1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 1992, 2010, Oracle and/or its affiliates. All rights reserved. 23 */ 24 /* 25 * Copyright (c) 2010, Intel Corporation. 26 * All rights reserved. 27 * Copyright 2019, Joyent, Inc. 28 */ 29 30 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */ 31 /* All Rights Reserved */ 32 33 /* 34 * Portions of this source code were derived from Berkeley 4.3 BSD 35 * under license from the Regents of the University of California. 36 */ 37 38 /* 39 * UNIX machine dependent virtual memory support. 40 */ 41 42 #include <sys/types.h> 43 #include <sys/param.h> 44 #include <sys/systm.h> 45 #include <sys/user.h> 46 #include <sys/proc.h> 47 #include <sys/kmem.h> 48 #include <sys/vmem.h> 49 #include <sys/buf.h> 50 #include <sys/cpuvar.h> 51 #include <sys/lgrp.h> 52 #include <sys/disp.h> 53 #include <sys/vm.h> 54 #include <sys/mman.h> 55 #include <sys/vnode.h> 56 #include <sys/cred.h> 57 #include <sys/exec.h> 58 #include <sys/exechdr.h> 59 #include <sys/debug.h> 60 #include <sys/vmsystm.h> 61 #include <sys/swap.h> 62 #include <sys/dumphdr.h> 63 #include <sys/random.h> 64 65 #include <vm/hat.h> 66 #include <vm/as.h> 67 #include <vm/seg.h> 68 #include <vm/seg_kp.h> 69 #include <vm/seg_vn.h> 70 #include <vm/page.h> 71 #include <vm/seg_kmem.h> 72 #include <vm/seg_kpm.h> 73 #include <vm/vm_dep.h> 74 75 #include <sys/cpu.h> 76 #include <sys/vm_machparam.h> 77 #include <sys/memlist.h> 78 #include <sys/bootconf.h> /* XXX the memlist stuff belongs in memlist_plat.h */ 79 #include <vm/hat_i86.h> 80 #include <sys/x86_archext.h> 81 #include <sys/elf_386.h> 82 #include <sys/cmn_err.h> 83 #include <sys/archsystm.h> 84 #include <sys/machsystm.h> 85 #include <sys/secflags.h> 86 87 #include <sys/vtrace.h> 88 #include <sys/ddidmareq.h> 89 #include <sys/promif.h> 90 #include <sys/memnode.h> 91 #include <sys/stack.h> 92 #include <util/qsort.h> 93 #include <sys/taskq.h> 94 95 #ifdef __xpv 96 97 #include <sys/hypervisor.h> 98 #include <sys/xen_mmu.h> 99 #include <sys/balloon_impl.h> 100 101 /* 102 * domain 0 pages usable for DMA are kept pre-allocated and kept in 103 * distinct lists, ordered by increasing mfn. 104 */ 105 static kmutex_t io_pool_lock; 106 static kmutex_t contig_list_lock; 107 static page_t *io_pool_4g; /* pool for 32 bit dma limited devices */ 108 static page_t *io_pool_16m; /* pool for 24 bit dma limited legacy devices */ 109 static long io_pool_cnt; 110 static long io_pool_cnt_max = 0; 111 #define DEFAULT_IO_POOL_MIN 128 112 static long io_pool_cnt_min = DEFAULT_IO_POOL_MIN; 113 static long io_pool_cnt_lowater = 0; 114 static long io_pool_shrink_attempts; /* how many times did we try to shrink */ 115 static long io_pool_shrinks; /* how many times did we really shrink */ 116 static long io_pool_grows; /* how many times did we grow */ 117 static mfn_t start_mfn = 1; 118 static caddr_t io_pool_kva; /* use to alloc pages when needed */ 119 120 static int create_contig_pfnlist(uint_t); 121 122 /* 123 * percentage of phys mem to hold in the i/o pool 124 */ 125 #define DEFAULT_IO_POOL_PCT 2 126 static long io_pool_physmem_pct = DEFAULT_IO_POOL_PCT; 127 static void page_io_pool_sub(page_t **, page_t *, page_t *); 128 int ioalloc_dbg = 0; 129 130 #endif /* __xpv */ 131 132 uint_t vac_colors = 1; 133 134 int largepagesupport = 0; 135 extern uint_t page_create_new; 136 extern uint_t page_create_exists; 137 extern uint_t page_create_putbacks; 138 /* 139 * Allow users to disable the kernel's use of SSE. 140 */ 141 extern int use_sse_pagecopy, use_sse_pagezero; 142 143 /* 144 * combined memory ranges from mnode and memranges[] to manage single 145 * mnode/mtype dimension in the page lists. 146 */ 147 typedef struct { 148 pfn_t mnr_pfnlo; 149 pfn_t mnr_pfnhi; 150 int mnr_mnode; 151 int mnr_memrange; /* index into memranges[] */ 152 int mnr_next; /* next lower PA mnoderange */ 153 int mnr_exists; 154 /* maintain page list stats */ 155 pgcnt_t mnr_mt_clpgcnt; /* cache list cnt */ 156 pgcnt_t mnr_mt_flpgcnt[MMU_PAGE_SIZES]; /* free list cnt per szc */ 157 pgcnt_t mnr_mt_totcnt; /* sum of cache and free lists */ 158 #ifdef DEBUG 159 struct mnr_mts { /* mnode/mtype szc stats */ 160 pgcnt_t mnr_mts_pgcnt; 161 int mnr_mts_colors; 162 pgcnt_t *mnr_mtsc_pgcnt; 163 } *mnr_mts; 164 #endif 165 } mnoderange_t; 166 167 #define MEMRANGEHI(mtype) \ 168 ((mtype > 0) ? memranges[mtype - 1] - 1: physmax) 169 #define MEMRANGELO(mtype) (memranges[mtype]) 170 171 #define MTYPE_FREEMEM(mt) (mnoderanges[mt].mnr_mt_totcnt) 172 173 /* 174 * As the PC architecture evolved memory up was clumped into several 175 * ranges for various historical I/O devices to do DMA. 176 * < 16Meg - ISA bus 177 * < 2Gig - ??? 178 * < 4Gig - PCI bus or drivers that don't understand PAE mode 179 * 180 * These are listed in reverse order, so that we can skip over unused 181 * ranges on machines with small memories. 182 * 183 * For now under the Hypervisor, we'll only ever have one memrange. 184 */ 185 #define PFN_4GIG 0x100000 186 #define PFN_16MEG 0x1000 187 /* Indices into the memory range (arch_memranges) array. */ 188 #define MRI_4G 0 189 #define MRI_2G 1 190 #define MRI_16M 2 191 #define MRI_0 3 192 static pfn_t arch_memranges[NUM_MEM_RANGES] = { 193 PFN_4GIG, /* pfn range for 4G and above */ 194 0x80000, /* pfn range for 2G-4G */ 195 PFN_16MEG, /* pfn range for 16M-2G */ 196 0x00000, /* pfn range for 0-16M */ 197 }; 198 pfn_t *memranges = &arch_memranges[0]; 199 int nranges = NUM_MEM_RANGES; 200 201 /* 202 * This combines mem_node_config and memranges into one data 203 * structure to be used for page list management. 204 */ 205 static mnoderange_t *mnoderanges; 206 static int mnoderangecnt; 207 static int mtype4g; 208 static int mtype16m; 209 static int mtypetop; 210 211 /* 212 * 4g memory management variables for systems with more than 4g of memory: 213 * 214 * physical memory below 4g is required for 32bit dma devices and, currently, 215 * for kmem memory. On systems with more than 4g of memory, the pool of memory 216 * below 4g can be depleted without any paging activity given that there is 217 * likely to be sufficient memory above 4g. 218 * 219 * physmax4g is set true if the largest pfn is over 4g. The rest of the 220 * 4g memory management code is enabled only when physmax4g is true. 221 * 222 * maxmem4g is the count of the maximum number of pages on the page lists 223 * with physical addresses below 4g. It can be a lot less then 4g given that 224 * BIOS may reserve large chunks of space below 4g for hot plug pci devices, 225 * agp aperture etc. 226 * 227 * freemem4g maintains the count of the number of available pages on the 228 * page lists with physical addresses below 4g. 229 * 230 * DESFREE4G specifies the desired amount of below 4g memory. It defaults to 231 * 6% (desfree4gshift = 4) of maxmem4g. 232 * 233 * RESTRICT4G_ALLOC returns true if freemem4g falls below DESFREE4G 234 * and the amount of physical memory above 4g is greater than freemem4g. 235 * In this case, page_get_* routines will restrict below 4g allocations 236 * for requests that don't specifically require it. 237 */ 238 239 #define DESFREE4G (maxmem4g >> desfree4gshift) 240 241 #define RESTRICT4G_ALLOC \ 242 (physmax4g && (freemem4g < DESFREE4G) && ((freemem4g << 1) < freemem)) 243 244 static pgcnt_t maxmem4g; 245 static pgcnt_t freemem4g; 246 static int physmax4g; 247 static int desfree4gshift = 4; /* maxmem4g shift to derive DESFREE4G */ 248 249 /* 250 * 16m memory management: 251 * 252 * reserve some amount of physical memory below 16m for legacy devices. 253 * 254 * RESTRICT16M_ALLOC returns true if an there are sufficient free pages above 255 * 16m or if the 16m pool drops below DESFREE16M. 256 * 257 * In this case, general page allocations via page_get_{free,cache}list 258 * routines will be restricted from allocating from the 16m pool. Allocations 259 * that require specific pfn ranges (page_get_anylist) and PG_PANIC allocations 260 * are not restricted. 261 */ 262 263 #define FREEMEM16M MTYPE_FREEMEM(mtype16m) 264 #define DESFREE16M desfree16m 265 #define RESTRICT16M_ALLOC(freemem, pgcnt, flags) \ 266 (mtype16m != -1 && (freemem != 0) && ((flags & PG_PANIC) == 0) && \ 267 ((freemem >= (FREEMEM16M)) || \ 268 (FREEMEM16M < (DESFREE16M + pgcnt)))) 269 270 static pgcnt_t desfree16m = 0x380; 271 272 /* 273 * This can be patched via /etc/system to allow old non-PAE aware device 274 * drivers to use kmem_alloc'd memory on 32 bit systems with > 4Gig RAM. 275 */ 276 int restricted_kmemalloc = 0; 277 278 #ifdef VM_STATS 279 struct { 280 ulong_t pga_alloc; 281 ulong_t pga_notfullrange; 282 ulong_t pga_nulldmaattr; 283 ulong_t pga_allocok; 284 ulong_t pga_allocfailed; 285 ulong_t pgma_alloc; 286 ulong_t pgma_allocok; 287 ulong_t pgma_allocfailed; 288 ulong_t pgma_allocempty; 289 } pga_vmstats; 290 #endif 291 292 uint_t mmu_page_sizes; 293 294 /* How many page sizes the users can see */ 295 uint_t mmu_exported_page_sizes; 296 297 /* page sizes that legacy applications can see */ 298 uint_t mmu_legacy_page_sizes; 299 300 /* 301 * Number of pages in 1 GB. Don't enable automatic large pages if we have 302 * fewer than this many pages. 303 */ 304 pgcnt_t shm_lpg_min_physmem = 1 << (30 - MMU_PAGESHIFT); 305 pgcnt_t privm_lpg_min_physmem = 1 << (30 - MMU_PAGESHIFT); 306 307 /* 308 * Maximum and default segment size tunables for user private 309 * and shared anon memory, and user text and initialized data. 310 * These can be patched via /etc/system to allow large pages 311 * to be used for mapping application private and shared anon memory. 312 */ 313 size_t mcntl0_lpsize = MMU_PAGESIZE; 314 size_t max_uheap_lpsize = MMU_PAGESIZE; 315 size_t default_uheap_lpsize = MMU_PAGESIZE; 316 size_t max_ustack_lpsize = MMU_PAGESIZE; 317 size_t default_ustack_lpsize = MMU_PAGESIZE; 318 size_t max_privmap_lpsize = MMU_PAGESIZE; 319 size_t max_uidata_lpsize = MMU_PAGESIZE; 320 size_t max_utext_lpsize = MMU_PAGESIZE; 321 size_t max_shm_lpsize = MMU_PAGESIZE; 322 323 324 /* 325 * initialized by page_coloring_init(). 326 */ 327 uint_t page_colors; 328 uint_t page_colors_mask; 329 uint_t page_coloring_shift; 330 int cpu_page_colors; 331 static uint_t l2_colors; 332 333 /* 334 * Page freelists and cachelists are dynamically allocated once mnoderangecnt 335 * and page_colors are calculated from the l2 cache n-way set size. Within a 336 * mnode range, the page freelist and cachelist are hashed into bins based on 337 * color. This makes it easier to search for a page within a specific memory 338 * range. 339 */ 340 #define PAGE_COLORS_MIN 16 341 342 page_t ****page_freelists; 343 page_t ***page_cachelists; 344 345 346 /* 347 * Used by page layer to know about page sizes 348 */ 349 hw_pagesize_t hw_page_array[MAX_NUM_LEVEL + 1]; 350 351 kmutex_t *fpc_mutex[NPC_MUTEX]; 352 kmutex_t *cpc_mutex[NPC_MUTEX]; 353 354 /* Lock to protect mnoderanges array for memory DR operations. */ 355 static kmutex_t mnoderange_lock; 356 357 /* 358 * Only let one thread at a time try to coalesce large pages, to 359 * prevent them from working against each other. 360 */ 361 static kmutex_t contig_lock; 362 #define CONTIG_LOCK() mutex_enter(&contig_lock); 363 #define CONTIG_UNLOCK() mutex_exit(&contig_lock); 364 365 #define PFN_16M (mmu_btop((uint64_t)0x1000000)) 366 367 caddr_t 368 i86devmap(pfn_t pf, pgcnt_t pgcnt, uint_t prot) 369 { 370 caddr_t addr; 371 caddr_t addr1; 372 page_t *pp; 373 374 addr1 = addr = vmem_alloc(heap_arena, mmu_ptob(pgcnt), VM_SLEEP); 375 376 for (; pgcnt != 0; addr += MMU_PAGESIZE, ++pf, --pgcnt) { 377 pp = page_numtopp_nolock(pf); 378 if (pp == NULL) { 379 hat_devload(kas.a_hat, addr, MMU_PAGESIZE, pf, 380 prot | HAT_NOSYNC, HAT_LOAD_LOCK); 381 } else { 382 hat_memload(kas.a_hat, addr, pp, 383 prot | HAT_NOSYNC, HAT_LOAD_LOCK); 384 } 385 } 386 387 return (addr1); 388 } 389 390 /* 391 * This routine is like page_numtopp, but accepts only free pages, which 392 * it allocates (unfrees) and returns with the exclusive lock held. 393 * It is used by machdep.c/dma_init() to find contiguous free pages. 394 */ 395 page_t * 396 page_numtopp_alloc(pfn_t pfnum) 397 { 398 page_t *pp; 399 400 retry: 401 pp = page_numtopp_nolock(pfnum); 402 if (pp == NULL) { 403 return (NULL); 404 } 405 406 if (!page_trylock(pp, SE_EXCL)) { 407 return (NULL); 408 } 409 410 if (page_pptonum(pp) != pfnum) { 411 page_unlock(pp); 412 goto retry; 413 } 414 415 if (!PP_ISFREE(pp)) { 416 page_unlock(pp); 417 return (NULL); 418 } 419 if (pp->p_szc) { 420 page_demote_free_pages(pp); 421 page_unlock(pp); 422 goto retry; 423 } 424 425 /* If associated with a vnode, destroy mappings */ 426 427 if (pp->p_vnode) { 428 429 page_destroy_free(pp); 430 431 if (!page_lock(pp, SE_EXCL, (kmutex_t *)NULL, P_NO_RECLAIM)) { 432 return (NULL); 433 } 434 435 if (page_pptonum(pp) != pfnum) { 436 page_unlock(pp); 437 goto retry; 438 } 439 } 440 441 if (!PP_ISFREE(pp)) { 442 page_unlock(pp); 443 return (NULL); 444 } 445 446 if (!page_reclaim(pp, (kmutex_t *)NULL)) 447 return (NULL); 448 449 return (pp); 450 } 451 452 /* 453 * Return the optimum page size for a given mapping 454 */ 455 /*ARGSUSED*/ 456 size_t 457 map_pgsz(int maptype, struct proc *p, caddr_t addr, size_t len, int memcntl) 458 { 459 level_t l = 0; 460 size_t pgsz = MMU_PAGESIZE; 461 size_t max_lpsize; 462 uint_t mszc; 463 464 ASSERT(maptype != MAPPGSZ_VA); 465 466 if (maptype != MAPPGSZ_ISM && physmem < privm_lpg_min_physmem) { 467 return (MMU_PAGESIZE); 468 } 469 470 switch (maptype) { 471 case MAPPGSZ_HEAP: 472 case MAPPGSZ_STK: 473 max_lpsize = memcntl ? mcntl0_lpsize : (maptype == 474 MAPPGSZ_HEAP ? max_uheap_lpsize : max_ustack_lpsize); 475 if (max_lpsize == MMU_PAGESIZE) { 476 return (MMU_PAGESIZE); 477 } 478 if (len == 0) { 479 len = (maptype == MAPPGSZ_HEAP) ? p->p_brkbase + 480 p->p_brksize - p->p_bssbase : p->p_stksize; 481 } 482 len = (maptype == MAPPGSZ_HEAP) ? MAX(len, 483 default_uheap_lpsize) : MAX(len, default_ustack_lpsize); 484 485 /* 486 * use the pages size that best fits len 487 */ 488 for (l = mmu.umax_page_level; l > 0; --l) { 489 if (LEVEL_SIZE(l) > max_lpsize || len < LEVEL_SIZE(l)) { 490 continue; 491 } else { 492 pgsz = LEVEL_SIZE(l); 493 } 494 break; 495 } 496 497 mszc = (maptype == MAPPGSZ_HEAP ? p->p_brkpageszc : 498 p->p_stkpageszc); 499 if (addr == 0 && (pgsz < hw_page_array[mszc].hp_size)) { 500 pgsz = hw_page_array[mszc].hp_size; 501 } 502 return (pgsz); 503 504 case MAPPGSZ_ISM: 505 for (l = mmu.umax_page_level; l > 0; --l) { 506 if (len >= LEVEL_SIZE(l)) 507 return (LEVEL_SIZE(l)); 508 } 509 return (LEVEL_SIZE(0)); 510 } 511 return (pgsz); 512 } 513 514 static uint_t 515 map_szcvec(caddr_t addr, size_t size, uintptr_t off, size_t max_lpsize, 516 size_t min_physmem) 517 { 518 caddr_t eaddr = addr + size; 519 uint_t szcvec = 0; 520 caddr_t raddr; 521 caddr_t readdr; 522 size_t pgsz; 523 int i; 524 525 if (physmem < min_physmem || max_lpsize <= MMU_PAGESIZE) { 526 return (0); 527 } 528 529 for (i = mmu_exported_page_sizes - 1; i > 0; i--) { 530 pgsz = page_get_pagesize(i); 531 if (pgsz > max_lpsize) { 532 continue; 533 } 534 raddr = (caddr_t)P2ROUNDUP((uintptr_t)addr, pgsz); 535 readdr = (caddr_t)P2ALIGN((uintptr_t)eaddr, pgsz); 536 if (raddr < addr || raddr >= readdr) { 537 continue; 538 } 539 if (P2PHASE((uintptr_t)addr ^ off, pgsz)) { 540 continue; 541 } 542 /* 543 * Set szcvec to the remaining page sizes. 544 */ 545 szcvec = ((1 << (i + 1)) - 1) & ~1; 546 break; 547 } 548 return (szcvec); 549 } 550 551 /* 552 * Return a bit vector of large page size codes that 553 * can be used to map [addr, addr + len) region. 554 */ 555 /*ARGSUSED*/ 556 uint_t 557 map_pgszcvec(caddr_t addr, size_t size, uintptr_t off, int flags, int type, 558 int memcntl) 559 { 560 size_t max_lpsize = mcntl0_lpsize; 561 562 if (mmu.max_page_level == 0) 563 return (0); 564 565 if (flags & MAP_TEXT) { 566 if (!memcntl) 567 max_lpsize = max_utext_lpsize; 568 return (map_szcvec(addr, size, off, max_lpsize, 569 shm_lpg_min_physmem)); 570 571 } else if (flags & MAP_INITDATA) { 572 if (!memcntl) 573 max_lpsize = max_uidata_lpsize; 574 return (map_szcvec(addr, size, off, max_lpsize, 575 privm_lpg_min_physmem)); 576 577 } else if (type == MAPPGSZC_SHM) { 578 if (!memcntl) 579 max_lpsize = max_shm_lpsize; 580 return (map_szcvec(addr, size, off, max_lpsize, 581 shm_lpg_min_physmem)); 582 583 } else if (type == MAPPGSZC_HEAP) { 584 if (!memcntl) 585 max_lpsize = max_uheap_lpsize; 586 return (map_szcvec(addr, size, off, max_lpsize, 587 privm_lpg_min_physmem)); 588 589 } else if (type == MAPPGSZC_STACK) { 590 if (!memcntl) 591 max_lpsize = max_ustack_lpsize; 592 return (map_szcvec(addr, size, off, max_lpsize, 593 privm_lpg_min_physmem)); 594 595 } else { 596 if (!memcntl) 597 max_lpsize = max_privmap_lpsize; 598 return (map_szcvec(addr, size, off, max_lpsize, 599 privm_lpg_min_physmem)); 600 } 601 } 602 603 /* 604 * Handle a pagefault. 605 */ 606 faultcode_t 607 pagefault( 608 caddr_t addr, 609 enum fault_type type, 610 enum seg_rw rw, 611 int iskernel) 612 { 613 struct as *as; 614 struct hat *hat; 615 struct proc *p; 616 kthread_t *t; 617 faultcode_t res; 618 caddr_t base; 619 size_t len; 620 int err; 621 int mapped_red; 622 uintptr_t ea; 623 624 ASSERT_STACK_ALIGNED(); 625 626 if (INVALID_VADDR(addr)) 627 return (FC_NOMAP); 628 629 mapped_red = segkp_map_red(); 630 631 if (iskernel) { 632 as = &kas; 633 hat = as->a_hat; 634 } else { 635 t = curthread; 636 p = ttoproc(t); 637 as = p->p_as; 638 hat = as->a_hat; 639 } 640 641 /* 642 * Dispatch pagefault. 643 */ 644 res = as_fault(hat, as, addr, 1, type, rw); 645 646 /* 647 * If this isn't a potential unmapped hole in the user's 648 * UNIX data or stack segments, just return status info. 649 */ 650 if (res != FC_NOMAP || iskernel) 651 goto out; 652 653 /* 654 * Check to see if we happened to faulted on a currently unmapped 655 * part of the UNIX data or stack segments. If so, create a zfod 656 * mapping there and then try calling the fault routine again. 657 */ 658 base = p->p_brkbase; 659 len = p->p_brksize; 660 661 if (addr < base || addr >= base + len) { /* data seg? */ 662 base = (caddr_t)p->p_usrstack - p->p_stksize; 663 len = p->p_stksize; 664 if (addr < base || addr >= p->p_usrstack) { /* stack seg? */ 665 /* not in either UNIX data or stack segments */ 666 res = FC_NOMAP; 667 goto out; 668 } 669 } 670 671 /* 672 * the rest of this function implements a 3.X 4.X 5.X compatibility 673 * This code is probably not needed anymore 674 */ 675 if (p->p_model == DATAMODEL_ILP32) { 676 677 /* expand the gap to the page boundaries on each side */ 678 ea = P2ROUNDUP((uintptr_t)base + len, MMU_PAGESIZE); 679 base = (caddr_t)P2ALIGN((uintptr_t)base, MMU_PAGESIZE); 680 len = ea - (uintptr_t)base; 681 682 as_rangelock(as); 683 if (as_gap(as, MMU_PAGESIZE, &base, &len, AH_CONTAIN, addr) == 684 0) { 685 err = as_map(as, base, len, segvn_create, zfod_argsp); 686 as_rangeunlock(as); 687 if (err) { 688 res = FC_MAKE_ERR(err); 689 goto out; 690 } 691 } else { 692 /* 693 * This page is already mapped by another thread after 694 * we returned from as_fault() above. We just fall 695 * through as_fault() below. 696 */ 697 as_rangeunlock(as); 698 } 699 700 res = as_fault(hat, as, addr, 1, F_INVAL, rw); 701 } 702 703 out: 704 if (mapped_red) 705 segkp_unmap_red(); 706 707 return (res); 708 } 709 710 void 711 map_addr(caddr_t *addrp, size_t len, offset_t off, int vacalign, uint_t flags) 712 { 713 struct proc *p = curproc; 714 caddr_t userlimit = (flags & _MAP_LOW32) ? 715 (caddr_t)_userlimit32 : p->p_as->a_userlimit; 716 717 map_addr_proc(addrp, len, off, vacalign, userlimit, curproc, flags); 718 } 719 720 /*ARGSUSED*/ 721 int 722 map_addr_vacalign_check(caddr_t addr, u_offset_t off) 723 { 724 return (0); 725 } 726 727 /* 728 * The maximum amount a randomized mapping will be slewed. We should perhaps 729 * arrange things so these tunables can be separate for mmap, mmapobj, and 730 * ld.so 731 */ 732 size_t aslr_max_map_skew = 256 * 1024 * 1024; /* 256MB */ 733 734 /* 735 * map_addr_proc() is the routine called when the system is to 736 * choose an address for the user. We will pick an address 737 * range which is the highest available below userlimit. 738 * 739 * Every mapping will have a redzone of a single page on either side of 740 * the request. This is done to leave one page unmapped between segments. 741 * This is not required, but it's useful for the user because if their 742 * program strays across a segment boundary, it will catch a fault 743 * immediately making debugging a little easier. Currently the redzone 744 * is mandatory. 745 * 746 * addrp is a value/result parameter. 747 * On input it is a hint from the user to be used in a completely 748 * machine dependent fashion. We decide to completely ignore this hint. 749 * If MAP_ALIGN was specified, addrp contains the minimal alignment, which 750 * must be some "power of two" multiple of pagesize. 751 * 752 * On output it is NULL if no address can be found in the current 753 * processes address space or else an address that is currently 754 * not mapped for len bytes with a page of red zone on either side. 755 * 756 * vacalign is not needed on x86 (it's for viturally addressed caches) 757 */ 758 /*ARGSUSED*/ 759 void 760 map_addr_proc( 761 caddr_t *addrp, 762 size_t len, 763 offset_t off, 764 int vacalign, 765 caddr_t userlimit, 766 struct proc *p, 767 uint_t flags) 768 { 769 struct as *as = p->p_as; 770 caddr_t addr; 771 caddr_t base; 772 size_t slen; 773 size_t align_amount; 774 775 ASSERT32(userlimit == as->a_userlimit); 776 777 base = p->p_brkbase; 778 #if defined(__amd64) 779 if (p->p_model == DATAMODEL_NATIVE) { 780 if (userlimit < as->a_userlimit) { 781 /* 782 * This happens when a program wants to map 783 * something in a range that's accessible to a 784 * program in a smaller address space. For example, 785 * a 64-bit program calling mmap32(2) to guarantee 786 * that the returned address is below 4Gbytes. 787 */ 788 ASSERT((uintptr_t)userlimit < ADDRESS_C(0xffffffff)); 789 790 if (userlimit > base) 791 slen = userlimit - base; 792 else { 793 *addrp = NULL; 794 return; 795 } 796 } else { 797 /* 798 * With the stack positioned at a higher address than 799 * the heap for 64-bit processes, it is necessary to be 800 * mindful of its location and potential size. 801 * 802 * Unallocated space above the top of the stack (that 803 * is, at a lower address) but still within the bounds 804 * of the stack limit should be considered unavailable. 805 * 806 * As the 64-bit stack guard is mapped in immediately 807 * adjacent to the stack limit boundary, this prevents 808 * new mappings from having accidentally dangerous 809 * proximity to the stack. 810 */ 811 slen = p->p_usrstack - base - 812 ((p->p_stk_ctl + PAGEOFFSET) & PAGEMASK); 813 } 814 } else 815 #endif /* defined(__amd64) */ 816 slen = userlimit - base; 817 818 /* Make len be a multiple of PAGESIZE */ 819 len = (len + PAGEOFFSET) & PAGEMASK; 820 821 /* 822 * figure out what the alignment should be 823 * 824 * XX64 -- is there an ELF_AMD64_MAXPGSZ or is it the same???? 825 */ 826 if (len <= ELF_386_MAXPGSZ) { 827 /* 828 * Align virtual addresses to ensure that ELF shared libraries 829 * are mapped with the appropriate alignment constraints by 830 * the run-time linker. 831 */ 832 align_amount = ELF_386_MAXPGSZ; 833 } else { 834 /* 835 * For 32-bit processes, only those which have specified 836 * MAP_ALIGN and an addr will be aligned on a larger page size. 837 * Not doing so can potentially waste up to 1G of process 838 * address space. 839 */ 840 int lvl = (p->p_model == DATAMODEL_ILP32) ? 1 : 841 mmu.umax_page_level; 842 843 while (lvl && len < LEVEL_SIZE(lvl)) 844 --lvl; 845 846 align_amount = LEVEL_SIZE(lvl); 847 } 848 if ((flags & MAP_ALIGN) && ((uintptr_t)*addrp > align_amount)) 849 align_amount = (uintptr_t)*addrp; 850 851 ASSERT(ISP2(align_amount)); 852 ASSERT(align_amount == 0 || align_amount >= PAGESIZE); 853 854 off = off & (align_amount - 1); 855 856 /* 857 * Look for a large enough hole starting below userlimit. 858 * After finding it, use the upper part. 859 */ 860 if (as_gap_aligned(as, len, &base, &slen, AH_HI, NULL, align_amount, 861 PAGESIZE, off) == 0) { 862 caddr_t as_addr; 863 864 /* 865 * addr is the highest possible address to use since we have 866 * a PAGESIZE redzone at the beginning and end. 867 */ 868 addr = base + slen - (PAGESIZE + len); 869 as_addr = addr; 870 /* 871 * Round address DOWN to the alignment amount and 872 * add the offset in. 873 * If addr is greater than as_addr, len would not be large 874 * enough to include the redzone, so we must adjust down 875 * by the alignment amount. 876 */ 877 addr = (caddr_t)((uintptr_t)addr & (~(align_amount - 1))); 878 addr += (uintptr_t)off; 879 if (addr > as_addr) { 880 addr -= align_amount; 881 } 882 883 /* 884 * If randomization is requested, slew the allocation 885 * backwards, within the same gap, by a random amount. 886 */ 887 if (flags & _MAP_RANDOMIZE) { 888 uint32_t slew; 889 890 (void) random_get_pseudo_bytes((uint8_t *)&slew, 891 sizeof (slew)); 892 893 slew = slew % MIN(aslr_max_map_skew, (addr - base)); 894 addr -= P2ALIGN(slew, align_amount); 895 } 896 897 ASSERT(addr > base); 898 ASSERT(addr + len < base + slen); 899 ASSERT(((uintptr_t)addr & (align_amount - 1)) == 900 ((uintptr_t)(off))); 901 *addrp = addr; 902 } else { 903 *addrp = NULL; /* no more virtual space */ 904 } 905 } 906 907 int valid_va_range_aligned_wraparound; 908 909 /* 910 * Determine whether [*basep, *basep + *lenp) contains a mappable range of 911 * addresses at least "minlen" long, where the base of the range is at "off" 912 * phase from an "align" boundary and there is space for a "redzone"-sized 913 * redzone on either side of the range. On success, 1 is returned and *basep 914 * and *lenp are adjusted to describe the acceptable range (including 915 * the redzone). On failure, 0 is returned. 916 */ 917 /*ARGSUSED3*/ 918 int 919 valid_va_range_aligned(caddr_t *basep, size_t *lenp, size_t minlen, int dir, 920 size_t align, size_t redzone, size_t off) 921 { 922 uintptr_t hi, lo; 923 size_t tot_len; 924 925 ASSERT(align == 0 ? off == 0 : off < align); 926 ASSERT(ISP2(align)); 927 ASSERT(align == 0 || align >= PAGESIZE); 928 929 lo = (uintptr_t)*basep; 930 hi = lo + *lenp; 931 tot_len = minlen + 2 * redzone; /* need at least this much space */ 932 933 /* 934 * If hi rolled over the top, try cutting back. 935 */ 936 if (hi < lo) { 937 *lenp = 0UL - lo - 1UL; 938 /* See if this really happens. If so, then we figure out why */ 939 valid_va_range_aligned_wraparound++; 940 hi = lo + *lenp; 941 } 942 if (*lenp < tot_len) { 943 return (0); 944 } 945 946 #if defined(__amd64) 947 /* 948 * Deal with a possible hole in the address range between 949 * hole_start and hole_end that should never be mapped. 950 */ 951 if (lo < hole_start) { 952 if (hi > hole_start) { 953 if (hi < hole_end) { 954 hi = hole_start; 955 } else { 956 /* lo < hole_start && hi >= hole_end */ 957 if (dir == AH_LO) { 958 /* 959 * prefer lowest range 960 */ 961 if (hole_start - lo >= tot_len) 962 hi = hole_start; 963 else if (hi - hole_end >= tot_len) 964 lo = hole_end; 965 else 966 return (0); 967 } else { 968 /* 969 * prefer highest range 970 */ 971 if (hi - hole_end >= tot_len) 972 lo = hole_end; 973 else if (hole_start - lo >= tot_len) 974 hi = hole_start; 975 else 976 return (0); 977 } 978 } 979 } 980 } else { 981 /* lo >= hole_start */ 982 if (hi < hole_end) 983 return (0); 984 if (lo < hole_end) 985 lo = hole_end; 986 } 987 #endif 988 989 if (hi - lo < tot_len) 990 return (0); 991 992 if (align > 1) { 993 uintptr_t tlo = lo + redzone; 994 uintptr_t thi = hi - redzone; 995 tlo = (uintptr_t)P2PHASEUP(tlo, align, off); 996 if (tlo < lo + redzone) { 997 return (0); 998 } 999 if (thi < tlo || thi - tlo < minlen) { 1000 return (0); 1001 } 1002 } 1003 1004 *basep = (caddr_t)lo; 1005 *lenp = hi - lo; 1006 return (1); 1007 } 1008 1009 /* 1010 * Determine whether [*basep, *basep + *lenp) contains a mappable range of 1011 * addresses at least "minlen" long. On success, 1 is returned and *basep 1012 * and *lenp are adjusted to describe the acceptable range. On failure, 0 1013 * is returned. 1014 */ 1015 int 1016 valid_va_range(caddr_t *basep, size_t *lenp, size_t minlen, int dir) 1017 { 1018 return (valid_va_range_aligned(basep, lenp, minlen, dir, 0, 0, 0)); 1019 } 1020 1021 /* 1022 * Default to forbidding the first 64k of address space. This protects most 1023 * reasonably sized structures from dereferences through NULL: 1024 * ((foo_t *)0)->bar 1025 */ 1026 uintptr_t forbidden_null_mapping_sz = 0x10000; 1027 1028 /* 1029 * Determine whether [addr, addr+len] are valid user addresses. 1030 */ 1031 /*ARGSUSED*/ 1032 int 1033 valid_usr_range(caddr_t addr, size_t len, uint_t prot, struct as *as, 1034 caddr_t userlimit) 1035 { 1036 caddr_t eaddr = addr + len; 1037 1038 if (eaddr <= addr || addr >= userlimit || eaddr > userlimit) 1039 return (RANGE_BADADDR); 1040 1041 if ((addr <= (caddr_t)forbidden_null_mapping_sz) && 1042 as->a_proc != NULL && 1043 secflag_enabled(as->a_proc, PROC_SEC_FORBIDNULLMAP)) 1044 return (RANGE_BADADDR); 1045 1046 #if defined(__amd64) 1047 /* 1048 * Check for the VA hole 1049 */ 1050 if (eaddr > (caddr_t)hole_start && addr < (caddr_t)hole_end) 1051 return (RANGE_BADADDR); 1052 #endif 1053 1054 return (RANGE_OKAY); 1055 } 1056 1057 /* 1058 * Return 1 if the page frame is onboard memory, else 0. 1059 */ 1060 int 1061 pf_is_memory(pfn_t pf) 1062 { 1063 if (pfn_is_foreign(pf)) 1064 return (0); 1065 return (address_in_memlist(phys_install, pfn_to_pa(pf), 1)); 1066 } 1067 1068 /* 1069 * return the memrange containing pfn 1070 */ 1071 int 1072 memrange_num(pfn_t pfn) 1073 { 1074 int n; 1075 1076 for (n = 0; n < nranges - 1; ++n) { 1077 if (pfn >= memranges[n]) 1078 break; 1079 } 1080 return (n); 1081 } 1082 1083 /* 1084 * return the mnoderange containing pfn 1085 */ 1086 /*ARGSUSED*/ 1087 int 1088 pfn_2_mtype(pfn_t pfn) 1089 { 1090 #if defined(__xpv) 1091 return (0); 1092 #else 1093 int n; 1094 1095 /* Always start from highest pfn and work our way down */ 1096 for (n = mtypetop; n != -1; n = mnoderanges[n].mnr_next) { 1097 if (pfn >= mnoderanges[n].mnr_pfnlo) { 1098 break; 1099 } 1100 } 1101 return (n); 1102 #endif 1103 } 1104 1105 #if !defined(__xpv) 1106 /* 1107 * is_contigpage_free: 1108 * returns a page list of contiguous pages. It minimally has to return 1109 * minctg pages. Caller determines minctg based on the scatter-gather 1110 * list length. 1111 * 1112 * pfnp is set to the next page frame to search on return. 1113 */ 1114 static page_t * 1115 is_contigpage_free( 1116 pfn_t *pfnp, 1117 pgcnt_t *pgcnt, 1118 pgcnt_t minctg, 1119 uint64_t pfnseg, 1120 int iolock) 1121 { 1122 int i = 0; 1123 pfn_t pfn = *pfnp; 1124 page_t *pp; 1125 page_t *plist = NULL; 1126 1127 /* 1128 * fail if pfn + minctg crosses a segment boundary. 1129 * Adjust for next starting pfn to begin at segment boundary. 1130 */ 1131 1132 if (((*pfnp + minctg - 1) & pfnseg) < (*pfnp & pfnseg)) { 1133 *pfnp = roundup(*pfnp, pfnseg + 1); 1134 return (NULL); 1135 } 1136 1137 do { 1138 retry: 1139 pp = page_numtopp_nolock(pfn + i); 1140 if ((pp == NULL) || IS_DUMP_PAGE(pp) || 1141 (page_trylock(pp, SE_EXCL) == 0)) { 1142 (*pfnp)++; 1143 break; 1144 } 1145 if (page_pptonum(pp) != pfn + i) { 1146 page_unlock(pp); 1147 goto retry; 1148 } 1149 1150 if (!(PP_ISFREE(pp))) { 1151 page_unlock(pp); 1152 (*pfnp)++; 1153 break; 1154 } 1155 1156 if (!PP_ISAGED(pp)) { 1157 page_list_sub(pp, PG_CACHE_LIST); 1158 page_hashout(pp, (kmutex_t *)NULL); 1159 } else { 1160 page_list_sub(pp, PG_FREE_LIST); 1161 } 1162 1163 if (iolock) 1164 page_io_lock(pp); 1165 page_list_concat(&plist, &pp); 1166 1167 /* 1168 * exit loop when pgcnt satisfied or segment boundary reached. 1169 */ 1170 1171 } while ((++i < *pgcnt) && ((pfn + i) & pfnseg)); 1172 1173 *pfnp += i; /* set to next pfn to search */ 1174 1175 if (i >= minctg) { 1176 *pgcnt -= i; 1177 return (plist); 1178 } 1179 1180 /* 1181 * failure: minctg not satisfied. 1182 * 1183 * if next request crosses segment boundary, set next pfn 1184 * to search from the segment boundary. 1185 */ 1186 if (((*pfnp + minctg - 1) & pfnseg) < (*pfnp & pfnseg)) 1187 *pfnp = roundup(*pfnp, pfnseg + 1); 1188 1189 /* clean up any pages already allocated */ 1190 1191 while (plist) { 1192 pp = plist; 1193 page_sub(&plist, pp); 1194 page_list_add(pp, PG_FREE_LIST | PG_LIST_TAIL); 1195 if (iolock) 1196 page_io_unlock(pp); 1197 page_unlock(pp); 1198 } 1199 1200 return (NULL); 1201 } 1202 #endif /* !__xpv */ 1203 1204 /* 1205 * verify that pages being returned from allocator have correct DMA attribute 1206 */ 1207 #ifndef DEBUG 1208 #define check_dma(a, b, c) (void)(0) 1209 #else 1210 static void 1211 check_dma(ddi_dma_attr_t *dma_attr, page_t *pp, int cnt) 1212 { 1213 if (dma_attr == NULL) 1214 return; 1215 1216 while (cnt-- > 0) { 1217 if (pa_to_ma(pfn_to_pa(pp->p_pagenum)) < 1218 dma_attr->dma_attr_addr_lo) 1219 panic("PFN (pp=%p) below dma_attr_addr_lo", (void *)pp); 1220 if (pa_to_ma(pfn_to_pa(pp->p_pagenum)) >= 1221 dma_attr->dma_attr_addr_hi) 1222 panic("PFN (pp=%p) above dma_attr_addr_hi", (void *)pp); 1223 pp = pp->p_next; 1224 } 1225 } 1226 #endif 1227 1228 #if !defined(__xpv) 1229 static page_t * 1230 page_get_contigpage(pgcnt_t *pgcnt, ddi_dma_attr_t *mattr, int iolock) 1231 { 1232 pfn_t pfn; 1233 int sgllen; 1234 uint64_t pfnseg; 1235 pgcnt_t minctg; 1236 page_t *pplist = NULL, *plist; 1237 uint64_t lo, hi; 1238 pgcnt_t pfnalign = 0; 1239 static pfn_t startpfn; 1240 static pgcnt_t lastctgcnt; 1241 uintptr_t align; 1242 1243 CONTIG_LOCK(); 1244 1245 if (mattr) { 1246 lo = mmu_btop((mattr->dma_attr_addr_lo + MMU_PAGEOFFSET)); 1247 hi = mmu_btop(mattr->dma_attr_addr_hi); 1248 if (hi >= physmax) 1249 hi = physmax - 1; 1250 sgllen = mattr->dma_attr_sgllen; 1251 pfnseg = mmu_btop(mattr->dma_attr_seg); 1252 1253 align = maxbit(mattr->dma_attr_align, mattr->dma_attr_minxfer); 1254 if (align > MMU_PAGESIZE) 1255 pfnalign = mmu_btop(align); 1256 1257 /* 1258 * in order to satisfy the request, must minimally 1259 * acquire minctg contiguous pages 1260 */ 1261 minctg = howmany(*pgcnt, sgllen); 1262 1263 ASSERT(hi >= lo); 1264 1265 /* 1266 * start from where last searched if the minctg >= lastctgcnt 1267 */ 1268 if (minctg < lastctgcnt || startpfn < lo || startpfn > hi) 1269 startpfn = lo; 1270 } else { 1271 hi = physmax - 1; 1272 lo = 0; 1273 sgllen = 1; 1274 pfnseg = mmu.highest_pfn; 1275 minctg = *pgcnt; 1276 1277 if (minctg < lastctgcnt) 1278 startpfn = lo; 1279 } 1280 lastctgcnt = minctg; 1281 1282 ASSERT(pfnseg + 1 >= (uint64_t)minctg); 1283 1284 /* conserve 16m memory - start search above 16m when possible */ 1285 if (hi > PFN_16M && startpfn < PFN_16M) 1286 startpfn = PFN_16M; 1287 1288 pfn = startpfn; 1289 if (pfnalign) 1290 pfn = P2ROUNDUP(pfn, pfnalign); 1291 1292 while (pfn + minctg - 1 <= hi) { 1293 1294 plist = is_contigpage_free(&pfn, pgcnt, minctg, pfnseg, iolock); 1295 if (plist) { 1296 page_list_concat(&pplist, &plist); 1297 sgllen--; 1298 /* 1299 * return when contig pages no longer needed 1300 */ 1301 if (!*pgcnt || ((*pgcnt <= sgllen) && !pfnalign)) { 1302 startpfn = pfn; 1303 CONTIG_UNLOCK(); 1304 check_dma(mattr, pplist, *pgcnt); 1305 return (pplist); 1306 } 1307 minctg = howmany(*pgcnt, sgllen); 1308 } 1309 if (pfnalign) 1310 pfn = P2ROUNDUP(pfn, pfnalign); 1311 } 1312 1313 /* cannot find contig pages in specified range */ 1314 if (startpfn == lo) { 1315 CONTIG_UNLOCK(); 1316 return (NULL); 1317 } 1318 1319 /* did not start with lo previously */ 1320 pfn = lo; 1321 if (pfnalign) 1322 pfn = P2ROUNDUP(pfn, pfnalign); 1323 1324 /* allow search to go above startpfn */ 1325 while (pfn < startpfn) { 1326 1327 plist = is_contigpage_free(&pfn, pgcnt, minctg, pfnseg, iolock); 1328 if (plist != NULL) { 1329 1330 page_list_concat(&pplist, &plist); 1331 sgllen--; 1332 1333 /* 1334 * return when contig pages no longer needed 1335 */ 1336 if (!*pgcnt || ((*pgcnt <= sgllen) && !pfnalign)) { 1337 startpfn = pfn; 1338 CONTIG_UNLOCK(); 1339 check_dma(mattr, pplist, *pgcnt); 1340 return (pplist); 1341 } 1342 minctg = howmany(*pgcnt, sgllen); 1343 } 1344 if (pfnalign) 1345 pfn = P2ROUNDUP(pfn, pfnalign); 1346 } 1347 CONTIG_UNLOCK(); 1348 return (NULL); 1349 } 1350 #endif /* !__xpv */ 1351 1352 /* 1353 * mnode_range_cnt() calculates the number of memory ranges for mnode and 1354 * memranges[]. Used to determine the size of page lists and mnoderanges. 1355 */ 1356 int 1357 mnode_range_cnt(int mnode) 1358 { 1359 #if defined(__xpv) 1360 ASSERT(mnode == 0); 1361 return (1); 1362 #else /* __xpv */ 1363 int mri; 1364 int mnrcnt = 0; 1365 1366 if (mem_node_config[mnode].exists != 0) { 1367 mri = nranges - 1; 1368 1369 /* find the memranges index below contained in mnode range */ 1370 1371 while (MEMRANGEHI(mri) < mem_node_config[mnode].physbase) 1372 mri--; 1373 1374 /* 1375 * increment mnode range counter when memranges or mnode 1376 * boundary is reached. 1377 */ 1378 while (mri >= 0 && 1379 mem_node_config[mnode].physmax >= MEMRANGELO(mri)) { 1380 mnrcnt++; 1381 if (mem_node_config[mnode].physmax > MEMRANGEHI(mri)) 1382 mri--; 1383 else 1384 break; 1385 } 1386 } 1387 ASSERT(mnrcnt <= MAX_MNODE_MRANGES); 1388 return (mnrcnt); 1389 #endif /* __xpv */ 1390 } 1391 1392 static int 1393 mnoderange_cmp(const void *v1, const void *v2) 1394 { 1395 const mnoderange_t *m1 = v1; 1396 const mnoderange_t *m2 = v2; 1397 1398 if (m1->mnr_pfnlo < m2->mnr_pfnlo) 1399 return (-1); 1400 return (m1->mnr_pfnlo > m2->mnr_pfnlo); 1401 } 1402 1403 void 1404 mnode_range_setup(mnoderange_t *mnoderanges) 1405 { 1406 mnoderange_t *mp; 1407 size_t nr_ranges; 1408 size_t mnode; 1409 1410 for (mnode = 0, nr_ranges = 0, mp = mnoderanges; 1411 mnode < max_mem_nodes; mnode++) { 1412 size_t mri = nranges - 1; 1413 1414 if (mem_node_config[mnode].exists == 0) 1415 continue; 1416 1417 while (MEMRANGEHI(mri) < mem_node_config[mnode].physbase) 1418 mri--; 1419 1420 while (mri >= 0 && mem_node_config[mnode].physmax >= 1421 MEMRANGELO(mri)) { 1422 mp->mnr_pfnlo = MAX(MEMRANGELO(mri), 1423 mem_node_config[mnode].physbase); 1424 mp->mnr_pfnhi = MIN(MEMRANGEHI(mri), 1425 mem_node_config[mnode].physmax); 1426 mp->mnr_mnode = mnode; 1427 mp->mnr_memrange = mri; 1428 mp->mnr_next = -1; 1429 mp->mnr_exists = 1; 1430 mp++; 1431 nr_ranges++; 1432 if (mem_node_config[mnode].physmax > MEMRANGEHI(mri)) 1433 mri--; 1434 else 1435 break; 1436 } 1437 } 1438 1439 /* 1440 * mnoderangecnt can be larger than nr_ranges when memory DR is 1441 * supposedly supported. 1442 */ 1443 VERIFY3U(nr_ranges, <=, mnoderangecnt); 1444 1445 qsort(mnoderanges, nr_ranges, sizeof (mnoderange_t), mnoderange_cmp); 1446 1447 /* 1448 * If some intrepid soul takes the axe to the memory DR code, we can 1449 * remove ->mnr_next altogether, as we just sorted by ->mnr_pfnlo order. 1450 * 1451 * The VERIFY3U() above can be "==" then too. 1452 */ 1453 for (size_t i = 1; i < nr_ranges; i++) 1454 mnoderanges[i].mnr_next = i - 1; 1455 1456 mtypetop = nr_ranges - 1; 1457 mtype16m = pfn_2_mtype(PFN_16MEG - 1); /* Can be -1 ... */ 1458 if (physmax4g) 1459 mtype4g = pfn_2_mtype(0xfffff); 1460 } 1461 1462 #ifndef __xpv 1463 /* 1464 * Update mnoderanges for memory hot-add DR operations. 1465 */ 1466 static void 1467 mnode_range_add(int mnode) 1468 { 1469 int *prev; 1470 int n, mri; 1471 pfn_t start, end; 1472 extern void membar_sync(void); 1473 1474 ASSERT(0 <= mnode && mnode < max_mem_nodes); 1475 ASSERT(mem_node_config[mnode].exists); 1476 start = mem_node_config[mnode].physbase; 1477 end = mem_node_config[mnode].physmax; 1478 ASSERT(start <= end); 1479 mutex_enter(&mnoderange_lock); 1480 1481 #ifdef DEBUG 1482 /* Check whether it interleaves with other memory nodes. */ 1483 for (n = mtypetop; n != -1; n = mnoderanges[n].mnr_next) { 1484 ASSERT(mnoderanges[n].mnr_exists); 1485 if (mnoderanges[n].mnr_mnode == mnode) 1486 continue; 1487 ASSERT(start > mnoderanges[n].mnr_pfnhi || 1488 end < mnoderanges[n].mnr_pfnlo); 1489 } 1490 #endif /* DEBUG */ 1491 1492 mri = nranges - 1; 1493 while (MEMRANGEHI(mri) < mem_node_config[mnode].physbase) 1494 mri--; 1495 while (mri >= 0 && mem_node_config[mnode].physmax >= MEMRANGELO(mri)) { 1496 /* Check whether mtype already exists. */ 1497 for (n = mtypetop; n != -1; n = mnoderanges[n].mnr_next) { 1498 if (mnoderanges[n].mnr_mnode == mnode && 1499 mnoderanges[n].mnr_memrange == mri) { 1500 mnoderanges[n].mnr_pfnlo = MAX(MEMRANGELO(mri), 1501 start); 1502 mnoderanges[n].mnr_pfnhi = MIN(MEMRANGEHI(mri), 1503 end); 1504 break; 1505 } 1506 } 1507 1508 /* Add a new entry if it doesn't exist yet. */ 1509 if (n == -1) { 1510 /* Try to find an unused entry in mnoderanges array. */ 1511 for (n = 0; n < mnoderangecnt; n++) { 1512 if (mnoderanges[n].mnr_exists == 0) 1513 break; 1514 } 1515 ASSERT(n < mnoderangecnt); 1516 mnoderanges[n].mnr_pfnlo = MAX(MEMRANGELO(mri), start); 1517 mnoderanges[n].mnr_pfnhi = MIN(MEMRANGEHI(mri), end); 1518 mnoderanges[n].mnr_mnode = mnode; 1519 mnoderanges[n].mnr_memrange = mri; 1520 mnoderanges[n].mnr_exists = 1; 1521 /* Page 0 should always be present. */ 1522 for (prev = &mtypetop; 1523 mnoderanges[*prev].mnr_pfnlo > start; 1524 prev = &mnoderanges[*prev].mnr_next) { 1525 ASSERT(mnoderanges[*prev].mnr_next >= 0); 1526 ASSERT(mnoderanges[*prev].mnr_pfnlo > end); 1527 } 1528 mnoderanges[n].mnr_next = *prev; 1529 membar_sync(); 1530 *prev = n; 1531 } 1532 1533 if (mem_node_config[mnode].physmax > MEMRANGEHI(mri)) 1534 mri--; 1535 else 1536 break; 1537 } 1538 1539 mutex_exit(&mnoderange_lock); 1540 } 1541 1542 /* 1543 * Update mnoderanges for memory hot-removal DR operations. 1544 */ 1545 static void 1546 mnode_range_del(int mnode) 1547 { 1548 _NOTE(ARGUNUSED(mnode)); 1549 ASSERT(0 <= mnode && mnode < max_mem_nodes); 1550 /* TODO: support deletion operation. */ 1551 ASSERT(0); 1552 } 1553 1554 void 1555 plat_slice_add(pfn_t start, pfn_t end) 1556 { 1557 mem_node_add_slice(start, end); 1558 if (plat_dr_enabled()) { 1559 mnode_range_add(PFN_2_MEM_NODE(start)); 1560 } 1561 } 1562 1563 void 1564 plat_slice_del(pfn_t start, pfn_t end) 1565 { 1566 ASSERT(PFN_2_MEM_NODE(start) == PFN_2_MEM_NODE(end)); 1567 ASSERT(plat_dr_enabled()); 1568 mnode_range_del(PFN_2_MEM_NODE(start)); 1569 mem_node_del_slice(start, end); 1570 } 1571 #endif /* __xpv */ 1572 1573 /*ARGSUSED*/ 1574 int 1575 mtype_init(vnode_t *vp, caddr_t vaddr, uint_t *flags, size_t pgsz) 1576 { 1577 int mtype = mtypetop; 1578 1579 #if !defined(__xpv) 1580 #if defined(__i386) 1581 /* 1582 * set the mtype range 1583 * - kmem requests need to be below 4g if restricted_kmemalloc is set. 1584 * - for non kmem requests, set range to above 4g if memory below 4g 1585 * runs low. 1586 */ 1587 if (restricted_kmemalloc && VN_ISKAS(vp) && 1588 (caddr_t)(vaddr) >= kernelheap && 1589 (caddr_t)(vaddr) < ekernelheap) { 1590 ASSERT(physmax4g); 1591 mtype = mtype4g; 1592 if (RESTRICT16M_ALLOC(freemem4g - btop(pgsz), 1593 btop(pgsz), *flags)) { 1594 *flags |= PGI_MT_RANGE16M; 1595 } else { 1596 VM_STAT_ADD(vmm_vmstats.unrestrict16mcnt); 1597 VM_STAT_COND_ADD((*flags & PG_PANIC), 1598 vmm_vmstats.pgpanicalloc); 1599 *flags |= PGI_MT_RANGE0; 1600 } 1601 return (mtype); 1602 } 1603 #endif /* __i386 */ 1604 1605 if (RESTRICT4G_ALLOC) { 1606 VM_STAT_ADD(vmm_vmstats.restrict4gcnt); 1607 /* here only for > 4g systems */ 1608 *flags |= PGI_MT_RANGE4G; 1609 } else if (RESTRICT16M_ALLOC(freemem, btop(pgsz), *flags)) { 1610 *flags |= PGI_MT_RANGE16M; 1611 } else { 1612 VM_STAT_ADD(vmm_vmstats.unrestrict16mcnt); 1613 VM_STAT_COND_ADD((*flags & PG_PANIC), vmm_vmstats.pgpanicalloc); 1614 *flags |= PGI_MT_RANGE0; 1615 } 1616 #endif /* !__xpv */ 1617 return (mtype); 1618 } 1619 1620 1621 /* mtype init for page_get_replacement_page */ 1622 /*ARGSUSED*/ 1623 int 1624 mtype_pgr_init(int *flags, page_t *pp, int mnode, pgcnt_t pgcnt) 1625 { 1626 int mtype = mtypetop; 1627 #if !defined(__xpv) 1628 if (RESTRICT16M_ALLOC(freemem, pgcnt, *flags)) { 1629 *flags |= PGI_MT_RANGE16M; 1630 } else { 1631 VM_STAT_ADD(vmm_vmstats.unrestrict16mcnt); 1632 *flags |= PGI_MT_RANGE0; 1633 } 1634 #endif 1635 return (mtype); 1636 } 1637 1638 /* 1639 * Determine if the mnode range specified in mtype contains memory belonging 1640 * to memory node mnode. If flags & PGI_MT_RANGE is set then mtype contains 1641 * the range from high pfn to 0, 16m or 4g. 1642 * 1643 * Return first mnode range type index found otherwise return -1 if none found. 1644 */ 1645 int 1646 mtype_func(int mnode, int mtype, uint_t flags) 1647 { 1648 if (flags & PGI_MT_RANGE) { 1649 int mnr_lim = MRI_0; 1650 1651 if (flags & PGI_MT_NEXT) { 1652 mtype = mnoderanges[mtype].mnr_next; 1653 } 1654 if (flags & PGI_MT_RANGE4G) 1655 mnr_lim = MRI_4G; /* exclude 0-4g range */ 1656 else if (flags & PGI_MT_RANGE16M) 1657 mnr_lim = MRI_16M; /* exclude 0-16m range */ 1658 while (mtype != -1 && 1659 mnoderanges[mtype].mnr_memrange <= mnr_lim) { 1660 if (mnoderanges[mtype].mnr_mnode == mnode) 1661 return (mtype); 1662 mtype = mnoderanges[mtype].mnr_next; 1663 } 1664 } else if (mnoderanges[mtype].mnr_mnode == mnode) { 1665 return (mtype); 1666 } 1667 return (-1); 1668 } 1669 1670 /* 1671 * Update the page list max counts with the pfn range specified by the 1672 * input parameters. 1673 */ 1674 void 1675 mtype_modify_max(pfn_t startpfn, long cnt) 1676 { 1677 int mtype; 1678 pgcnt_t inc; 1679 spgcnt_t scnt = (spgcnt_t)(cnt); 1680 pgcnt_t acnt = ABS(scnt); 1681 pfn_t endpfn = startpfn + acnt; 1682 pfn_t pfn, lo; 1683 1684 if (!physmax4g) 1685 return; 1686 1687 mtype = mtypetop; 1688 for (pfn = endpfn; pfn > startpfn; ) { 1689 ASSERT(mtype != -1); 1690 lo = mnoderanges[mtype].mnr_pfnlo; 1691 if (pfn > lo) { 1692 if (startpfn >= lo) { 1693 inc = pfn - startpfn; 1694 } else { 1695 inc = pfn - lo; 1696 } 1697 if (mnoderanges[mtype].mnr_memrange != MRI_4G) { 1698 if (scnt > 0) 1699 maxmem4g += inc; 1700 else 1701 maxmem4g -= inc; 1702 } 1703 pfn -= inc; 1704 } 1705 mtype = mnoderanges[mtype].mnr_next; 1706 } 1707 } 1708 1709 int 1710 mtype_2_mrange(int mtype) 1711 { 1712 return (mnoderanges[mtype].mnr_memrange); 1713 } 1714 1715 void 1716 mnodetype_2_pfn(int mnode, int mtype, pfn_t *pfnlo, pfn_t *pfnhi) 1717 { 1718 _NOTE(ARGUNUSED(mnode)); 1719 ASSERT(mnoderanges[mtype].mnr_mnode == mnode); 1720 *pfnlo = mnoderanges[mtype].mnr_pfnlo; 1721 *pfnhi = mnoderanges[mtype].mnr_pfnhi; 1722 } 1723 1724 size_t 1725 plcnt_sz(size_t ctrs_sz) 1726 { 1727 #ifdef DEBUG 1728 int szc, colors; 1729 1730 ctrs_sz += mnoderangecnt * sizeof (struct mnr_mts) * mmu_page_sizes; 1731 for (szc = 0; szc < mmu_page_sizes; szc++) { 1732 colors = page_get_pagecolors(szc); 1733 ctrs_sz += mnoderangecnt * sizeof (pgcnt_t) * colors; 1734 } 1735 #endif 1736 return (ctrs_sz); 1737 } 1738 1739 caddr_t 1740 plcnt_init(caddr_t addr) 1741 { 1742 #ifdef DEBUG 1743 int mt, szc, colors; 1744 1745 for (mt = 0; mt < mnoderangecnt; mt++) { 1746 mnoderanges[mt].mnr_mts = (struct mnr_mts *)addr; 1747 addr += (sizeof (struct mnr_mts) * mmu_page_sizes); 1748 for (szc = 0; szc < mmu_page_sizes; szc++) { 1749 colors = page_get_pagecolors(szc); 1750 mnoderanges[mt].mnr_mts[szc].mnr_mts_colors = colors; 1751 mnoderanges[mt].mnr_mts[szc].mnr_mtsc_pgcnt = 1752 (pgcnt_t *)addr; 1753 addr += (sizeof (pgcnt_t) * colors); 1754 } 1755 } 1756 #endif 1757 return (addr); 1758 } 1759 1760 void 1761 plcnt_inc_dec(page_t *pp, int mtype, int szc, long cnt, int flags) 1762 { 1763 _NOTE(ARGUNUSED(pp)); 1764 #ifdef DEBUG 1765 int bin = PP_2_BIN(pp); 1766 1767 atomic_add_long(&mnoderanges[mtype].mnr_mts[szc].mnr_mts_pgcnt, cnt); 1768 atomic_add_long(&mnoderanges[mtype].mnr_mts[szc].mnr_mtsc_pgcnt[bin], 1769 cnt); 1770 #endif 1771 ASSERT(mtype == PP_2_MTYPE(pp)); 1772 if (physmax4g && mnoderanges[mtype].mnr_memrange != MRI_4G) 1773 atomic_add_long(&freemem4g, cnt); 1774 if (flags & PG_CACHE_LIST) 1775 atomic_add_long(&mnoderanges[mtype].mnr_mt_clpgcnt, cnt); 1776 else 1777 atomic_add_long(&mnoderanges[mtype].mnr_mt_flpgcnt[szc], cnt); 1778 atomic_add_long(&mnoderanges[mtype].mnr_mt_totcnt, cnt); 1779 } 1780 1781 /* 1782 * Returns the free page count for mnode 1783 */ 1784 int 1785 mnode_pgcnt(int mnode) 1786 { 1787 int mtype = mtypetop; 1788 int flags = PGI_MT_RANGE0; 1789 pgcnt_t pgcnt = 0; 1790 1791 mtype = mtype_func(mnode, mtype, flags); 1792 1793 while (mtype != -1) { 1794 pgcnt += MTYPE_FREEMEM(mtype); 1795 mtype = mtype_func(mnode, mtype, flags | PGI_MT_NEXT); 1796 } 1797 return (pgcnt); 1798 } 1799 1800 /* 1801 * Initialize page coloring variables based on the l2 cache parameters. 1802 * Calculate and return memory needed for page coloring data structures. 1803 */ 1804 size_t 1805 page_coloring_init(uint_t l2_sz, int l2_linesz, int l2_assoc) 1806 { 1807 _NOTE(ARGUNUSED(l2_linesz)); 1808 size_t colorsz = 0; 1809 int i; 1810 int colors; 1811 1812 #if defined(__xpv) 1813 /* 1814 * Hypervisor domains currently don't have any concept of NUMA. 1815 * Hence we'll act like there is only 1 memrange. 1816 */ 1817 i = memrange_num(1); 1818 #else /* !__xpv */ 1819 /* 1820 * Reduce the memory ranges lists if we don't have large amounts 1821 * of memory. This avoids searching known empty free lists. 1822 * To support memory DR operations, we need to keep memory ranges 1823 * for possible memory hot-add operations. 1824 */ 1825 if (plat_dr_physmax > physmax) 1826 i = memrange_num(plat_dr_physmax); 1827 else 1828 i = memrange_num(physmax); 1829 #if defined(__i386) 1830 if (i > MRI_4G) 1831 restricted_kmemalloc = 0; 1832 #endif 1833 /* physmax greater than 4g */ 1834 if (i == MRI_4G) 1835 physmax4g = 1; 1836 #endif /* !__xpv */ 1837 memranges += i; 1838 nranges -= i; 1839 1840 ASSERT(mmu_page_sizes <= MMU_PAGE_SIZES); 1841 1842 ASSERT(ISP2(l2_linesz)); 1843 ASSERT(l2_sz > MMU_PAGESIZE); 1844 1845 /* l2_assoc is 0 for fully associative l2 cache */ 1846 if (l2_assoc) 1847 l2_colors = MAX(1, l2_sz / (l2_assoc * MMU_PAGESIZE)); 1848 else 1849 l2_colors = 1; 1850 1851 ASSERT(ISP2(l2_colors)); 1852 1853 /* for scalability, configure at least PAGE_COLORS_MIN color bins */ 1854 page_colors = MAX(l2_colors, PAGE_COLORS_MIN); 1855 1856 /* 1857 * cpu_page_colors is non-zero when a page color may be spread across 1858 * multiple bins. 1859 */ 1860 if (l2_colors < page_colors) 1861 cpu_page_colors = l2_colors; 1862 1863 ASSERT(ISP2(page_colors)); 1864 1865 page_colors_mask = page_colors - 1; 1866 1867 ASSERT(ISP2(CPUSETSIZE())); 1868 page_coloring_shift = lowbit(CPUSETSIZE()); 1869 1870 /* initialize number of colors per page size */ 1871 for (i = 0; i <= mmu.max_page_level; i++) { 1872 hw_page_array[i].hp_size = LEVEL_SIZE(i); 1873 hw_page_array[i].hp_shift = LEVEL_SHIFT(i); 1874 hw_page_array[i].hp_pgcnt = LEVEL_SIZE(i) >> LEVEL_SHIFT(0); 1875 hw_page_array[i].hp_colors = (page_colors_mask >> 1876 (hw_page_array[i].hp_shift - hw_page_array[0].hp_shift)) 1877 + 1; 1878 colorequivszc[i] = 0; 1879 } 1880 1881 /* 1882 * The value of cpu_page_colors determines if additional color bins 1883 * need to be checked for a particular color in the page_get routines. 1884 */ 1885 if (cpu_page_colors != 0) { 1886 1887 int a = lowbit(page_colors) - lowbit(cpu_page_colors); 1888 ASSERT(a > 0); 1889 ASSERT(a < 16); 1890 1891 for (i = 0; i <= mmu.max_page_level; i++) { 1892 if ((colors = hw_page_array[i].hp_colors) <= 1) { 1893 colorequivszc[i] = 0; 1894 continue; 1895 } 1896 while ((colors >> a) == 0) 1897 a--; 1898 ASSERT(a >= 0); 1899 1900 /* higher 4 bits encodes color equiv mask */ 1901 colorequivszc[i] = (a << 4); 1902 } 1903 } 1904 1905 /* factor in colorequiv to check additional 'equivalent' bins. */ 1906 if (colorequiv > 1) { 1907 1908 int a = lowbit(colorequiv) - 1; 1909 if (a > 15) 1910 a = 15; 1911 1912 for (i = 0; i <= mmu.max_page_level; i++) { 1913 if ((colors = hw_page_array[i].hp_colors) <= 1) { 1914 continue; 1915 } 1916 while ((colors >> a) == 0) 1917 a--; 1918 if ((a << 4) > colorequivszc[i]) { 1919 colorequivszc[i] = (a << 4); 1920 } 1921 } 1922 } 1923 1924 /* size for mnoderanges */ 1925 for (mnoderangecnt = 0, i = 0; i < max_mem_nodes; i++) 1926 mnoderangecnt += mnode_range_cnt(i); 1927 if (plat_dr_support_memory()) { 1928 /* 1929 * Reserve enough space for memory DR operations. 1930 * Two extra mnoderanges for possbile fragmentations, 1931 * one for the 2G boundary and the other for the 4G boundary. 1932 * We don't expect a memory board crossing the 16M boundary 1933 * for memory hot-add operations on x86 platforms. 1934 */ 1935 mnoderangecnt += 2 + max_mem_nodes - lgrp_plat_node_cnt; 1936 } 1937 colorsz = mnoderangecnt * sizeof (mnoderange_t); 1938 1939 /* size for fpc_mutex and cpc_mutex */ 1940 colorsz += (2 * max_mem_nodes * sizeof (kmutex_t) * NPC_MUTEX); 1941 1942 /* size of page_freelists */ 1943 colorsz += mnoderangecnt * sizeof (page_t ***); 1944 colorsz += mnoderangecnt * mmu_page_sizes * sizeof (page_t **); 1945 1946 for (i = 0; i < mmu_page_sizes; i++) { 1947 colors = page_get_pagecolors(i); 1948 colorsz += mnoderangecnt * colors * sizeof (page_t *); 1949 } 1950 1951 /* size of page_cachelists */ 1952 colorsz += mnoderangecnt * sizeof (page_t **); 1953 colorsz += mnoderangecnt * page_colors * sizeof (page_t *); 1954 1955 return (colorsz); 1956 } 1957 1958 /* 1959 * Called once at startup to configure page_coloring data structures and 1960 * does the 1st page_free()/page_freelist_add(). 1961 */ 1962 void 1963 page_coloring_setup(caddr_t pcmemaddr) 1964 { 1965 int i; 1966 int j; 1967 int k; 1968 caddr_t addr; 1969 int colors; 1970 1971 /* 1972 * do page coloring setup 1973 */ 1974 addr = pcmemaddr; 1975 1976 mnoderanges = (mnoderange_t *)addr; 1977 addr += (mnoderangecnt * sizeof (mnoderange_t)); 1978 1979 mnode_range_setup(mnoderanges); 1980 1981 for (k = 0; k < NPC_MUTEX; k++) { 1982 fpc_mutex[k] = (kmutex_t *)addr; 1983 addr += (max_mem_nodes * sizeof (kmutex_t)); 1984 } 1985 for (k = 0; k < NPC_MUTEX; k++) { 1986 cpc_mutex[k] = (kmutex_t *)addr; 1987 addr += (max_mem_nodes * sizeof (kmutex_t)); 1988 } 1989 page_freelists = (page_t ****)addr; 1990 addr += (mnoderangecnt * sizeof (page_t ***)); 1991 1992 page_cachelists = (page_t ***)addr; 1993 addr += (mnoderangecnt * sizeof (page_t **)); 1994 1995 for (i = 0; i < mnoderangecnt; i++) { 1996 page_freelists[i] = (page_t ***)addr; 1997 addr += (mmu_page_sizes * sizeof (page_t **)); 1998 1999 for (j = 0; j < mmu_page_sizes; j++) { 2000 colors = page_get_pagecolors(j); 2001 page_freelists[i][j] = (page_t **)addr; 2002 addr += (colors * sizeof (page_t *)); 2003 } 2004 page_cachelists[i] = (page_t **)addr; 2005 addr += (page_colors * sizeof (page_t *)); 2006 } 2007 } 2008 2009 #if defined(__xpv) 2010 /* 2011 * Give back 10% of the io_pool pages to the free list. 2012 * Don't shrink the pool below some absolute minimum. 2013 */ 2014 static void 2015 page_io_pool_shrink() 2016 { 2017 int retcnt; 2018 page_t *pp, *pp_first, *pp_last, **curpool; 2019 mfn_t mfn; 2020 int bothpools = 0; 2021 2022 mutex_enter(&io_pool_lock); 2023 io_pool_shrink_attempts++; /* should be a kstat? */ 2024 retcnt = io_pool_cnt / 10; 2025 if (io_pool_cnt - retcnt < io_pool_cnt_min) 2026 retcnt = io_pool_cnt - io_pool_cnt_min; 2027 if (retcnt <= 0) 2028 goto done; 2029 io_pool_shrinks++; /* should be a kstat? */ 2030 curpool = &io_pool_4g; 2031 domore: 2032 /* 2033 * Loop through taking pages from the end of the list 2034 * (highest mfns) till amount to return reached. 2035 */ 2036 for (pp = *curpool; pp && retcnt > 0; ) { 2037 pp_first = pp_last = pp->p_prev; 2038 if (pp_first == *curpool) 2039 break; 2040 retcnt--; 2041 io_pool_cnt--; 2042 page_io_pool_sub(curpool, pp_first, pp_last); 2043 if ((mfn = pfn_to_mfn(pp->p_pagenum)) < start_mfn) 2044 start_mfn = mfn; 2045 page_free(pp_first, 1); 2046 pp = *curpool; 2047 } 2048 if (retcnt != 0 && !bothpools) { 2049 /* 2050 * If not enough found in less constrained pool try the 2051 * more constrained one. 2052 */ 2053 curpool = &io_pool_16m; 2054 bothpools = 1; 2055 goto domore; 2056 } 2057 done: 2058 mutex_exit(&io_pool_lock); 2059 } 2060 2061 #endif /* __xpv */ 2062 2063 uint_t 2064 page_create_update_flags_x86(uint_t flags) 2065 { 2066 #if defined(__xpv) 2067 /* 2068 * Check this is an urgent allocation and free pages are depleted. 2069 */ 2070 if (!(flags & PG_WAIT) && freemem < desfree) 2071 page_io_pool_shrink(); 2072 #else /* !__xpv */ 2073 /* 2074 * page_create_get_something may call this because 4g memory may be 2075 * depleted. Set flags to allow for relocation of base page below 2076 * 4g if necessary. 2077 */ 2078 if (physmax4g) 2079 flags |= (PGI_PGCPSZC0 | PGI_PGCPHIPRI); 2080 #endif /* __xpv */ 2081 return (flags); 2082 } 2083 2084 /*ARGSUSED*/ 2085 int 2086 bp_color(struct buf *bp) 2087 { 2088 return (0); 2089 } 2090 2091 #if defined(__xpv) 2092 2093 /* 2094 * Take pages out of an io_pool 2095 */ 2096 static void 2097 page_io_pool_sub(page_t **poolp, page_t *pp_first, page_t *pp_last) 2098 { 2099 if (*poolp == pp_first) { 2100 *poolp = pp_last->p_next; 2101 if (*poolp == pp_first) 2102 *poolp = NULL; 2103 } 2104 pp_first->p_prev->p_next = pp_last->p_next; 2105 pp_last->p_next->p_prev = pp_first->p_prev; 2106 pp_first->p_prev = pp_last; 2107 pp_last->p_next = pp_first; 2108 } 2109 2110 /* 2111 * Put a page on the io_pool list. The list is ordered by increasing MFN. 2112 */ 2113 static void 2114 page_io_pool_add(page_t **poolp, page_t *pp) 2115 { 2116 page_t *look; 2117 mfn_t mfn = mfn_list[pp->p_pagenum]; 2118 2119 if (*poolp == NULL) { 2120 *poolp = pp; 2121 pp->p_next = pp; 2122 pp->p_prev = pp; 2123 return; 2124 } 2125 2126 /* 2127 * Since we try to take pages from the high end of the pool 2128 * chances are good that the pages to be put on the list will 2129 * go at or near the end of the list. so start at the end and 2130 * work backwards. 2131 */ 2132 look = (*poolp)->p_prev; 2133 while (mfn < mfn_list[look->p_pagenum]) { 2134 look = look->p_prev; 2135 if (look == (*poolp)->p_prev) 2136 break; /* backed all the way to front of list */ 2137 } 2138 2139 /* insert after look */ 2140 pp->p_prev = look; 2141 pp->p_next = look->p_next; 2142 pp->p_next->p_prev = pp; 2143 look->p_next = pp; 2144 if (mfn < mfn_list[(*poolp)->p_pagenum]) { 2145 /* 2146 * we inserted a new first list element 2147 * adjust pool pointer to newly inserted element 2148 */ 2149 *poolp = pp; 2150 } 2151 } 2152 2153 /* 2154 * Add a page to the io_pool. Setting the force flag will force the page 2155 * into the io_pool no matter what. 2156 */ 2157 static void 2158 add_page_to_pool(page_t *pp, int force) 2159 { 2160 page_t *highest; 2161 page_t *freep = NULL; 2162 2163 mutex_enter(&io_pool_lock); 2164 /* 2165 * Always keep the scarce low memory pages 2166 */ 2167 if (mfn_list[pp->p_pagenum] < PFN_16MEG) { 2168 ++io_pool_cnt; 2169 page_io_pool_add(&io_pool_16m, pp); 2170 goto done; 2171 } 2172 if (io_pool_cnt < io_pool_cnt_max || force || io_pool_4g == NULL) { 2173 ++io_pool_cnt; 2174 page_io_pool_add(&io_pool_4g, pp); 2175 } else { 2176 highest = io_pool_4g->p_prev; 2177 if (mfn_list[pp->p_pagenum] < mfn_list[highest->p_pagenum]) { 2178 page_io_pool_sub(&io_pool_4g, highest, highest); 2179 page_io_pool_add(&io_pool_4g, pp); 2180 freep = highest; 2181 } else { 2182 freep = pp; 2183 } 2184 } 2185 done: 2186 mutex_exit(&io_pool_lock); 2187 if (freep) 2188 page_free(freep, 1); 2189 } 2190 2191 2192 int contig_pfn_cnt; /* no of pfns in the contig pfn list */ 2193 int contig_pfn_max; /* capacity of the contig pfn list */ 2194 int next_alloc_pfn; /* next position in list to start a contig search */ 2195 int contig_pfnlist_updates; /* pfn list update count */ 2196 int contig_pfnlist_builds; /* how many times have we (re)built list */ 2197 int contig_pfnlist_buildfailed; /* how many times has list build failed */ 2198 int create_contig_pending; /* nonzero means taskq creating contig list */ 2199 pfn_t *contig_pfn_list = NULL; /* list of contig pfns in ascending mfn order */ 2200 2201 /* 2202 * Function to use in sorting a list of pfns by their underlying mfns. 2203 */ 2204 static int 2205 mfn_compare(const void *pfnp1, const void *pfnp2) 2206 { 2207 mfn_t mfn1 = mfn_list[*(pfn_t *)pfnp1]; 2208 mfn_t mfn2 = mfn_list[*(pfn_t *)pfnp2]; 2209 2210 if (mfn1 > mfn2) 2211 return (1); 2212 if (mfn1 < mfn2) 2213 return (-1); 2214 return (0); 2215 } 2216 2217 /* 2218 * Compact the contig_pfn_list by tossing all the non-contiguous 2219 * elements from the list. 2220 */ 2221 static void 2222 compact_contig_pfn_list(void) 2223 { 2224 pfn_t pfn, lapfn, prev_lapfn; 2225 mfn_t mfn; 2226 int i, newcnt = 0; 2227 2228 prev_lapfn = 0; 2229 for (i = 0; i < contig_pfn_cnt - 1; i++) { 2230 pfn = contig_pfn_list[i]; 2231 lapfn = contig_pfn_list[i + 1]; 2232 mfn = mfn_list[pfn]; 2233 /* 2234 * See if next pfn is for a contig mfn 2235 */ 2236 if (mfn_list[lapfn] != mfn + 1) 2237 continue; 2238 /* 2239 * pfn and lookahead are both put in list 2240 * unless pfn is the previous lookahead. 2241 */ 2242 if (pfn != prev_lapfn) 2243 contig_pfn_list[newcnt++] = pfn; 2244 contig_pfn_list[newcnt++] = lapfn; 2245 prev_lapfn = lapfn; 2246 } 2247 for (i = newcnt; i < contig_pfn_cnt; i++) 2248 contig_pfn_list[i] = 0; 2249 contig_pfn_cnt = newcnt; 2250 } 2251 2252 /*ARGSUSED*/ 2253 static void 2254 call_create_contiglist(void *arg) 2255 { 2256 (void) create_contig_pfnlist(PG_WAIT); 2257 } 2258 2259 /* 2260 * Create list of freelist pfns that have underlying 2261 * contiguous mfns. The list is kept in ascending mfn order. 2262 * returns 1 if list created else 0. 2263 */ 2264 static int 2265 create_contig_pfnlist(uint_t flags) 2266 { 2267 pfn_t pfn; 2268 page_t *pp; 2269 int ret = 1; 2270 2271 mutex_enter(&contig_list_lock); 2272 if (contig_pfn_list != NULL) 2273 goto out; 2274 contig_pfn_max = freemem + (freemem / 10); 2275 contig_pfn_list = kmem_zalloc(contig_pfn_max * sizeof (pfn_t), 2276 (flags & PG_WAIT) ? KM_SLEEP : KM_NOSLEEP); 2277 if (contig_pfn_list == NULL) { 2278 /* 2279 * If we could not create the contig list (because 2280 * we could not sleep for memory). Dispatch a taskq that can 2281 * sleep to get the memory. 2282 */ 2283 if (!create_contig_pending) { 2284 if (taskq_dispatch(system_taskq, call_create_contiglist, 2285 NULL, TQ_NOSLEEP) != TASKQID_INVALID) 2286 create_contig_pending = 1; 2287 } 2288 contig_pfnlist_buildfailed++; /* count list build failures */ 2289 ret = 0; 2290 goto out; 2291 } 2292 create_contig_pending = 0; 2293 ASSERT(contig_pfn_cnt == 0); 2294 for (pfn = 0; pfn < mfn_count; pfn++) { 2295 pp = page_numtopp_nolock(pfn); 2296 if (pp == NULL || !PP_ISFREE(pp)) 2297 continue; 2298 contig_pfn_list[contig_pfn_cnt] = pfn; 2299 if (++contig_pfn_cnt == contig_pfn_max) 2300 break; 2301 } 2302 /* 2303 * Sanity check the new list. 2304 */ 2305 if (contig_pfn_cnt < 2) { /* no contig pfns */ 2306 contig_pfn_cnt = 0; 2307 contig_pfnlist_buildfailed++; 2308 kmem_free(contig_pfn_list, contig_pfn_max * sizeof (pfn_t)); 2309 contig_pfn_list = NULL; 2310 contig_pfn_max = 0; 2311 ret = 0; 2312 goto out; 2313 } 2314 qsort(contig_pfn_list, contig_pfn_cnt, sizeof (pfn_t), mfn_compare); 2315 compact_contig_pfn_list(); 2316 /* 2317 * Make sure next search of the newly created contiguous pfn 2318 * list starts at the beginning of the list. 2319 */ 2320 next_alloc_pfn = 0; 2321 contig_pfnlist_builds++; /* count list builds */ 2322 out: 2323 mutex_exit(&contig_list_lock); 2324 return (ret); 2325 } 2326 2327 2328 /* 2329 * Toss the current contig pfnlist. Someone is about to do a massive 2330 * update to pfn<->mfn mappings. So we have them destroy the list and lock 2331 * it till they are done with their update. 2332 */ 2333 void 2334 clear_and_lock_contig_pfnlist() 2335 { 2336 pfn_t *listp = NULL; 2337 size_t listsize; 2338 2339 mutex_enter(&contig_list_lock); 2340 if (contig_pfn_list != NULL) { 2341 listp = contig_pfn_list; 2342 listsize = contig_pfn_max * sizeof (pfn_t); 2343 contig_pfn_list = NULL; 2344 contig_pfn_max = contig_pfn_cnt = 0; 2345 } 2346 if (listp != NULL) 2347 kmem_free(listp, listsize); 2348 } 2349 2350 /* 2351 * Unlock the contig_pfn_list. The next attempted use of it will cause 2352 * it to be re-created. 2353 */ 2354 void 2355 unlock_contig_pfnlist() 2356 { 2357 mutex_exit(&contig_list_lock); 2358 } 2359 2360 /* 2361 * Update the contiguous pfn list in response to a pfn <-> mfn reassignment 2362 */ 2363 void 2364 update_contig_pfnlist(pfn_t pfn, mfn_t oldmfn, mfn_t newmfn) 2365 { 2366 int probe_hi, probe_lo, probe_pos, insert_after, insert_point; 2367 pfn_t probe_pfn; 2368 mfn_t probe_mfn; 2369 int drop_lock = 0; 2370 2371 if (mutex_owner(&contig_list_lock) != curthread) { 2372 drop_lock = 1; 2373 mutex_enter(&contig_list_lock); 2374 } 2375 if (contig_pfn_list == NULL) 2376 goto done; 2377 contig_pfnlist_updates++; 2378 /* 2379 * Find the pfn in the current list. Use a binary chop to locate it. 2380 */ 2381 probe_hi = contig_pfn_cnt - 1; 2382 probe_lo = 0; 2383 probe_pos = (probe_hi + probe_lo) / 2; 2384 while ((probe_pfn = contig_pfn_list[probe_pos]) != pfn) { 2385 if (probe_pos == probe_lo) { /* pfn not in list */ 2386 probe_pos = -1; 2387 break; 2388 } 2389 if (pfn_to_mfn(probe_pfn) <= oldmfn) 2390 probe_lo = probe_pos; 2391 else 2392 probe_hi = probe_pos; 2393 probe_pos = (probe_hi + probe_lo) / 2; 2394 } 2395 if (probe_pos >= 0) { 2396 /* 2397 * Remove pfn from list and ensure next alloc 2398 * position stays in bounds. 2399 */ 2400 if (--contig_pfn_cnt <= next_alloc_pfn) 2401 next_alloc_pfn = 0; 2402 if (contig_pfn_cnt < 2) { /* no contig pfns */ 2403 contig_pfn_cnt = 0; 2404 kmem_free(contig_pfn_list, 2405 contig_pfn_max * sizeof (pfn_t)); 2406 contig_pfn_list = NULL; 2407 contig_pfn_max = 0; 2408 goto done; 2409 } 2410 ovbcopy(&contig_pfn_list[probe_pos + 1], 2411 &contig_pfn_list[probe_pos], 2412 (contig_pfn_cnt - probe_pos) * sizeof (pfn_t)); 2413 } 2414 if (newmfn == MFN_INVALID) 2415 goto done; 2416 /* 2417 * Check if new mfn has adjacent mfns in the list 2418 */ 2419 probe_hi = contig_pfn_cnt - 1; 2420 probe_lo = 0; 2421 insert_after = -2; 2422 do { 2423 probe_pos = (probe_hi + probe_lo) / 2; 2424 probe_mfn = pfn_to_mfn(contig_pfn_list[probe_pos]); 2425 if (newmfn == probe_mfn + 1) 2426 insert_after = probe_pos; 2427 else if (newmfn == probe_mfn - 1) 2428 insert_after = probe_pos - 1; 2429 if (probe_pos == probe_lo) 2430 break; 2431 if (probe_mfn <= newmfn) 2432 probe_lo = probe_pos; 2433 else 2434 probe_hi = probe_pos; 2435 } while (insert_after == -2); 2436 /* 2437 * If there is space in the list and there are adjacent mfns 2438 * insert the pfn in to its proper place in the list. 2439 */ 2440 if (insert_after != -2 && contig_pfn_cnt + 1 <= contig_pfn_max) { 2441 insert_point = insert_after + 1; 2442 ovbcopy(&contig_pfn_list[insert_point], 2443 &contig_pfn_list[insert_point + 1], 2444 (contig_pfn_cnt - insert_point) * sizeof (pfn_t)); 2445 contig_pfn_list[insert_point] = pfn; 2446 contig_pfn_cnt++; 2447 } 2448 done: 2449 if (drop_lock) 2450 mutex_exit(&contig_list_lock); 2451 } 2452 2453 /* 2454 * Called to (re-)populate the io_pool from the free page lists. 2455 */ 2456 long 2457 populate_io_pool(void) 2458 { 2459 pfn_t pfn; 2460 mfn_t mfn, max_mfn; 2461 page_t *pp; 2462 2463 /* 2464 * Figure out the bounds of the pool on first invocation. 2465 * We use a percentage of memory for the io pool size. 2466 * we allow that to shrink, but not to less than a fixed minimum 2467 */ 2468 if (io_pool_cnt_max == 0) { 2469 io_pool_cnt_max = physmem / (100 / io_pool_physmem_pct); 2470 io_pool_cnt_lowater = io_pool_cnt_max; 2471 /* 2472 * This is the first time in populate_io_pool, grab a va to use 2473 * when we need to allocate pages. 2474 */ 2475 io_pool_kva = vmem_alloc(heap_arena, PAGESIZE, VM_SLEEP); 2476 } 2477 /* 2478 * If we are out of pages in the pool, then grow the size of the pool 2479 */ 2480 if (io_pool_cnt == 0) { 2481 /* 2482 * Grow the max size of the io pool by 5%, but never more than 2483 * 25% of physical memory. 2484 */ 2485 if (io_pool_cnt_max < physmem / 4) 2486 io_pool_cnt_max += io_pool_cnt_max / 20; 2487 } 2488 io_pool_grows++; /* should be a kstat? */ 2489 2490 /* 2491 * Get highest mfn on this platform, but limit to the 32 bit DMA max. 2492 */ 2493 (void) mfn_to_pfn(start_mfn); 2494 max_mfn = MIN(cached_max_mfn, PFN_4GIG); 2495 for (mfn = start_mfn; mfn < max_mfn; start_mfn = ++mfn) { 2496 pfn = mfn_to_pfn(mfn); 2497 if (pfn & PFN_IS_FOREIGN_MFN) 2498 continue; 2499 /* 2500 * try to allocate it from free pages 2501 */ 2502 pp = page_numtopp_alloc(pfn); 2503 if (pp == NULL) 2504 continue; 2505 PP_CLRFREE(pp); 2506 add_page_to_pool(pp, 1); 2507 if (io_pool_cnt >= io_pool_cnt_max) 2508 break; 2509 } 2510 2511 return (io_pool_cnt); 2512 } 2513 2514 /* 2515 * Destroy a page that was being used for DMA I/O. It may or 2516 * may not actually go back to the io_pool. 2517 */ 2518 void 2519 page_destroy_io(page_t *pp) 2520 { 2521 mfn_t mfn = mfn_list[pp->p_pagenum]; 2522 2523 /* 2524 * When the page was alloc'd a reservation was made, release it now 2525 */ 2526 page_unresv(1); 2527 /* 2528 * Unload translations, if any, then hash out the 2529 * page to erase its identity. 2530 */ 2531 (void) hat_pageunload(pp, HAT_FORCE_PGUNLOAD); 2532 page_hashout(pp, NULL); 2533 2534 /* 2535 * If the page came from the free lists, just put it back to them. 2536 * DomU pages always go on the free lists as well. 2537 */ 2538 if (!DOMAIN_IS_INITDOMAIN(xen_info) || mfn >= PFN_4GIG) { 2539 page_free(pp, 1); 2540 return; 2541 } 2542 2543 add_page_to_pool(pp, 0); 2544 } 2545 2546 2547 long contig_searches; /* count of times contig pages requested */ 2548 long contig_search_restarts; /* count of contig ranges tried */ 2549 long contig_search_failed; /* count of contig alloc failures */ 2550 2551 /* 2552 * Free partial page list 2553 */ 2554 static void 2555 free_partial_list(page_t **pplist) 2556 { 2557 page_t *pp; 2558 2559 while (*pplist != NULL) { 2560 pp = *pplist; 2561 page_io_pool_sub(pplist, pp, pp); 2562 page_free(pp, 1); 2563 } 2564 } 2565 2566 /* 2567 * Look thru the contiguous pfns that are not part of the io_pool for 2568 * contiguous free pages. Return a list of the found pages or NULL. 2569 */ 2570 page_t * 2571 find_contig_free(uint_t npages, uint_t flags, uint64_t pfnseg, 2572 pgcnt_t pfnalign) 2573 { 2574 page_t *pp, *plist = NULL; 2575 mfn_t mfn, prev_mfn, start_mfn; 2576 pfn_t pfn; 2577 int pages_needed, pages_requested; 2578 int search_start; 2579 2580 /* 2581 * create the contig pfn list if not already done 2582 */ 2583 retry: 2584 mutex_enter(&contig_list_lock); 2585 if (contig_pfn_list == NULL) { 2586 mutex_exit(&contig_list_lock); 2587 if (!create_contig_pfnlist(flags)) { 2588 return (NULL); 2589 } 2590 goto retry; 2591 } 2592 contig_searches++; 2593 /* 2594 * Search contiguous pfn list for physically contiguous pages not in 2595 * the io_pool. Start the search where the last search left off. 2596 */ 2597 pages_requested = pages_needed = npages; 2598 search_start = next_alloc_pfn; 2599 start_mfn = prev_mfn = 0; 2600 while (pages_needed) { 2601 pfn = contig_pfn_list[next_alloc_pfn]; 2602 mfn = pfn_to_mfn(pfn); 2603 /* 2604 * Check if mfn is first one or contig to previous one and 2605 * if page corresponding to mfn is free and that mfn 2606 * range is not crossing a segment boundary. 2607 */ 2608 if ((prev_mfn == 0 || mfn == prev_mfn + 1) && 2609 (pp = page_numtopp_alloc(pfn)) != NULL && 2610 !((mfn & pfnseg) < (start_mfn & pfnseg))) { 2611 PP_CLRFREE(pp); 2612 page_io_pool_add(&plist, pp); 2613 pages_needed--; 2614 if (prev_mfn == 0) { 2615 if (pfnalign && 2616 mfn != P2ROUNDUP(mfn, pfnalign)) { 2617 /* 2618 * not properly aligned 2619 */ 2620 contig_search_restarts++; 2621 free_partial_list(&plist); 2622 pages_needed = pages_requested; 2623 start_mfn = prev_mfn = 0; 2624 goto skip; 2625 } 2626 start_mfn = mfn; 2627 } 2628 prev_mfn = mfn; 2629 } else { 2630 contig_search_restarts++; 2631 free_partial_list(&plist); 2632 pages_needed = pages_requested; 2633 start_mfn = prev_mfn = 0; 2634 } 2635 skip: 2636 if (++next_alloc_pfn == contig_pfn_cnt) 2637 next_alloc_pfn = 0; 2638 if (next_alloc_pfn == search_start) 2639 break; /* all pfns searched */ 2640 } 2641 mutex_exit(&contig_list_lock); 2642 if (pages_needed) { 2643 contig_search_failed++; 2644 /* 2645 * Failed to find enough contig pages. 2646 * free partial page list 2647 */ 2648 free_partial_list(&plist); 2649 } 2650 return (plist); 2651 } 2652 2653 /* 2654 * Search the reserved io pool pages for a page range with the 2655 * desired characteristics. 2656 */ 2657 page_t * 2658 page_io_pool_alloc(ddi_dma_attr_t *mattr, int contig, pgcnt_t minctg) 2659 { 2660 page_t *pp_first, *pp_last; 2661 page_t *pp, **poolp; 2662 pgcnt_t nwanted, pfnalign; 2663 uint64_t pfnseg; 2664 mfn_t mfn, tmfn, hi_mfn, lo_mfn; 2665 int align, attempt = 0; 2666 2667 if (minctg == 1) 2668 contig = 0; 2669 lo_mfn = mmu_btop(mattr->dma_attr_addr_lo); 2670 hi_mfn = mmu_btop(mattr->dma_attr_addr_hi); 2671 pfnseg = mmu_btop(mattr->dma_attr_seg); 2672 align = maxbit(mattr->dma_attr_align, mattr->dma_attr_minxfer); 2673 if (align > MMU_PAGESIZE) 2674 pfnalign = mmu_btop(align); 2675 else 2676 pfnalign = 0; 2677 2678 try_again: 2679 /* 2680 * See if we want pages for a legacy device 2681 */ 2682 if (hi_mfn < PFN_16MEG) 2683 poolp = &io_pool_16m; 2684 else 2685 poolp = &io_pool_4g; 2686 try_smaller: 2687 /* 2688 * Take pages from I/O pool. We'll use pages from the highest 2689 * MFN range possible. 2690 */ 2691 pp_first = pp_last = NULL; 2692 mutex_enter(&io_pool_lock); 2693 nwanted = minctg; 2694 for (pp = *poolp; pp && nwanted > 0; ) { 2695 pp = pp->p_prev; 2696 2697 /* 2698 * skip pages above allowable range 2699 */ 2700 mfn = mfn_list[pp->p_pagenum]; 2701 if (hi_mfn < mfn) 2702 goto skip; 2703 2704 /* 2705 * stop at pages below allowable range 2706 */ 2707 if (lo_mfn > mfn) 2708 break; 2709 restart: 2710 if (pp_last == NULL) { 2711 /* 2712 * Check alignment 2713 */ 2714 tmfn = mfn - (minctg - 1); 2715 if (pfnalign && tmfn != P2ROUNDUP(tmfn, pfnalign)) 2716 goto skip; /* not properly aligned */ 2717 /* 2718 * Check segment 2719 */ 2720 if ((mfn & pfnseg) < (tmfn & pfnseg)) 2721 goto skip; /* crosses seg boundary */ 2722 /* 2723 * Start building page list 2724 */ 2725 pp_first = pp_last = pp; 2726 nwanted--; 2727 } else { 2728 /* 2729 * check physical contiguity if required 2730 */ 2731 if (contig && 2732 mfn_list[pp_first->p_pagenum] != mfn + 1) { 2733 /* 2734 * not a contiguous page, restart list. 2735 */ 2736 pp_last = NULL; 2737 nwanted = minctg; 2738 goto restart; 2739 } else { /* add page to list */ 2740 pp_first = pp; 2741 nwanted--; 2742 } 2743 } 2744 skip: 2745 if (pp == *poolp) 2746 break; 2747 } 2748 2749 /* 2750 * If we didn't find memory. Try the more constrained pool, then 2751 * sweep free pages into the DMA pool and try again. 2752 */ 2753 if (nwanted != 0) { 2754 mutex_exit(&io_pool_lock); 2755 /* 2756 * If we were looking in the less constrained pool and 2757 * didn't find pages, try the more constrained pool. 2758 */ 2759 if (poolp == &io_pool_4g) { 2760 poolp = &io_pool_16m; 2761 goto try_smaller; 2762 } 2763 kmem_reap(); 2764 if (++attempt < 4) { 2765 /* 2766 * Grab some more io_pool pages 2767 */ 2768 (void) populate_io_pool(); 2769 goto try_again; /* go around and retry */ 2770 } 2771 return (NULL); 2772 } 2773 /* 2774 * Found the pages, now snip them from the list 2775 */ 2776 page_io_pool_sub(poolp, pp_first, pp_last); 2777 io_pool_cnt -= minctg; 2778 /* 2779 * reset low water mark 2780 */ 2781 if (io_pool_cnt < io_pool_cnt_lowater) 2782 io_pool_cnt_lowater = io_pool_cnt; 2783 mutex_exit(&io_pool_lock); 2784 return (pp_first); 2785 } 2786 2787 page_t * 2788 page_swap_with_hypervisor(struct vnode *vp, u_offset_t off, caddr_t vaddr, 2789 ddi_dma_attr_t *mattr, uint_t flags, pgcnt_t minctg) 2790 { 2791 uint_t kflags; 2792 int order, extra, extpages, i, contig, nbits, extents; 2793 page_t *pp, *expp, *pp_first, **pplist = NULL; 2794 mfn_t *mfnlist = NULL; 2795 2796 contig = flags & PG_PHYSCONTIG; 2797 if (minctg == 1) 2798 contig = 0; 2799 flags &= ~PG_PHYSCONTIG; 2800 kflags = flags & PG_WAIT ? KM_SLEEP : KM_NOSLEEP; 2801 /* 2802 * Hypervisor will allocate extents, if we want contig 2803 * pages extent must be >= minctg 2804 */ 2805 if (contig) { 2806 order = highbit(minctg) - 1; 2807 if (minctg & ((1 << order) - 1)) 2808 order++; 2809 extpages = 1 << order; 2810 } else { 2811 order = 0; 2812 extpages = minctg; 2813 } 2814 if (extpages > minctg) { 2815 extra = extpages - minctg; 2816 if (!page_resv(extra, kflags)) 2817 return (NULL); 2818 } 2819 pp_first = NULL; 2820 pplist = kmem_alloc(extpages * sizeof (page_t *), kflags); 2821 if (pplist == NULL) 2822 goto balloon_fail; 2823 mfnlist = kmem_alloc(extpages * sizeof (mfn_t), kflags); 2824 if (mfnlist == NULL) 2825 goto balloon_fail; 2826 pp = page_create_va(vp, off, minctg * PAGESIZE, flags, &kvseg, vaddr); 2827 if (pp == NULL) 2828 goto balloon_fail; 2829 pp_first = pp; 2830 if (extpages > minctg) { 2831 /* 2832 * fill out the rest of extent pages to swap 2833 * with the hypervisor 2834 */ 2835 for (i = 0; i < extra; i++) { 2836 expp = page_create_va(vp, 2837 (u_offset_t)(uintptr_t)io_pool_kva, 2838 PAGESIZE, flags, &kvseg, io_pool_kva); 2839 if (expp == NULL) 2840 goto balloon_fail; 2841 (void) hat_pageunload(expp, HAT_FORCE_PGUNLOAD); 2842 page_io_unlock(expp); 2843 page_hashout(expp, NULL); 2844 page_io_lock(expp); 2845 /* 2846 * add page to end of list 2847 */ 2848 expp->p_prev = pp_first->p_prev; 2849 expp->p_next = pp_first; 2850 expp->p_prev->p_next = expp; 2851 pp_first->p_prev = expp; 2852 } 2853 2854 } 2855 for (i = 0; i < extpages; i++) { 2856 pplist[i] = pp; 2857 pp = pp->p_next; 2858 } 2859 nbits = highbit(mattr->dma_attr_addr_hi); 2860 extents = contig ? 1 : minctg; 2861 if (balloon_replace_pages(extents, pplist, nbits, order, 2862 mfnlist) != extents) { 2863 if (ioalloc_dbg) 2864 cmn_err(CE_NOTE, "request to hypervisor" 2865 " for %d pages, maxaddr %" PRIx64 " failed", 2866 extpages, mattr->dma_attr_addr_hi); 2867 goto balloon_fail; 2868 } 2869 2870 kmem_free(pplist, extpages * sizeof (page_t *)); 2871 kmem_free(mfnlist, extpages * sizeof (mfn_t)); 2872 /* 2873 * Return any excess pages to free list 2874 */ 2875 if (extpages > minctg) { 2876 for (i = 0; i < extra; i++) { 2877 pp = pp_first->p_prev; 2878 page_sub(&pp_first, pp); 2879 page_io_unlock(pp); 2880 page_unresv(1); 2881 page_free(pp, 1); 2882 } 2883 } 2884 return (pp_first); 2885 balloon_fail: 2886 /* 2887 * Return pages to free list and return failure 2888 */ 2889 while (pp_first != NULL) { 2890 pp = pp_first; 2891 page_sub(&pp_first, pp); 2892 page_io_unlock(pp); 2893 if (pp->p_vnode != NULL) 2894 page_hashout(pp, NULL); 2895 page_free(pp, 1); 2896 } 2897 if (pplist) 2898 kmem_free(pplist, extpages * sizeof (page_t *)); 2899 if (mfnlist) 2900 kmem_free(mfnlist, extpages * sizeof (mfn_t)); 2901 page_unresv(extpages - minctg); 2902 return (NULL); 2903 } 2904 2905 static void 2906 return_partial_alloc(page_t *plist) 2907 { 2908 page_t *pp; 2909 2910 while (plist != NULL) { 2911 pp = plist; 2912 page_sub(&plist, pp); 2913 page_io_unlock(pp); 2914 page_destroy_io(pp); 2915 } 2916 } 2917 2918 static page_t * 2919 page_get_contigpages( 2920 struct vnode *vp, 2921 u_offset_t off, 2922 int *npagesp, 2923 uint_t flags, 2924 caddr_t vaddr, 2925 ddi_dma_attr_t *mattr) 2926 { 2927 mfn_t max_mfn = HYPERVISOR_memory_op(XENMEM_maximum_ram_page, NULL); 2928 page_t *plist; /* list to return */ 2929 page_t *pp, *mcpl; 2930 int contig, anyaddr, npages, getone = 0; 2931 mfn_t lo_mfn; 2932 mfn_t hi_mfn; 2933 pgcnt_t pfnalign = 0; 2934 int align, sgllen; 2935 uint64_t pfnseg; 2936 pgcnt_t minctg; 2937 2938 npages = *npagesp; 2939 ASSERT(mattr != NULL); 2940 lo_mfn = mmu_btop(mattr->dma_attr_addr_lo); 2941 hi_mfn = mmu_btop(mattr->dma_attr_addr_hi); 2942 sgllen = mattr->dma_attr_sgllen; 2943 pfnseg = mmu_btop(mattr->dma_attr_seg); 2944 align = maxbit(mattr->dma_attr_align, mattr->dma_attr_minxfer); 2945 if (align > MMU_PAGESIZE) 2946 pfnalign = mmu_btop(align); 2947 2948 contig = flags & PG_PHYSCONTIG; 2949 if (npages == -1) { 2950 npages = 1; 2951 pfnalign = 0; 2952 } 2953 /* 2954 * Clear the contig flag if only one page is needed. 2955 */ 2956 if (npages == 1) { 2957 getone = 1; 2958 contig = 0; 2959 } 2960 2961 /* 2962 * Check if any page in the system is fine. 2963 */ 2964 anyaddr = lo_mfn == 0 && hi_mfn >= max_mfn; 2965 if (!contig && anyaddr && !pfnalign) { 2966 flags &= ~PG_PHYSCONTIG; 2967 plist = page_create_va(vp, off, npages * MMU_PAGESIZE, 2968 flags, &kvseg, vaddr); 2969 if (plist != NULL) { 2970 *npagesp = 0; 2971 return (plist); 2972 } 2973 } 2974 plist = NULL; 2975 minctg = howmany(npages, sgllen); 2976 while (npages > sgllen || getone) { 2977 if (minctg > npages) 2978 minctg = npages; 2979 mcpl = NULL; 2980 /* 2981 * We could want contig pages with no address range limits. 2982 */ 2983 if (anyaddr && contig) { 2984 /* 2985 * Look for free contig pages to satisfy the request. 2986 */ 2987 mcpl = find_contig_free(minctg, flags, pfnseg, 2988 pfnalign); 2989 } 2990 /* 2991 * Try the reserved io pools next 2992 */ 2993 if (mcpl == NULL) 2994 mcpl = page_io_pool_alloc(mattr, contig, minctg); 2995 if (mcpl != NULL) { 2996 pp = mcpl; 2997 do { 2998 if (!page_hashin(pp, vp, off, NULL)) { 2999 panic("page_get_contigpages:" 3000 " hashin failed" 3001 " pp %p, vp %p, off %llx", 3002 (void *)pp, (void *)vp, off); 3003 } 3004 off += MMU_PAGESIZE; 3005 PP_CLRFREE(pp); 3006 PP_CLRAGED(pp); 3007 page_set_props(pp, P_REF); 3008 page_io_lock(pp); 3009 pp = pp->p_next; 3010 } while (pp != mcpl); 3011 } else { 3012 /* 3013 * Hypervisor exchange doesn't handle segment or 3014 * alignment constraints 3015 */ 3016 if (mattr->dma_attr_seg < mattr->dma_attr_addr_hi || 3017 pfnalign) 3018 goto fail; 3019 /* 3020 * Try exchanging pages with the hypervisor 3021 */ 3022 mcpl = page_swap_with_hypervisor(vp, off, vaddr, mattr, 3023 flags, minctg); 3024 if (mcpl == NULL) 3025 goto fail; 3026 off += minctg * MMU_PAGESIZE; 3027 } 3028 check_dma(mattr, mcpl, minctg); 3029 /* 3030 * Here with a minctg run of contiguous pages, add them to the 3031 * list we will return for this request. 3032 */ 3033 page_list_concat(&plist, &mcpl); 3034 npages -= minctg; 3035 *npagesp = npages; 3036 sgllen--; 3037 if (getone) 3038 break; 3039 } 3040 return (plist); 3041 fail: 3042 return_partial_alloc(plist); 3043 return (NULL); 3044 } 3045 3046 /* 3047 * Allocator for domain 0 I/O pages. We match the required 3048 * DMA attributes and contiguity constraints. 3049 */ 3050 /*ARGSUSED*/ 3051 page_t * 3052 page_create_io( 3053 struct vnode *vp, 3054 u_offset_t off, 3055 uint_t bytes, 3056 uint_t flags, 3057 struct as *as, 3058 caddr_t vaddr, 3059 ddi_dma_attr_t *mattr) 3060 { 3061 page_t *plist = NULL, *pp; 3062 int npages = 0, contig, anyaddr, pages_req; 3063 mfn_t lo_mfn; 3064 mfn_t hi_mfn; 3065 pgcnt_t pfnalign = 0; 3066 int align; 3067 int is_domu = 0; 3068 int dummy, bytes_got; 3069 mfn_t max_mfn = HYPERVISOR_memory_op(XENMEM_maximum_ram_page, NULL); 3070 3071 ASSERT(mattr != NULL); 3072 lo_mfn = mmu_btop(mattr->dma_attr_addr_lo); 3073 hi_mfn = mmu_btop(mattr->dma_attr_addr_hi); 3074 align = maxbit(mattr->dma_attr_align, mattr->dma_attr_minxfer); 3075 if (align > MMU_PAGESIZE) 3076 pfnalign = mmu_btop(align); 3077 3078 /* 3079 * Clear the contig flag if only one page is needed or the scatter 3080 * gather list length is >= npages. 3081 */ 3082 pages_req = npages = mmu_btopr(bytes); 3083 contig = (flags & PG_PHYSCONTIG); 3084 bytes = P2ROUNDUP(bytes, MMU_PAGESIZE); 3085 if (bytes == MMU_PAGESIZE || mattr->dma_attr_sgllen >= npages) 3086 contig = 0; 3087 3088 /* 3089 * Check if any old page in the system is fine. 3090 * DomU should always go down this path. 3091 */ 3092 is_domu = !DOMAIN_IS_INITDOMAIN(xen_info); 3093 anyaddr = lo_mfn == 0 && hi_mfn >= max_mfn && !pfnalign; 3094 if ((!contig && anyaddr) || is_domu) { 3095 flags &= ~PG_PHYSCONTIG; 3096 plist = page_create_va(vp, off, bytes, flags, &kvseg, vaddr); 3097 if (plist != NULL) 3098 return (plist); 3099 else if (is_domu) 3100 return (NULL); /* no memory available */ 3101 } 3102 /* 3103 * DomU should never reach here 3104 */ 3105 if (contig) { 3106 plist = page_get_contigpages(vp, off, &npages, flags, vaddr, 3107 mattr); 3108 if (plist == NULL) 3109 goto fail; 3110 bytes_got = (pages_req - npages) << MMU_PAGESHIFT; 3111 vaddr += bytes_got; 3112 off += bytes_got; 3113 /* 3114 * We now have all the contiguous pages we need, but 3115 * we may still need additional non-contiguous pages. 3116 */ 3117 } 3118 /* 3119 * now loop collecting the requested number of pages, these do 3120 * not have to be contiguous pages but we will use the contig 3121 * page alloc code to get the pages since it will honor any 3122 * other constraints the pages may have. 3123 */ 3124 while (npages--) { 3125 dummy = -1; 3126 pp = page_get_contigpages(vp, off, &dummy, flags, vaddr, mattr); 3127 if (pp == NULL) 3128 goto fail; 3129 page_add(&plist, pp); 3130 vaddr += MMU_PAGESIZE; 3131 off += MMU_PAGESIZE; 3132 } 3133 return (plist); 3134 fail: 3135 /* 3136 * Failed to get enough pages, return ones we did get 3137 */ 3138 return_partial_alloc(plist); 3139 return (NULL); 3140 } 3141 3142 /* 3143 * Lock and return the page with the highest mfn that we can find. last_mfn 3144 * holds the last one found, so the next search can start from there. We 3145 * also keep a counter so that we don't loop forever if the machine has no 3146 * free pages. 3147 * 3148 * This is called from the balloon thread to find pages to give away. new_high 3149 * is used when new mfn's have been added to the system - we will reset our 3150 * search if the new mfn's are higher than our current search position. 3151 */ 3152 page_t * 3153 page_get_high_mfn(mfn_t new_high) 3154 { 3155 static mfn_t last_mfn = 0; 3156 pfn_t pfn; 3157 page_t *pp; 3158 ulong_t loop_count = 0; 3159 3160 if (new_high > last_mfn) 3161 last_mfn = new_high; 3162 3163 for (; loop_count < mfn_count; loop_count++, last_mfn--) { 3164 if (last_mfn == 0) { 3165 last_mfn = cached_max_mfn; 3166 } 3167 3168 pfn = mfn_to_pfn(last_mfn); 3169 if (pfn & PFN_IS_FOREIGN_MFN) 3170 continue; 3171 3172 /* See if the page is free. If so, lock it. */ 3173 pp = page_numtopp_alloc(pfn); 3174 if (pp == NULL) 3175 continue; 3176 PP_CLRFREE(pp); 3177 3178 ASSERT(PAGE_EXCL(pp)); 3179 ASSERT(pp->p_vnode == NULL); 3180 ASSERT(!hat_page_is_mapped(pp)); 3181 last_mfn--; 3182 return (pp); 3183 } 3184 return (NULL); 3185 } 3186 3187 #else /* !__xpv */ 3188 3189 /* 3190 * get a page from any list with the given mnode 3191 */ 3192 static page_t * 3193 page_get_mnode_anylist(ulong_t origbin, uchar_t szc, uint_t flags, 3194 int mnode, int mtype, ddi_dma_attr_t *dma_attr) 3195 { 3196 kmutex_t *pcm; 3197 int i; 3198 page_t *pp; 3199 page_t *first_pp; 3200 uint64_t pgaddr; 3201 ulong_t bin; 3202 int mtypestart; 3203 int plw_initialized; 3204 page_list_walker_t plw; 3205 3206 VM_STAT_ADD(pga_vmstats.pgma_alloc); 3207 3208 ASSERT((flags & PG_MATCH_COLOR) == 0); 3209 ASSERT(szc == 0); 3210 ASSERT(dma_attr != NULL); 3211 3212 MTYPE_START(mnode, mtype, flags); 3213 if (mtype < 0) { 3214 VM_STAT_ADD(pga_vmstats.pgma_allocempty); 3215 return (NULL); 3216 } 3217 3218 mtypestart = mtype; 3219 3220 bin = origbin; 3221 3222 /* 3223 * check up to page_colors + 1 bins - origbin may be checked twice 3224 * because of BIN_STEP skip 3225 */ 3226 do { 3227 plw_initialized = 0; 3228 3229 for (plw.plw_count = 0; 3230 plw.plw_count < page_colors; plw.plw_count++) { 3231 3232 if (PAGE_FREELISTS(mnode, szc, bin, mtype) == NULL) 3233 goto nextfreebin; 3234 3235 pcm = PC_BIN_MUTEX(mnode, bin, PG_FREE_LIST); 3236 mutex_enter(pcm); 3237 pp = PAGE_FREELISTS(mnode, szc, bin, mtype); 3238 first_pp = pp; 3239 while (pp != NULL) { 3240 if (IS_DUMP_PAGE(pp) || page_trylock(pp, 3241 SE_EXCL) == 0) { 3242 pp = pp->p_next; 3243 if (pp == first_pp) { 3244 pp = NULL; 3245 } 3246 continue; 3247 } 3248 3249 ASSERT(PP_ISFREE(pp)); 3250 ASSERT(PP_ISAGED(pp)); 3251 ASSERT(pp->p_vnode == NULL); 3252 ASSERT(pp->p_hash == NULL); 3253 ASSERT(pp->p_offset == (u_offset_t)-1); 3254 ASSERT(pp->p_szc == szc); 3255 ASSERT(PFN_2_MEM_NODE(pp->p_pagenum) == mnode); 3256 /* check if page within DMA attributes */ 3257 pgaddr = pa_to_ma(pfn_to_pa(pp->p_pagenum)); 3258 if ((pgaddr >= dma_attr->dma_attr_addr_lo) && 3259 (pgaddr + MMU_PAGESIZE - 1 <= 3260 dma_attr->dma_attr_addr_hi)) { 3261 break; 3262 } 3263 3264 /* continue looking */ 3265 page_unlock(pp); 3266 pp = pp->p_next; 3267 if (pp == first_pp) 3268 pp = NULL; 3269 3270 } 3271 if (pp != NULL) { 3272 ASSERT(mtype == PP_2_MTYPE(pp)); 3273 ASSERT(pp->p_szc == 0); 3274 3275 /* found a page with specified DMA attributes */ 3276 page_sub(&PAGE_FREELISTS(mnode, szc, bin, 3277 mtype), pp); 3278 page_ctr_sub(mnode, mtype, pp, PG_FREE_LIST); 3279 3280 if ((PP_ISFREE(pp) == 0) || 3281 (PP_ISAGED(pp) == 0)) { 3282 cmn_err(CE_PANIC, "page %p is not free", 3283 (void *)pp); 3284 } 3285 3286 mutex_exit(pcm); 3287 check_dma(dma_attr, pp, 1); 3288 VM_STAT_ADD(pga_vmstats.pgma_allocok); 3289 return (pp); 3290 } 3291 mutex_exit(pcm); 3292 nextfreebin: 3293 if (plw_initialized == 0) { 3294 page_list_walk_init(szc, 0, bin, 1, 0, &plw); 3295 ASSERT(plw.plw_ceq_dif == page_colors); 3296 plw_initialized = 1; 3297 } 3298 3299 if (plw.plw_do_split) { 3300 pp = page_freelist_split(szc, bin, mnode, 3301 mtype, 3302 mmu_btop(dma_attr->dma_attr_addr_lo), 3303 mmu_btop(dma_attr->dma_attr_addr_hi + 1), 3304 &plw); 3305 if (pp != NULL) { 3306 check_dma(dma_attr, pp, 1); 3307 return (pp); 3308 } 3309 } 3310 3311 bin = page_list_walk_next_bin(szc, bin, &plw); 3312 } 3313 3314 MTYPE_NEXT(mnode, mtype, flags); 3315 } while (mtype >= 0); 3316 3317 /* failed to find a page in the freelist; try it in the cachelist */ 3318 3319 /* reset mtype start for cachelist search */ 3320 mtype = mtypestart; 3321 ASSERT(mtype >= 0); 3322 3323 /* start with the bin of matching color */ 3324 bin = origbin; 3325 3326 do { 3327 for (i = 0; i <= page_colors; i++) { 3328 if (PAGE_CACHELISTS(mnode, bin, mtype) == NULL) 3329 goto nextcachebin; 3330 pcm = PC_BIN_MUTEX(mnode, bin, PG_CACHE_LIST); 3331 mutex_enter(pcm); 3332 pp = PAGE_CACHELISTS(mnode, bin, mtype); 3333 first_pp = pp; 3334 while (pp != NULL) { 3335 if (IS_DUMP_PAGE(pp) || page_trylock(pp, 3336 SE_EXCL) == 0) { 3337 pp = pp->p_next; 3338 if (pp == first_pp) 3339 pp = NULL; 3340 continue; 3341 } 3342 ASSERT(pp->p_vnode); 3343 ASSERT(PP_ISAGED(pp) == 0); 3344 ASSERT(pp->p_szc == 0); 3345 ASSERT(PFN_2_MEM_NODE(pp->p_pagenum) == mnode); 3346 3347 /* check if page within DMA attributes */ 3348 3349 pgaddr = pa_to_ma(pfn_to_pa(pp->p_pagenum)); 3350 if ((pgaddr >= dma_attr->dma_attr_addr_lo) && 3351 (pgaddr + MMU_PAGESIZE - 1 <= 3352 dma_attr->dma_attr_addr_hi)) { 3353 break; 3354 } 3355 3356 /* continue looking */ 3357 page_unlock(pp); 3358 pp = pp->p_next; 3359 if (pp == first_pp) 3360 pp = NULL; 3361 } 3362 3363 if (pp != NULL) { 3364 ASSERT(mtype == PP_2_MTYPE(pp)); 3365 ASSERT(pp->p_szc == 0); 3366 3367 /* found a page with specified DMA attributes */ 3368 page_sub(&PAGE_CACHELISTS(mnode, bin, 3369 mtype), pp); 3370 page_ctr_sub(mnode, mtype, pp, PG_CACHE_LIST); 3371 3372 mutex_exit(pcm); 3373 ASSERT(pp->p_vnode); 3374 ASSERT(PP_ISAGED(pp) == 0); 3375 check_dma(dma_attr, pp, 1); 3376 VM_STAT_ADD(pga_vmstats.pgma_allocok); 3377 return (pp); 3378 } 3379 mutex_exit(pcm); 3380 nextcachebin: 3381 bin += (i == 0) ? BIN_STEP : 1; 3382 bin &= page_colors_mask; 3383 } 3384 MTYPE_NEXT(mnode, mtype, flags); 3385 } while (mtype >= 0); 3386 3387 VM_STAT_ADD(pga_vmstats.pgma_allocfailed); 3388 return (NULL); 3389 } 3390 3391 /* 3392 * This function is similar to page_get_freelist()/page_get_cachelist() 3393 * but it searches both the lists to find a page with the specified 3394 * color (or no color) and DMA attributes. The search is done in the 3395 * freelist first and then in the cache list within the highest memory 3396 * range (based on DMA attributes) before searching in the lower 3397 * memory ranges. 3398 * 3399 * Note: This function is called only by page_create_io(). 3400 */ 3401 /*ARGSUSED*/ 3402 static page_t * 3403 page_get_anylist(struct vnode *vp, u_offset_t off, struct as *as, caddr_t vaddr, 3404 size_t size, uint_t flags, ddi_dma_attr_t *dma_attr, lgrp_t *lgrp) 3405 { 3406 uint_t bin; 3407 int mtype; 3408 page_t *pp; 3409 int n; 3410 int m; 3411 int szc; 3412 int fullrange; 3413 int mnode; 3414 int local_failed_stat = 0; 3415 lgrp_mnode_cookie_t lgrp_cookie; 3416 3417 VM_STAT_ADD(pga_vmstats.pga_alloc); 3418 3419 /* only base pagesize currently supported */ 3420 if (size != MMU_PAGESIZE) 3421 return (NULL); 3422 3423 /* 3424 * If we're passed a specific lgroup, we use it. Otherwise, 3425 * assume first-touch placement is desired. 3426 */ 3427 if (!LGRP_EXISTS(lgrp)) 3428 lgrp = lgrp_home_lgrp(); 3429 3430 /* LINTED */ 3431 AS_2_BIN(as, seg, vp, vaddr, bin, 0); 3432 3433 /* 3434 * Only hold one freelist or cachelist lock at a time, that way we 3435 * can start anywhere and not have to worry about lock 3436 * ordering. 3437 */ 3438 if (dma_attr == NULL) { 3439 n = mtype16m; 3440 m = mtypetop; 3441 fullrange = 1; 3442 VM_STAT_ADD(pga_vmstats.pga_nulldmaattr); 3443 } else { 3444 pfn_t pfnlo = mmu_btop(dma_attr->dma_attr_addr_lo); 3445 pfn_t pfnhi = mmu_btop(dma_attr->dma_attr_addr_hi); 3446 3447 /* 3448 * We can guarantee alignment only for page boundary. 3449 */ 3450 if (dma_attr->dma_attr_align > MMU_PAGESIZE) 3451 return (NULL); 3452 3453 /* Sanity check the dma_attr */ 3454 if (pfnlo > pfnhi) 3455 return (NULL); 3456 3457 n = pfn_2_mtype(pfnlo); 3458 m = pfn_2_mtype(pfnhi); 3459 3460 fullrange = ((pfnlo == mnoderanges[n].mnr_pfnlo) && 3461 (pfnhi >= mnoderanges[m].mnr_pfnhi)); 3462 } 3463 VM_STAT_COND_ADD(fullrange == 0, pga_vmstats.pga_notfullrange); 3464 3465 szc = 0; 3466 3467 /* cylcing thru mtype handled by RANGE0 if n == mtype16m */ 3468 if (n == mtype16m) { 3469 flags |= PGI_MT_RANGE0; 3470 n = m; 3471 } 3472 3473 /* 3474 * Try local memory node first, but try remote if we can't 3475 * get a page of the right color. 3476 */ 3477 LGRP_MNODE_COOKIE_INIT(lgrp_cookie, lgrp, LGRP_SRCH_HIER); 3478 while ((mnode = lgrp_memnode_choose(&lgrp_cookie)) >= 0) { 3479 /* 3480 * allocate pages from high pfn to low. 3481 */ 3482 mtype = m; 3483 do { 3484 if (fullrange != 0) { 3485 pp = page_get_mnode_freelist(mnode, 3486 bin, mtype, szc, flags); 3487 if (pp == NULL) { 3488 pp = page_get_mnode_cachelist( 3489 bin, flags, mnode, mtype); 3490 } 3491 } else { 3492 pp = page_get_mnode_anylist(bin, szc, 3493 flags, mnode, mtype, dma_attr); 3494 } 3495 if (pp != NULL) { 3496 VM_STAT_ADD(pga_vmstats.pga_allocok); 3497 check_dma(dma_attr, pp, 1); 3498 return (pp); 3499 } 3500 } while (mtype != n && 3501 (mtype = mnoderanges[mtype].mnr_next) != -1); 3502 if (!local_failed_stat) { 3503 lgrp_stat_add(lgrp->lgrp_id, LGRP_NUM_ALLOC_FAIL, 1); 3504 local_failed_stat = 1; 3505 } 3506 } 3507 VM_STAT_ADD(pga_vmstats.pga_allocfailed); 3508 3509 return (NULL); 3510 } 3511 3512 /* 3513 * page_create_io() 3514 * 3515 * This function is a copy of page_create_va() with an additional 3516 * argument 'mattr' that specifies DMA memory requirements to 3517 * the page list functions. This function is used by the segkmem 3518 * allocator so it is only to create new pages (i.e PG_EXCL is 3519 * set). 3520 * 3521 * Note: This interface is currently used by x86 PSM only and is 3522 * not fully specified so the commitment level is only for 3523 * private interface specific to x86. This interface uses PSM 3524 * specific page_get_anylist() interface. 3525 */ 3526 3527 #define PAGE_HASH_SEARCH(index, pp, vp, off) { \ 3528 for ((pp) = page_hash[(index)]; (pp); (pp) = (pp)->p_hash) { \ 3529 if ((pp)->p_vnode == (vp) && (pp)->p_offset == (off)) \ 3530 break; \ 3531 } \ 3532 } 3533 3534 3535 page_t * 3536 page_create_io( 3537 struct vnode *vp, 3538 u_offset_t off, 3539 uint_t bytes, 3540 uint_t flags, 3541 struct as *as, 3542 caddr_t vaddr, 3543 ddi_dma_attr_t *mattr) /* DMA memory attributes if any */ 3544 { 3545 page_t *plist = NULL; 3546 uint_t plist_len = 0; 3547 pgcnt_t npages; 3548 page_t *npp = NULL; 3549 uint_t pages_req; 3550 page_t *pp; 3551 kmutex_t *phm = NULL; 3552 uint_t index; 3553 3554 TRACE_4(TR_FAC_VM, TR_PAGE_CREATE_START, 3555 "page_create_start:vp %p off %llx bytes %u flags %x", 3556 vp, off, bytes, flags); 3557 3558 ASSERT((flags & ~(PG_EXCL | PG_WAIT | PG_PHYSCONTIG)) == 0); 3559 3560 pages_req = npages = mmu_btopr(bytes); 3561 3562 /* 3563 * Do the freemem and pcf accounting. 3564 */ 3565 if (!page_create_wait(npages, flags)) { 3566 return (NULL); 3567 } 3568 3569 TRACE_2(TR_FAC_VM, TR_PAGE_CREATE_SUCCESS, 3570 "page_create_success:vp %p off %llx", vp, off); 3571 3572 /* 3573 * If satisfying this request has left us with too little 3574 * memory, start the wheels turning to get some back. The 3575 * first clause of the test prevents waking up the pageout 3576 * daemon in situations where it would decide that there's 3577 * nothing to do. 3578 */ 3579 if (nscan < desscan && freemem < minfree) { 3580 TRACE_1(TR_FAC_VM, TR_PAGEOUT_CV_SIGNAL, 3581 "pageout_cv_signal:freemem %ld", freemem); 3582 cv_signal(&proc_pageout->p_cv); 3583 } 3584 3585 if (flags & PG_PHYSCONTIG) { 3586 3587 plist = page_get_contigpage(&npages, mattr, 1); 3588 if (plist == NULL) { 3589 page_create_putback(npages); 3590 return (NULL); 3591 } 3592 3593 pp = plist; 3594 3595 do { 3596 if (!page_hashin(pp, vp, off, NULL)) { 3597 panic("pg_creat_io: hashin failed %p %p %llx", 3598 (void *)pp, (void *)vp, off); 3599 } 3600 VM_STAT_ADD(page_create_new); 3601 off += MMU_PAGESIZE; 3602 PP_CLRFREE(pp); 3603 PP_CLRAGED(pp); 3604 page_set_props(pp, P_REF); 3605 pp = pp->p_next; 3606 } while (pp != plist); 3607 3608 if (!npages) { 3609 check_dma(mattr, plist, pages_req); 3610 return (plist); 3611 } else { 3612 vaddr += (pages_req - npages) << MMU_PAGESHIFT; 3613 } 3614 3615 /* 3616 * fall-thru: 3617 * 3618 * page_get_contigpage returns when npages <= sgllen. 3619 * Grab the rest of the non-contig pages below from anylist. 3620 */ 3621 } 3622 3623 /* 3624 * Loop around collecting the requested number of pages. 3625 * Most of the time, we have to `create' a new page. With 3626 * this in mind, pull the page off the free list before 3627 * getting the hash lock. This will minimize the hash 3628 * lock hold time, nesting, and the like. If it turns 3629 * out we don't need the page, we put it back at the end. 3630 */ 3631 while (npages--) { 3632 phm = NULL; 3633 3634 index = PAGE_HASH_FUNC(vp, off); 3635 top: 3636 ASSERT(phm == NULL); 3637 ASSERT(index == PAGE_HASH_FUNC(vp, off)); 3638 ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp))); 3639 3640 if (npp == NULL) { 3641 /* 3642 * Try to get the page of any color either from 3643 * the freelist or from the cache list. 3644 */ 3645 npp = page_get_anylist(vp, off, as, vaddr, MMU_PAGESIZE, 3646 flags & ~PG_MATCH_COLOR, mattr, NULL); 3647 if (npp == NULL) { 3648 if (mattr == NULL) { 3649 /* 3650 * Not looking for a special page; 3651 * panic! 3652 */ 3653 panic("no page found %d", (int)npages); 3654 } 3655 /* 3656 * No page found! This can happen 3657 * if we are looking for a page 3658 * within a specific memory range 3659 * for DMA purposes. If PG_WAIT is 3660 * specified then we wait for a 3661 * while and then try again. The 3662 * wait could be forever if we 3663 * don't get the page(s) we need. 3664 * 3665 * Note: XXX We really need a mechanism 3666 * to wait for pages in the desired 3667 * range. For now, we wait for any 3668 * pages and see if we can use it. 3669 */ 3670 3671 if ((mattr != NULL) && (flags & PG_WAIT)) { 3672 delay(10); 3673 goto top; 3674 } 3675 goto fail; /* undo accounting stuff */ 3676 } 3677 3678 if (PP_ISAGED(npp) == 0) { 3679 /* 3680 * Since this page came from the 3681 * cachelist, we must destroy the 3682 * old vnode association. 3683 */ 3684 page_hashout(npp, (kmutex_t *)NULL); 3685 } 3686 } 3687 3688 /* 3689 * We own this page! 3690 */ 3691 ASSERT(PAGE_EXCL(npp)); 3692 ASSERT(npp->p_vnode == NULL); 3693 ASSERT(!hat_page_is_mapped(npp)); 3694 PP_CLRFREE(npp); 3695 PP_CLRAGED(npp); 3696 3697 /* 3698 * Here we have a page in our hot little mits and are 3699 * just waiting to stuff it on the appropriate lists. 3700 * Get the mutex and check to see if it really does 3701 * not exist. 3702 */ 3703 phm = PAGE_HASH_MUTEX(index); 3704 mutex_enter(phm); 3705 PAGE_HASH_SEARCH(index, pp, vp, off); 3706 if (pp == NULL) { 3707 VM_STAT_ADD(page_create_new); 3708 pp = npp; 3709 npp = NULL; 3710 if (!page_hashin(pp, vp, off, phm)) { 3711 /* 3712 * Since we hold the page hash mutex and 3713 * just searched for this page, page_hashin 3714 * had better not fail. If it does, that 3715 * means somethread did not follow the 3716 * page hash mutex rules. Panic now and 3717 * get it over with. As usual, go down 3718 * holding all the locks. 3719 */ 3720 ASSERT(MUTEX_HELD(phm)); 3721 panic("page_create: hashin fail %p %p %llx %p", 3722 (void *)pp, (void *)vp, off, (void *)phm); 3723 3724 } 3725 ASSERT(MUTEX_HELD(phm)); 3726 mutex_exit(phm); 3727 phm = NULL; 3728 3729 /* 3730 * Hat layer locking need not be done to set 3731 * the following bits since the page is not hashed 3732 * and was on the free list (i.e., had no mappings). 3733 * 3734 * Set the reference bit to protect 3735 * against immediate pageout 3736 * 3737 * XXXmh modify freelist code to set reference 3738 * bit so we don't have to do it here. 3739 */ 3740 page_set_props(pp, P_REF); 3741 } else { 3742 ASSERT(MUTEX_HELD(phm)); 3743 mutex_exit(phm); 3744 phm = NULL; 3745 /* 3746 * NOTE: This should not happen for pages associated 3747 * with kernel vnode 'kvp'. 3748 */ 3749 /* XX64 - to debug why this happens! */ 3750 ASSERT(!VN_ISKAS(vp)); 3751 if (VN_ISKAS(vp)) 3752 cmn_err(CE_NOTE, 3753 "page_create: page not expected " 3754 "in hash list for kernel vnode - pp 0x%p", 3755 (void *)pp); 3756 VM_STAT_ADD(page_create_exists); 3757 goto fail; 3758 } 3759 3760 /* 3761 * Got a page! It is locked. Acquire the i/o 3762 * lock since we are going to use the p_next and 3763 * p_prev fields to link the requested pages together. 3764 */ 3765 page_io_lock(pp); 3766 page_add(&plist, pp); 3767 plist = plist->p_next; 3768 off += MMU_PAGESIZE; 3769 vaddr += MMU_PAGESIZE; 3770 } 3771 3772 check_dma(mattr, plist, pages_req); 3773 return (plist); 3774 3775 fail: 3776 if (npp != NULL) { 3777 /* 3778 * Did not need this page after all. 3779 * Put it back on the free list. 3780 */ 3781 VM_STAT_ADD(page_create_putbacks); 3782 PP_SETFREE(npp); 3783 PP_SETAGED(npp); 3784 npp->p_offset = (u_offset_t)-1; 3785 page_list_add(npp, PG_FREE_LIST | PG_LIST_TAIL); 3786 page_unlock(npp); 3787 } 3788 3789 /* 3790 * Give up the pages we already got. 3791 */ 3792 while (plist != NULL) { 3793 pp = plist; 3794 page_sub(&plist, pp); 3795 page_io_unlock(pp); 3796 plist_len++; 3797 /*LINTED: constant in conditional ctx*/ 3798 VN_DISPOSE(pp, B_INVAL, 0, kcred); 3799 } 3800 3801 /* 3802 * VN_DISPOSE does freemem accounting for the pages in plist 3803 * by calling page_free. So, we need to undo the pcf accounting 3804 * for only the remaining pages. 3805 */ 3806 VM_STAT_ADD(page_create_putbacks); 3807 page_create_putback(pages_req - plist_len); 3808 3809 return (NULL); 3810 } 3811 #endif /* !__xpv */ 3812 3813 3814 /* 3815 * Copy the data from the physical page represented by "frompp" to 3816 * that represented by "topp". ppcopy uses CPU->cpu_caddr1 and 3817 * CPU->cpu_caddr2. It assumes that no one uses either map at interrupt 3818 * level and no one sleeps with an active mapping there. 3819 * 3820 * Note that the ref/mod bits in the page_t's are not affected by 3821 * this operation, hence it is up to the caller to update them appropriately. 3822 */ 3823 int 3824 ppcopy(page_t *frompp, page_t *topp) 3825 { 3826 caddr_t pp_addr1; 3827 caddr_t pp_addr2; 3828 hat_mempte_t pte1; 3829 hat_mempte_t pte2; 3830 kmutex_t *ppaddr_mutex; 3831 label_t ljb; 3832 int ret = 1; 3833 3834 ASSERT_STACK_ALIGNED(); 3835 ASSERT(PAGE_LOCKED(frompp)); 3836 ASSERT(PAGE_LOCKED(topp)); 3837 3838 if (kpm_enable) { 3839 pp_addr1 = hat_kpm_page2va(frompp, 0); 3840 pp_addr2 = hat_kpm_page2va(topp, 0); 3841 kpreempt_disable(); 3842 } else { 3843 /* 3844 * disable pre-emption so that CPU can't change 3845 */ 3846 kpreempt_disable(); 3847 3848 pp_addr1 = CPU->cpu_caddr1; 3849 pp_addr2 = CPU->cpu_caddr2; 3850 pte1 = CPU->cpu_caddr1pte; 3851 pte2 = CPU->cpu_caddr2pte; 3852 3853 ppaddr_mutex = &CPU->cpu_ppaddr_mutex; 3854 mutex_enter(ppaddr_mutex); 3855 3856 hat_mempte_remap(page_pptonum(frompp), pp_addr1, pte1, 3857 PROT_READ | HAT_STORECACHING_OK, HAT_LOAD_NOCONSIST); 3858 hat_mempte_remap(page_pptonum(topp), pp_addr2, pte2, 3859 PROT_READ | PROT_WRITE | HAT_STORECACHING_OK, 3860 HAT_LOAD_NOCONSIST); 3861 } 3862 3863 if (on_fault(&ljb)) { 3864 ret = 0; 3865 goto faulted; 3866 } 3867 if (use_sse_pagecopy) 3868 #ifdef __xpv 3869 page_copy_no_xmm(pp_addr2, pp_addr1); 3870 #else 3871 hwblkpagecopy(pp_addr1, pp_addr2); 3872 #endif 3873 else 3874 bcopy(pp_addr1, pp_addr2, PAGESIZE); 3875 3876 no_fault(); 3877 faulted: 3878 if (!kpm_enable) { 3879 #ifdef __xpv 3880 /* 3881 * We can't leave unused mappings laying about under the 3882 * hypervisor, so blow them away. 3883 */ 3884 if (HYPERVISOR_update_va_mapping((uintptr_t)pp_addr1, 0, 3885 UVMF_INVLPG | UVMF_LOCAL) < 0) 3886 panic("HYPERVISOR_update_va_mapping() failed"); 3887 if (HYPERVISOR_update_va_mapping((uintptr_t)pp_addr2, 0, 3888 UVMF_INVLPG | UVMF_LOCAL) < 0) 3889 panic("HYPERVISOR_update_va_mapping() failed"); 3890 #endif 3891 mutex_exit(ppaddr_mutex); 3892 } 3893 kpreempt_enable(); 3894 return (ret); 3895 } 3896 3897 void 3898 pagezero(page_t *pp, uint_t off, uint_t len) 3899 { 3900 ASSERT(PAGE_LOCKED(pp)); 3901 pfnzero(page_pptonum(pp), off, len); 3902 } 3903 3904 /* 3905 * Zero the physical page from off to off + len given by pfn 3906 * without changing the reference and modified bits of page. 3907 * 3908 * We use this using CPU private page address #2, see ppcopy() for more info. 3909 * pfnzero() must not be called at interrupt level. 3910 */ 3911 void 3912 pfnzero(pfn_t pfn, uint_t off, uint_t len) 3913 { 3914 caddr_t pp_addr2; 3915 hat_mempte_t pte2; 3916 kmutex_t *ppaddr_mutex = NULL; 3917 3918 ASSERT_STACK_ALIGNED(); 3919 ASSERT(len <= MMU_PAGESIZE); 3920 ASSERT(off <= MMU_PAGESIZE); 3921 ASSERT(off + len <= MMU_PAGESIZE); 3922 3923 if (kpm_enable && !pfn_is_foreign(pfn)) { 3924 pp_addr2 = hat_kpm_pfn2va(pfn); 3925 kpreempt_disable(); 3926 } else { 3927 kpreempt_disable(); 3928 3929 pp_addr2 = CPU->cpu_caddr2; 3930 pte2 = CPU->cpu_caddr2pte; 3931 3932 ppaddr_mutex = &CPU->cpu_ppaddr_mutex; 3933 mutex_enter(ppaddr_mutex); 3934 3935 hat_mempte_remap(pfn, pp_addr2, pte2, 3936 PROT_READ | PROT_WRITE | HAT_STORECACHING_OK, 3937 HAT_LOAD_NOCONSIST); 3938 } 3939 3940 if (use_sse_pagezero) { 3941 #ifdef __xpv 3942 uint_t rem; 3943 3944 /* 3945 * zero a byte at a time until properly aligned for 3946 * block_zero_no_xmm(). 3947 */ 3948 while (!P2NPHASE(off, ((uint_t)BLOCKZEROALIGN)) && len-- > 0) 3949 pp_addr2[off++] = 0; 3950 3951 /* 3952 * Now use faster block_zero_no_xmm() for any range 3953 * that is properly aligned and sized. 3954 */ 3955 rem = P2PHASE(len, ((uint_t)BLOCKZEROALIGN)); 3956 len -= rem; 3957 if (len != 0) { 3958 block_zero_no_xmm(pp_addr2 + off, len); 3959 off += len; 3960 } 3961 3962 /* 3963 * zero remainder with byte stores. 3964 */ 3965 while (rem-- > 0) 3966 pp_addr2[off++] = 0; 3967 #else 3968 hwblkclr(pp_addr2 + off, len); 3969 #endif 3970 } else { 3971 bzero(pp_addr2 + off, len); 3972 } 3973 3974 if (!kpm_enable || pfn_is_foreign(pfn)) { 3975 #ifdef __xpv 3976 /* 3977 * On the hypervisor this page might get used for a page 3978 * table before any intervening change to this mapping, 3979 * so blow it away. 3980 */ 3981 if (HYPERVISOR_update_va_mapping((uintptr_t)pp_addr2, 0, 3982 UVMF_INVLPG) < 0) 3983 panic("HYPERVISOR_update_va_mapping() failed"); 3984 #endif 3985 mutex_exit(ppaddr_mutex); 3986 } 3987 3988 kpreempt_enable(); 3989 } 3990 3991 /* 3992 * Platform-dependent page scrub call. 3993 */ 3994 void 3995 pagescrub(page_t *pp, uint_t off, uint_t len) 3996 { 3997 /* 3998 * For now, we rely on the fact that pagezero() will 3999 * always clear UEs. 4000 */ 4001 pagezero(pp, off, len); 4002 } 4003 4004 /* 4005 * set up two private addresses for use on a given CPU for use in ppcopy() 4006 */ 4007 void 4008 setup_vaddr_for_ppcopy(struct cpu *cpup) 4009 { 4010 void *addr; 4011 hat_mempte_t pte_pa; 4012 4013 addr = vmem_alloc(heap_arena, mmu_ptob(1), VM_SLEEP); 4014 pte_pa = hat_mempte_setup(addr); 4015 cpup->cpu_caddr1 = addr; 4016 cpup->cpu_caddr1pte = pte_pa; 4017 4018 addr = vmem_alloc(heap_arena, mmu_ptob(1), VM_SLEEP); 4019 pte_pa = hat_mempte_setup(addr); 4020 cpup->cpu_caddr2 = addr; 4021 cpup->cpu_caddr2pte = pte_pa; 4022 4023 mutex_init(&cpup->cpu_ppaddr_mutex, NULL, MUTEX_DEFAULT, NULL); 4024 } 4025 4026 /* 4027 * Undo setup_vaddr_for_ppcopy 4028 */ 4029 void 4030 teardown_vaddr_for_ppcopy(struct cpu *cpup) 4031 { 4032 mutex_destroy(&cpup->cpu_ppaddr_mutex); 4033 4034 hat_mempte_release(cpup->cpu_caddr2, cpup->cpu_caddr2pte); 4035 cpup->cpu_caddr2pte = 0; 4036 vmem_free(heap_arena, cpup->cpu_caddr2, mmu_ptob(1)); 4037 cpup->cpu_caddr2 = 0; 4038 4039 hat_mempte_release(cpup->cpu_caddr1, cpup->cpu_caddr1pte); 4040 cpup->cpu_caddr1pte = 0; 4041 vmem_free(heap_arena, cpup->cpu_caddr1, mmu_ptob(1)); 4042 cpup->cpu_caddr1 = 0; 4043 } 4044 4045 /* 4046 * Function for flushing D-cache when performing module relocations 4047 * to an alternate mapping. Unnecessary on Intel / AMD platforms. 4048 */ 4049 void 4050 dcache_flushall() 4051 {} 4052 4053 /* 4054 * Allocate a memory page. The argument 'seed' can be any pseudo-random 4055 * number to vary where the pages come from. This is quite a hacked up 4056 * method -- it works for now, but really needs to be fixed up a bit. 4057 * 4058 * We currently use page_create_va() on the kvp with fake offsets, 4059 * segments and virt address. This is pretty bogus, but was copied from the 4060 * old hat_i86.c code. A better approach would be to specify either mnode 4061 * random or mnode local and takes a page from whatever color has the MOST 4062 * available - this would have a minimal impact on page coloring. 4063 */ 4064 page_t * 4065 page_get_physical(uintptr_t seed) 4066 { 4067 page_t *pp; 4068 u_offset_t offset; 4069 static struct seg tmpseg; 4070 static uintptr_t ctr = 0; 4071 4072 /* 4073 * This code is gross, we really need a simpler page allocator. 4074 * 4075 * We need to assign an offset for the page to call page_create_va() 4076 * To avoid conflicts with other pages, we get creative with the offset. 4077 * For 32 bits, we need an offset > 4Gig 4078 * For 64 bits, need an offset somewhere in the VA hole. 4079 */ 4080 offset = seed; 4081 if (offset > kernelbase) 4082 offset -= kernelbase; 4083 offset <<= MMU_PAGESHIFT; 4084 #if defined(__amd64) 4085 offset += mmu.hole_start; /* something in VA hole */ 4086 #else 4087 offset += 1ULL << 40; /* something > 4 Gig */ 4088 #endif 4089 4090 if (page_resv(1, KM_NOSLEEP) == 0) 4091 return (NULL); 4092 4093 #ifdef DEBUG 4094 pp = page_exists(&kvp, offset); 4095 if (pp != NULL) 4096 panic("page already exists %p", (void *)pp); 4097 #endif 4098 4099 pp = page_create_va(&kvp, offset, MMU_PAGESIZE, PG_EXCL, 4100 &tmpseg, (caddr_t)(ctr += MMU_PAGESIZE)); /* changing VA usage */ 4101 if (pp != NULL) { 4102 page_io_unlock(pp); 4103 page_downgrade(pp); 4104 } 4105 return (pp); 4106 } 4107