the range is at "off"
796  * phase from an "align" boundary and there is space for a "redzone"-sized
797  * redzone on either side of the range.  On success, 1 is returned and *basep
798  * and *lenp are adjusted to describe the acceptable range (including
799  * the redzone).  On failure, 0 is returned.
800  */
801 /*ARGSUSED3*/
802 int
803 valid_va_range_aligned(caddr_t *basep, size_t *lenp, size_t minlen, int dir,
804     size_t align, size_t redzone, size_t off)
805 {
806 	uintptr_t hi, lo;
807 	size_t tot_len;
808 
809 	ASSERT(align == 0 ? off == 0 : off < align);
810 	ASSERT(ISP2(align));
811 	ASSERT(align == 0 || align >= PAGESIZE);
812 
813 	lo = (uintptr_t)*basep;
814 	hi = lo + *lenp;
815 	tot_len = minlen + 2 * redzone; /* need at least this much space */
816 
817 	/*
818 	 * If hi rolled over the top, try cutting back.
819 	 */
820 	if (hi < lo) {
821 		*lenp = 0UL - lo - 1UL;
822 		/* See if this really happens. If so, then we figure out why */
823 		valid_va_range_aligned_wraparound++;
824 		hi = lo + *lenp;
825 	}
826 	if (*lenp < tot_len) {
827 		return (0);
828 	}
829 
830 #if defined(__amd64)
831 	/*
832 	 * Deal with a possible hole in the address range between
833 	 * hole_start and hole_end that should never be mapped.
834 	 */
835 	if (lo < hole_start) {
836 		if (hi > hole_start) {
837 			if (hi < hole_end) {
838 				hi = hole_start;
839 			} else {
840 				/* lo < hole_start && hi >= hole_end */
841 				if (dir == AH_LO) {
842 					/*
843 					 * prefer lowest range
844 					 */
845 					if (hole_start - lo >= tot_len)
846 						hi = hole_start;
847 					else if (hi - hole_end >= tot_len)
848 						lo = hole_end;
849 					else
850 						return (0);
851 				} else {
852 					/*
853 					 * prefer highest range
854 					 */
855 					if (hi - hole_end >= tot_len)
856 						lo = hole_end;
857 					else if (hole_start - lo >= tot_len)
858 						hi = hole_start;
859 					else
860 						return (0);
861 				}
862 			}
863 		}
864 	} else {
865 		/* lo >= hole_start */
866 		if (hi < hole_end)
867 			return (0);
868 		if (lo < hole_end)
869 			lo = hole_end;
870 	}
871 #endif
872 
873 	if (hi - lo < tot_len)
874 		return (0);
875 
876 	if (align > 1) {
877 		uintptr_t tlo = lo + redzone;
878 		uintptr_t thi = hi - redzone;
879 		tlo = (uintptr_t)P2PHASEUP(tlo, align, off);
880 		if (tlo < lo + redzone) {
881 			return (0);
882 		}
883 		if (thi < tlo || thi - tlo < minlen) {
884 			return (0);
885 		}
886 	}
887 
888 	*basep = (caddr_t)lo;
889 	*lenp = hi - lo;
890 	return (1);
891 }
892 
893 /*
894  * Determine whether [*basep, *basep + *lenp) contains a mappable range of
895  * addresses at least "minlen" long.  On success, 1 is returned and *basep
896  * and *lenp are adjusted to describe the acceptable range.  On failure, 0
897  * is returned.
898  */
899 int
900 valid_va_range(caddr_t *basep, size_t *lenp, size_t minlen, int dir)
901 {
902 	return (valid_va_range_aligned(basep, lenp, minlen, dir, 0, 0, 0));
903 }
904 
905 /*
906  * Determine whether [addr, addr+len] are valid user addresses.
907  */
908 /*ARGSUSED*/
909 int
910 valid_usr_range(caddr_t addr, size_t len, uint_t prot, struct as *as,
911     caddr_t userlimit)
912 {
913 	caddr_t eaddr = addr + len;
914 
915 	if (eaddr <= addr || addr >= userlimit || eaddr > userlimit)
916 		return (RANGE_BADADDR);
917 
918 #if defined(__amd64)
919 	/*
920 	 * Check for the VA hole
921 	 */
922 	if (eaddr > (caddr_t)hole_start && addr < (caddr_t)hole_end)
923 		return (RANGE_BADADDR);
924 #endif
925 
926 	return (RANGE_OKAY);
927 }
928 
929 /*
930  * Return 1 if the page frame is onboard memory, else 0.
931  */
932 int
933 pf_is_memory(pfn_t pf)
934 {
935 	if (pfn_is_foreign(pf))
936 		return (0);
937 	return (address_in_memlist(phys_install, pfn_to_pa(pf), 1));
938 }
939 
940 /*
941  * return the memrange containing pfn
942  */
943 int
944 memrange_num(pfn_t pfn)
945 {
946 	int n;
947 
948 	for (n = 0; n < nranges - 1; ++n) {
949 		if (pfn >= memranges[n])
950 			break;
951 	}
952 	return (n);
953 }
954 
955 /*
956  * return the mnoderange containing pfn
957  */
958 /*ARGSUSED*/
959 int
960 pfn_2_mtype(pfn_t pfn)
961 {
962 #if defined(__xpv)
963 	return (0);
964 #else
965 	int	n;
966 
967 	/* Always start from highest pfn and work our way down */
968 	for (n = mtypetop; n != -1; n = mnoderanges[n].mnr_next) {
969 		if (pfn >= mnoderanges[n].mnr_pfnlo) {
970 			break;
971 		}
972 	}
973 	return (n);
974 #endif
975 }
976 
977 #if !defined(__xpv)
978 /*
979  * is_contigpage_free:
980  *	returns a page list of contiguous pages. It minimally has to return
981  *	minctg pages. Caller determines minctg based on the scatter-gather
982  *	list length.
983  *
984  *	pfnp is set to the next page frame to search on return.
985  */
986 static page_t *
987 is_contigpage_free(
988 	pfn_t *pfnp,
989 	pgcnt_t *pgcnt,
990 	pgcnt_t minctg,
991 	uint64_t pfnseg,
992 	int iolock)
993 {
994 	int	i = 0;
995 	pfn_t	pfn = *pfnp;
996 	page_t	*pp;
997 	page_t	*plist = NULL;
998 
999 	/*
1000 	 * fail if pfn + minctg crosses a segment boundary.
1001 	 * Adjust for next starting pfn to begin at segment boundary.
1002 	 */
1003 
1004 	if (((*pfnp + minctg - 1) & pfnseg) < (*pfnp & pfnseg)) {
1005 		*pfnp = roundup(*pfnp, pfnseg + 1);
1006 		return (NULL);
1007 	}
1008 
1009 	do {
1010 retry:
1011 		pp = page_numtopp_nolock(pfn + i);
1012 		if ((pp == NULL) ||
1013 		    (page_trylock(pp, SE_EXCL) == 0)) {
1014 			(*pfnp)++;
1015 			break;
1016 		}
1017 		if (page_pptonum(pp) != pfn + i) {
1018 			page_unlock(pp);
1019 			goto retry;
1020 		}
1021 
1022 		if (!(PP_ISFREE(pp))) {
1023 			page_unlock(pp);
1024 			(*pfnp)++;
1025 			break;
1026 		}
1027 
1028 		if (!PP_ISAGED(pp)) {
1029 			page_list_sub(pp, PG_CACHE_LIST);
1030 			page_hashout(pp, (kmutex_t *)NULL);
1031 		} else {
1032 			page_list_sub(pp, PG_FREE_LIST);
1033 		}
1034 
1035 		if (iolock)
1036 			page_io_lock(pp);
1037 		page_list_concat(&plist, &pp);
1038 
1039 		/*
1040 		 * exit loop when pgcnt satisfied or segment boundary reached.
1041 		 */
1042 
1043 	} while ((++i < *pgcnt) && ((pfn + i) & pfnseg));
1044 
1045 	*pfnp += i;		/* set to next pfn to search */
1046 
1047 	if (i >= minctg) {
1048 		*pgcnt -= i;
1049 		return (plist);
1050 	}
1051 
1052 	/*
1053 	 * failure: minctg not satisfied.
1054 	 *
1055 	 * if next request crosses segment boundary, set next pfn
1056 	 * to search from the segment boundary.
1057 	 */
1058 	if (((*pfnp + minctg - 1) & pfnseg) < (*pfnp & pfnseg))
1059 		*pfnp = roundup(*pfnp, pfnseg + 1);
1060 
1061 	/* clean up any pages already allocated */
1062 
1063 	while (plist) {
1064 		pp = plist;
1065 		page_sub(&plist, pp);
1066 		page_list_add(pp, PG_FREE_LIST | PG_LIST_TAIL);
1067 		if (iolock)
1068 			page_io_unlock(pp);
1069 		page_unlock(pp);
1070 	}
1071 
1072 	return (NULL);
1073 }
1074 #endif	/* !__xpv */
1075 
1076 /*
1077  * verify that pages being returned from allocator have correct DMA attribute
1078  */
1079 #ifndef DEBUG
1080 #define	check_dma(a, b, c) (void)(0)
1081 #else
1082 static void
1083 check_dma(ddi_dma_attr_t *dma_attr, page_t *pp, int cnt)
1084 {
1085 	if (dma_attr == NULL)
1086 		return;
1087 
1088 	while (cnt-- > 0) {
1089 		if (pa_to_ma(pfn_to_pa(pp->p_pagenum)) <
1090 		    dma_attr->dma_attr_addr_lo)
1091 			panic("PFN (pp=%p) below dma_attr_addr_lo", (void *)pp);
1092 		if (pa_to_ma(pfn_to_pa(pp->p_pagenum)) >=
1093 		    dma_attr->dma_attr_addr_hi)
1094 			panic("PFN (pp=%p) above dma_attr_addr_hi", (void *)pp);
1095 		pp = pp->p_next;
1096 	}
1097 }
1098 #endif
1099 
1100 #if !defined(__xpv)
1101 static page_t *
1102 page_get_contigpage(pgcnt_t *pgcnt, ddi_dma_attr_t *mattr, int iolock)
1103 {
1104 	pfn_t		pfn;
1105 	int		sgllen;
1106 	uint64_t	pfnseg;
1107 	pgcnt_t		minctg;
1108 	page_t		*pplist = NULL, *plist;
1109 	uint64_t	lo, hi;
1110 	pgcnt_t		pfnalign = 0;
1111 	static pfn_t	startpfn;
1112 	static pgcnt_t	lastctgcnt;
1113 	uintptr_t	align;
1114 
1115 	CONTIG_LOCK();
1116 
1117 	if (mattr) {
1118 		lo = mmu_btop((mattr->dma_attr_addr_lo + MMU_PAGEOFFSET));
1119 		hi = mmu_btop(mattr->dma_attr_addr_hi);
1120 		if (hi >= physmax)
1121 			hi = physmax - 1;
1122 		sgllen = mattr->dma_attr_sgllen;
1123 		pfnseg = mmu_btop(mattr->dma_attr_seg);
1124 
1125 		align = maxbit(mattr->dma_attr_align, mattr->dma_attr_minxfer);
1126 		if (align > MMU_PAGESIZE)
1127 			pfnalign = mmu_btop(align);
1128 
1129 		/*
1130 		 * in order to satisfy the request, must minimally
1131 		 * acquire minctg contiguous pages
1132 		 */
1133 		minctg = howmany(*pgcnt, sgllen);
1134 
1135 		ASSERT(hi >= lo);
1136 
1137 		/*
1138 		 * start from where last searched if the minctg >= lastctgcnt
1139 		 */
1140 		if (minctg < lastctgcnt || startpfn < lo || startpfn > hi)
1141 			startpfn = lo;
1142 	} else {
1143 		hi = physmax - 1;
1144 		lo = 0;
1145 		sgllen = 1;
1146 		pfnseg = mmu.highest_pfn;
1147 		minctg = *pgcnt;
1148 
1149 		if (minctg < lastctgcnt)
1150 			startpfn = lo;
1151 	}
1152 	lastctgcnt = minctg;
1153 
1154 	ASSERT(pfnseg + 1 >= (uint64_t)minctg);
1155 
1156 	/* conserve 16m memory - start search above 16m when possible */
1157 	if (hi > PFN_16M && startpfn < PFN_16M)
1158 		startpfn = PFN_16M;
1159 
1160 	pfn = startpfn;
1161 	if (pfnalign)
1162 		pfn = P2ROUNDUP(pfn, pfnalign);
1163 
1164 	while (pfn + minctg - 1 <= hi) {
1165 
1166 		plist = is_contigpage_free(&pfn, pgcnt, minctg, pfnseg, iolock);
1167 		if (plist) {
1168 			page_list_concat(&pplist, &plist);
1169 			sgllen--;
1170 			/*
1171 			 * return when contig pages no longer needed
1172 			 */
1173 			if (!*pgcnt || ((*pgcnt <= sgllen) && !pfnalign)) {
1174 				startpfn = pfn;
1175 				CONTIG_UNLOCK();
1176 				check_dma(mattr, pplist, *pgcnt);
1177 				return (pplist);
1178 			}
1179 			minctg = howmany(*pgcnt, sgllen);
1180 		}
1181 		if (pfnalign)
1182 			pfn = P2ROUNDUP(pfn, pfnalign);
1183 	}
1184 
1185 	/* cannot find contig pages in specified range */
1186 	if (startpfn == lo) {
1187 		CONTIG_UNLOCK();
1188 		return (NULL);
1189 	}
1190 
1191 	/* did not start with lo previously */
1192 	pfn = lo;
1193 	if (pfnalign)
1194 		pfn = P2ROUNDUP(pfn, pfnalign);
1195 
1196 	/* allow search to go above startpfn */
1197 	while (pfn < startpfn) {
1198 
1199 		plist = is_contigpage_free(&pfn, pgcnt, minctg, pfnseg, iolock);
1200 		if (plist != NULL) {
1201 
1202 			page_list_concat(&pplist, &plist);
1203 			sgllen--;
1204 
1205 			/*
1206 			 * return when contig pages no longer needed
1207 			 */
1208 			if (!*pgcnt || ((*pgcnt <= sgllen) && !pfnalign)) {
1209 				startpfn = pfn;
1210 				CONTIG_UNLOCK();
1211 				check_dma(mattr, pplist, *pgcnt);
1212 				return (pplist);
1213 			}
1214 			minctg = howmany(*pgcnt, sgllen);
1215 		}
1216 		if (pfnalign)
1217 			pfn = P2ROUNDUP(pfn, pfnalign);
1218 	}
1219 	CONTIG_UNLOCK();
1220 	return (NULL);
1221 }
1222 #endif	/* !__xpv */
1223 
1224 /*
1225  * mnode_range_cnt() calculates the number of memory ranges for mnode and
1226  * memranges[]. Used to determine the size of page lists and mnoderanges.
1227  */
1228 int
1229 mnode_range_cnt(int mnode)
1230 {
1231 #if defined(__xpv)
1232 	ASSERT(mnode == 0);
1233 	return (1);
1234 #else	/* __xpv */
1235 	int	mri;
1236 	int	mnrcnt = 0;
1237 
1238 	if (mem_node_config[mnode].exists != 0) {
1239 		mri = nranges - 1;
1240 
1241 		/* find the memranges index below contained in mnode range */
1242 
1243 		while (MEMRANGEHI(mri) < mem_node_config[mnode].physbase)
1244 			mri--;
1245 
1246 		/*
1247 		 * increment mnode range counter when memranges or mnode
1248 		 * boundary is reached.
1249 		 */
1250 		while (mri >= 0 &&
1251 		    mem_node_config[mnode].physmax >= MEMRANGELO(mri)) {
1252 			mnrcnt++;
1253 			if (mem_node_config[mnode].physmax > MEMRANGEHI(mri))
1254 				mri--;
1255 			else
1256 				break;
1257 		}
1258 	}
1259 	ASSERT(mnrcnt <= MAX_MNODE_MRANGES);
1260 	return (mnrcnt);
1261 #endif	/* __xpv */
1262 }
1263 
1264 /*
1265  * mnode_range_setup() initializes mnoderanges.
1266  */
1267 void
1268 mnode_range_setup(mnoderange_t *mnoderanges)
1269 {
1270 	mnoderange_t *mp = mnoderanges;
1271 	int	mnode, mri;
1272 	int	mindex = 0;	/* current index into mnoderanges array */
1273 	int	i, j;
1274 	pfn_t	hipfn;
1275 	int	last, hi;
1276 
1277 	for (mnode = 0; mnode < max_mem_nodes; mnode++) {
1278 		if (mem_node_config[mnode].exists == 0)
1279 			continue;
1280 
1281 		mri = nranges - 1;
1282 
1283 		while (MEMRANGEHI(mri) < mem_node_config[mnode].physbase)
1284 			mri--;
1285 
1286 		while (mri >= 0 && mem_node_config[mnode].physmax >=
1287 		    MEMRANGELO(mri)) {
1288 			mnoderanges->mnr_pfnlo = MAX(MEMRANGELO(mri),
1289 			    mem_node_config[mnode].physbase);
1290 			mnoderanges->mnr_pfnhi = MIN(MEMRANGEHI(mri),
1291 			    mem_node_config[mnode].physmax);
1292 			mnoderanges->mnr_mnode = mnode;
1293 			mnoderanges->mnr_memrange = mri;
1294 			mnoderanges->mnr_exists = 1;
1295 			mnoderanges++;
1296 			mindex++;
1297 			if (mem_node_config[mnode].physmax > MEMRANGEHI(mri))
1298 				mri--;
1299 			else
1300 				break;
1301 		}
1302 	}
1303 
1304 	/*
1305 	 * For now do a simple sort of the mnoderanges array to fill in
1306 	 * the mnr_next fields.  Since mindex is expected to be relatively
1307 	 * small, using a simple O(N^2) algorithm.
1308 	 */
1309 	for (i = 0; i < mindex; i++) {
1310 		if (mp[i].mnr_pfnlo == 0)	/* find lowest */
1311 			break;
1312 	}
1313 	ASSERT(i < mindex);
1314 	last = i;
1315 	mtype16m = last;
1316 	mp[last].mnr_next = -1;
1317 	for (i = 0; i < mindex - 1; i++) {
1318 		hipfn = (pfn_t)(-1);
1319 		hi = -1;
1320 		/* find next highest mnode range */
1321 		for (j = 0; j < mindex; j++) {
1322 			if (mp[j].mnr_pfnlo > mp[last].mnr_pfnlo &&
1323 			    mp[j].mnr_pfnlo < hipfn) {
1324 				hipfn = mp[j].mnr_pfnlo;
1325 				hi = j;
1326 			}
1327 		}
1328 		mp[hi].mnr_next = last;
1329 		last = hi;
1330 	}
1331 	mtypetop = last;
1332 }
1333 
1334 #ifndef	__xpv
1335 /*
1336  * Update mnoderanges for memory hot-add DR operations.
1337  */
1338 static void
1339 mnode_range_add(int mnode)
1340 {
1341 	int	*prev;
1342 	int	n, mri;
1343 	pfn_t	start, end;
1344 	extern	void membar_sync(void);
1345 
1346 	ASSERT(0 <= mnode && mnode < max_mem_nodes);
1347 	ASSERT(mem_node_config[mnode].exists);
1348 	start = mem_node_config[mnode].physbase;
1349 	end = mem_node_config[mnode].physmax;
1350 	ASSERT(start <= end);
1351 	mutex_enter(&mnoderange_lock);
1352 
1353 #ifdef	DEBUG
1354 	/* Check whether it interleaves with other memory nodes. */
1355 	for (n = mtypetop; n != -1; n = mnoderanges[n].mnr_next) {
1356 		ASSERT(mnoderanges[n].mnr_exists);
1357 		if (mnoderanges[n].mnr_mnode == mnode)
1358 			continue;
1359 		ASSERT(start > mnoderanges[n].mnr_pfnhi ||
1360 		    end < mnoderanges[n].mnr_pfnlo);
1361 	}
1362 #endif	/* DEBUG */
1363 
1364 	mri = nranges - 1;
1365 	while (MEMRANGEHI(mri) < mem_node_config[mnode].physbase)
1366 		mri--;
1367 	while (mri >= 0 && mem_node_config[mnode].physmax >= MEMRANGELO(mri)) {
1368 		/* Check whether mtype already exists. */
1369 		for (n = mtypetop; n != -1; n = mnoderanges[n].mnr_next) {
1370 			if (mnoderanges[n].mnr_mnode == mnode &&
1371 			    mnoderanges[n].mnr_memrange == mri) {
1372 				mnoderanges[n].mnr_pfnlo = MAX(MEMRANGELO(mri),
1373 				    start);
1374 				mnoderanges[n].mnr_pfnhi = MIN(MEMRANGEHI(mri),
1375 				    end);
1376 				break;
1377 			}
1378 		}
1379 
1380 		/* Add a new entry if it doesn't exist yet. */
1381 		if (n == -1) {
1382 			/* Try to find an unused entry in mnoderanges array. */
1383 			for (n = 0; n < mnoderangecnt; n++) {
1384 				if (mnoderanges[n].mnr_exists == 0)
1385 					break;
1386 			}
1387 			ASSERT(n < mnoderangecnt);
1388 			mnoderanges[n].mnr_pfnlo = MAX(MEMRANGELO(mri), start);
1389 			mnoderanges[n].mnr_pfnhi = MIN(MEMRANGEHI(mri), end);
1390 			mnoderanges[n].mnr_mnode = mnode;
1391 			mnoderanges[n].mnr_memrange = mri;
1392 			mnoderanges[n].mnr_exists = 1;
1393 			/* Page 0 should always be present. */
1394 			for (prev = &mtypetop;
1395 			    mnoderanges[*prev].mnr_pfnlo > start;
1396 			    prev = &mnoderanges[*prev].mnr_next) {
1397 				ASSERT(mnoderanges[*prev].mnr_next >= 0);
1398 				ASSERT(mnoderanges[*prev].mnr_pfnlo > end);
1399 			}
1400 			mnoderanges[n].mnr_next = *prev;
1401 			membar_sync();
1402 			*prev = n;
1403 		}
1404 
1405 		if (mem_node_config[mnode].physmax > MEMRANGEHI(mri))
1406 			mri--;
1407 		else
1408 			break;
1409 	}
1410 
1411 	mutex_exit(&mnoderange_lock);
1412 }
1413 
1414 /*
1415  * Update mnoderanges for memory hot-removal DR operations.
1416  */
1417 static void
1418 mnode_range_del(int mnode)
1419 {
1420 	_NOTE(ARGUNUSED(mnode));
1421 	ASSERT(0 <= mnode && mnode < max_mem_nodes);
1422 	/* TODO: support deletion operation. */
1423 	ASSERT(0);
1424 }
1425 
1426 void
1427 plat_slice_add(pfn_t start, pfn_t end)
1428 {
1429 	mem_node_add_slice(start, end);
1430 	if (plat_dr_enabled()) {
1431 		mnode_range_add(PFN_2_MEM_NODE(start));
1432 	}
1433 }
1434 
1435 void
1436 plat_slice_del(pfn_t start, pfn_t end)
1437 {
1438 	ASSERT(PFN_2_MEM_NODE(start) == PFN_2_MEM_NODE(end));
1439 	ASSERT(plat_dr_enabled());
1440 	mnode_range_del(PFN_2_MEM_NODE(start));
1441 	mem_node_del_slice(start, end);
1442 }
1443 #endif	/* __xpv */
1444 
1445 /*ARGSUSED*/
1446 int
1447 mtype_init(vnode_t *vp, caddr_t vaddr, uint_t *flags, size_t pgsz)
1448 {
1449 	int mtype = mtypetop;
1450 
1451 #if !defined(__xpv)
1452 #if defined(__i386)
1453 	/*
1454 	 * set the mtype range
1455 	 * - kmem requests need to be below 4g if restricted_kmemalloc is set.
1456 	 * - for non kmem requests, set range to above 4g if memory below 4g
1457 	 * runs low.
1458 	 */
1459 	if (restricted_kmemalloc && VN_ISKAS(vp) &&
1460 	    (caddr_t)(vaddr) >= kernelheap &&
1461 	    (caddr_t)(vaddr) < ekernelheap) {
1462 		ASSERT(physmax4g);
1463 		mtype = mtype4g;
1464 		if (RESTRICT16M_ALLOC(freemem4g - btop(pgsz),
1465 		    btop(pgsz), *flags)) {
1466 			*flags |= PGI_MT_RANGE16M;
1467 		} else {
1468 			VM_STAT_ADD(vmm_vmstats.unrestrict16mcnt);
1469 			VM_STAT_COND_ADD((*flags & PG_PANIC),
1470 			    vmm_vmstats.pgpanicalloc);
1471 			*flags |= PGI_MT_RANGE0;
1472 		}
1473 		return (mtype);
1474 	}
1475 #endif	/* __i386 */
1476 
1477 	if (RESTRICT4G_ALLOC) {
1478 		VM_STAT_ADD(vmm_vmstats.restrict4gcnt);
1479 		/* here only for > 4g systems */
1480 		*flags |= PGI_MT_RANGE4G;
1481 	} else if (RESTRICT16M_ALLOC(freemem, btop(pgsz), *flags)) {
1482 		*flags |= PGI_MT_RANGE16M;
1483 	} else {
1484 		VM_STAT_ADD(vmm_vmstats.unrestrict16mcnt);
1485 		VM_STAT_COND_ADD((*flags & PG_PANIC), vmm_vmstats.pgpanicalloc);
1486 		*flags |= PGI_MT_RANGE0;
1487 	}
1488 #endif /* !__xpv */
1489 	return (mtype);
1490 }
1491 
1492 
1493 /* mtype init for page_get_replacement_page */
1494 /*ARGSUSED*/
1495 int
1496 mtype_pgr_init(int *flags, page_t *pp, int mnode, pgcnt_t pgcnt)
1497 {
1498 	int mtype = mtypetop;
1499 #if !defined(__xpv)
1500 	if (RESTRICT16M_ALLOC(freemem, pgcnt, *flags)) {
1501 		*flags |= PGI_MT_RANGE16M;
1502 	} else {
1503 		VM_STAT_ADD(vmm_vmstats.unrestrict16mcnt);
1504 		*flags |= PGI_MT_RANGE0;
1505 	}
1506 #endif
1507 	return (mtype);
1508 }
1509 
1510 /*
1511  * Determine if the mnode range specified in mtype contains memory belonging
1512  * to memory node mnode.  If flags & PGI_MT_RANGE is set then mtype contains
1513  * the range from high pfn to 0, 16m or 4g.
1514  *
1515  * Return first mnode range type index found otherwise return -1 if none found.
1516  */
1517 int
1518 mtype_func(int mnode, int mtype, uint_t flags)
1519 {
1520 	if (flags & PGI_MT_RANGE) {
1521 		int	mnr_lim = MRI_0;
1522 
1523 		if (flags & PGI_MT_NEXT) {
1524 			mtype = mnoderanges[mtype].mnr_next;
1525 		}
1526 		if (flags & PGI_MT_RANGE4G)
1527 			mnr_lim = MRI_4G;	/* exclude 0-4g range */
1528 		else if (flags & PGI_MT_RANGE16M)
1529 			mnr_lim = MRI_16M;	/* exclude 0-16m range */
1530 		while (mtype != -1 &&
1531 		    mnoderanges[mtype].mnr_memrange <= mnr_lim) {
1532 			if (mnoderanges[mtype].mnr_mnode == mnode)
1533 				return (mtype);
1534 			mtype = mnoderanges[mtype].mnr_next;
1535 		}
1536 	} else if (mnoderanges[mtype].mnr_mnode == mnode) {
1537 		return (mtype);
1538 	}
1539 	return (-1);
1540 }
1541 
1542 /*
1543  * Update the page list max counts with the pfn range specified by the
1544  * input parameters.
1545  */
1546 void
1547 mtype_modify_max(pfn_t startpfn, long cnt)
1548 {
1549 	int		mtype;
1550 	pgcnt_t		inc;
1551 	spgcnt_t	scnt = (spgcnt_t)(cnt);
1552 	pgcnt_t		acnt = ABS(scnt);
1553 	pfn_t		endpfn = startpfn + acnt;
1554 	pfn_t		pfn, lo;
1555 
1556 	if (!physmax4g)
1557 		return;
1558 
1559 	mtype = mtypetop;
1560 	for (pfn = endpfn; pfn > startpfn; ) {
1561 		ASSERT(mtype != -1);
1562 		lo = mnoderanges[mtype].mnr_pfnlo;
1563 		if (pfn > lo) {
1564 			if (startpfn >= lo) {
1565 				inc = pfn - startpfn;
1566 			} else {
1567 				inc = pfn - lo;
1568 			}
1569 			if (mnoderanges[mtype].mnr_memrange != MRI_4G) {
1570 				if (scnt > 0)
1571 					maxmem4g += inc;
1572 				else
1573 					maxmem4g -= inc;
1574 			}
1575 			pfn -= inc;
1576 		}
1577 		mtype = mnoderanges[mtype].mnr_next;
1578 	}
1579 }
1580 
1581 int
1582 mtype_2_mrange(int mtype)
1583 {
1584 	return (mnoderanges[mtype].mnr_memrange);
1585 }
1586 
1587 void
1588 mnodetype_2_pfn(int mnode, int mtype, pfn_t *pfnlo, pfn_t *pfnhi)
1589 {
1590 	_NOTE(ARGUNUSED(mnode));
1591 	ASSERT(mnoderanges[mtype].mnr_mnode == mnode);
1592 	*pfnlo = mnoderanges[mtype].mnr_pfnlo;
1593 	*pfnhi = mnoderanges[mtype].mnr_pfnhi;
1594 }
1595 
1596 size_t
1597 plcnt_sz(size_t ctrs_sz)
1598 {
1599 #ifdef DEBUG
1600 	int	szc, colors;
1601 
1602 	ctrs_sz += mnoderangecnt * sizeof (struct mnr_mts) * mmu_page_sizes;
1603 	for (szc = 0; szc < mmu_page_sizes; szc++) {
1604 		colors = page_get_pagecolors(szc);
1605 		ctrs_sz += mnoderangecnt * sizeof (pgcnt_t) * colors;
1606 	}
1607 #endif
1608 	return (ctrs_sz);
1609 }
1610 
1611 caddr_t
1612 plcnt_init(caddr_t addr)
1613 {
1614 #ifdef DEBUG
1615 	int	mt, szc, colors;
1616 
1617 	for (mt = 0; mt < mnoderangecnt; mt++) {
1618 		mnoderanges[mt].mnr_mts = (struct mnr_mts *)addr;
1619 		addr += (sizeof (struct mnr_mts) * mmu_page_sizes);
1620 		for (szc = 0; szc < mmu_page_sizes; szc++) {
1621 			colors = page_get_pagecolors(szc);
1622 			mnoderanges[mt].mnr_mts[szc].mnr_mts_colors = colors;
1623 			mnoderanges[mt].mnr_mts[szc].mnr_mtsc_pgcnt =
1624 			    (pgcnt_t *)addr;
1625 			addr += (sizeof (pgcnt_t) * colors);
1626 		}
1627 	}
1628 #endif
1629 	return (addr);
1630 }
1631 
1632 void
1633 plcnt_inc_dec(page_t *pp, int mtype, int szc, long cnt, int flags)
1634 {
1635 	_NOTE(ARGUNUSED(pp));
1636 #ifdef DEBUG
1637 	int	bin = PP_2_BIN(pp);
1638 
1639 	atomic_add_long(&mnoderanges[mtype].mnr_mts[szc].mnr_mts_pgcnt, cnt);
1640 	atomic_add_long(&mnoderanges[mtype].mnr_mts[szc].mnr_mtsc_pgcnt[bin],
1641 	    cnt);
1642 #endif
1643 	ASSERT(mtype == PP_2_MTYPE(pp));
1644 	if (physmax4g && mnoderanges[mtype].mnr_memrange != MRI_4G)
1645 		atomic_add_long(&freemem4g, cnt);
1646 	if (flags & PG_CACHE_LIST)
1647 		atomic_add_long(&mnoderanges[mtype].mnr_mt_clpgcnt, cnt);
1648 	else
1649 		atomic_add_long(&mnoderanges[mtype].mnr_mt_flpgcnt[szc], cnt);
1650 	atomic_add_long(&mnoderanges[mtype].mnr_mt_totcnt, cnt);
1651 }
1652 
1653 /*
1654  * Returns the free page count for mnode
1655  */
1656 int
1657 mnode_pgcnt(int mnode)
1658 {
1659 	int	mtype = mtypetop;
1660 	int	flags = PGI_MT_RANGE0;
1661 	pgcnt_t	pgcnt = 0;
1662 
1663 	mtype = mtype_func(mnode, mtype, flags);
1664 
1665 	while (mtype != -1) {
1666 		pgcnt += MTYPE_FREEMEM(mtype);
1667 		mtype = mtype_func(mnode, mtype, flags | PGI_MT_NEXT);
1668 	}
1669 	return (pgcnt);
1670 }
1671 
1672 /*
1673  * Initialize page coloring variables based on the l2 cache parameters.
1674  * Calculate and return memory needed for page coloring data structures.
1675  */
1676 size_t
1677 page_coloring_init(uint_t l2_sz, int l2_linesz, int l2_assoc)
1678 {
1679 	_NOTE(ARGUNUSED(l2_linesz));
1680 	size_t	colorsz = 0;
1681 	int	i;
1682 	int	colors;
1683 
1684 #if defined(__xpv)
1685 	/*
1686 	 * Hypervisor domains currently don't have any concept of NUMA.
1687 	 * Hence we'll act like there is only 1 memrange.
1688 	 */
1689 	i = memrange_num(1);
1690 #else /* !__xpv */
1691 	/*
1692 	 * Reduce the memory ranges lists if we don't have large amounts
1693 	 * of memory. This avoids searching known empty free lists.
1694 	 * To support memory DR operations, we need to keep memory ranges
1695 	 * for possible memory hot-add operations.
1696 	 */
1697 	if (plat_dr_physmax > physmax)
1698 		i = memrange_num(plat_dr_physmax);
1699 	else
1700 		i = memrange_num(physmax);
1701 #if defined(__i386)
1702 	if (i > MRI_4G)
1703 		restricted_kmemalloc = 0;
1704 #endif
1705 	/* physmax greater than 4g */
1706 	if (i == MRI_4G)
1707 		physmax4g = 1;
1708 #endif /* !__xpv */
1709 	memranges += i;
1710 	nranges -= i;
1711 
1712 	ASSERT(mmu_page_sizes <= MMU_PAGE_SIZES);
1713 
1714 	ASSERT(ISP2(l2_linesz));
1715 	ASSERT(l2_sz > MMU_PAGESIZE);
1716 
1717 	/* l2_assoc is 0 for fully associative l2 cache */
1718 	if (l2_assoc)
1719 		l2_colors = MAX(1, l2_sz / (l2_assoc * MMU_PAGESIZE));
1720 	else
1721 		l2_colors = 1;
1722 
1723 	ASSERT(ISP2(l2_colors));
1724 
1725 	/* for scalability, configure at least PAGE_COLORS_MIN color bins */
1726 	page_colors = MAX(l2_colors, PAGE_COLORS_MIN);
1727 
1728 	/*
1729 	 * cpu_page_colors is non-zero when a page color may be spread across
1730 	 * multiple bins.
1731 	 */
1732 	if (l2_colors < page_colors)
1733 		cpu_page_colors = l2_colors;
1734 
1735 	ASSERT(ISP2(page_colors));
1736 
1737 	page_colors_mask = page_colors - 1;
1738 
1739 	ASSERT(ISP2(CPUSETSIZE()));
1740 	page_coloring_shift = lowbit(CPUSETSIZE());
1741 
1742 	/* initialize number of colors per page size */
1743 	for (i = 0; i <= mmu.max_page_level; i++) {
1744 		hw_page_array[i].hp_size = LEVEL_SIZE(i);
1745 		hw_page_array[i].hp_shift = LEVEL_SHIFT(i);
1746 		hw_page_array[i].hp_pgcnt = LEVEL_SIZE(i) >> LEVEL_SHIFT(0);
1747 		hw_page_array[i].hp_colors = (page_colors_mask >>
1748 		    (hw_page_array[i].hp_shift - hw_page_array[0].hp_shift))
1749 		    + 1;
1750 		colorequivszc[i] = 0;
1751 	}
1752 
1753 	/*
1754 	 * The value of cpu_page_colors determines if additional color bins
1755 	 * need to be checked for a particular color in the page_get routines.
1756 	 */
1757 	if (cpu_page_colors != 0) {
1758 
1759 		int a = lowbit(page_colors) - lowbit(cpu_page_colors);
1760 		ASSERT(a > 0);
1761 		ASSERT(a < 16);
1762 
1763 		for (i = 0; i <= mmu.max_page_level; i++) {
1764 			if ((colors = hw_page_array[i].hp_colors) <= 1) {
1765 				colorequivszc[i] = 0;
1766 				continue;
1767 			}
1768 			while ((colors >> a) == 0)
1769 				a--;
1770 			ASSERT(a >= 0);
1771 
1772 			/* higher 4 bits encodes color equiv mask */
1773 			colorequivszc[i] = (a << 4);
1774 		}
1775 	}
1776 
1777 	/* factor in colorequiv to check additional 'equivalent' bins. */
1778 	if (colorequiv > 1) {
1779 
1780 		int a = lowbit(colorequiv) - 1;
1781 		if (a > 15)
1782 			a = 15;
1783 
1784 		for (i = 0; i <= mmu.max_page_level; i++) {
1785 			if ((colors = hw_page_array[i].hp_colors) <= 1) {
1786 				continue;
1787 			}
1788 			while ((colors >> a) == 0)
1789 				a--;
1790 			if ((a << 4) > colorequivszc[i]) {
1791 				colorequivszc[i] = (a << 4);
1792 			}
1793 		}
1794 	}
1795 
1796 	/* size for mnoderanges */
1797 	for (mnoderangecnt = 0, i = 0; i < max_mem_nodes; i++)
1798 		mnoderangecnt += mnode_range_cnt(i);
1799 	if (plat_dr_support_memory()) {
1800 		/*
1801 		 * Reserve enough space for memory DR operations.
1802 		 * Two extra mnoderanges for possbile fragmentations,
1803 		 * one for the 2G boundary and the other for the 4G boundary.
1804 		 * We don't expect a memory board crossing the 16M boundary
1805 		 * for memory hot-add operations on x86 platforms.
1806 		 */
1807 		mnoderangecnt += 2 + max_mem_nodes - lgrp_plat_node_cnt;
1808 	}
1809 	colorsz = mnoderangecnt * sizeof (mnoderange_t);
1810 
1811 	/* size for fpc_mutex and cpc_mutex */
1812 	colorsz += (2 * max_mem_nodes * sizeof (kmutex_t) * NPC_MUTEX);
1813 
1814 	/* size of page_freelists */
1815 	colorsz += mnoderangecnt * sizeof (page_t ***);
1816 	colorsz += mnoderangecnt * mmu_page_sizes * sizeof (page_t **);
1817 
1818 	for (i = 0; i < mmu_page_sizes; i++) {
1819 		colors = page_get_pagecolors(i);
1820 		colorsz += mnoderangecnt * colors * sizeof (page_t *);
1821 	}
1822 
1823 	/* size of page_cachelists */
1824 	colorsz += mnoderangecnt * sizeof (page_t **);
1825 	colorsz += mnoderangecnt * page_colors * sizeof (page_t *);
1826 
1827 	return (colorsz);
1828 }
1829 
1830 /*
1831  * Called once at startup to configure page_coloring data structures and
1832  * does the 1st page_free()/page_freelist_add().
1833  */
1834 void
1835 page_coloring_setup(caddr_t pcmemaddr)
1836 {
1837 	int	i;
1838 	int	j;
1839 	int	k;
1840 	caddr_t	addr;
1841 	int	colors;
1842 
1843 	/*
1844 	 * do page coloring setup
1845 	 */
1846 	addr = pcmemaddr;
1847 
1848 	mnoderanges = (mnoderange_t *)addr;
1849 	addr += (mnoderangecnt * sizeof (mnoderange_t));
1850 
1851 	mnode_range_setup(mnoderanges);
1852 
1853 	if (physmax4g)
1854 		mtype4g = pfn_2_mtype(0xfffff);
1855 
1856 	for (k = 0; k < NPC_MUTEX; k++) {
1857 		fpc_mutex[k] = (kmutex_t *)addr;
1858 		addr += (max_mem_nodes * sizeof (kmutex_t));
1859 	}
1860 	for (k = 0; k < NPC_MUTEX; k++) {
1861 		cpc_mutex[k] = (kmutex_t *)addr;
1862 		addr += (max_mem_nodes * sizeof (kmutex_t));
1863 	}
1864 	page_freelists = (page_t ****)addr;
1865 	addr += (mnoderangecnt * sizeof (page_t ***));
1866 
1867 	page_cachelists = (page_t ***)addr;
1868 	addr += (mnoderangecnt * sizeof (page_t **));
1869 
1870 	for (i = 0; i < mnoderangecnt; i++) {
1871 		page_freelists[i] = (page_t ***)addr;
1872 		addr += (mmu_page_sizes * sizeof (page_t **));
1873 
1874 		for (j = 0; j < mmu_page_sizes; j++) {
1875 			colors = page_get_pagecolors(j);
1876 			page_freelists[i][j] = (page_t **)addr;
1877 			addr += (colors * sizeof (page_t *));
1878 		}
1879 		page_cachelists[i] = (page_t **)addr;
1880 		addr += (page_colors * sizeof (page_t *));
1881 	}
1882 }
1883 
1884 #if defined(__xpv)
1885 /*
1886  * Give back 10% of the io_pool pages to the free list.
1887  * Don't shrink the pool below some absolute minimum.
1888  */
1889 static void
1890 page_io_pool_shrink()
1891 {
1892 	int retcnt;
1893 	page_t *pp, *pp_first, *pp_last, **curpool;
1894 	mfn_t mfn;
1895 	int bothpools = 0;
1896 
1897 	mutex_enter(&io_pool_lock);
1898 	io_pool_shrink_attempts++;	/* should be a kstat? */
1899 	retcnt = io_pool_cnt / 10;
1900 	if (io_pool_cnt - retcnt < io_pool_cnt_min)
1901 		retcnt = io_pool_cnt - io_pool_cnt_min;
1902 	if (retcnt <= 0)
1903 		goto done;
1904 	io_pool_shrinks++;	/* should be a kstat? */
1905 	curpool = &io_pool_4g;
1906 domore:
1907 	/*
1908 	 * Loop through taking pages from the end of the list
1909 	 * (highest mfns) till amount to return reached.
1910 	 */
1911 	for (pp = *curpool; pp && retcnt > 0; ) {
1912 		pp_first = pp_last = pp->p_prev;
1913 		if (pp_first == *curpool)
1914 			break;
1915 		retcnt--;
1916 		io_pool_cnt--;
1917 		page_io_pool_sub(curpool, pp_first, pp_last);
1918 		if ((mfn = pfn_to_mfn(pp->p_pagenum)) < start_mfn)
1919 			start_mfn = mfn;
1920 		page_free(pp_first, 1);
1921 		pp = *curpool;
1922 	}
1923 	if (retcnt != 0 && !bothpools) {
1924 		/*
1925 		 * If not enough found in less constrained pool try the
1926 		 * more constrained one.
1927 		 */
1928 		curpool = &io_pool_16m;
1929 		bothpools = 1;
1930 		goto domore;
1931 	}
1932 done:
1933 	mutex_exit(&io_pool_lock);
1934 }
1935 
1936 #endif	/* __xpv */
1937 
1938 uint_t
1939 page_create_update_flags_x86(uint_t flags)
1940 {
1941 #if defined(__xpv)
1942 	/*
1943 	 * Check this is an urgent allocation and free pages are depleted.
1944 	 */
1945 	if (!(flags & PG_WAIT) && freemem < desfree)
1946 		page_io_pool_shrink();
1947 #else /* !__xpv */
1948 	/*
1949 	 * page_create_get_something may call this because 4g memory may be
1950 	 * depleted. Set flags to allow for relocation of base page below
1951 	 * 4g if necessary.
1952 	 */
1953 	if (physmax4g)
1954 		flags |= (PGI_PGCPSZC0 | PGI_PGCPHIPRI);
1955 #endif /* __xpv */
1956 	return (flags);
1957 }
1958 
1959 /*ARGSUSED*/
1960 int
1961 bp_color(struct buf *bp)
1962 {
1963 	return (0);
1964 }
1965 
1966 #if defined(__xpv)
1967 
1968 /*
1969  * Take pages out of an io_pool
1970  */
1971 static void
1972 page_io_pool_sub(page_t **poolp, page_t *pp_first, page_t *pp_last)
1973 {
1974 	if (*poolp == pp_first) {
1975 		*poolp = pp_last->p_next;
1976 		if (*poolp == pp_first)
1977 			*poolp = NULL;
1978 	}
1979 	pp_first->p_prev->p_next = pp_last->p_next;
1980 	pp_last->p_next->p_prev = pp_first->p_prev;
1981 	pp_first->p_prev = pp_last;
1982 	pp_last->p_next = pp_first;
1983 }
1984 
1985 /*
1986  * Put a page on the io_pool list. The list is ordered by increasing MFN.
1987  */
1988 static void
1989 page_io_pool_add(page_t **poolp, page_t *pp)
1990 {
1991 	page_t	*look;
1992 	mfn_t	mfn = mfn_list[pp->p_pagenum];
1993 
1994 	if (*poolp == NULL) {
1995 		*poolp = pp;
1996 		pp->p_next = pp;
1997 		pp->p_prev = pp;
1998 		return;
1999 	}
2000 
2001 	/*
2002 	 * Since we try to take pages from the high end of the pool
2003 	 * chances are good that the pages to be put on the list will
2004 	 * go at or near the end of the list. so start at the end and
2005 	 * work backwards.
2006 	 */
2007 	look = (*poolp)->p_prev;
2008 	while (mfn < mfn_list[look->p_pagenum]) {
2009 		look = look->p_prev;
2010 		if (look == (*poolp)->p_prev)
2011 			break; /* backed all the way to front of list */
2012 	}
2013 
2014 	/* insert after look */
2015 	pp->p_prev = look;
2016 	pp->p_next = look->p_next;
2017 	pp->p_next->p_prev = pp;
2018 	look->p_next = pp;
2019 	if (mfn < mfn_list[(*poolp)->p_pagenum]) {
2020 		/*
2021 		 * we inserted a new first list element
2022 		 * adjust pool pointer to newly inserted element
2023 		 */
2024 		*poolp = pp;
2025 	}
2026 }
2027 
2028 /*
2029  * Add a page to the io_pool.  Setting the force flag will force the page
2030  * into the io_pool no matter what.
2031  */
2032 static void
2033 add_page_to_pool(page_t *pp, int force)
2034 {
2035 	page_t *highest;
2036 	page_t *freep = NULL;
2037 
2038 	mutex_enter(&io_pool_lock);
2039 	/*
2040 	 * Always keep the scarce low memory pages
2041 	 */
2042 	if (mfn_list[pp->p_pagenum] < PFN_16MEG) {
2043 		++io_pool_cnt;
2044 		page_io_pool_add(&io_pool_16m, pp);
2045 		goto done;
2046 	}
2047 	if (io_pool_cnt < io_pool_cnt_max || force || io_pool_4g == NULL) {
2048 		++io_pool_cnt;
2049 		page_io_pool_add(&io_pool_4g, pp);
2050 	} else {
2051 		highest = io_pool_4g->p_prev;
2052 		if (mfn_list[pp->p_pagenum] < mfn_list[highest->p_pagenum]) {
2053 			page_io_pool_sub(&io_pool_4g, highest, highest);
2054 			page_io_pool_add(&io_pool_4g, pp);
2055 			freep = highest;
2056 		} else {
2057 			freep = pp;
2058 		}
2059 	}
2060 done:
2061 	mutex_exit(&io_pool_lock);
2062 	if (freep)
2063 		page_free(freep, 1);
2064 }
2065 
2066 
2067 int contig_pfn_cnt;	/* no of pfns in the contig pfn list */
2068 int contig_pfn_max;	/* capacity of the contig pfn list */
2069 int next_alloc_pfn;	/* next position in list to start a contig search */
2070 int contig_pfnlist_updates;	/* pfn list update count */
2071 int contig_pfnlist_builds;	/* how many times have we (re)built list */
2072 int contig_pfnlist_buildfailed;	/* how many times has list build failed */
2073 int create_contig_pending;	/* nonzero means taskq creating contig list */
2074 pfn_t *contig_pfn_list = NULL;	/* list of contig pfns in ascending mfn order */
2075 
2076 /*
2077  * Function to use in sorting a list of pfns by their underlying mfns.
2078  */
2079 static int
2080 mfn_compare(const void *pfnp1, const void *pfnp2)
2081 {
2082 	mfn_t mfn1 = mfn_list[*(pfn_t *)pfnp1];
2083 	mfn_t mfn2 = mfn_list[*(pfn_t *)pfnp2];
2084 
2085 	if (mfn1 > mfn2)
2086 		return (1);
2087 	if (mfn1 < mfn2)
2088 		return (-1);
2089 	return (0);
2090 }
2091 
2092 /*
2093  * Compact the contig_pfn_list by tossing all the non-contiguous
2094  * elements from the list.
2095  */
2096 static void
2097 compact_contig_pfn_list(void)
2098 {
2099 	pfn_t pfn, lapfn, prev_lapfn;
2100 	mfn_t mfn;
2101 	int i, newcnt = 0;
2102 
2103 	prev_lapfn = 0;
2104 	for (i = 0; i < contig_pfn_cnt - 1; i++) {
2105 		pfn = contig_pfn_list[i];
2106 		lapfn = contig_pfn_list[i + 1];
2107 		mfn = mfn_list[pfn];
2108 		/*
2109 		 * See if next pfn is for a contig mfn
2110 		 */
2111 		if (mfn_list[lapfn] != mfn + 1)
2112 			continue;
2113 		/*
2114 		 * pfn and lookahead are both put in list
2115 		 * unless pfn is the previous lookahead.
2116 		 */
2117 		if (pfn != prev_lapfn)
2118 			contig_pfn_list[newcnt++] = pfn;
2119 		contig_pfn_list[newcnt++] = lapfn;
2120 		prev_lapfn = lapfn;
2121 	}
2122 	for (i = newcnt; i < contig_pfn_cnt; i++)
2123 		contig_pfn_list[i] = 0;
2124 	contig_pfn_cnt = newcnt;
2125 }
2126 
2127 /*ARGSUSED*/
2128 static void
2129 call_create_contiglist(void *arg)
2130 {
2131 	(void) create_contig_pfnlist(PG_WAIT);
2132 }
2133 
2134 /*
2135  * Create list of freelist pfns that have underlying
2136  * contiguous mfns.  The list is kept in ascending mfn order.
2137  * returns 1 if list created else 0.
2138  */
2139 static int
2140 create_contig_pfnlist(uint_t flags)
2141 {
2142 	pfn_t pfn;
2143 	page_t *pp;
2144 	int ret = 1;
2145 
2146 	mutex_enter(&contig_list_lock);
2147 	if (contig_pfn_list != NULL)
2148 		goto out;
2149 	contig_pfn_max = freemem + (freemem / 10);
2150 	contig_pfn_list = kmem_zalloc(contig_pfn_max * sizeof (pfn_t),
2151 	    (flags & PG_WAIT) ? KM_SLEEP : KM_NOSLEEP);
2152 	if (contig_pfn_list == NULL) {
2153 		/*
2154 		 * If we could not create the contig list (because
2155 		 * we could not sleep for memory).  Dispatch a taskq that can
2156 		 * sleep to get the memory.
2157 		 */
2158 		if (!create_contig_pending) {
2159 			if (taskq_dispatch(system_taskq, call_create_contiglist,
2160 			    NULL, TQ_NOSLEEP) != NULL)
2161 				create_contig_pending = 1;
2162 		}
2163 		contig_pfnlist_buildfailed++;	/* count list build failures */
2164 		ret = 0;
2165 		goto out;
2166 	}
2167 	create_contig_pending = 0;
2168 	ASSERT(contig_pfn_cnt == 0);
2169 	for (pfn = 0; pfn < mfn_count; pfn++) {
2170 		pp = page_numtopp_nolock(pfn);
2171 		if (pp == NULL || !PP_ISFREE(pp))
2172 			continue;
2173 		contig_pfn_list[contig_pfn_cnt] = pfn;
2174 		if (++contig_pfn_cnt == contig_pfn_max)
2175 			break;
2176 	}
2177 	/*
2178 	 * Sanity check the new list.
2179 	 */
2180 	if (contig_pfn_cnt < 2) { /* no contig pfns */
2181 		contig_pfn_cnt = 0;
2182 		contig_pfnlist_buildfailed++;
2183 		kmem_free(contig_pfn_list, contig_pfn_max * sizeof (pfn_t));
2184 		contig_pfn_list = NULL;
2185 		contig_pfn_max = 0;
2186 		ret = 0;
2187 		goto out;
2188 	}
2189 	qsort(contig_pfn_list, contig_pfn_cnt, sizeof (pfn_t), mfn_compare);
2190 	compact_contig_pfn_list();
2191 	/*
2192 	 * Make sure next search of the newly created contiguous pfn
2193 	 * list starts at the beginning of the list.
2194 	 */
2195 	next_alloc_pfn = 0;
2196 	contig_pfnlist_builds++;	/* count list builds */
2197 out:
2198 	mutex_exit(&contig_list_lock);
2199 	return (ret);
2200 }
2201 
2202 
2203 /*
2204  * Toss the current contig pfnlist.  Someone is about to do a massive
2205  * update to pfn<->mfn mappings.  So we have them destroy the list and lock
2206  * it till they are done with their update.
2207  */
2208 void
2209 clear_and_lock_contig_pfnlist()
2210 {
2211 	pfn_t *listp = NULL;
2212 	size_t listsize;
2213 
2214 	mutex_enter(&contig_list_lock);
2215 	if (contig_pfn_list != NULL) {
2216 		listp = contig_pfn_list;
2217 		listsize = contig_pfn_max * sizeof (pfn_t);
2218 		contig_pfn_list = NULL;
2219 		contig_pfn_max = contig_pfn_cnt = 0;
2220 	}
2221 	if (listp != NULL)
2222 		kmem_free(listp, listsize);
2223 }
2224 
2225 /*
2226  * Unlock the contig_pfn_list.  The next attempted use of it will cause
2227  * it to be re-created.
2228  */
2229 void
2230 unlock_contig_pfnlist()
2231 {
2232 	mutex_exit(&contig_list_lock);
2233 }
2234 
2235 /*
2236  * Update the contiguous pfn list in response to a pfn <-> mfn reassignment
2237  */
2238 void
2239 update_contig_pfnlist(pfn_t pfn, mfn_t oldmfn, mfn_t newmfn)
2240 {
2241 	int probe_hi, probe_lo, probe_pos, insert_after, insert_point;
2242 	pfn_t probe_pfn;
2243 	mfn_t probe_mfn;
2244 	int drop_lock = 0;
2245 
2246 	if (mutex_owner(&contig_list_lock) != curthread) {
2247 		drop_lock = 1;
2248 		mutex_enter(&contig_list_lock);
2249 	}
2250 	if (contig_pfn_list == NULL)
2251 		goto done;
2252 	contig_pfnlist_updates++;
2253 	/*
2254 	 * Find the pfn in the current list.  Use a binary chop to locate it.
2255 	 */
2256 	probe_hi = contig_pfn_cnt - 1;
2257 	probe_lo = 0;
2258 	probe_pos = (probe_hi + probe_lo) / 2;
2259 	while ((probe_pfn = contig_pfn_list[probe_pos]) != pfn) {
2260 		if (probe_pos == probe_lo) { /* pfn not in list */
2261 			probe_pos = -1;
2262 			break;
2263 		}
2264 		if (pfn_to_mfn(probe_pfn) <= oldmfn)
2265 			probe_lo = probe_pos;
2266 		else
2267 			probe_hi = probe_pos;
2268 		probe_pos = (probe_hi + probe_lo) / 2;
2269 	}
2270 	if (probe_pos >= 0) {
2271 		/*
2272 		 * Remove pfn from list and ensure next alloc
2273 		 * position stays in bounds.
2274 		 */
2275 		if (--contig_pfn_cnt <= next_alloc_pfn)
2276 			next_alloc_pfn = 0;
2277 		if (contig_pfn_cnt < 2) { /* no contig pfns */
2278 			contig_pfn_cnt = 0;
2279 			kmem_free(contig_pfn_list,
2280 			    contig_pfn_max * sizeof (pfn_t));
2281 			contig_pfn_list = NULL;
2282 			contig_pfn_max = 0;
2283 			goto done;
2284 		}
2285 		ovbcopy(&contig_pfn_list[probe_pos + 1],
2286 		    &contig_pfn_list[probe_pos],
2287 		    (contig_pfn_cnt - probe_pos) * sizeof (pfn_t));
2288 	}
2289 	if (newmfn == MFN_INVALID)
2290 		goto done;
2291 	/*
2292 	 * Check if new mfn has adjacent mfns in the list
2293 	 */
2294 	probe_hi = contig_pfn_cnt - 1;
2295 	probe_lo = 0;
2296 	insert_after = -2;
2297 	do {
2298 		probe_pos = (probe_hi + probe_lo) / 2;
2299 		probe_mfn = pfn_to_mfn(contig_pfn_list[probe_pos]);
2300 		if (newmfn == probe_mfn + 1)
2301 			insert_after = probe_pos;
2302 		else if (newmfn == probe_mfn - 1)
2303 			insert_after = probe_pos - 1;
2304 		if (probe_pos == probe_lo)
2305 			break;
2306 		if (probe_mfn <= newmfn)
2307 			probe_lo = probe_pos;
2308 		else
2309 			probe_hi = probe_pos;
2310 	} while (insert_after == -2);
2311 	/*
2312 	 * If there is space in the list and there are adjacent mfns
2313 	 * insert the pfn in to its proper place in the list.
2314 	 */
2315 	if (insert_after != -2 && contig_pfn_cnt + 1 <= contig_pfn_max) {
2316 		insert_point = insert_after + 1;
2317 		ovbcopy(&contig_pfn_list[insert_point],
2318 		    &contig_pfn_list[insert_point + 1],
2319 		    (contig_pfn_cnt - insert_point) * sizeof (pfn_t));
2320 		contig_pfn_list[insert_point] = pfn;
2321 		contig_pfn_cnt++;
2322 	}
2323 done:
2324 	if (drop_lock)
2325 		mutex_exit(&contig_list_lock);
2326 }
2327 
2328 /*
2329  * Called to (re-)populate the io_pool from the free page lists.
2330  */
2331 long
2332 populate_io_pool(void)
2333 {
2334 	pfn_t pfn;
2335 	mfn_t mfn, max_mfn;
2336 	page_t *pp;
2337 
2338 	/*
2339 	 * Figure out the bounds of the pool on first invocation.
2340 	 * We use a percentage of memory for the io pool size.
2341 	 * we allow that to shrink, but not to less than a fixed minimum
2342 	 */
2343 	if (io_pool_cnt_max == 0) {
2344 		io_pool_cnt_max = physmem / (100 / io_pool_physmem_pct);
2345 		io_pool_cnt_lowater = io_pool_cnt_max;
2346 		/*
2347 		 * This is the first time in populate_io_pool, grab a va to use
2348 		 * when we need to allocate pages.
2349 		 */
2350 		io_pool_kva = vmem_alloc(heap_arena, PAGESIZE, VM_SLEEP);
2351 	}
2352 	/*
2353 	 * If we are out of pages in the pool, then grow the size of the pool
2354 	 */
2355 	if (io_pool_cnt == 0) {
2356 		/*
2357 		 * Grow the max size of the io pool by 5%, but never more than
2358 		 * 25% of physical memory.
2359 		 */
2360 		if (io_pool_cnt_max < physmem / 4)
2361 			io_pool_cnt_max += io_pool_cnt_max / 20;
2362 	}
2363 	io_pool_grows++;	/* should be a kstat? */
2364 
2365 	/*
2366 	 * Get highest mfn on this platform, but limit to the 32 bit DMA max.
2367 	 */
2368 	(void) mfn_to_pfn(start_mfn);
2369 	max_mfn = MIN(cached_max_mfn, PFN_4GIG);
2370 	for (mfn = start_mfn; mfn < max_mfn; start_mfn = ++mfn) {
2371 		pfn = mfn_to_pfn(mfn);
2372 		if (pfn & PFN_IS_FOREIGN_MFN)
2373 			continue;
2374 		/*
2375 		 * try to allocate it from free pages
2376 		 */
2377 		pp = page_numtopp_alloc(pfn);
2378 		if (pp == NULL)
2379 			continue;
2380 		PP_CLRFREE(pp);
2381 		add_page_to_pool(pp, 1);
2382 		if (io_pool_cnt >= io_pool_cnt_max)
2383 			break;
2384 	}
2385 
2386 	return (io_pool_cnt);
2387 }
2388 
2389 /*
2390  * Destroy a page that was being used for DMA I/O. It may or
2391  * may not actually go back to the io_pool.
2392  */
2393 void
2394 page_destroy_io(page_t *pp)
2395 {
2396 	mfn_t mfn = mfn_list[pp->p_pagenum];
2397 
2398 	/*
2399 	 * When the page was alloc'd a reservation was made, release it now
2400 	 */
2401 	page_unresv(1);
2402 	/*
2403 	 * Unload translations, if any, then hash out the
2404 	 * page to erase its identity.
2405 	 */
2406 	(void) hat_pageunload(pp, HAT_FORCE_PGUNLOAD);
2407 	page_hashout(pp, NULL);
2408 
2409 	/*
2410 	 * If the page came from the free lists, just put it back to them.
2411 	 * DomU pages always go on the free lists as well.
2412 	 */
2413 	if (!DOMAIN_IS_INITDOMAIN(xen_info) || mfn >= PFN_4GIG) {
2414 		page_free(pp, 1);
2415 		return;
2416 	}
2417 
2418 	add_page_to_pool(pp, 0);
2419 }
2420 
2421 
2422 long contig_searches;		/* count of times contig pages requested */
2423 long contig_search_restarts;	/* count of contig ranges tried */
2424 long contig_search_failed;	/* count of contig alloc failures */
2425 
2426 /*
2427  * Free partial page list
2428  */
2429 static void
2430 free_partial_list(page_t **pplist)
2431 {
2432 	page_t *pp;
2433 
2434 	while (*pplist != NULL) {
2435 		pp = *pplist;
2436 		page_io_pool_sub(pplist, pp, pp);
2437 		page_free(pp, 1);
2438 	}
2439 }
2440 
2441 /*
2442  * Look thru the contiguous pfns that are not part of the io_pool for
2443  * contiguous free pages.  Return a list of the found pages or NULL.
2444  */
2445 page_t *
2446 find_contig_free(uint_t npages, uint_t flags, uint64_t pfnseg,
2447     pgcnt_t pfnalign)
2448 {
2449 	page_t *pp, *plist = NULL;
2450 	mfn_t mfn, prev_mfn, start_mfn;
2451 	pfn_t pfn;
2452 	int pages_needed, pages_requested;
2453 	int search_start;
2454 
2455 	/*
2456 	 * create the contig pfn list if not already done
2457 	 */
2458 retry:
2459 	mutex_enter(&contig_list_lock);
2460 	if (contig_pfn_list == NULL) {
2461 		mutex_exit(&contig_list_lock);
2462 		if (!create_contig_pfnlist(flags)) {
2463 			return (NULL);
2464 		}
2465 		goto retry;
2466 	}
2467 	contig_searches++;
2468 	/*
2469 	 * Search contiguous pfn list for physically contiguous pages not in
2470 	 * the io_pool.  Start the search where the last search left off.
2471 	 */
2472 	pages_requested = pages_needed = npages;
2473 	search_start = next_alloc_pfn;
2474 	start_mfn = prev_mfn = 0;
2475 	while (pages_needed) {
2476 		pfn = contig_pfn_list[next_alloc_pfn];
2477 		mfn = pfn_to_mfn(pfn);
2478 		/*
2479 		 * Check if mfn is first one or contig to previous one and
2480 		 * if page corresponding to mfn is free and that mfn
2481 		 * range is not crossing a segment boundary.
2482 		 */
2483 		if ((prev_mfn == 0 || mfn == prev_mfn + 1) &&
2484 		    (pp = page_numtopp_alloc(pfn)) != NULL &&
2485 		    !((mfn & pfnseg) < (start_mfn & pfnseg))) {
2486 			PP_CLRFREE(pp);
2487 			page_io_pool_add(&plist, pp);
2488 			pages_needed--;
2489 			if (prev_mfn == 0) {
2490 				if (pfnalign &&
2491 				    mfn != P2ROUNDUP(mfn, pfnalign)) {
2492 					/*
2493 					 * not properly aligned
2494 					 */
2495 					contig_search_restarts++;
2496 					free_partial_list(&plist);
2497 					pages_needed = pages_requested;
2498 					start_mfn = prev_mfn = 0;
2499 					goto skip;
2500 				}
2501 				start_mfn = mfn;
2502 			}
2503 			prev_mfn = mfn;
2504 		} else {
2505 			contig_search_restarts++;
2506 			free_partial_list(&plist);
2507 			pages_needed = pages_requested;
2508 			start_mfn = prev_mfn = 0;
2509 		}
2510 skip:
2511 		if (++next_alloc_pfn == contig_pfn_cnt)
2512 			next_alloc_pfn = 0;
2513 		if (next_alloc_pfn == search_start)
2514 			break; /* all pfns searched */
2515 	}
2516 	mutex_exit(&contig_list_lock);
2517 	if (pages_needed) {
2518 		contig_search_failed++;
2519 		/*
2520 		 * Failed to find enough contig pages.
2521 		 * free partial page list
2522 		 */
2523 		free_partial_list(&plist);
2524 	}
2525 	return (plist);
2526 }
2527 
2528 /*
2529  * Search the reserved io pool pages for a page range with the
2530  * desired characteristics.
2531  */
2532 page_t *
2533 page_io_pool_alloc(ddi_dma_attr_t *mattr, int contig, pgcnt_t minctg)
2534 {
2535 	page_t *pp_first, *pp_last;
2536 	page_t *pp, **poolp;
2537 	pgcnt_t nwanted, pfnalign;
2538 	uint64_t pfnseg;
2539 	mfn_t mfn, tmfn, hi_mfn, lo_mfn;
2540 	int align, attempt = 0;
2541 
2542 	if (minctg == 1)
2543 		contig = 0;
2544 	lo_mfn = mmu_btop(mattr->dma_attr_addr_lo);
2545 	hi_mfn = mmu_btop(mattr->dma_attr_addr_hi);
2546 	pfnseg = mmu_btop(mattr->dma_attr_seg);
2547 	align = maxbit(mattr->dma_attr_align, mattr->dma_attr_minxfer);
2548 	if (align > MMU_PAGESIZE)
2549 		pfnalign = mmu_btop(align);
2550 	else
2551 		pfnalign = 0;
2552 
2553 try_again:
2554 	/*
2555 	 * See if we want pages for a legacy device
2556 	 */
2557 	if (hi_mfn < PFN_16MEG)
2558 		poolp = &io_pool_16m;
2559 	else
2560 		poolp = &io_pool_4g;
2561 try_smaller:
2562 	/*
2563 	 * Take pages from I/O pool. We'll use pages from the highest
2564 	 * MFN range possible.
2565 	 */
2566 	pp_first = pp_last = NULL;
2567 	mutex_enter(&io_pool_lock);
2568 	nwanted = minctg;
2569 	for (pp = *poolp; pp && nwanted > 0; ) {
2570 		pp = pp->p_prev;
2571 
2572 		/*
2573 		 * skip pages above allowable range
2574 		 */
2575 		mfn = mfn_list[pp->p_pagenum];
2576 		if (hi_mfn < mfn)
2577 			goto skip;
2578 
2579 		/*
2580 		 * stop at pages below allowable range
2581 		 */
2582 		if (lo_mfn > mfn)
2583 			break;
2584 restart:
2585 		if (pp_last == NULL) {
2586 			/*
2587 			 * Check alignment
2588 			 */
2589 			tmfn = mfn - (minctg - 1);
2590 			if (pfnalign && tmfn != P2ROUNDUP(tmfn, pfnalign))
2591 				goto skip; /* not properly aligned */
2592 			/*
2593 			 * Check segment
2594 			 */
2595 			if ((mfn & pfnseg) < (tmfn & pfnseg))
2596 				goto skip; /* crosses seg boundary */
2597 			/*
2598 			 * Start building page list
2599 			 */
2600 			pp_first = pp_last = pp;
2601 			nwanted--;
2602 		} else {
2603 			/*
2604 			 * check physical contiguity if required
2605 			 */
2606 			if (contig &&
2607 			    mfn_list[pp_first->p_pagenum] != mfn + 1) {
2608 				/*
2609 				 * not a contiguous page, restart list.
2610 				 */
2611 				pp_last = NULL;
2612 				nwanted = minctg;
2613 				goto restart;
2614 			} else { /* add page to list */
2615 				pp_first = pp;
2616 				nwanted--;
2617 			}
2618 		}
2619 skip:
2620 		if (pp == *poolp)
2621 			break;
2622 	}
2623 
2624 	/*
2625 	 * If we didn't find memory. Try the more constrained pool, then
2626 	 * sweep free pages into the DMA pool and try again.
2627 	 */
2628 	if (nwanted != 0) {
2629 		mutex_exit(&io_pool_lock);
2630 		/*
2631 		 * If we were looking in the less constrained pool and
2632 		 * didn't find pages, try the more constrained pool.
2633 		 */
2634 		if (poolp == &io_pool_4g) {
2635 			poolp = &io_pool_16m;
2636 			goto try_smaller;
2637 		}
2638 		kmem_reap();
2639 		if (++attempt < 4) {
2640 			/*
2641 			 * Grab some more io_pool pages
2642 			 */
2643 			(void) populate_io_pool();
2644 			goto try_again; /* go around and retry */
2645 		}
2646 		return (NULL);
2647 	}
2648 	/*
2649 	 * Found the pages, now snip them from the list
2650 	 */
2651 	page_io_pool_sub(poolp, pp_first, pp_last);
2652 	io_pool_cnt -= minctg;
2653 	/*
2654 	 * reset low water mark
2655 	 */
2656 	if (io_pool_cnt < io_pool_cnt_lowater)
2657 		io_pool_cnt_lowater = io_pool_cnt;
2658 	mutex_exit(&io_pool_lock);
2659 	return (pp_first);
2660 }
2661 
2662 page_t *
2663 page_swap_with_hypervisor(struct vnode *vp, u_offset_t off, caddr_t vaddr,
2664     ddi_dma_attr_t *mattr, uint_t flags, pgcnt_t minctg)
2665 {
2666 	uint_t kflags;
2667 	int order, extra, extpages, i, contig, nbits, extents;
2668 	page_t *pp, *expp, *pp_first, **pplist = NULL;
2669 	mfn_t *mfnlist = NULL;
2670 
2671 	contig = flags & PG_PHYSCONTIG;
2672 	if (minctg == 1)
2673 		contig = 0;
2674 	flags &= ~PG_PHYSCONTIG;
2675 	kflags = flags & PG_WAIT ? KM_SLEEP : KM_NOSLEEP;
2676 	/*
2677 	 * Hypervisor will allocate extents, if we want contig
2678 	 * pages extent must be >= minctg
2679 	 */
2680 	if (contig) {
2681 		order = highbit(minctg) - 1;
2682 		if (minctg & ((1 << order) - 1))
2683 			order++;
2684 		extpages = 1 << order;
2685 	} else {
2686 		order = 0;
2687 		extpages = minctg;
2688 	}
2689 	if (extpages > minctg) {
2690 		extra = extpages - minctg;
2691 		if (!page_resv(extra, kflags))
2692 			return (NULL);
2693 	}
2694 	pp_first = NULL;
2695 	pplist = kmem_alloc(extpages * sizeof (page_t *), kflags);
2696 	if (pplist == NULL)
2697 		goto balloon_fail;
2698 	mfnlist = kmem_alloc(extpages * sizeof (mfn_t), kflags);
2699 	if (mfnlist == NULL)
2700 		goto balloon_fail;
2701 	pp = page_create_va(vp, off, minctg * PAGESIZE, flags, &kvseg, vaddr);
2702 	if (pp == NULL)
2703 		goto balloon_fail;
2704 	pp_first = pp;
2705 	if (extpages > minctg) {
2706 		/*
2707 		 * fill out the rest of extent pages to swap
2708 		 * with the hypervisor
2709 		 */
2710 		for (i = 0; i < extra; i++) {
2711 			expp = page_create_va(vp,
2712 			    (u_offset_t)(uintptr_t)io_pool_kva,
2713 			    PAGESIZE, flags, &kvseg, io_pool_kva);
2714 			if (expp == NULL)
2715 				goto balloon_fail;
2716 			(void) hat_pageunload(expp, HAT_FORCE_PGUNLOAD);
2717 			page_io_unlock(expp);
2718 			page_hashout(expp, NULL);
2719 			page_io_lock(expp);
2720 			/*
2721 			 * add page to end of list
2722 			 */
2723 			expp->p_prev = pp_first->p_prev;
2724 			expp->p_next = pp_first;
2725 			expp->p_prev->p_next = expp;
2726 			pp_first->p_prev = expp;
2727 		}
2728 
2729 	}
2730 	for (i = 0; i < extpages; i++) {
2731 		pplist[i] = pp;
2732 		pp = pp->p_next;
2733 	}
2734 	nbits = highbit(mattr->dma_attr_addr_hi);
2735 	extents = contig ? 1 : minctg;
2736 	if (balloon_replace_pages(extents, pplist, nbits, order,
2737 	    mfnlist) != extents) {
2738 		if (ioalloc_dbg)
2739 			cmn_err(CE_NOTE, "request to hypervisor"
2740 			    " for %d pages, maxaddr %" PRIx64 " failed",
2741 			    extpages, mattr->dma_attr_addr_hi);
2742 		goto balloon_fail;
2743 	}
2744 
2745 	kmem_free(pplist, extpages * sizeof (page_t *));
2746 	kmem_free(mfnlist, extpages * sizeof (mfn_t));
2747 	/*
2748 	 * Return any excess pages to free list
2749 	 */
2750 	if (extpages > minctg) {
2751 		for (i = 0; i < extra; i++) {
2752 			pp = pp_first->p_prev;
2753 			page_sub(&pp_first, pp);
2754 			page_io_unlock(pp);
2755 			page_unresv(1);
2756 			page_free(pp, 1);
2757 		}
2758 	}
2759 	return (pp_first);
2760 balloon_fail:
2761 	/*
2762 	 * Return pages to free list and return failure
2763 	 */
2764 	while (pp_first != NULL) {
2765 		pp = pp_first;
2766 		page_sub(&pp_first, pp);
2767 		page_io_unlock(pp);
2768 		if (pp->p_vnode != NULL)
2769 			page_hashout(pp, NULL);
2770 		page_free(pp, 1);
2771 	}
2772 	if (pplist)
2773 		kmem_free(pplist, extpages * sizeof (page_t *));
2774 	if (mfnlist)
2775 		kmem_free(mfnlist, extpages * sizeof (mfn_t));
2776 	page_unresv(extpages - minctg);
2777 	return (NULL);
2778 }
2779 
2780 static void
2781 return_partial_alloc(page_t *plist)
2782 {
2783 	page_t *pp;
2784 
2785 	while (plist != NULL) {
2786 		pp = plist;
2787 		page_sub(&plist, pp);
2788 		page_io_unlock(pp);
2789 		page_destroy_io(pp);
2790 	}
2791 }
2792 
2793 static page_t *
2794 page_get_contigpages(
2795 	struct vnode	*vp,
2796 	u_offset_t	off,
2797 	int		*npagesp,
2798 	uint_t		flags,
2799 	caddr_t		vaddr,
2800 	ddi_dma_attr_t	*mattr)
2801 {
2802 	mfn_t	max_mfn = HYPERVISOR_memory_op(XENMEM_maximum_ram_page, NULL);
2803 	page_t	*plist;	/* list to return */
2804 	page_t	*pp, *mcpl;
2805 	int	contig, anyaddr, npages, getone = 0;
2806 	mfn_t	lo_mfn;
2807 	mfn_t	hi_mfn;
2808 	pgcnt_t	pfnalign = 0;
2809 	int	align, sgllen;
2810 	uint64_t pfnseg;
2811 	pgcnt_t	minctg;
2812 
2813 	npages = *npagesp;
2814 	ASSERT(mattr != NULL);
2815 	lo_mfn = mmu_btop(mattr->dma_attr_addr_lo);
2816 	hi_mfn = mmu_btop(mattr->dma_attr_addr_hi);
2817 	sgllen = mattr->dma_attr_sgllen;
2818 	pfnseg = mmu_btop(mattr->dma_attr_seg);
2819 	align = maxbit(mattr->dma_attr_align, mattr->dma_attr_minxfer);
2820 	if (align > MMU_PAGESIZE)
2821 		pfnalign = mmu_btop(align);
2822 
2823 	contig = flags & PG_PHYSCONTIG;
2824 	if (npages == -1) {
2825 		npages = 1;
2826 		pfnalign = 0;
2827 	}
2828 	/*
2829 	 * Clear the contig flag if only one page is needed.
2830 	 */
2831 	if (npages == 1) {
2832 		getone = 1;
2833 		contig = 0;
2834 	}
2835 
2836 	/*
2837 	 * Check if any page in the system is fine.
2838 	 */
2839 	anyaddr = lo_mfn == 0 && hi_mfn >= max_mfn;
2840 	if (!contig && anyaddr && !pfnalign) {
2841 		flags &= ~PG_PHYSCONTIG;
2842 		plist = page_create_va(vp, off, npages * MMU_PAGESIZE,
2843 		    flags, &kvseg, vaddr);
2844 		if (plist != NULL) {
2845 			*npagesp = 0;
2846 			return (plist);
2847 		}
2848 	}
2849 	plist = NULL;
2850 	minctg = howmany(npages, sgllen);
2851 	while (npages > sgllen || getone) {
2852 		if (minctg > npages)
2853 			minctg = npages;
2854 		mcpl = NULL;
2855 		/*
2856 		 * We could want contig pages with no address range limits.
2857 		 */
2858 		if (anyaddr && contig) {
2859 			/*
2860 			 * Look for free contig pages to satisfy the request.
2861 			 */
2862 			mcpl = find_contig_free(minctg, flags, pfnseg,
2863 			    pfnalign);
2864 		}
2865 		/*
2866 		 * Try the reserved io pools next
2867 		 */
2868 		if (mcpl == NULL)
2869 			mcpl = page_io_pool_alloc(mattr, contig, minctg);
2870 		if (mcpl != NULL) {
2871 			pp = mcpl;
2872 			do {
2873 				if (!page_hashin(pp, vp, off, NULL)) {
2874 					panic("page_get_contigpages:"
2875 					    " hashin failed"
2876 					    " pp %p, vp %p, off %llx",
2877 					    (void *)pp, (void *)vp, off);
2878 				}
2879 				off += MMU_PAGESIZE;
2880 				PP_CLRFREE(pp);
2881 				PP_CLRAGED(pp);
2882 				page_set_props(pp, P_REF);
2883 				page_io_lock(pp);
2884 				pp = pp->p_next;
2885 			} while (pp != mcpl);
2886 		} else {
2887 			/*
2888 			 * Hypervisor exchange doesn't handle segment or
2889 			 * alignment constraints
2890 			 */
2891 			if (mattr->dma_attr_seg < mattr->dma_attr_addr_hi ||
2892 			    pfnalign)
2893 				goto fail;
2894 			/*
2895 			 * Try exchanging pages with the hypervisor
2896 			 */
2897 			mcpl = page_swap_with_hypervisor(vp, off, vaddr, mattr,
2898 			    flags, minctg);
2899 			if (mcpl == NULL)
2900 				goto fail;
2901 			off += minctg * MMU_PAGESIZE;
2902 		}
2903 		check_dma(mattr, mcpl, minctg);
2904 		/*
2905 		 * Here with a minctg run of contiguous pages, add them to the
2906 		 * list we will return for this request.
2907 		 */
2908 		page_list_concat(&plist, &mcpl);
2909 		npages -= minctg;
2910 		*npagesp = npages;
2911 		sgllen--;
2912 		if (getone)
2913 			break;
2914 	}
2915 	return (plist);
2916 fail:
2917 	return_partial_alloc(plist);
2918 	return (NULL);
2919 }
2920 
2921 /*
2922  * Allocator for domain 0 I/O pages. We match the required
2923  * DMA attributes and contiguity constraints.
2924  */
2925 /*ARGSUSED*/
2926 page_t *
2927 page_create_io(
2928 	struct vnode	*vp,
2929 	u_offset_t	off,
2930 	uint_t		bytes,
2931 	uint_t		flags,
2932 	struct as	*as,
2933 	caddr_t		vaddr,
2934 	ddi_dma_attr_t	*mattr)
2935 {
2936 	page_t	*plist = NULL, *pp;
2937 	int	npages = 0, contig, anyaddr, pages_req;
2938 	mfn_t	lo_mfn;
2939 	mfn_t	hi_mfn;
2940 	pgcnt_t	pfnalign = 0;
2941 	int	align;
2942 	int	is_domu = 0;
2943 	int	dummy, bytes_got;
2944 	mfn_t	max_mfn = HYPERVISOR_memory_op(XENMEM_maximum_ram_page, NULL);
2945 
2946 	ASSERT(mattr != NULL);
2947 	lo_mfn = mmu_btop(mattr->dma_attr_addr_lo);
2948 	hi_mfn = mmu_btop(mattr->dma_attr_addr_hi);
2949 	align = maxbit(mattr->dma_attr_align, mattr->dma_attr_minxfer);
2950 	if (align > MMU_PAGESIZE)
2951 		pfnalign = mmu_btop(align);
2952 
2953 	/*
2954 	 * Clear the contig flag if only one page is needed or the scatter
2955 	 * gather list length is >= npages.
2956 	 */
2957 	pages_req = npages = mmu_btopr(bytes);
2958 	contig = (flags & PG_PHYSCONTIG);
2959 	bytes = P2ROUNDUP(bytes, MMU_PAGESIZE);
2960 	if (bytes == MMU_PAGESIZE || mattr->dma_attr_sgllen >= npages)
2961 		contig = 0;
2962 
2963 	/*
2964 	 * Check if any old page in the system is fine.
2965 	 * DomU should always go down this path.
2966 	 */
2967 	is_domu = !DOMAIN_IS_INITDOMAIN(xen_info);
2968 	anyaddr = lo_mfn == 0 && hi_mfn >= max_mfn && !pfnalign;
2969 	if ((!contig && anyaddr) || is_domu) {
2970 		flags &= ~PG_PHYSCONTIG;
2971 		plist = page_create_va(vp, off, bytes, flags, &kvseg, vaddr);
2972 		if (plist != NULL)
2973 			return (plist);
2974 		else if (is_domu)
2975 			return (NULL); /* no memory available */
2976 	}
2977 	/*
2978 	 * DomU should never reach here
2979 	 */
2980 	if (contig) {
2981 		plist = page_get_contigpages(vp, off, &npages, flags, vaddr,
2982 		    mattr);
2983 		if (plist == NULL)
2984 			goto fail;
2985 		bytes_got = (pages_req - npages) << MMU_PAGESHIFT;
2986 		vaddr += bytes_got;
2987 		off += bytes_got;
2988 		/*
2989 		 * We now have all the contiguous pages we need, but
2990 		 * we may still need additional non-contiguous pages.
2991 		 */
2992 	}
2993 	/*
2994 	 * now loop collecting the requested number of pages, these do
2995 	 * not have to be contiguous pages but we will use the contig
2996 	 * page alloc code to get the pages since it will honor any
2997 	 * other constraints the pages may have.
2998 	 */
2999 	while (npages--) {
3000 		dummy = -1;
3001 		pp = page_get_contigpages(vp, off, &dummy, flags, vaddr, mattr);
3002 		if (pp == NULL)
3003 			goto fail;
3004 		page_add(&plist, pp);
3005 		vaddr += MMU_PAGESIZE;
3006 		off += MMU_PAGESIZE;
3007 	}
3008 	return (plist);
3009 fail:
3010 	/*
3011 	 * Failed to get enough pages, return ones we did get
3012 	 */
3013 	return_partial_alloc(plist);
3014 	return (NULL);
3015 }
3016 
3017 /*
3018  * Lock and return the page with the highest mfn that we can find.  last_mfn
3019  * holds the last one found, so the next search can start from there.  We
3020  * also keep a counter so that we don't loop forever if the machine has no
3021  * free pages.
3022  *
3023  * This is called from the balloon thread to find pages to give away.  new_high
3024  * is used when new mfn's have been added to the system - we will reset our
3025  * search if the new mfn's are higher than our current search position.
3026  */
3027 page_t *
3028 page_get_high_mfn(mfn_t new_high)
3029 {
3030 	static mfn_t last_mfn = 0;
3031 	pfn_t pfn;
3032 	page_t *pp;
3033 	ulong_t loop_count = 0;
3034 
3035 	if (new_high > last_mfn)
3036 		last_mfn = new_high;
3037 
3038 	for (; loop_count < mfn_count; loop_count++, last_mfn--) {
3039 		if (last_mfn == 0) {
3040 			last_mfn = cached_max_mfn;
3041 		}
3042 
3043 		pfn = mfn_to_pfn(last_mfn);
3044 		if (pfn & PFN_IS_FOREIGN_MFN)
3045 			continue;
3046 
3047 		/* See if the page is free.  If so, lock it. */
3048 		pp = page_numtopp_alloc(pfn);
3049 		if (pp == NULL)
3050 			continue;
3051 		PP_CLRFREE(pp);
3052 
3053 		ASSERT(PAGE_EXCL(pp));
3054 		ASSERT(pp->p_vnode == NULL);
3055 		ASSERT(!hat_page_is_mapped(pp));
3056 		last_mfn--;
3057 		return (pp);
3058 	}
3059 	return (NULL);
3060 }
3061 
3062 #else /* !__xpv */
3063 
3064 /*
3065  * get a page from any list with the given mnode
3066  */
3067 static page_t *
3068 page_get_mnode_anylist(ulong_t origbin, uchar_t szc, uint_t flags,
3069     int mnode, int mtype, ddi_dma_attr_t *dma_attr)
3070 {
3071 	kmutex_t		*pcm;
3072 	int			i;
3073 	page_t			*pp;
3074 	page_t			*first_pp;
3075 	uint64_t		pgaddr;
3076 	ulong_t			bin;
3077 	int			mtypestart;
3078 	int			plw_initialized;
3079 	page_list_walker_t	plw;
3080 
3081 	VM_STAT_ADD(pga_vmstats.pgma_alloc);
3082 
3083 	ASSERT((flags & PG_MATCH_COLOR) == 0);
3084 	ASSERT(szc == 0);
3085 	ASSERT(dma_attr != NULL);
3086 
3087 	MTYPE_START(mnode, mtype, flags);
3088 	if (mtype < 0) {
3089 		VM_STAT_ADD(pga_vmstats.pgma_allocempty);
3090 		return (NULL);
3091 	}
3092 
3093 	mtypestart = mtype;
3094 
3095 	bin = origbin;
3096 
3097 	/*
3098 	 * check up to page_colors + 1 bins - origbin may be checked twice
3099 	 * because of BIN_STEP skip
3100 	 */
3101 	do {
3102 		plw_initialized = 0;
3103 
3104 		for (plw.plw_count = 0;
3105 		    plw.plw_count < page_colors; plw.plw_count++) {
3106 
3107 			if (PAGE_FREELISTS(mnode, szc, bin, mtype) == NULL)
3108 				goto nextfreebin;
3109 
3110 			pcm = PC_BIN_MUTEX(mnode, bin, PG_FREE_LIST);
3111 			mutex_enter(pcm);
3112 			pp = PAGE_FREELISTS(mnode, szc, bin, mtype);
3113 			first_pp = pp;
3114 			while (pp != NULL) {
3115 				if (page_trylock(pp, SE_EXCL) == 0) {
3116 					pp = pp->p_next;
3117 					if (pp == first_pp) {
3118 						pp = NULL;
3119 					}
3120 					continue;
3121 				}
3122 
3123 				ASSERT(PP_ISFREE(pp));
3124 				ASSERT(PP_ISAGED(pp));
3125 				ASSERT(pp->p_vnode == NULL);
3126 				ASSERT(pp->p_hash == NULL);
3127 				ASSERT(pp->p_offset == (u_offset_t)-1);
3128 				ASSERT(pp->p_szc == szc);
3129 				ASSERT(PFN_2_MEM_NODE(pp->p_pagenum) == mnode);
3130 				/* check if page within DMA attributes */
3131 				pgaddr = pa_to_ma(pfn_to_pa(pp->p_pagenum));
3132 				if ((pgaddr >= dma_attr->dma_attr_addr_lo) &&
3133 				    (pgaddr + MMU_PAGESIZE - 1 <=
3134 				    dma_attr->dma_attr_addr_hi)) {
3135 					break;
3136 				}
3137 
3138 				/* continue looking */
3139 				page_unlock(pp);
3140 				pp = pp->p_next;
3141 				if (pp == first_pp)
3142 					pp = NULL;
3143 
3144 			}
3145 			if (pp != NULL) {
3146 				ASSERT(mtype == PP_2_MTYPE(pp));
3147 				ASSERT(pp->p_szc == 0);
3148 
3149 				/* found a page with specified DMA attributes */
3150 				page_sub(&PAGE_FREELISTS(mnode, szc, bin,
3151 				    mtype), pp);
3152 				page_ctr_sub(mnode, mtype, pp, PG_FREE_LIST);
3153 
3154 				if ((PP_ISFREE(pp) == 0) ||
3155 				    (PP_ISAGED(pp) == 0)) {
3156 					cmn_err(CE_PANIC, "page %p is not free",
3157 					    (void *)pp);
3158 				}
3159 
3160 				mutex_exit(pcm);
3161 				check_dma(dma_attr, pp, 1);
3162 				VM_STAT_ADD(pga_vmstats.pgma_allocok);
3163 				return (pp);
3164 			}
3165 			mutex_exit(pcm);
3166 nextfreebin:
3167 			if (plw_initialized == 0) {
3168 				page_list_walk_init(szc, 0, bin, 1, 0, &plw);
3169 				ASSERT(plw.plw_ceq_dif == page_colors);
3170 				plw_initialized = 1;
3171 			}
3172 
3173 			if (plw.plw_do_split) {
3174 				pp = page_freelist_split(szc, bin, mnode,
3175 				    mtype,
3176 				    mmu_btop(dma_attr->dma_attr_addr_lo),
3177 				    mmu_btop(dma_attr->dma_attr_addr_hi + 1),
3178 				    &plw);
3179 				if (pp != NULL) {
3180 					check_dma(dma_attr, pp, 1);
3181 					return (pp);
3182 				}
3183 			}
3184 
3185 			bin = page_list_walk_next_bin(szc, bin, &plw);
3186 		}
3187 
3188 		MTYPE_NEXT(mnode, mtype, flags);
3189 	} while (mtype >= 0);
3190 
3191 	/* failed to find a page in the freelist; try it in the cachelist */
3192 
3193 	/* reset mtype start for cachelist search */
3194 	mtype = mtypestart;
3195 	ASSERT(mtype >= 0);
3196 
3197 	/* start with the bin of matching color */
3198 	bin = origbin;
3199 
3200 	do {
3201 		for (i = 0; i <= page_colors; i++) {
3202 			if (PAGE_CACHELISTS(mnode, bin, mtype) == NULL)
3203 				goto nextcachebin;
3204 			pcm = PC_BIN_MUTEX(mnode, bin, PG_CACHE_LIST);
3205 			mutex_enter(pcm);
3206 			pp = PAGE_CACHELISTS(mnode, bin, mtype);
3207 			first_pp = pp;
3208 			while (pp != NULL) {
3209 				if (page_trylock(pp, SE_EXCL) == 0) {
3210 					pp = pp->p_next;
3211 					if (pp == first_pp)
3212 						pp = NULL;
3213 					continue;
3214 				}
3215 				ASSERT(pp->p_vnode);
3216 				ASSERT(PP_ISAGED(pp) == 0);
3217 				ASSERT(pp->p_szc == 0);
3218 				ASSERT(PFN_2_MEM_NODE(pp->p_pagenum) == mnode);
3219 
3220 				/* check if page within DMA attributes */
3221 
3222 				pgaddr = pa_to_ma(pfn_to_pa(pp->p_pagenum));
3223 				if ((pgaddr >= dma_attr->dma_attr_addr_lo) &&
3224 				    (pgaddr + MMU_PAGESIZE - 1 <=
3225 				    dma_attr->dma_attr_addr_hi)) {
3226 					break;
3227 				}
3228 
3229 				/* continue looking */
3230 				page_unlock(pp);
3231 				pp = pp->p_next;
3232 				if (pp == first_pp)
3233 					pp = NULL;
3234 			}
3235 
3236 			if (pp != NULL) {
3237 				ASSERT(mtype == PP_2_MTYPE(pp));
3238 				ASSERT(pp->p_szc == 0);
3239 
3240 				/* found a page with specified DMA attributes */
3241 				page_sub(&PAGE_CACHELISTS(mnode, bin,
3242 				    mtype), pp);
3243 				page_ctr_sub(mnode, mtype, pp, PG_CACHE_LIST);
3244 
3245 				mutex_exit(pcm);
3246 				ASSERT(pp->p_vnode);
3247 				ASSERT(PP_ISAGED(pp) == 0);
3248 				check_dma(dma_attr, pp, 1);
3249 				VM_STAT_ADD(pga_vmstats.pgma_allocok);
3250 				return (pp);
3251 			}
3252 			mutex_exit(pcm);
3253 nextcachebin:
3254 			bin += (i == 0) ? BIN_STEP : 1;
3255 			bin &= page_colors_mask;
3256 		}
3257 		MTYPE_NEXT(mnode, mtype, flags);
3258 	} while (mtype >= 0);
3259 
3260 	VM_STAT_ADD(pga_vmstats.pgma_allocfailed);
3261 	return (NULL);
3262 }
3263 
3264 /*
3265  * This function is similar to page_get_freelist()/page_get_cachelist()
3266  * but it searches both the lists to find a page with the specified
3267  * color (or no color) and DMA attributes. The search is done in the
3268  * freelist first and then in the cache list within the highest memory
3269  * range (based on DMA attributes) before searching in the lower
3270  * memory ranges.
3271  *
3272  * Note: This function is called only by page_create_io().
3273  */
3274 /*ARGSUSED*/
3275 static page_t *
3276 page_get_anylist(struct vnode *vp, u_offset_t off, struct as *as, caddr_t vaddr,
3277     size_t size, uint_t flags, ddi_dma_attr_t *dma_attr, lgrp_t	*lgrp)
3278 {
3279 	uint_t		bin;
3280 	int		mtype;
3281 	page_t		*pp;
3282 	int		n;
3283 	int		m;
3284 	int		szc;
3285 	int		fullrange;
3286 	int		mnode;
3287 	int		local_failed_stat = 0;
3288 	lgrp_mnode_cookie_t	lgrp_cookie;
3289 
3290 	VM_STAT_ADD(pga_vmstats.pga_alloc);
3291 
3292 	/* only base pagesize currently supported */
3293 	if (size != MMU_PAGESIZE)
3294 		return (NULL);
3295 
3296 	/*
3297 	 * If we're passed a specific lgroup, we use it.  Otherwise,
3298 	 * assume first-touch placement is desired.
3299 	 */
3300 	if (!LGRP_EXISTS(lgrp))
3301 		lgrp = lgrp_home_lgrp();
3302 
3303 	/* LINTED */
3304 	AS_2_BIN(as, seg, vp, vaddr, bin, 0);
3305 
3306 	/*
3307 	 * Only hold one freelist or cachelist lock at a time, that way we
3308 	 * can start anywhere and not have to worry about lock
3309 	 * ordering.
3310 	 */
3311 	if (dma_attr == NULL) {
3312 		n = mtype16m;
3313 		m = mtypetop;
3314 		fullrange = 1;
3315 		VM_STAT_ADD(pga_vmstats.pga_nulldmaattr);
3316 	} else {
3317 		pfn_t pfnlo = mmu_btop(dma_attr->dma_attr_addr_lo);
3318 		pfn_t pfnhi = mmu_btop(dma_attr->dma_attr_addr_hi);
3319 
3320 		/*
3321 		 * We can guarantee alignment only for page boundary.
3322 		 */
3323 		if (dma_attr->dma_attr_align > MMU_PAGESIZE)
3324 			return (NULL);
3325 
3326 		/* Sanity check the dma_attr */
3327 		if (pfnlo > pfnhi)
3328 			return (NULL);
3329 
3330 		n = pfn_2_mtype(pfnlo);
3331 		m = pfn_2_mtype(pfnhi);
3332 
3333 		fullrange = ((pfnlo == mnoderanges[n].mnr_pfnlo) &&
3334 		    (pfnhi >= mnoderanges[m].mnr_pfnhi));
3335 	}
3336 	VM_STAT_COND_ADD(fullrange == 0, pga_vmstats.pga_notfullrange);
3337 
3338 	szc = 0;
3339 
3340 	/* cylcing thru mtype handled by RANGE0 if n == mtype16m */
3341 	if (n == mtype16m) {
3342 		flags |= PGI_MT_RANGE0;
3343 		n = m;
3344 	}
3345 
3346 	/*
3347 	 * Try local memory node first, but try remote if we can't
3348 	 * get a page of the right color.
3349 	 */
3350 	LGRP_MNODE_COOKIE_INIT(lgrp_cookie, lgrp, LGRP_SRCH_HIER);
3351 	while ((mnode = lgrp_memnode_choose(&lgrp_cookie)) >= 0) {
3352 		/*
3353 		 * allocate pages from high pfn to low.
3354 		 */
3355 		mtype = m;
3356 		do {
3357 			if (fullrange != 0) {
3358 				pp = page_get_mnode_freelist(mnode,
3359 				    bin, mtype, szc, flags);
3360 				if (pp == NULL) {
3361 					pp = page_get_mnode_cachelist(
3362 					    bin, flags, mnode, mtype);
3363 				}
3364 			} else {
3365 				pp = page_get_mnode_anylist(bin, szc,
3366 				    flags, mnode, mtype, dma_attr);
3367 			}
3368 			if (pp != NULL) {
3369 				VM_STAT_ADD(pga_vmstats.pga_allocok);
3370 				check_dma(dma_attr, pp, 1);
3371 				return (pp);
3372 			}
3373 		} while (mtype != n &&
3374 		    (mtype = mnoderanges[mtype].mnr_next) != -1);
3375 		if (!local_failed_stat) {
3376 			lgrp_stat_add(lgrp->lgrp_id, LGRP_NUM_ALLOC_FAIL, 1);
3377 			local_failed_stat = 1;
3378 		}
3379 	}
3380 	VM_STAT_ADD(pga_vmstats.pga_allocfailed);
3381 
3382 	return (NULL);
3383 }
3384 
3385 /*
3386  * page_create_io()
3387  *
3388  * This function is a copy of page_create_va() with an additional
3389  * argument 'mattr' that specifies DMA memory requirements to
3390  * the page list functions. This function is used by the segkmem
3391  * allocator so it is only to create new pages (i.e PG_EXCL is
3392  * set).
3393  *
3394  * Note: This interface is currently used by x86 PSM only and is
3395  *	 not fully specified so the commitment level is only for
3396  *	 private interface specific to x86. This interface uses PSM
3397  *	 specific page_get_anylist() interface.
3398  */
3399 
3400 #define	PAGE_HASH_SEARCH(index, pp, vp, off) { \
3401 	for ((pp) = page_hash[(index)]; (pp); (pp) = (pp)->p_hash) { \
3402 		if ((pp)->p_vnode == (vp) && (pp)->p_offset == (off)) \
3403 			break; \
3404 	} \
3405 }
3406 
3407 
3408 page_t *
3409 page_create_io(
3410 	struct vnode	*vp,
3411 	u_offset_t	off,
3412 	uint_t		bytes,
3413 	uint_t		flags,
3414 	struct as	*as,
3415 	caddr_t		vaddr,
3416 	ddi_dma_attr_t	*mattr)	/* DMA memory attributes if any */
3417 {
3418 	page_t		*plist = NULL;
3419 	uint_t		plist_len = 0;
3420 	pgcnt_t		npages;
3421 	page_t		*npp = NULL;
3422 	uint_t		pages_req;
3423 	page_t		*pp;
3424 	kmutex_t	*phm = NULL;
3425 	uint_t		index;
3426 
3427 	TRACE_4(TR_FAC_VM, TR_PAGE_CREATE_START,
3428 	    "page_create_start:vp %p off %llx bytes %u flags %x",
3429 	    vp, off, bytes, flags);
3430 
3431 	ASSERT((flags & ~(PG_EXCL | PG_WAIT | PG_PHYSCONTIG)) == 0);
3432 
3433 	pages_req = npages = mmu_btopr(bytes);
3434 
3435 	/*
3436 	 * Do the freemem and pcf accounting.
3437 	 */
3438 	if (!page_create_wait(npages, flags)) {
3439 		return (NULL);
3440 	}
3441 
3442 	TRACE_2(TR_FAC_VM, TR_PAGE_CREATE_SUCCESS,
3443 	    "page_create_success:vp %p off %llx", vp, off);
3444 
3445 	/*
3446 	 * If satisfying this request has left us with too little
3447 	 * memory, start the wheels turning to get some back.  The
3448 	 * first clause of the test prevents waking up the pageout
3449 	 * daemon in situations where it would decide that there's
3450 	 * nothing to do.
3451 	 */
3452 	if (nscan < desscan && freemem < minfree) {
3453 		TRACE_1(TR_FAC_VM, TR_PAGEOUT_CV_SIGNAL,
3454 		    "pageout_cv_signal:freemem %ld", freemem);
3455 		cv_signal(&proc_pageout->p_cv);
3456 	}
3457 
3458 	if (flags & PG_PHYSCONTIG) {
3459 
3460 		plist = page_get_contigpage(&npages, mattr, 1);
3461 		if (plist == NULL) {
3462 			page_create_putback(npages);
3463 			return (NULL);
3464 		}
3465 
3466 		pp = plist;
3467 
3468 		do {
3469 			if (!page_hashin(pp, vp, off, NULL)) {
3470 				panic("pg_creat_io: hashin failed %p %p %llx",
3471 				    (void *)pp, (void *)vp, off);
3472 			}
3473 			VM_STAT_ADD(page_create_new);
3474 			off += MMU_PAGESIZE;
3475 			PP_CLRFREE(pp);
3476 			PP_CLRAGED(pp);
3477 			page_set_props(pp, P_REF);
3478 			pp = pp->p_next;
3479 		} while (pp != plist);
3480 
3481 		if (!npages) {
3482 			check_dma(mattr, plist, pages_req);
3483 			return (plist);
3484 		} else {
3485 			vaddr += (pages_req - npages) << MMU_PAGESHIFT;
3486 		}
3487 
3488 		/*
3489 		 * fall-thru:
3490 		 *
3491 		 * page_get_contigpage returns when npages <= sgllen.
3492 		 * Grab the rest of the non-contig pages below from anylist.
3493 		 */
3494 	}
3495 
3496 	/*
3497 	 * Loop around collecting the requested number of pages.
3498 	 * Most of the time, we have to `create' a new page. With
3499 	 * this in mind, pull the page off the free list before
3500 	 * getting the hash lock.  This will minimize the hash
3501 	 * lock hold time, nesting, and the like.  If it turns
3502 	 * out we don't need the page, we put it back at the end.
3503 	 */
3504 	while (npages--) {
3505 		phm = NULL;
3506 
3507 		index = PAGE_HASH_FUNC(vp, off);
3508 top:
3509 		ASSERT(phm == NULL);
3510 		ASSERT(index == PAGE_HASH_FUNC(vp, off));
3511 		ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp)));
3512 
3513 		if (npp == NULL) {
3514 			/*
3515 			 * Try to get the page of any color either from
3516 			 * the freelist or from the cache list.
3517 			 */
3518 			npp = page_get_anylist(vp, off, as, vaddr, MMU_PAGESIZE,
3519 			    flags & ~PG_MATCH_COLOR, mattr, NULL);
3520 			if (npp == NULL) {
3521 				if (mattr == NULL) {
3522 					/*
3523 					 * Not looking for a special page;
3524 					 * panic!
3525 					 */
3526 					panic("no page found %d", (int)npages);
3527 				}
3528 				/*
3529 				 * No page found! This can happen
3530 				 * if we are looking for a page
3531 				 * within a specific memory range
3532 				 * for DMA purposes. If PG_WAIT is
3533 				 * specified then we wait for a
3534 				 * while and then try again. The
3535 				 * wait could be forever if we
3536 				 * don't get the page(s) we need.
3537 				 *
3538 				 * Note: XXX We really need a mechanism
3539 				 * to wait for pages in the desired
3540 				 * range. For now, we wait for any
3541 				 * pages and see if we can use it.
3542 				 */
3543 
3544 				if ((mattr != NULL) && (flags & PG_WAIT)) {
3545 					delay(10);
3546 					goto top;
3547 				}
3548 				goto fail; /* undo accounting stuff */
3549 			}
3550 
3551 			if (PP_ISAGED(npp) == 0) {
3552 				/*
3553 				 * Since this page came from the
3554 				 * cachelist, we must destroy the
3555 				 * old vnode association.
3556 				 */
3557 				page_hashout(npp, (kmutex_t *)NULL);
3558 			}
3559 		}
3560 
3561 		/*
3562 		 * We own this page!
3563 		 */
3564 		ASSERT(PAGE_EXCL(npp));
3565 		ASSERT(npp->p_vnode == NULL);
3566 		ASSERT(!hat_page_is_mapped(npp));
3567 		PP_CLRFREE(npp);
3568 		PP_CLRAGED(npp);
3569 
3570 		/*
3571 		 * Here we have a page in our hot little mits and are
3572 		 * just waiting to stuff it on the appropriate lists.
3573 		 * Get the mutex and check to see if it really does
3574 		 * not exist.
3575 		 */
3576 		phm = PAGE_HASH_MUTEX(index);
3577 		mutex_enter(phm);
3578 		PAGE_HASH_SEARCH(index, pp, vp, off);
3579 		if (pp == NULL) {
3580 			VM_STAT_ADD(page_create_new);
3581 			pp = npp;
3582 			npp = NULL;
3583 			if (!page_hashin(pp, vp, off, phm)) {
3584 				/*
3585 				 * Since we hold the page hash mutex and
3586 				 * just searched for this page, page_hashin
3587 				 * had better not fail.  If it does, that
3588 				 * means somethread did not follow the
3589 				 * page hash mutex rules.  Panic now and
3590 				 * get it over with.  As usual, go down
3591 				 * holding all the locks.
3592 				 */
3593 				ASSERT(MUTEX_HELD(phm));
3594 				panic("page_create: hashin fail %p %p %llx %p",
3595 				    (void *)pp, (void *)vp, off, (void *)phm);
3596 
3597 			}
3598 			ASSERT(MUTEX_HELD(phm));
3599 			mutex_exit(phm);
3600 			phm = NULL;
3601 
3602 			/*
3603 			 * Hat layer locking need not be done to set
3604 			 * the following bits since the page is not hashed
3605 			 * and was on the free list (i.e., had no mappings).
3606 			 *
3607 			 * Set the reference bit to protect
3608 			 * against immediate pageout
3609 			 *
3610 			 * XXXmh modify freelist code to set reference
3611 			 * bit so we don't have to do it here.
3612 			 */
3613 			page_set_props(pp, P_REF);
3614 		} else {
3615 			ASSERT(MUTEX_HELD(phm));
3616 			mutex_exit(phm);
3617 			phm = NULL;
3618 			/*
3619 			 * NOTE: This should not happen for pages associated
3620 			 *	 with kernel vnode 'kvp'.
3621 			 */
3622 			/* XX64 - to debug why this happens! */
3623 			ASSERT(!VN_ISKAS(vp));
3624 			if (VN_ISKAS(vp))
3625 				cmn_err(CE_NOTE,
3626 				    "page_create: page not expected "
3627 				    "in hash list for kernel vnode - pp 0x%p",
3628 				    (void *)pp);
3629 			VM_STAT_ADD(page_create_exists);
3630 			goto fail;
3631 		}
3632 
3633 		/*
3634 		 * Got a page!  It is locked.  Acquire the i/o
3635 		 * lock since we are going to use the p_next and
3636 		 * p_prev fields to link the requested pages together.
3637 		 */
3638 		page_io_lock(pp);
3639 		page_add(&plist, pp);
3640 		plist = plist->p_next;
3641 		off += MMU_PAGESIZE;
3642 		vaddr += MMU_PAGESIZE;
3643 	}
3644 
3645 	check_dma(mattr, plist, pages_req);
3646 	return (plist);
3647 
3648 fail:
3649 	if (npp != NULL) {
3650 		/*
3651 		 * Did not need this page after all.
3652 		 * Put it back on the free list.
3653 		 */
3654 		VM_STAT_ADD(page_create_putbacks);
3655 		PP_SETFREE(npp);
3656 		PP_SETAGED(npp);
3657 		npp->p_offset = (u_offset_t)-1;
3658 		page_list_add(npp, PG_FREE_LIST | PG_LIST_TAIL);
3659 		page_unlock(npp);
3660 	}
3661 
3662 	/*
3663 	 * Give up the pages we already got.
3664 	 */
3665 	while (plist != NULL) {
3666 		pp = plist;
3667 		page_sub(&plist, pp);
3668 		page_io_unlock(pp);
3669 		plist_len++;
3670 		/*LINTED: constant in conditional ctx*/
3671 		VN_DISPOSE(pp, B_INVAL, 0, kcred);
3672 	}
3673 
3674 	/*
3675 	 * VN_DISPOSE does freemem accounting for the pages in plist
3676 	 * by calling page_free. So, we need to undo the pcf accounting
3677 	 * for only the remaining pages.
3678 	 */
3679 	VM_STAT_ADD(page_create_putbacks);
3680 	page_create_putback(pages_req - plist_len);
3681 
3682 	return (NULL);
3683 }
3684 #endif /* !__xpv */
3685 
3686 
3687 /*
3688  * Copy the data from the physical page represented by "frompp" to
3689  * that represented by "topp". ppcopy uses CPU->cpu_caddr1 and
3690  * CPU->cpu_caddr2.  It assumes that no one uses either map at interrupt
3691  * level and no one sleeps with an active mapping there.
3692  *
3693  * Note that the ref/mod bits in the page_t's are not affected by
3694  * this operation, hence it is up to the caller to update them appropriately.
3695  */
3696 int
3697 ppcopy(page_t *frompp, page_t *topp)
3698 {
3699 	caddr_t		pp_addr1;
3700 	caddr_t		pp_addr2;
3701 	hat_mempte_t	pte1;
3702 	hat_mempte_t	pte2;
3703 	kmutex_t	*ppaddr_mutex;
3704 	label_t		ljb;
3705 	int		ret = 1;
3706 
3707 	ASSERT_STACK_ALIGNED();
3708 	ASSERT(PAGE_LOCKED(frompp));
3709 	ASSERT(PAGE_LOCKED(topp));
3710 
3711 	if (kpm_enable) {
3712 		pp_addr1 = hat_kpm_page2va(frompp, 0);
3713 		pp_addr2 = hat_kpm_page2va(topp, 0);
3714 		kpreempt_disable();
3715 	} else {
3716 		/*
3717 		 * disable pre-emption so that CPU can't change
3718 		 */
3719 		kpreempt_disable();
3720 
3721 		pp_addr1 = CPU->cpu_caddr1;
3722 		pp_addr2 = CPU->cpu_caddr2;
3723 		pte1 = CPU->cpu_caddr1pte;
3724 		pte2 = CPU->cpu_caddr2pte;
3725 
3726 		ppaddr_mutex = &CPU->cpu_ppaddr_mutex;
3727 		mutex_enter(ppaddr_mutex);
3728 
3729 		hat_mempte_remap(page_pptonum(frompp), pp_addr1, pte1,
3730 		    PROT_READ | HAT_STORECACHING_OK, HAT_LOAD_NOCONSIST);
3731 		hat_mempte_remap(page_pptonum(topp), pp_addr2, pte2,
3732 		    PROT_READ | PROT_WRITE | HAT_STORECACHING_OK,
3733 		    HAT_LOAD_NOCONSIST);
3734 	}
3735 
3736 	if (on_fault(&ljb)) {
3737 		ret = 0;
3738 		goto faulted;
3739 	}
3740 	if (use_sse_pagecopy)
3741 #ifdef __xpv
3742 		page_copy_no_xmm(pp_addr2, pp_addr1);
3743 #else
3744 		hwblkpagecopy(pp_addr1, pp_addr2);
3745 #endif
3746 	else
3747 		bcopy(pp_addr1, pp_addr2, PAGESIZE);
3748 
3749 	no_fault();
3750 faulted:
3751 	if (!kpm_enable) {
3752 #ifdef __xpv
3753 		/*
3754 		 * We can't leave unused mappings laying about under the
3755 		 * hypervisor, so blow them away.
3756 		 */
3757 		if (HYPERVISOR_update_va_mapping((uintptr_t)pp_addr1, 0,
3758 		    UVMF_INVLPG | UVMF_LOCAL) < 0)
3759 			panic("HYPERVISOR_update_va_mapping() failed");
3760 		if (HYPERVISOR_update_va_mapping((uintptr_t)pp_addr2, 0,
3761 		    UVMF_INVLPG | UVMF_LOCAL) < 0)
3762 			panic("HYPERVISOR_update_va_mapping() failed");
3763 #endif
3764 		mutex_exit(ppaddr_mutex);
3765 	}
3766 	kpreempt_enable();
3767 	return (ret);
3768 }
3769 
3770 void
3771 pagezero(page_t *pp, uint_t off, uint_t len)
3772 {
3773 	ASSERT(PAGE_LOCKED(pp));
3774 	pfnzero(page_pptonum(pp), off, len);
3775 }
3776 
3777 /*
3778  * Zero the physical page from off to off + len given by pfn
3779  * without changing the reference and modified bits of page.
3780  *
3781  * We use this using CPU private page address #2, see ppcopy() for more info.
3782  * pfnzero() must not be called at interrupt level.
3783  */
3784 void
3785 pfnzero(pfn_t pfn, uint_t off, uint_t len)
3786 {
3787 	caddr_t		pp_addr2;
3788 	hat_mempte_t	pte2;
3789 	kmutex_t	*ppaddr_mutex = NULL;
3790 
3791 	ASSERT_STACK_ALIGNED();
3792 	ASSERT(len <= MMU_PAGESIZE);
3793 	ASSERT(off <= MMU_PAGESIZE);
3794 	ASSERT(off + len <= MMU_PAGESIZE);
3795 
3796 	if (kpm_enable && !pfn_is_foreign(pfn)) {
3797 		pp_addr2 = hat_kpm_pfn2va(pfn);
3798 		kpreempt_disable();
3799 	} else {
3800 		kpreempt_disable();
3801 
3802 		pp_addr2 = CPU->cpu_caddr2;
3803 		pte2 = CPU->cpu_caddr2pte;
3804 
3805 		ppaddr_mutex = &CPU->cpu_ppaddr_mutex;
3806 		mutex_enter(ppaddr_mutex);
3807 
3808 		hat_mempte_remap(pfn, pp_addr2, pte2,
3809 		    PROT_READ | PROT_WRITE | HAT_STORECACHING_OK,
3810 		    HAT_LOAD_NOCONSIST);
3811 	}
3812 
3813 	if (use_sse_pagezero) {
3814 #ifdef __xpv
3815 		uint_t rem;
3816 
3817 		/*
3818 		 * zero a byte at a time until properly aligned for
3819 		 * block_zero_no_xmm().
3820 		 */
3821 		while (!P2NPHASE(off, ((uint_t)BLOCKZEROALIGN)) && len-- > 0)
3822 			pp_addr2[off++] = 0;
3823 
3824 		/*
3825 		 * Now use faster block_zero_no_xmm() for any range
3826 		 * that is properly aligned and sized.
3827 		 */
3828 		rem = P2PHASE(len, ((uint_t)BLOCKZEROALIGN));
3829 		len -= rem;
3830 		if (len != 0) {
3831 			block_zero_no_xmm(pp_addr2 + off, len);
3832 			off += len;
3833 		}
3834 
3835 		/*
3836 		 * zero remainder with byte stores.
3837 		 */
3838 		while (rem-- > 0)
3839 			pp_addr2[off++] = 0;
3840 #else
3841 		hwblkclr(pp_addr2 + off, len);
3842 #endif
3843 	} else {
3844 		bzero(pp_addr2 + off, len);
3845 	}
3846 
3847 	if (!kpm_enable || pfn_is_foreign(pfn)) {
3848 #ifdef __xpv
3849 		/*
3850 		 * On the hypervisor this page might get used for a page
3851 		 * table before any intervening change to this mapping,
3852 		 * so blow it away.
3853 		 */
3854 		if (HYPERVISOR_update_va_mapping((uintptr_t)pp_addr2, 0,
3855 		    UVMF_INVLPG) < 0)
3856 			panic("HYPERVISOR_update_va_mapping() failed");
3857 #endif
3858 		mutex_exit(ppaddr_mutex);
3859 	}
3860 
3861 	kpreempt_enable();
3862 }
3863 
3864 /*
3865  * Platform-dependent page scrub call.
3866  */
3867 void
3868 pagescrub(page_t *pp, uint_t off, uint_t len)
3869 {
3870 	/*
3871 	 * For now, we rely on the fact that pagezero() will
3872 	 * always clear UEs.
3873 	 */
3874 	pagezero(pp, off, len);
3875 }
3876 
3877 /*
3878  * set up two private addresses for use on a given CPU for use in ppcopy()
3879  */
3880 void
3881 setup_vaddr_for_ppcopy(struct cpu *cpup)
3882 {
3883 	void *addr;
3884 	hat_mempte_t pte_pa;
3885 
3886 	addr = vmem_alloc(heap_arena, mmu_ptob(1), VM_SLEEP);
3887 	pte_pa = hat_mempte_setup(addr);
3888 	cpup->cpu_caddr1 = addr;
3889 	cpup->cpu_caddr1pte = pte_pa;
3890 
3891 	addr = vmem_alloc(heap_arena, mmu_ptob(1), VM_SLEEP);
3892 	pte_pa = hat_mempte_setup(addr);
3893 	cpup->cpu_caddr2 = addr;
3894 	cpup->cpu_caddr2pte = pte_pa;
3895 
3896 	mutex_init(&cpup->cpu_ppaddr_mutex, NULL, MUTEX_DEFAULT, NULL);
3897 }
3898 
3899 /*
3900  * Undo setup_vaddr_for_ppcopy
3901  */
3902 void
3903 teardown_vaddr_for_ppcopy(struct cpu *cpup)
3904 {
3905 	mutex_destroy(&cpup->cpu_ppaddr_mutex);
3906 
3907 	hat_mempte_release(cpup->cpu_caddr2, cpup->cpu_caddr2pte);
3908 	cpup->cpu_caddr2pte = 0;
3909 	vmem_free(heap_arena, cpup->cpu_caddr2, mmu_ptob(1));
3910 	cpup->cpu_caddr2 = 0;
3911 
3912 	hat_mempte_release(cpup->cpu_caddr1, cpup->cpu_caddr1pte);
3913 	cpup->cpu_caddr1pte = 0;
3914 	vmem_free(heap_arena, cpup->cpu_caddr1, mmu_ptob(1));
3915 	cpup->cpu_caddr1 = 0;
3916 }
3917 
3918 /*
3919  * Function for flushing D-cache when performing module relocations
3920  * to an alternate mapping.  Unnecessary on Intel / AMD platforms.
3921  */
3922 void
3923 dcache_flushall()
3924 {}
3925 
3926 size_t
3927 exec_get_spslew(void)
3928 {
3929 	return (0);
3930 }
3931 
3932 /*
3933  * Allocate a memory page.  The argument 'seed' can be any pseudo-random
3934  * number to vary where the pages come from.  This is quite a hacked up
3935  * method -- it works for now, but really needs to be fixed up a bit.
3936  *
3937  * We currently use page_create_va() on the kvp with fake offsets,
3938  * segments and virt address.  This is pretty bogus, but was copied from the
3939  * old hat_i86.c code.  A better approach would be to specify either mnode
3940  * random or mnode local and takes a page from whatever color has the MOST
3941  * available - this would have a minimal impact on page coloring.
3942  */
3943 page_t *
3944 page_get_physical(uintptr_t seed)
3945 {
3946 	page_t *pp;
3947 	u_offset_t offset;
3948 	static struct seg tmpseg;
3949 	static uintptr_t ctr = 0;
3950 
3951 	/*
3952 	 * This code is gross, we really need a simpler page allocator.
3953 	 *
3954 	 * We need to assign an offset for the page to call page_create_va()
3955 	 * To avoid conflicts with other pages, we get creative with the offset.
3956 	 * For 32 bits, we need an offset > 4Gig
3957 	 * For 64 bits, need an offset somewhere in the VA hole.
3958 	 */
3959 	offset = seed;
3960 	if (offset > kernelbase)
3961 		offset -= kernelbase;
3962 	offset <<= MMU_PAGESHIFT;
3963 #if defined(__amd64)
3964 	offset += mmu.hole_start;	/* something in VA hole */
3965 #else
3966 	offset += 1ULL << 40;	/* something > 4 Gig */
3967 #endif
3968 
3969 	if (page_resv(1, KM_NOSLEEP) == 0)
3970 		return (NULL);
3971 
3972 #ifdef	DEBUG
3973 	pp = page_exists(&kvp, offset);
3974 	if (pp != NULL)
3975 		panic("page already exists %p", (void *)pp);
3976 #endif
3977 
3978 	pp = page_create_va(&kvp, offset, MMU_PAGESIZE, PG_EXCL,
3979 	    &tmpseg, (caddr_t)(ctr += MMU_PAGESIZE));	/* changing VA usage */
3980 	if (pp != NULL) {
3981 		page_io_unlock(pp);
3982 		page_hashout(pp, NULL);
3983 		page_downgrade(pp);
3984 	}
3985 	return (pp);
3986 }
3987