xref: /illumos-gate/usr/src/uts/i86pc/vm/vm_machdep.c (revision 2f8bbd9dee64b0f32e2f0e385b450b0d7dca7e32)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 1992, 2010, Oracle and/or its affiliates. All rights reserved.
23  */
24 /*
25  * Copyright (c) 2010, Intel Corporation.
26  * All rights reserved.
27  * Copyright 2016 Joyent, Inc.
28  */
29 
30 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */
31 /*	All Rights Reserved   */
32 
33 /*
34  * Portions of this source code were derived from Berkeley 4.3 BSD
35  * under license from the Regents of the University of California.
36  */
37 
38 /*
39  * UNIX machine dependent virtual memory support.
40  */
41 
42 #include <sys/types.h>
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/user.h>
46 #include <sys/proc.h>
47 #include <sys/kmem.h>
48 #include <sys/vmem.h>
49 #include <sys/buf.h>
50 #include <sys/cpuvar.h>
51 #include <sys/lgrp.h>
52 #include <sys/disp.h>
53 #include <sys/vm.h>
54 #include <sys/mman.h>
55 #include <sys/vnode.h>
56 #include <sys/cred.h>
57 #include <sys/exec.h>
58 #include <sys/exechdr.h>
59 #include <sys/debug.h>
60 #include <sys/vmsystm.h>
61 #include <sys/swap.h>
62 #include <sys/dumphdr.h>
63 #include <sys/random.h>
64 
65 #include <vm/hat.h>
66 #include <vm/as.h>
67 #include <vm/seg.h>
68 #include <vm/seg_kp.h>
69 #include <vm/seg_vn.h>
70 #include <vm/page.h>
71 #include <vm/seg_kmem.h>
72 #include <vm/seg_kpm.h>
73 #include <vm/vm_dep.h>
74 
75 #include <sys/cpu.h>
76 #include <sys/vm_machparam.h>
77 #include <sys/memlist.h>
78 #include <sys/bootconf.h> /* XXX the memlist stuff belongs in memlist_plat.h */
79 #include <vm/hat_i86.h>
80 #include <sys/x86_archext.h>
81 #include <sys/elf_386.h>
82 #include <sys/cmn_err.h>
83 #include <sys/archsystm.h>
84 #include <sys/machsystm.h>
85 #include <sys/secflags.h>
86 
87 #include <sys/vtrace.h>
88 #include <sys/ddidmareq.h>
89 #include <sys/promif.h>
90 #include <sys/memnode.h>
91 #include <sys/stack.h>
92 #include <util/qsort.h>
93 #include <sys/taskq.h>
94 
95 #ifdef __xpv
96 
97 #include <sys/hypervisor.h>
98 #include <sys/xen_mmu.h>
99 #include <sys/balloon_impl.h>
100 
101 /*
102  * domain 0 pages usable for DMA are kept pre-allocated and kept in
103  * distinct lists, ordered by increasing mfn.
104  */
105 static kmutex_t io_pool_lock;
106 static kmutex_t contig_list_lock;
107 static page_t *io_pool_4g;	/* pool for 32 bit dma limited devices */
108 static page_t *io_pool_16m;	/* pool for 24 bit dma limited legacy devices */
109 static long io_pool_cnt;
110 static long io_pool_cnt_max = 0;
111 #define	DEFAULT_IO_POOL_MIN	128
112 static long io_pool_cnt_min = DEFAULT_IO_POOL_MIN;
113 static long io_pool_cnt_lowater = 0;
114 static long io_pool_shrink_attempts; /* how many times did we try to shrink */
115 static long io_pool_shrinks;	/* how many times did we really shrink */
116 static long io_pool_grows;	/* how many times did we grow */
117 static mfn_t start_mfn = 1;
118 static caddr_t io_pool_kva;	/* use to alloc pages when needed */
119 
120 static int create_contig_pfnlist(uint_t);
121 
122 /*
123  * percentage of phys mem to hold in the i/o pool
124  */
125 #define	DEFAULT_IO_POOL_PCT	2
126 static long io_pool_physmem_pct = DEFAULT_IO_POOL_PCT;
127 static void page_io_pool_sub(page_t **, page_t *, page_t *);
128 int ioalloc_dbg = 0;
129 
130 #endif /* __xpv */
131 
132 uint_t vac_colors = 1;
133 
134 int largepagesupport = 0;
135 extern uint_t page_create_new;
136 extern uint_t page_create_exists;
137 extern uint_t page_create_putbacks;
138 /*
139  * Allow users to disable the kernel's use of SSE.
140  */
141 extern int use_sse_pagecopy, use_sse_pagezero;
142 
143 /*
144  * combined memory ranges from mnode and memranges[] to manage single
145  * mnode/mtype dimension in the page lists.
146  */
147 typedef struct {
148 	pfn_t	mnr_pfnlo;
149 	pfn_t	mnr_pfnhi;
150 	int	mnr_mnode;
151 	int	mnr_memrange;		/* index into memranges[] */
152 	int	mnr_next;		/* next lower PA mnoderange */
153 	int	mnr_exists;
154 	/* maintain page list stats */
155 	pgcnt_t	mnr_mt_clpgcnt;		/* cache list cnt */
156 	pgcnt_t	mnr_mt_flpgcnt[MMU_PAGE_SIZES];	/* free list cnt per szc */
157 	pgcnt_t	mnr_mt_totcnt;		/* sum of cache and free lists */
158 #ifdef DEBUG
159 	struct mnr_mts {		/* mnode/mtype szc stats */
160 		pgcnt_t	mnr_mts_pgcnt;
161 		int	mnr_mts_colors;
162 		pgcnt_t *mnr_mtsc_pgcnt;
163 	} 	*mnr_mts;
164 #endif
165 } mnoderange_t;
166 
167 #define	MEMRANGEHI(mtype)						\
168 	((mtype > 0) ? memranges[mtype - 1] - 1: physmax)
169 #define	MEMRANGELO(mtype)	(memranges[mtype])
170 
171 #define	MTYPE_FREEMEM(mt)	(mnoderanges[mt].mnr_mt_totcnt)
172 
173 /*
174  * As the PC architecture evolved memory up was clumped into several
175  * ranges for various historical I/O devices to do DMA.
176  * < 16Meg - ISA bus
177  * < 2Gig - ???
178  * < 4Gig - PCI bus or drivers that don't understand PAE mode
179  *
180  * These are listed in reverse order, so that we can skip over unused
181  * ranges on machines with small memories.
182  *
183  * For now under the Hypervisor, we'll only ever have one memrange.
184  */
185 #define	PFN_4GIG	0x100000
186 #define	PFN_16MEG	0x1000
187 /* Indices into the memory range (arch_memranges) array. */
188 #define	MRI_4G		0
189 #define	MRI_2G		1
190 #define	MRI_16M		2
191 #define	MRI_0		3
192 static pfn_t arch_memranges[NUM_MEM_RANGES] = {
193     PFN_4GIG,	/* pfn range for 4G and above */
194     0x80000,	/* pfn range for 2G-4G */
195     PFN_16MEG,	/* pfn range for 16M-2G */
196     0x00000,	/* pfn range for 0-16M */
197 };
198 pfn_t *memranges = &arch_memranges[0];
199 int nranges = NUM_MEM_RANGES;
200 
201 /*
202  * This combines mem_node_config and memranges into one data
203  * structure to be used for page list management.
204  */
205 mnoderange_t	*mnoderanges;
206 int		mnoderangecnt;
207 int		mtype4g;
208 int		mtype16m;
209 int		mtypetop;	/* index of highest pfn'ed mnoderange */
210 
211 /*
212  * 4g memory management variables for systems with more than 4g of memory:
213  *
214  * physical memory below 4g is required for 32bit dma devices and, currently,
215  * for kmem memory. On systems with more than 4g of memory, the pool of memory
216  * below 4g can be depleted without any paging activity given that there is
217  * likely to be sufficient memory above 4g.
218  *
219  * physmax4g is set true if the largest pfn is over 4g. The rest of the
220  * 4g memory management code is enabled only when physmax4g is true.
221  *
222  * maxmem4g is the count of the maximum number of pages on the page lists
223  * with physical addresses below 4g. It can be a lot less then 4g given that
224  * BIOS may reserve large chunks of space below 4g for hot plug pci devices,
225  * agp aperture etc.
226  *
227  * freemem4g maintains the count of the number of available pages on the
228  * page lists with physical addresses below 4g.
229  *
230  * DESFREE4G specifies the desired amount of below 4g memory. It defaults to
231  * 6% (desfree4gshift = 4) of maxmem4g.
232  *
233  * RESTRICT4G_ALLOC returns true if freemem4g falls below DESFREE4G
234  * and the amount of physical memory above 4g is greater than freemem4g.
235  * In this case, page_get_* routines will restrict below 4g allocations
236  * for requests that don't specifically require it.
237  */
238 
239 #define	DESFREE4G	(maxmem4g >> desfree4gshift)
240 
241 #define	RESTRICT4G_ALLOC					\
242 	(physmax4g && (freemem4g < DESFREE4G) && ((freemem4g << 1) < freemem))
243 
244 static pgcnt_t	maxmem4g;
245 static pgcnt_t	freemem4g;
246 static int	physmax4g;
247 static int	desfree4gshift = 4;	/* maxmem4g shift to derive DESFREE4G */
248 
249 /*
250  * 16m memory management:
251  *
252  * reserve some amount of physical memory below 16m for legacy devices.
253  *
254  * RESTRICT16M_ALLOC returns true if an there are sufficient free pages above
255  * 16m or if the 16m pool drops below DESFREE16M.
256  *
257  * In this case, general page allocations via page_get_{free,cache}list
258  * routines will be restricted from allocating from the 16m pool. Allocations
259  * that require specific pfn ranges (page_get_anylist) and PG_PANIC allocations
260  * are not restricted.
261  */
262 
263 #define	FREEMEM16M	MTYPE_FREEMEM(mtype16m)
264 #define	DESFREE16M	desfree16m
265 #define	RESTRICT16M_ALLOC(freemem, pgcnt, flags)		\
266 	((freemem != 0) && ((flags & PG_PANIC) == 0) &&		\
267 	    ((freemem >= (FREEMEM16M)) ||			\
268 	    (FREEMEM16M  < (DESFREE16M + pgcnt))))
269 
270 static pgcnt_t	desfree16m = 0x380;
271 
272 /*
273  * This can be patched via /etc/system to allow old non-PAE aware device
274  * drivers to use kmem_alloc'd memory on 32 bit systems with > 4Gig RAM.
275  */
276 int restricted_kmemalloc = 0;
277 
278 #ifdef VM_STATS
279 struct {
280 	ulong_t	pga_alloc;
281 	ulong_t	pga_notfullrange;
282 	ulong_t	pga_nulldmaattr;
283 	ulong_t	pga_allocok;
284 	ulong_t	pga_allocfailed;
285 	ulong_t	pgma_alloc;
286 	ulong_t	pgma_allocok;
287 	ulong_t	pgma_allocfailed;
288 	ulong_t	pgma_allocempty;
289 } pga_vmstats;
290 #endif
291 
292 uint_t mmu_page_sizes;
293 
294 /* How many page sizes the users can see */
295 uint_t mmu_exported_page_sizes;
296 
297 /* page sizes that legacy applications can see */
298 uint_t mmu_legacy_page_sizes;
299 
300 /*
301  * Number of pages in 1 GB.  Don't enable automatic large pages if we have
302  * fewer than this many pages.
303  */
304 pgcnt_t shm_lpg_min_physmem = 1 << (30 - MMU_PAGESHIFT);
305 pgcnt_t privm_lpg_min_physmem = 1 << (30 - MMU_PAGESHIFT);
306 
307 /*
308  * Maximum and default segment size tunables for user private
309  * and shared anon memory, and user text and initialized data.
310  * These can be patched via /etc/system to allow large pages
311  * to be used for mapping application private and shared anon memory.
312  */
313 size_t mcntl0_lpsize = MMU_PAGESIZE;
314 size_t max_uheap_lpsize = MMU_PAGESIZE;
315 size_t default_uheap_lpsize = MMU_PAGESIZE;
316 size_t max_ustack_lpsize = MMU_PAGESIZE;
317 size_t default_ustack_lpsize = MMU_PAGESIZE;
318 size_t max_privmap_lpsize = MMU_PAGESIZE;
319 size_t max_uidata_lpsize = MMU_PAGESIZE;
320 size_t max_utext_lpsize = MMU_PAGESIZE;
321 size_t max_shm_lpsize = MMU_PAGESIZE;
322 
323 
324 /*
325  * initialized by page_coloring_init().
326  */
327 uint_t	page_colors;
328 uint_t	page_colors_mask;
329 uint_t	page_coloring_shift;
330 int	cpu_page_colors;
331 static uint_t	l2_colors;
332 
333 /*
334  * Page freelists and cachelists are dynamically allocated once mnoderangecnt
335  * and page_colors are calculated from the l2 cache n-way set size.  Within a
336  * mnode range, the page freelist and cachelist are hashed into bins based on
337  * color. This makes it easier to search for a page within a specific memory
338  * range.
339  */
340 #define	PAGE_COLORS_MIN	16
341 
342 page_t ****page_freelists;
343 page_t ***page_cachelists;
344 
345 
346 /*
347  * Used by page layer to know about page sizes
348  */
349 hw_pagesize_t hw_page_array[MAX_NUM_LEVEL + 1];
350 
351 kmutex_t	*fpc_mutex[NPC_MUTEX];
352 kmutex_t	*cpc_mutex[NPC_MUTEX];
353 
354 /* Lock to protect mnoderanges array for memory DR operations. */
355 static kmutex_t mnoderange_lock;
356 
357 /*
358  * Only let one thread at a time try to coalesce large pages, to
359  * prevent them from working against each other.
360  */
361 static kmutex_t	contig_lock;
362 #define	CONTIG_LOCK()	mutex_enter(&contig_lock);
363 #define	CONTIG_UNLOCK()	mutex_exit(&contig_lock);
364 
365 #define	PFN_16M		(mmu_btop((uint64_t)0x1000000))
366 
367 /*
368  * Return the optimum page size for a given mapping
369  */
370 /*ARGSUSED*/
371 size_t
372 map_pgsz(int maptype, struct proc *p, caddr_t addr, size_t len, int memcntl)
373 {
374 	level_t l = 0;
375 	size_t pgsz = MMU_PAGESIZE;
376 	size_t max_lpsize;
377 	uint_t mszc;
378 
379 	ASSERT(maptype != MAPPGSZ_VA);
380 
381 	if (maptype != MAPPGSZ_ISM && physmem < privm_lpg_min_physmem) {
382 		return (MMU_PAGESIZE);
383 	}
384 
385 	switch (maptype) {
386 	case MAPPGSZ_HEAP:
387 	case MAPPGSZ_STK:
388 		max_lpsize = memcntl ? mcntl0_lpsize : (maptype ==
389 		    MAPPGSZ_HEAP ? max_uheap_lpsize : max_ustack_lpsize);
390 		if (max_lpsize == MMU_PAGESIZE) {
391 			return (MMU_PAGESIZE);
392 		}
393 		if (len == 0) {
394 			len = (maptype == MAPPGSZ_HEAP) ? p->p_brkbase +
395 			    p->p_brksize - p->p_bssbase : p->p_stksize;
396 		}
397 		len = (maptype == MAPPGSZ_HEAP) ? MAX(len,
398 		    default_uheap_lpsize) : MAX(len, default_ustack_lpsize);
399 
400 		/*
401 		 * use the pages size that best fits len
402 		 */
403 		for (l = mmu.umax_page_level; l > 0; --l) {
404 			if (LEVEL_SIZE(l) > max_lpsize || len < LEVEL_SIZE(l)) {
405 				continue;
406 			} else {
407 				pgsz = LEVEL_SIZE(l);
408 			}
409 			break;
410 		}
411 
412 		mszc = (maptype == MAPPGSZ_HEAP ? p->p_brkpageszc :
413 		    p->p_stkpageszc);
414 		if (addr == 0 && (pgsz < hw_page_array[mszc].hp_size)) {
415 			pgsz = hw_page_array[mszc].hp_size;
416 		}
417 		return (pgsz);
418 
419 	case MAPPGSZ_ISM:
420 		for (l = mmu.umax_page_level; l > 0; --l) {
421 			if (len >= LEVEL_SIZE(l))
422 				return (LEVEL_SIZE(l));
423 		}
424 		return (LEVEL_SIZE(0));
425 	}
426 	return (pgsz);
427 }
428 
429 static uint_t
430 map_szcvec(caddr_t addr, size_t size, uintptr_t off, size_t max_lpsize,
431     size_t min_physmem)
432 {
433 	caddr_t eaddr = addr + size;
434 	uint_t szcvec = 0;
435 	caddr_t raddr;
436 	caddr_t readdr;
437 	size_t	pgsz;
438 	int i;
439 
440 	if (physmem < min_physmem || max_lpsize <= MMU_PAGESIZE) {
441 		return (0);
442 	}
443 
444 	for (i = mmu_exported_page_sizes - 1; i > 0; i--) {
445 		pgsz = page_get_pagesize(i);
446 		if (pgsz > max_lpsize) {
447 			continue;
448 		}
449 		raddr = (caddr_t)P2ROUNDUP((uintptr_t)addr, pgsz);
450 		readdr = (caddr_t)P2ALIGN((uintptr_t)eaddr, pgsz);
451 		if (raddr < addr || raddr >= readdr) {
452 			continue;
453 		}
454 		if (P2PHASE((uintptr_t)addr ^ off, pgsz)) {
455 			continue;
456 		}
457 		/*
458 		 * Set szcvec to the remaining page sizes.
459 		 */
460 		szcvec = ((1 << (i + 1)) - 1) & ~1;
461 		break;
462 	}
463 	return (szcvec);
464 }
465 
466 /*
467  * Return a bit vector of large page size codes that
468  * can be used to map [addr, addr + len) region.
469  */
470 /*ARGSUSED*/
471 uint_t
472 map_pgszcvec(caddr_t addr, size_t size, uintptr_t off, int flags, int type,
473     int memcntl)
474 {
475 	size_t max_lpsize = mcntl0_lpsize;
476 
477 	if (mmu.max_page_level == 0)
478 		return (0);
479 
480 	if (flags & MAP_TEXT) {
481 		if (!memcntl)
482 			max_lpsize = max_utext_lpsize;
483 		return (map_szcvec(addr, size, off, max_lpsize,
484 		    shm_lpg_min_physmem));
485 
486 	} else if (flags & MAP_INITDATA) {
487 		if (!memcntl)
488 			max_lpsize = max_uidata_lpsize;
489 		return (map_szcvec(addr, size, off, max_lpsize,
490 		    privm_lpg_min_physmem));
491 
492 	} else if (type == MAPPGSZC_SHM) {
493 		if (!memcntl)
494 			max_lpsize = max_shm_lpsize;
495 		return (map_szcvec(addr, size, off, max_lpsize,
496 		    shm_lpg_min_physmem));
497 
498 	} else if (type == MAPPGSZC_HEAP) {
499 		if (!memcntl)
500 			max_lpsize = max_uheap_lpsize;
501 		return (map_szcvec(addr, size, off, max_lpsize,
502 		    privm_lpg_min_physmem));
503 
504 	} else if (type == MAPPGSZC_STACK) {
505 		if (!memcntl)
506 			max_lpsize = max_ustack_lpsize;
507 		return (map_szcvec(addr, size, off, max_lpsize,
508 		    privm_lpg_min_physmem));
509 
510 	} else {
511 		if (!memcntl)
512 			max_lpsize = max_privmap_lpsize;
513 		return (map_szcvec(addr, size, off, max_lpsize,
514 		    privm_lpg_min_physmem));
515 	}
516 }
517 
518 /*
519  * Handle a pagefault.
520  */
521 faultcode_t
522 pagefault(
523 	caddr_t addr,
524 	enum fault_type type,
525 	enum seg_rw rw,
526 	int iskernel)
527 {
528 	struct as *as;
529 	struct hat *hat;
530 	struct proc *p;
531 	kthread_t *t;
532 	faultcode_t res;
533 	caddr_t base;
534 	size_t len;
535 	int err;
536 	int mapped_red;
537 	uintptr_t ea;
538 
539 	ASSERT_STACK_ALIGNED();
540 
541 	if (INVALID_VADDR(addr))
542 		return (FC_NOMAP);
543 
544 	mapped_red = segkp_map_red();
545 
546 	if (iskernel) {
547 		as = &kas;
548 		hat = as->a_hat;
549 	} else {
550 		t = curthread;
551 		p = ttoproc(t);
552 		as = p->p_as;
553 		hat = as->a_hat;
554 	}
555 
556 	/*
557 	 * Dispatch pagefault.
558 	 */
559 	res = as_fault(hat, as, addr, 1, type, rw);
560 
561 	/*
562 	 * If this isn't a potential unmapped hole in the user's
563 	 * UNIX data or stack segments, just return status info.
564 	 */
565 	if (res != FC_NOMAP || iskernel)
566 		goto out;
567 
568 	/*
569 	 * Check to see if we happened to faulted on a currently unmapped
570 	 * part of the UNIX data or stack segments.  If so, create a zfod
571 	 * mapping there and then try calling the fault routine again.
572 	 */
573 	base = p->p_brkbase;
574 	len = p->p_brksize;
575 
576 	if (addr < base || addr >= base + len) {		/* data seg? */
577 		base = (caddr_t)p->p_usrstack - p->p_stksize;
578 		len = p->p_stksize;
579 		if (addr < base || addr >= p->p_usrstack) {	/* stack seg? */
580 			/* not in either UNIX data or stack segments */
581 			res = FC_NOMAP;
582 			goto out;
583 		}
584 	}
585 
586 	/*
587 	 * the rest of this function implements a 3.X 4.X 5.X compatibility
588 	 * This code is probably not needed anymore
589 	 */
590 	if (p->p_model == DATAMODEL_ILP32) {
591 
592 		/* expand the gap to the page boundaries on each side */
593 		ea = P2ROUNDUP((uintptr_t)base + len, MMU_PAGESIZE);
594 		base = (caddr_t)P2ALIGN((uintptr_t)base, MMU_PAGESIZE);
595 		len = ea - (uintptr_t)base;
596 
597 		as_rangelock(as);
598 		if (as_gap(as, MMU_PAGESIZE, &base, &len, AH_CONTAIN, addr) ==
599 		    0) {
600 			err = as_map(as, base, len, segvn_create, zfod_argsp);
601 			as_rangeunlock(as);
602 			if (err) {
603 				res = FC_MAKE_ERR(err);
604 				goto out;
605 			}
606 		} else {
607 			/*
608 			 * This page is already mapped by another thread after
609 			 * we returned from as_fault() above.  We just fall
610 			 * through as_fault() below.
611 			 */
612 			as_rangeunlock(as);
613 		}
614 
615 		res = as_fault(hat, as, addr, 1, F_INVAL, rw);
616 	}
617 
618 out:
619 	if (mapped_red)
620 		segkp_unmap_red();
621 
622 	return (res);
623 }
624 
625 void
626 map_addr(caddr_t *addrp, size_t len, offset_t off, int vacalign, uint_t flags)
627 {
628 	struct proc *p = curproc;
629 	caddr_t userlimit = (flags & _MAP_LOW32) ?
630 	    (caddr_t)_userlimit32 : p->p_as->a_userlimit;
631 
632 	map_addr_proc(addrp, len, off, vacalign, userlimit, curproc, flags);
633 }
634 
635 /*ARGSUSED*/
636 int
637 map_addr_vacalign_check(caddr_t addr, u_offset_t off)
638 {
639 	return (0);
640 }
641 
642 /*
643  * The maximum amount a randomized mapping will be slewed.  We should perhaps
644  * arrange things so these tunables can be separate for mmap, mmapobj, and
645  * ld.so
646  */
647 size_t aslr_max_map_skew = 256 * 1024 * 1024; /* 256MB */
648 
649 /*
650  * map_addr_proc() is the routine called when the system is to
651  * choose an address for the user.  We will pick an address
652  * range which is the highest available below userlimit.
653  *
654  * Every mapping will have a redzone of a single page on either side of
655  * the request. This is done to leave one page unmapped between segments.
656  * This is not required, but it's useful for the user because if their
657  * program strays across a segment boundary, it will catch a fault
658  * immediately making debugging a little easier.  Currently the redzone
659  * is mandatory.
660  *
661  * addrp is a value/result parameter.
662  *	On input it is a hint from the user to be used in a completely
663  *	machine dependent fashion.  We decide to completely ignore this hint.
664  *	If MAP_ALIGN was specified, addrp contains the minimal alignment, which
665  *	must be some "power of two" multiple of pagesize.
666  *
667  *	On output it is NULL if no address can be found in the current
668  *	processes address space or else an address that is currently
669  *	not mapped for len bytes with a page of red zone on either side.
670  *
671  *	vacalign is not needed on x86 (it's for viturally addressed caches)
672  */
673 /*ARGSUSED*/
674 void
675 map_addr_proc(
676 	caddr_t *addrp,
677 	size_t len,
678 	offset_t off,
679 	int vacalign,
680 	caddr_t userlimit,
681 	struct proc *p,
682 	uint_t flags)
683 {
684 	struct as *as = p->p_as;
685 	caddr_t addr;
686 	caddr_t base;
687 	size_t slen;
688 	size_t align_amount;
689 
690 	ASSERT32(userlimit == as->a_userlimit);
691 
692 	base = p->p_brkbase;
693 #if defined(__amd64)
694 	/*
695 	 * XX64 Yes, this needs more work.
696 	 */
697 	if (p->p_model == DATAMODEL_NATIVE) {
698 		if (userlimit < as->a_userlimit) {
699 			/*
700 			 * This happens when a program wants to map
701 			 * something in a range that's accessible to a
702 			 * program in a smaller address space.  For example,
703 			 * a 64-bit program calling mmap32(2) to guarantee
704 			 * that the returned address is below 4Gbytes.
705 			 */
706 			ASSERT((uintptr_t)userlimit < ADDRESS_C(0xffffffff));
707 
708 			if (userlimit > base)
709 				slen = userlimit - base;
710 			else {
711 				*addrp = NULL;
712 				return;
713 			}
714 		} else {
715 			/*
716 			 * XX64 This layout is probably wrong .. but in
717 			 * the event we make the amd64 address space look
718 			 * like sparcv9 i.e. with the stack -above- the
719 			 * heap, this bit of code might even be correct.
720 			 */
721 			slen = p->p_usrstack - base -
722 			    ((p->p_stk_ctl + PAGEOFFSET) & PAGEMASK);
723 		}
724 	} else
725 #endif
726 		slen = userlimit - base;
727 
728 	/* Make len be a multiple of PAGESIZE */
729 	len = (len + PAGEOFFSET) & PAGEMASK;
730 
731 	/*
732 	 * figure out what the alignment should be
733 	 *
734 	 * XX64 -- is there an ELF_AMD64_MAXPGSZ or is it the same????
735 	 */
736 	if (len <= ELF_386_MAXPGSZ) {
737 		/*
738 		 * Align virtual addresses to ensure that ELF shared libraries
739 		 * are mapped with the appropriate alignment constraints by
740 		 * the run-time linker.
741 		 */
742 		align_amount = ELF_386_MAXPGSZ;
743 	} else {
744 		/*
745 		 * For 32-bit processes, only those which have specified
746 		 * MAP_ALIGN and an addr will be aligned on a larger page size.
747 		 * Not doing so can potentially waste up to 1G of process
748 		 * address space.
749 		 */
750 		int lvl = (p->p_model == DATAMODEL_ILP32) ? 1 :
751 		    mmu.umax_page_level;
752 
753 		while (lvl && len < LEVEL_SIZE(lvl))
754 			--lvl;
755 
756 		align_amount = LEVEL_SIZE(lvl);
757 	}
758 	if ((flags & MAP_ALIGN) && ((uintptr_t)*addrp > align_amount))
759 		align_amount = (uintptr_t)*addrp;
760 
761 	ASSERT(ISP2(align_amount));
762 	ASSERT(align_amount == 0 || align_amount >= PAGESIZE);
763 
764 	off = off & (align_amount - 1);
765 
766 	/*
767 	 * Look for a large enough hole starting below userlimit.
768 	 * After finding it, use the upper part.
769 	 */
770 	if (as_gap_aligned(as, len, &base, &slen, AH_HI, NULL, align_amount,
771 	    PAGESIZE, off) == 0) {
772 		caddr_t as_addr;
773 
774 		/*
775 		 * addr is the highest possible address to use since we have
776 		 * a PAGESIZE redzone at the beginning and end.
777 		 */
778 		addr = base + slen - (PAGESIZE + len);
779 		as_addr = addr;
780 		/*
781 		 * Round address DOWN to the alignment amount and
782 		 * add the offset in.
783 		 * If addr is greater than as_addr, len would not be large
784 		 * enough to include the redzone, so we must adjust down
785 		 * by the alignment amount.
786 		 */
787 		addr = (caddr_t)((uintptr_t)addr & (~(align_amount - 1)));
788 		addr += (uintptr_t)off;
789 		if (addr > as_addr) {
790 			addr -= align_amount;
791 		}
792 
793 		/*
794 		 * If randomization is requested, slew the allocation
795 		 * backwards, within the same gap, by a random amount.
796 		 */
797 		if (flags & _MAP_RANDOMIZE) {
798 			uint32_t slew;
799 
800 			(void) random_get_pseudo_bytes((uint8_t *)&slew,
801 			    sizeof (slew));
802 
803 			slew = slew % MIN(aslr_max_map_skew, (addr - base));
804 			addr -= P2ALIGN(slew, align_amount);
805 		}
806 
807 		ASSERT(addr > base);
808 		ASSERT(addr + len < base + slen);
809 		ASSERT(((uintptr_t)addr & (align_amount - 1)) ==
810 		    ((uintptr_t)(off)));
811 		*addrp = addr;
812 	} else {
813 		*addrp = NULL;	/* no more virtual space */
814 	}
815 }
816 
817 int valid_va_range_aligned_wraparound;
818 
819 /*
820  * Determine whether [*basep, *basep + *lenp) contains a mappable range of
821  * addresses at least "minlen" long, where the base of the range is at "off"
822  * phase from an "align" boundary and there is space for a "redzone"-sized
823  * redzone on either side of the range.  On success, 1 is returned and *basep
824  * and *lenp are adjusted to describe the acceptable range (including
825  * the redzone).  On failure, 0 is returned.
826  */
827 /*ARGSUSED3*/
828 int
829 valid_va_range_aligned(caddr_t *basep, size_t *lenp, size_t minlen, int dir,
830     size_t align, size_t redzone, size_t off)
831 {
832 	uintptr_t hi, lo;
833 	size_t tot_len;
834 
835 	ASSERT(align == 0 ? off == 0 : off < align);
836 	ASSERT(ISP2(align));
837 	ASSERT(align == 0 || align >= PAGESIZE);
838 
839 	lo = (uintptr_t)*basep;
840 	hi = lo + *lenp;
841 	tot_len = minlen + 2 * redzone; /* need at least this much space */
842 
843 	/*
844 	 * If hi rolled over the top, try cutting back.
845 	 */
846 	if (hi < lo) {
847 		*lenp = 0UL - lo - 1UL;
848 		/* See if this really happens. If so, then we figure out why */
849 		valid_va_range_aligned_wraparound++;
850 		hi = lo + *lenp;
851 	}
852 	if (*lenp < tot_len) {
853 		return (0);
854 	}
855 
856 #if defined(__amd64)
857 	/*
858 	 * Deal with a possible hole in the address range between
859 	 * hole_start and hole_end that should never be mapped.
860 	 */
861 	if (lo < hole_start) {
862 		if (hi > hole_start) {
863 			if (hi < hole_end) {
864 				hi = hole_start;
865 			} else {
866 				/* lo < hole_start && hi >= hole_end */
867 				if (dir == AH_LO) {
868 					/*
869 					 * prefer lowest range
870 					 */
871 					if (hole_start - lo >= tot_len)
872 						hi = hole_start;
873 					else if (hi - hole_end >= tot_len)
874 						lo = hole_end;
875 					else
876 						return (0);
877 				} else {
878 					/*
879 					 * prefer highest range
880 					 */
881 					if (hi - hole_end >= tot_len)
882 						lo = hole_end;
883 					else if (hole_start - lo >= tot_len)
884 						hi = hole_start;
885 					else
886 						return (0);
887 				}
888 			}
889 		}
890 	} else {
891 		/* lo >= hole_start */
892 		if (hi < hole_end)
893 			return (0);
894 		if (lo < hole_end)
895 			lo = hole_end;
896 	}
897 #endif
898 
899 	if (hi - lo < tot_len)
900 		return (0);
901 
902 	if (align > 1) {
903 		uintptr_t tlo = lo + redzone;
904 		uintptr_t thi = hi - redzone;
905 		tlo = (uintptr_t)P2PHASEUP(tlo, align, off);
906 		if (tlo < lo + redzone) {
907 			return (0);
908 		}
909 		if (thi < tlo || thi - tlo < minlen) {
910 			return (0);
911 		}
912 	}
913 
914 	*basep = (caddr_t)lo;
915 	*lenp = hi - lo;
916 	return (1);
917 }
918 
919 /*
920  * Determine whether [*basep, *basep + *lenp) contains a mappable range of
921  * addresses at least "minlen" long.  On success, 1 is returned and *basep
922  * and *lenp are adjusted to describe the acceptable range.  On failure, 0
923  * is returned.
924  */
925 int
926 valid_va_range(caddr_t *basep, size_t *lenp, size_t minlen, int dir)
927 {
928 	return (valid_va_range_aligned(basep, lenp, minlen, dir, 0, 0, 0));
929 }
930 
931 /*
932  * Default to forbidding the first 64k of address space.  This protects most
933  * reasonably sized structures from dereferences through NULL:
934  *     ((foo_t *)0)->bar
935  */
936 uintptr_t forbidden_null_mapping_sz = 0x10000;
937 
938 /*
939  * Determine whether [addr, addr+len] are valid user addresses.
940  */
941 /*ARGSUSED*/
942 int
943 valid_usr_range(caddr_t addr, size_t len, uint_t prot, struct as *as,
944     caddr_t userlimit)
945 {
946 	caddr_t eaddr = addr + len;
947 
948 	if (eaddr <= addr || addr >= userlimit || eaddr > userlimit)
949 		return (RANGE_BADADDR);
950 
951 	if ((addr <= (caddr_t)forbidden_null_mapping_sz) &&
952 	    as->a_proc != NULL &&
953 	    secflag_enabled(as->a_proc, PROC_SEC_FORBIDNULLMAP))
954 		return (RANGE_BADADDR);
955 
956 #if defined(__amd64)
957 	/*
958 	 * Check for the VA hole
959 	 */
960 	if (eaddr > (caddr_t)hole_start && addr < (caddr_t)hole_end)
961 		return (RANGE_BADADDR);
962 #endif
963 
964 	return (RANGE_OKAY);
965 }
966 
967 /*
968  * Return 1 if the page frame is onboard memory, else 0.
969  */
970 int
971 pf_is_memory(pfn_t pf)
972 {
973 	if (pfn_is_foreign(pf))
974 		return (0);
975 	return (address_in_memlist(phys_install, pfn_to_pa(pf), 1));
976 }
977 
978 /*
979  * return the memrange containing pfn
980  */
981 int
982 memrange_num(pfn_t pfn)
983 {
984 	int n;
985 
986 	for (n = 0; n < nranges - 1; ++n) {
987 		if (pfn >= memranges[n])
988 			break;
989 	}
990 	return (n);
991 }
992 
993 /*
994  * return the mnoderange containing pfn
995  */
996 /*ARGSUSED*/
997 int
998 pfn_2_mtype(pfn_t pfn)
999 {
1000 #if defined(__xpv)
1001 	return (0);
1002 #else
1003 	int	n;
1004 
1005 	/* Always start from highest pfn and work our way down */
1006 	for (n = mtypetop; n != -1; n = mnoderanges[n].mnr_next) {
1007 		if (pfn >= mnoderanges[n].mnr_pfnlo) {
1008 			break;
1009 		}
1010 	}
1011 	return (n);
1012 #endif
1013 }
1014 
1015 #if !defined(__xpv)
1016 /*
1017  * is_contigpage_free:
1018  *	returns a page list of contiguous pages. It minimally has to return
1019  *	minctg pages. Caller determines minctg based on the scatter-gather
1020  *	list length.
1021  *
1022  *	pfnp is set to the next page frame to search on return.
1023  */
1024 static page_t *
1025 is_contigpage_free(
1026 	pfn_t *pfnp,
1027 	pgcnt_t *pgcnt,
1028 	pgcnt_t minctg,
1029 	uint64_t pfnseg,
1030 	int iolock)
1031 {
1032 	int	i = 0;
1033 	pfn_t	pfn = *pfnp;
1034 	page_t	*pp;
1035 	page_t	*plist = NULL;
1036 
1037 	/*
1038 	 * fail if pfn + minctg crosses a segment boundary.
1039 	 * Adjust for next starting pfn to begin at segment boundary.
1040 	 */
1041 
1042 	if (((*pfnp + minctg - 1) & pfnseg) < (*pfnp & pfnseg)) {
1043 		*pfnp = roundup(*pfnp, pfnseg + 1);
1044 		return (NULL);
1045 	}
1046 
1047 	do {
1048 retry:
1049 		pp = page_numtopp_nolock(pfn + i);
1050 		if ((pp == NULL) || IS_DUMP_PAGE(pp) ||
1051 		    (page_trylock(pp, SE_EXCL) == 0)) {
1052 			(*pfnp)++;
1053 			break;
1054 		}
1055 		if (page_pptonum(pp) != pfn + i) {
1056 			page_unlock(pp);
1057 			goto retry;
1058 		}
1059 
1060 		if (!(PP_ISFREE(pp))) {
1061 			page_unlock(pp);
1062 			(*pfnp)++;
1063 			break;
1064 		}
1065 
1066 		if (!PP_ISAGED(pp)) {
1067 			page_list_sub(pp, PG_CACHE_LIST);
1068 			page_hashout(pp, (kmutex_t *)NULL);
1069 		} else {
1070 			page_list_sub(pp, PG_FREE_LIST);
1071 		}
1072 
1073 		if (iolock)
1074 			page_io_lock(pp);
1075 		page_list_concat(&plist, &pp);
1076 
1077 		/*
1078 		 * exit loop when pgcnt satisfied or segment boundary reached.
1079 		 */
1080 
1081 	} while ((++i < *pgcnt) && ((pfn + i) & pfnseg));
1082 
1083 	*pfnp += i;		/* set to next pfn to search */
1084 
1085 	if (i >= minctg) {
1086 		*pgcnt -= i;
1087 		return (plist);
1088 	}
1089 
1090 	/*
1091 	 * failure: minctg not satisfied.
1092 	 *
1093 	 * if next request crosses segment boundary, set next pfn
1094 	 * to search from the segment boundary.
1095 	 */
1096 	if (((*pfnp + minctg - 1) & pfnseg) < (*pfnp & pfnseg))
1097 		*pfnp = roundup(*pfnp, pfnseg + 1);
1098 
1099 	/* clean up any pages already allocated */
1100 
1101 	while (plist) {
1102 		pp = plist;
1103 		page_sub(&plist, pp);
1104 		page_list_add(pp, PG_FREE_LIST | PG_LIST_TAIL);
1105 		if (iolock)
1106 			page_io_unlock(pp);
1107 		page_unlock(pp);
1108 	}
1109 
1110 	return (NULL);
1111 }
1112 #endif	/* !__xpv */
1113 
1114 /*
1115  * verify that pages being returned from allocator have correct DMA attribute
1116  */
1117 #ifndef DEBUG
1118 #define	check_dma(a, b, c) (void)(0)
1119 #else
1120 static void
1121 check_dma(ddi_dma_attr_t *dma_attr, page_t *pp, int cnt)
1122 {
1123 	if (dma_attr == NULL)
1124 		return;
1125 
1126 	while (cnt-- > 0) {
1127 		if (pa_to_ma(pfn_to_pa(pp->p_pagenum)) <
1128 		    dma_attr->dma_attr_addr_lo)
1129 			panic("PFN (pp=%p) below dma_attr_addr_lo", (void *)pp);
1130 		if (pa_to_ma(pfn_to_pa(pp->p_pagenum)) >=
1131 		    dma_attr->dma_attr_addr_hi)
1132 			panic("PFN (pp=%p) above dma_attr_addr_hi", (void *)pp);
1133 		pp = pp->p_next;
1134 	}
1135 }
1136 #endif
1137 
1138 #if !defined(__xpv)
1139 static page_t *
1140 page_get_contigpage(pgcnt_t *pgcnt, ddi_dma_attr_t *mattr, int iolock)
1141 {
1142 	pfn_t		pfn;
1143 	int		sgllen;
1144 	uint64_t	pfnseg;
1145 	pgcnt_t		minctg;
1146 	page_t		*pplist = NULL, *plist;
1147 	uint64_t	lo, hi;
1148 	pgcnt_t		pfnalign = 0;
1149 	static pfn_t	startpfn;
1150 	static pgcnt_t	lastctgcnt;
1151 	uintptr_t	align;
1152 
1153 	CONTIG_LOCK();
1154 
1155 	if (mattr) {
1156 		lo = mmu_btop((mattr->dma_attr_addr_lo + MMU_PAGEOFFSET));
1157 		hi = mmu_btop(mattr->dma_attr_addr_hi);
1158 		if (hi >= physmax)
1159 			hi = physmax - 1;
1160 		sgllen = mattr->dma_attr_sgllen;
1161 		pfnseg = mmu_btop(mattr->dma_attr_seg);
1162 
1163 		align = maxbit(mattr->dma_attr_align, mattr->dma_attr_minxfer);
1164 		if (align > MMU_PAGESIZE)
1165 			pfnalign = mmu_btop(align);
1166 
1167 		/*
1168 		 * in order to satisfy the request, must minimally
1169 		 * acquire minctg contiguous pages
1170 		 */
1171 		minctg = howmany(*pgcnt, sgllen);
1172 
1173 		ASSERT(hi >= lo);
1174 
1175 		/*
1176 		 * start from where last searched if the minctg >= lastctgcnt
1177 		 */
1178 		if (minctg < lastctgcnt || startpfn < lo || startpfn > hi)
1179 			startpfn = lo;
1180 	} else {
1181 		hi = physmax - 1;
1182 		lo = 0;
1183 		sgllen = 1;
1184 		pfnseg = mmu.highest_pfn;
1185 		minctg = *pgcnt;
1186 
1187 		if (minctg < lastctgcnt)
1188 			startpfn = lo;
1189 	}
1190 	lastctgcnt = minctg;
1191 
1192 	ASSERT(pfnseg + 1 >= (uint64_t)minctg);
1193 
1194 	/* conserve 16m memory - start search above 16m when possible */
1195 	if (hi > PFN_16M && startpfn < PFN_16M)
1196 		startpfn = PFN_16M;
1197 
1198 	pfn = startpfn;
1199 	if (pfnalign)
1200 		pfn = P2ROUNDUP(pfn, pfnalign);
1201 
1202 	while (pfn + minctg - 1 <= hi) {
1203 
1204 		plist = is_contigpage_free(&pfn, pgcnt, minctg, pfnseg, iolock);
1205 		if (plist) {
1206 			page_list_concat(&pplist, &plist);
1207 			sgllen--;
1208 			/*
1209 			 * return when contig pages no longer needed
1210 			 */
1211 			if (!*pgcnt || ((*pgcnt <= sgllen) && !pfnalign)) {
1212 				startpfn = pfn;
1213 				CONTIG_UNLOCK();
1214 				check_dma(mattr, pplist, *pgcnt);
1215 				return (pplist);
1216 			}
1217 			minctg = howmany(*pgcnt, sgllen);
1218 		}
1219 		if (pfnalign)
1220 			pfn = P2ROUNDUP(pfn, pfnalign);
1221 	}
1222 
1223 	/* cannot find contig pages in specified range */
1224 	if (startpfn == lo) {
1225 		CONTIG_UNLOCK();
1226 		return (NULL);
1227 	}
1228 
1229 	/* did not start with lo previously */
1230 	pfn = lo;
1231 	if (pfnalign)
1232 		pfn = P2ROUNDUP(pfn, pfnalign);
1233 
1234 	/* allow search to go above startpfn */
1235 	while (pfn < startpfn) {
1236 
1237 		plist = is_contigpage_free(&pfn, pgcnt, minctg, pfnseg, iolock);
1238 		if (plist != NULL) {
1239 
1240 			page_list_concat(&pplist, &plist);
1241 			sgllen--;
1242 
1243 			/*
1244 			 * return when contig pages no longer needed
1245 			 */
1246 			if (!*pgcnt || ((*pgcnt <= sgllen) && !pfnalign)) {
1247 				startpfn = pfn;
1248 				CONTIG_UNLOCK();
1249 				check_dma(mattr, pplist, *pgcnt);
1250 				return (pplist);
1251 			}
1252 			minctg = howmany(*pgcnt, sgllen);
1253 		}
1254 		if (pfnalign)
1255 			pfn = P2ROUNDUP(pfn, pfnalign);
1256 	}
1257 	CONTIG_UNLOCK();
1258 	return (NULL);
1259 }
1260 #endif	/* !__xpv */
1261 
1262 /*
1263  * mnode_range_cnt() calculates the number of memory ranges for mnode and
1264  * memranges[]. Used to determine the size of page lists and mnoderanges.
1265  */
1266 int
1267 mnode_range_cnt(int mnode)
1268 {
1269 #if defined(__xpv)
1270 	ASSERT(mnode == 0);
1271 	return (1);
1272 #else	/* __xpv */
1273 	int	mri;
1274 	int	mnrcnt = 0;
1275 
1276 	if (mem_node_config[mnode].exists != 0) {
1277 		mri = nranges - 1;
1278 
1279 		/* find the memranges index below contained in mnode range */
1280 
1281 		while (MEMRANGEHI(mri) < mem_node_config[mnode].physbase)
1282 			mri--;
1283 
1284 		/*
1285 		 * increment mnode range counter when memranges or mnode
1286 		 * boundary is reached.
1287 		 */
1288 		while (mri >= 0 &&
1289 		    mem_node_config[mnode].physmax >= MEMRANGELO(mri)) {
1290 			mnrcnt++;
1291 			if (mem_node_config[mnode].physmax > MEMRANGEHI(mri))
1292 				mri--;
1293 			else
1294 				break;
1295 		}
1296 	}
1297 	ASSERT(mnrcnt <= MAX_MNODE_MRANGES);
1298 	return (mnrcnt);
1299 #endif	/* __xpv */
1300 }
1301 
1302 /*
1303  * mnode_range_setup() initializes mnoderanges.
1304  */
1305 void
1306 mnode_range_setup(mnoderange_t *mnoderanges)
1307 {
1308 	mnoderange_t *mp = mnoderanges;
1309 	int	mnode, mri;
1310 	int	mindex = 0;	/* current index into mnoderanges array */
1311 	int	i, j;
1312 	pfn_t	hipfn;
1313 	int	last, hi;
1314 
1315 	for (mnode = 0; mnode < max_mem_nodes; mnode++) {
1316 		if (mem_node_config[mnode].exists == 0)
1317 			continue;
1318 
1319 		mri = nranges - 1;
1320 
1321 		while (MEMRANGEHI(mri) < mem_node_config[mnode].physbase)
1322 			mri--;
1323 
1324 		while (mri >= 0 && mem_node_config[mnode].physmax >=
1325 		    MEMRANGELO(mri)) {
1326 			mnoderanges->mnr_pfnlo = MAX(MEMRANGELO(mri),
1327 			    mem_node_config[mnode].physbase);
1328 			mnoderanges->mnr_pfnhi = MIN(MEMRANGEHI(mri),
1329 			    mem_node_config[mnode].physmax);
1330 			mnoderanges->mnr_mnode = mnode;
1331 			mnoderanges->mnr_memrange = mri;
1332 			mnoderanges->mnr_exists = 1;
1333 			mnoderanges++;
1334 			mindex++;
1335 			if (mem_node_config[mnode].physmax > MEMRANGEHI(mri))
1336 				mri--;
1337 			else
1338 				break;
1339 		}
1340 	}
1341 
1342 	/*
1343 	 * For now do a simple sort of the mnoderanges array to fill in
1344 	 * the mnr_next fields.  Since mindex is expected to be relatively
1345 	 * small, using a simple O(N^2) algorithm.
1346 	 */
1347 	for (i = 0; i < mindex; i++) {
1348 		if (mp[i].mnr_pfnlo == 0)	/* find lowest */
1349 			break;
1350 	}
1351 	ASSERT(i < mindex);
1352 	last = i;
1353 	mtype16m = last;
1354 	mp[last].mnr_next = -1;
1355 	for (i = 0; i < mindex - 1; i++) {
1356 		hipfn = (pfn_t)(-1);
1357 		hi = -1;
1358 		/* find next highest mnode range */
1359 		for (j = 0; j < mindex; j++) {
1360 			if (mp[j].mnr_pfnlo > mp[last].mnr_pfnlo &&
1361 			    mp[j].mnr_pfnlo < hipfn) {
1362 				hipfn = mp[j].mnr_pfnlo;
1363 				hi = j;
1364 			}
1365 		}
1366 		mp[hi].mnr_next = last;
1367 		last = hi;
1368 	}
1369 	mtypetop = last;
1370 }
1371 
1372 #ifndef	__xpv
1373 /*
1374  * Update mnoderanges for memory hot-add DR operations.
1375  */
1376 static void
1377 mnode_range_add(int mnode)
1378 {
1379 	int	*prev;
1380 	int	n, mri;
1381 	pfn_t	start, end;
1382 	extern	void membar_sync(void);
1383 
1384 	ASSERT(0 <= mnode && mnode < max_mem_nodes);
1385 	ASSERT(mem_node_config[mnode].exists);
1386 	start = mem_node_config[mnode].physbase;
1387 	end = mem_node_config[mnode].physmax;
1388 	ASSERT(start <= end);
1389 	mutex_enter(&mnoderange_lock);
1390 
1391 #ifdef	DEBUG
1392 	/* Check whether it interleaves with other memory nodes. */
1393 	for (n = mtypetop; n != -1; n = mnoderanges[n].mnr_next) {
1394 		ASSERT(mnoderanges[n].mnr_exists);
1395 		if (mnoderanges[n].mnr_mnode == mnode)
1396 			continue;
1397 		ASSERT(start > mnoderanges[n].mnr_pfnhi ||
1398 		    end < mnoderanges[n].mnr_pfnlo);
1399 	}
1400 #endif	/* DEBUG */
1401 
1402 	mri = nranges - 1;
1403 	while (MEMRANGEHI(mri) < mem_node_config[mnode].physbase)
1404 		mri--;
1405 	while (mri >= 0 && mem_node_config[mnode].physmax >= MEMRANGELO(mri)) {
1406 		/* Check whether mtype already exists. */
1407 		for (n = mtypetop; n != -1; n = mnoderanges[n].mnr_next) {
1408 			if (mnoderanges[n].mnr_mnode == mnode &&
1409 			    mnoderanges[n].mnr_memrange == mri) {
1410 				mnoderanges[n].mnr_pfnlo = MAX(MEMRANGELO(mri),
1411 				    start);
1412 				mnoderanges[n].mnr_pfnhi = MIN(MEMRANGEHI(mri),
1413 				    end);
1414 				break;
1415 			}
1416 		}
1417 
1418 		/* Add a new entry if it doesn't exist yet. */
1419 		if (n == -1) {
1420 			/* Try to find an unused entry in mnoderanges array. */
1421 			for (n = 0; n < mnoderangecnt; n++) {
1422 				if (mnoderanges[n].mnr_exists == 0)
1423 					break;
1424 			}
1425 			ASSERT(n < mnoderangecnt);
1426 			mnoderanges[n].mnr_pfnlo = MAX(MEMRANGELO(mri), start);
1427 			mnoderanges[n].mnr_pfnhi = MIN(MEMRANGEHI(mri), end);
1428 			mnoderanges[n].mnr_mnode = mnode;
1429 			mnoderanges[n].mnr_memrange = mri;
1430 			mnoderanges[n].mnr_exists = 1;
1431 			/* Page 0 should always be present. */
1432 			for (prev = &mtypetop;
1433 			    mnoderanges[*prev].mnr_pfnlo > start;
1434 			    prev = &mnoderanges[*prev].mnr_next) {
1435 				ASSERT(mnoderanges[*prev].mnr_next >= 0);
1436 				ASSERT(mnoderanges[*prev].mnr_pfnlo > end);
1437 			}
1438 			mnoderanges[n].mnr_next = *prev;
1439 			membar_sync();
1440 			*prev = n;
1441 		}
1442 
1443 		if (mem_node_config[mnode].physmax > MEMRANGEHI(mri))
1444 			mri--;
1445 		else
1446 			break;
1447 	}
1448 
1449 	mutex_exit(&mnoderange_lock);
1450 }
1451 
1452 /*
1453  * Update mnoderanges for memory hot-removal DR operations.
1454  */
1455 static void
1456 mnode_range_del(int mnode)
1457 {
1458 	_NOTE(ARGUNUSED(mnode));
1459 	ASSERT(0 <= mnode && mnode < max_mem_nodes);
1460 	/* TODO: support deletion operation. */
1461 	ASSERT(0);
1462 }
1463 
1464 void
1465 plat_slice_add(pfn_t start, pfn_t end)
1466 {
1467 	mem_node_add_slice(start, end);
1468 	if (plat_dr_enabled()) {
1469 		mnode_range_add(PFN_2_MEM_NODE(start));
1470 	}
1471 }
1472 
1473 void
1474 plat_slice_del(pfn_t start, pfn_t end)
1475 {
1476 	ASSERT(PFN_2_MEM_NODE(start) == PFN_2_MEM_NODE(end));
1477 	ASSERT(plat_dr_enabled());
1478 	mnode_range_del(PFN_2_MEM_NODE(start));
1479 	mem_node_del_slice(start, end);
1480 }
1481 #endif	/* __xpv */
1482 
1483 /*ARGSUSED*/
1484 int
1485 mtype_init(vnode_t *vp, caddr_t vaddr, uint_t *flags, size_t pgsz)
1486 {
1487 	int mtype = mtypetop;
1488 
1489 #if !defined(__xpv)
1490 #if defined(__i386)
1491 	/*
1492 	 * set the mtype range
1493 	 * - kmem requests need to be below 4g if restricted_kmemalloc is set.
1494 	 * - for non kmem requests, set range to above 4g if memory below 4g
1495 	 * runs low.
1496 	 */
1497 	if (restricted_kmemalloc && VN_ISKAS(vp) &&
1498 	    (caddr_t)(vaddr) >= kernelheap &&
1499 	    (caddr_t)(vaddr) < ekernelheap) {
1500 		ASSERT(physmax4g);
1501 		mtype = mtype4g;
1502 		if (RESTRICT16M_ALLOC(freemem4g - btop(pgsz),
1503 		    btop(pgsz), *flags)) {
1504 			*flags |= PGI_MT_RANGE16M;
1505 		} else {
1506 			VM_STAT_ADD(vmm_vmstats.unrestrict16mcnt);
1507 			VM_STAT_COND_ADD((*flags & PG_PANIC),
1508 			    vmm_vmstats.pgpanicalloc);
1509 			*flags |= PGI_MT_RANGE0;
1510 		}
1511 		return (mtype);
1512 	}
1513 #endif	/* __i386 */
1514 
1515 	if (RESTRICT4G_ALLOC) {
1516 		VM_STAT_ADD(vmm_vmstats.restrict4gcnt);
1517 		/* here only for > 4g systems */
1518 		*flags |= PGI_MT_RANGE4G;
1519 	} else if (RESTRICT16M_ALLOC(freemem, btop(pgsz), *flags)) {
1520 		*flags |= PGI_MT_RANGE16M;
1521 	} else {
1522 		VM_STAT_ADD(vmm_vmstats.unrestrict16mcnt);
1523 		VM_STAT_COND_ADD((*flags & PG_PANIC), vmm_vmstats.pgpanicalloc);
1524 		*flags |= PGI_MT_RANGE0;
1525 	}
1526 #endif /* !__xpv */
1527 	return (mtype);
1528 }
1529 
1530 
1531 /* mtype init for page_get_replacement_page */
1532 /*ARGSUSED*/
1533 int
1534 mtype_pgr_init(int *flags, page_t *pp, int mnode, pgcnt_t pgcnt)
1535 {
1536 	int mtype = mtypetop;
1537 #if !defined(__xpv)
1538 	if (RESTRICT16M_ALLOC(freemem, pgcnt, *flags)) {
1539 		*flags |= PGI_MT_RANGE16M;
1540 	} else {
1541 		VM_STAT_ADD(vmm_vmstats.unrestrict16mcnt);
1542 		*flags |= PGI_MT_RANGE0;
1543 	}
1544 #endif
1545 	return (mtype);
1546 }
1547 
1548 /*
1549  * Determine if the mnode range specified in mtype contains memory belonging
1550  * to memory node mnode.  If flags & PGI_MT_RANGE is set then mtype contains
1551  * the range from high pfn to 0, 16m or 4g.
1552  *
1553  * Return first mnode range type index found otherwise return -1 if none found.
1554  */
1555 int
1556 mtype_func(int mnode, int mtype, uint_t flags)
1557 {
1558 	if (flags & PGI_MT_RANGE) {
1559 		int	mnr_lim = MRI_0;
1560 
1561 		if (flags & PGI_MT_NEXT) {
1562 			mtype = mnoderanges[mtype].mnr_next;
1563 		}
1564 		if (flags & PGI_MT_RANGE4G)
1565 			mnr_lim = MRI_4G;	/* exclude 0-4g range */
1566 		else if (flags & PGI_MT_RANGE16M)
1567 			mnr_lim = MRI_16M;	/* exclude 0-16m range */
1568 		while (mtype != -1 &&
1569 		    mnoderanges[mtype].mnr_memrange <= mnr_lim) {
1570 			if (mnoderanges[mtype].mnr_mnode == mnode)
1571 				return (mtype);
1572 			mtype = mnoderanges[mtype].mnr_next;
1573 		}
1574 	} else if (mnoderanges[mtype].mnr_mnode == mnode) {
1575 		return (mtype);
1576 	}
1577 	return (-1);
1578 }
1579 
1580 /*
1581  * Update the page list max counts with the pfn range specified by the
1582  * input parameters.
1583  */
1584 void
1585 mtype_modify_max(pfn_t startpfn, long cnt)
1586 {
1587 	int		mtype;
1588 	pgcnt_t		inc;
1589 	spgcnt_t	scnt = (spgcnt_t)(cnt);
1590 	pgcnt_t		acnt = ABS(scnt);
1591 	pfn_t		endpfn = startpfn + acnt;
1592 	pfn_t		pfn, lo;
1593 
1594 	if (!physmax4g)
1595 		return;
1596 
1597 	mtype = mtypetop;
1598 	for (pfn = endpfn; pfn > startpfn; ) {
1599 		ASSERT(mtype != -1);
1600 		lo = mnoderanges[mtype].mnr_pfnlo;
1601 		if (pfn > lo) {
1602 			if (startpfn >= lo) {
1603 				inc = pfn - startpfn;
1604 			} else {
1605 				inc = pfn - lo;
1606 			}
1607 			if (mnoderanges[mtype].mnr_memrange != MRI_4G) {
1608 				if (scnt > 0)
1609 					maxmem4g += inc;
1610 				else
1611 					maxmem4g -= inc;
1612 			}
1613 			pfn -= inc;
1614 		}
1615 		mtype = mnoderanges[mtype].mnr_next;
1616 	}
1617 }
1618 
1619 int
1620 mtype_2_mrange(int mtype)
1621 {
1622 	return (mnoderanges[mtype].mnr_memrange);
1623 }
1624 
1625 void
1626 mnodetype_2_pfn(int mnode, int mtype, pfn_t *pfnlo, pfn_t *pfnhi)
1627 {
1628 	_NOTE(ARGUNUSED(mnode));
1629 	ASSERT(mnoderanges[mtype].mnr_mnode == mnode);
1630 	*pfnlo = mnoderanges[mtype].mnr_pfnlo;
1631 	*pfnhi = mnoderanges[mtype].mnr_pfnhi;
1632 }
1633 
1634 size_t
1635 plcnt_sz(size_t ctrs_sz)
1636 {
1637 #ifdef DEBUG
1638 	int	szc, colors;
1639 
1640 	ctrs_sz += mnoderangecnt * sizeof (struct mnr_mts) * mmu_page_sizes;
1641 	for (szc = 0; szc < mmu_page_sizes; szc++) {
1642 		colors = page_get_pagecolors(szc);
1643 		ctrs_sz += mnoderangecnt * sizeof (pgcnt_t) * colors;
1644 	}
1645 #endif
1646 	return (ctrs_sz);
1647 }
1648 
1649 caddr_t
1650 plcnt_init(caddr_t addr)
1651 {
1652 #ifdef DEBUG
1653 	int	mt, szc, colors;
1654 
1655 	for (mt = 0; mt < mnoderangecnt; mt++) {
1656 		mnoderanges[mt].mnr_mts = (struct mnr_mts *)addr;
1657 		addr += (sizeof (struct mnr_mts) * mmu_page_sizes);
1658 		for (szc = 0; szc < mmu_page_sizes; szc++) {
1659 			colors = page_get_pagecolors(szc);
1660 			mnoderanges[mt].mnr_mts[szc].mnr_mts_colors = colors;
1661 			mnoderanges[mt].mnr_mts[szc].mnr_mtsc_pgcnt =
1662 			    (pgcnt_t *)addr;
1663 			addr += (sizeof (pgcnt_t) * colors);
1664 		}
1665 	}
1666 #endif
1667 	return (addr);
1668 }
1669 
1670 void
1671 plcnt_inc_dec(page_t *pp, int mtype, int szc, long cnt, int flags)
1672 {
1673 	_NOTE(ARGUNUSED(pp));
1674 #ifdef DEBUG
1675 	int	bin = PP_2_BIN(pp);
1676 
1677 	atomic_add_long(&mnoderanges[mtype].mnr_mts[szc].mnr_mts_pgcnt, cnt);
1678 	atomic_add_long(&mnoderanges[mtype].mnr_mts[szc].mnr_mtsc_pgcnt[bin],
1679 	    cnt);
1680 #endif
1681 	ASSERT(mtype == PP_2_MTYPE(pp));
1682 	if (physmax4g && mnoderanges[mtype].mnr_memrange != MRI_4G)
1683 		atomic_add_long(&freemem4g, cnt);
1684 	if (flags & PG_CACHE_LIST)
1685 		atomic_add_long(&mnoderanges[mtype].mnr_mt_clpgcnt, cnt);
1686 	else
1687 		atomic_add_long(&mnoderanges[mtype].mnr_mt_flpgcnt[szc], cnt);
1688 	atomic_add_long(&mnoderanges[mtype].mnr_mt_totcnt, cnt);
1689 }
1690 
1691 /*
1692  * Returns the free page count for mnode
1693  */
1694 int
1695 mnode_pgcnt(int mnode)
1696 {
1697 	int	mtype = mtypetop;
1698 	int	flags = PGI_MT_RANGE0;
1699 	pgcnt_t	pgcnt = 0;
1700 
1701 	mtype = mtype_func(mnode, mtype, flags);
1702 
1703 	while (mtype != -1) {
1704 		pgcnt += MTYPE_FREEMEM(mtype);
1705 		mtype = mtype_func(mnode, mtype, flags | PGI_MT_NEXT);
1706 	}
1707 	return (pgcnt);
1708 }
1709 
1710 /*
1711  * Initialize page coloring variables based on the l2 cache parameters.
1712  * Calculate and return memory needed for page coloring data structures.
1713  */
1714 size_t
1715 page_coloring_init(uint_t l2_sz, int l2_linesz, int l2_assoc)
1716 {
1717 	_NOTE(ARGUNUSED(l2_linesz));
1718 	size_t	colorsz = 0;
1719 	int	i;
1720 	int	colors;
1721 
1722 #if defined(__xpv)
1723 	/*
1724 	 * Hypervisor domains currently don't have any concept of NUMA.
1725 	 * Hence we'll act like there is only 1 memrange.
1726 	 */
1727 	i = memrange_num(1);
1728 #else /* !__xpv */
1729 	/*
1730 	 * Reduce the memory ranges lists if we don't have large amounts
1731 	 * of memory. This avoids searching known empty free lists.
1732 	 * To support memory DR operations, we need to keep memory ranges
1733 	 * for possible memory hot-add operations.
1734 	 */
1735 	if (plat_dr_physmax > physmax)
1736 		i = memrange_num(plat_dr_physmax);
1737 	else
1738 		i = memrange_num(physmax);
1739 #if defined(__i386)
1740 	if (i > MRI_4G)
1741 		restricted_kmemalloc = 0;
1742 #endif
1743 	/* physmax greater than 4g */
1744 	if (i == MRI_4G)
1745 		physmax4g = 1;
1746 #endif /* !__xpv */
1747 	memranges += i;
1748 	nranges -= i;
1749 
1750 	ASSERT(mmu_page_sizes <= MMU_PAGE_SIZES);
1751 
1752 	ASSERT(ISP2(l2_linesz));
1753 	ASSERT(l2_sz > MMU_PAGESIZE);
1754 
1755 	/* l2_assoc is 0 for fully associative l2 cache */
1756 	if (l2_assoc)
1757 		l2_colors = MAX(1, l2_sz / (l2_assoc * MMU_PAGESIZE));
1758 	else
1759 		l2_colors = 1;
1760 
1761 	ASSERT(ISP2(l2_colors));
1762 
1763 	/* for scalability, configure at least PAGE_COLORS_MIN color bins */
1764 	page_colors = MAX(l2_colors, PAGE_COLORS_MIN);
1765 
1766 	/*
1767 	 * cpu_page_colors is non-zero when a page color may be spread across
1768 	 * multiple bins.
1769 	 */
1770 	if (l2_colors < page_colors)
1771 		cpu_page_colors = l2_colors;
1772 
1773 	ASSERT(ISP2(page_colors));
1774 
1775 	page_colors_mask = page_colors - 1;
1776 
1777 	ASSERT(ISP2(CPUSETSIZE()));
1778 	page_coloring_shift = lowbit(CPUSETSIZE());
1779 
1780 	/* initialize number of colors per page size */
1781 	for (i = 0; i <= mmu.max_page_level; i++) {
1782 		hw_page_array[i].hp_size = LEVEL_SIZE(i);
1783 		hw_page_array[i].hp_shift = LEVEL_SHIFT(i);
1784 		hw_page_array[i].hp_pgcnt = LEVEL_SIZE(i) >> LEVEL_SHIFT(0);
1785 		hw_page_array[i].hp_colors = (page_colors_mask >>
1786 		    (hw_page_array[i].hp_shift - hw_page_array[0].hp_shift))
1787 		    + 1;
1788 		colorequivszc[i] = 0;
1789 	}
1790 
1791 	/*
1792 	 * The value of cpu_page_colors determines if additional color bins
1793 	 * need to be checked for a particular color in the page_get routines.
1794 	 */
1795 	if (cpu_page_colors != 0) {
1796 
1797 		int a = lowbit(page_colors) - lowbit(cpu_page_colors);
1798 		ASSERT(a > 0);
1799 		ASSERT(a < 16);
1800 
1801 		for (i = 0; i <= mmu.max_page_level; i++) {
1802 			if ((colors = hw_page_array[i].hp_colors) <= 1) {
1803 				colorequivszc[i] = 0;
1804 				continue;
1805 			}
1806 			while ((colors >> a) == 0)
1807 				a--;
1808 			ASSERT(a >= 0);
1809 
1810 			/* higher 4 bits encodes color equiv mask */
1811 			colorequivszc[i] = (a << 4);
1812 		}
1813 	}
1814 
1815 	/* factor in colorequiv to check additional 'equivalent' bins. */
1816 	if (colorequiv > 1) {
1817 
1818 		int a = lowbit(colorequiv) - 1;
1819 		if (a > 15)
1820 			a = 15;
1821 
1822 		for (i = 0; i <= mmu.max_page_level; i++) {
1823 			if ((colors = hw_page_array[i].hp_colors) <= 1) {
1824 				continue;
1825 			}
1826 			while ((colors >> a) == 0)
1827 				a--;
1828 			if ((a << 4) > colorequivszc[i]) {
1829 				colorequivszc[i] = (a << 4);
1830 			}
1831 		}
1832 	}
1833 
1834 	/* size for mnoderanges */
1835 	for (mnoderangecnt = 0, i = 0; i < max_mem_nodes; i++)
1836 		mnoderangecnt += mnode_range_cnt(i);
1837 	if (plat_dr_support_memory()) {
1838 		/*
1839 		 * Reserve enough space for memory DR operations.
1840 		 * Two extra mnoderanges for possbile fragmentations,
1841 		 * one for the 2G boundary and the other for the 4G boundary.
1842 		 * We don't expect a memory board crossing the 16M boundary
1843 		 * for memory hot-add operations on x86 platforms.
1844 		 */
1845 		mnoderangecnt += 2 + max_mem_nodes - lgrp_plat_node_cnt;
1846 	}
1847 	colorsz = mnoderangecnt * sizeof (mnoderange_t);
1848 
1849 	/* size for fpc_mutex and cpc_mutex */
1850 	colorsz += (2 * max_mem_nodes * sizeof (kmutex_t) * NPC_MUTEX);
1851 
1852 	/* size of page_freelists */
1853 	colorsz += mnoderangecnt * sizeof (page_t ***);
1854 	colorsz += mnoderangecnt * mmu_page_sizes * sizeof (page_t **);
1855 
1856 	for (i = 0; i < mmu_page_sizes; i++) {
1857 		colors = page_get_pagecolors(i);
1858 		colorsz += mnoderangecnt * colors * sizeof (page_t *);
1859 	}
1860 
1861 	/* size of page_cachelists */
1862 	colorsz += mnoderangecnt * sizeof (page_t **);
1863 	colorsz += mnoderangecnt * page_colors * sizeof (page_t *);
1864 
1865 	return (colorsz);
1866 }
1867 
1868 /*
1869  * Called once at startup to configure page_coloring data structures and
1870  * does the 1st page_free()/page_freelist_add().
1871  */
1872 void
1873 page_coloring_setup(caddr_t pcmemaddr)
1874 {
1875 	int	i;
1876 	int	j;
1877 	int	k;
1878 	caddr_t	addr;
1879 	int	colors;
1880 
1881 	/*
1882 	 * do page coloring setup
1883 	 */
1884 	addr = pcmemaddr;
1885 
1886 	mnoderanges = (mnoderange_t *)addr;
1887 	addr += (mnoderangecnt * sizeof (mnoderange_t));
1888 
1889 	mnode_range_setup(mnoderanges);
1890 
1891 	if (physmax4g)
1892 		mtype4g = pfn_2_mtype(0xfffff);
1893 
1894 	for (k = 0; k < NPC_MUTEX; k++) {
1895 		fpc_mutex[k] = (kmutex_t *)addr;
1896 		addr += (max_mem_nodes * sizeof (kmutex_t));
1897 	}
1898 	for (k = 0; k < NPC_MUTEX; k++) {
1899 		cpc_mutex[k] = (kmutex_t *)addr;
1900 		addr += (max_mem_nodes * sizeof (kmutex_t));
1901 	}
1902 	page_freelists = (page_t ****)addr;
1903 	addr += (mnoderangecnt * sizeof (page_t ***));
1904 
1905 	page_cachelists = (page_t ***)addr;
1906 	addr += (mnoderangecnt * sizeof (page_t **));
1907 
1908 	for (i = 0; i < mnoderangecnt; i++) {
1909 		page_freelists[i] = (page_t ***)addr;
1910 		addr += (mmu_page_sizes * sizeof (page_t **));
1911 
1912 		for (j = 0; j < mmu_page_sizes; j++) {
1913 			colors = page_get_pagecolors(j);
1914 			page_freelists[i][j] = (page_t **)addr;
1915 			addr += (colors * sizeof (page_t *));
1916 		}
1917 		page_cachelists[i] = (page_t **)addr;
1918 		addr += (page_colors * sizeof (page_t *));
1919 	}
1920 }
1921 
1922 #if defined(__xpv)
1923 /*
1924  * Give back 10% of the io_pool pages to the free list.
1925  * Don't shrink the pool below some absolute minimum.
1926  */
1927 static void
1928 page_io_pool_shrink()
1929 {
1930 	int retcnt;
1931 	page_t *pp, *pp_first, *pp_last, **curpool;
1932 	mfn_t mfn;
1933 	int bothpools = 0;
1934 
1935 	mutex_enter(&io_pool_lock);
1936 	io_pool_shrink_attempts++;	/* should be a kstat? */
1937 	retcnt = io_pool_cnt / 10;
1938 	if (io_pool_cnt - retcnt < io_pool_cnt_min)
1939 		retcnt = io_pool_cnt - io_pool_cnt_min;
1940 	if (retcnt <= 0)
1941 		goto done;
1942 	io_pool_shrinks++;	/* should be a kstat? */
1943 	curpool = &io_pool_4g;
1944 domore:
1945 	/*
1946 	 * Loop through taking pages from the end of the list
1947 	 * (highest mfns) till amount to return reached.
1948 	 */
1949 	for (pp = *curpool; pp && retcnt > 0; ) {
1950 		pp_first = pp_last = pp->p_prev;
1951 		if (pp_first == *curpool)
1952 			break;
1953 		retcnt--;
1954 		io_pool_cnt--;
1955 		page_io_pool_sub(curpool, pp_first, pp_last);
1956 		if ((mfn = pfn_to_mfn(pp->p_pagenum)) < start_mfn)
1957 			start_mfn = mfn;
1958 		page_free(pp_first, 1);
1959 		pp = *curpool;
1960 	}
1961 	if (retcnt != 0 && !bothpools) {
1962 		/*
1963 		 * If not enough found in less constrained pool try the
1964 		 * more constrained one.
1965 		 */
1966 		curpool = &io_pool_16m;
1967 		bothpools = 1;
1968 		goto domore;
1969 	}
1970 done:
1971 	mutex_exit(&io_pool_lock);
1972 }
1973 
1974 #endif	/* __xpv */
1975 
1976 uint_t
1977 page_create_update_flags_x86(uint_t flags)
1978 {
1979 #if defined(__xpv)
1980 	/*
1981 	 * Check this is an urgent allocation and free pages are depleted.
1982 	 */
1983 	if (!(flags & PG_WAIT) && freemem < desfree)
1984 		page_io_pool_shrink();
1985 #else /* !__xpv */
1986 	/*
1987 	 * page_create_get_something may call this because 4g memory may be
1988 	 * depleted. Set flags to allow for relocation of base page below
1989 	 * 4g if necessary.
1990 	 */
1991 	if (physmax4g)
1992 		flags |= (PGI_PGCPSZC0 | PGI_PGCPHIPRI);
1993 #endif /* __xpv */
1994 	return (flags);
1995 }
1996 
1997 /*ARGSUSED*/
1998 int
1999 bp_color(struct buf *bp)
2000 {
2001 	return (0);
2002 }
2003 
2004 #if defined(__xpv)
2005 
2006 /*
2007  * Take pages out of an io_pool
2008  */
2009 static void
2010 page_io_pool_sub(page_t **poolp, page_t *pp_first, page_t *pp_last)
2011 {
2012 	if (*poolp == pp_first) {
2013 		*poolp = pp_last->p_next;
2014 		if (*poolp == pp_first)
2015 			*poolp = NULL;
2016 	}
2017 	pp_first->p_prev->p_next = pp_last->p_next;
2018 	pp_last->p_next->p_prev = pp_first->p_prev;
2019 	pp_first->p_prev = pp_last;
2020 	pp_last->p_next = pp_first;
2021 }
2022 
2023 /*
2024  * Put a page on the io_pool list. The list is ordered by increasing MFN.
2025  */
2026 static void
2027 page_io_pool_add(page_t **poolp, page_t *pp)
2028 {
2029 	page_t	*look;
2030 	mfn_t	mfn = mfn_list[pp->p_pagenum];
2031 
2032 	if (*poolp == NULL) {
2033 		*poolp = pp;
2034 		pp->p_next = pp;
2035 		pp->p_prev = pp;
2036 		return;
2037 	}
2038 
2039 	/*
2040 	 * Since we try to take pages from the high end of the pool
2041 	 * chances are good that the pages to be put on the list will
2042 	 * go at or near the end of the list. so start at the end and
2043 	 * work backwards.
2044 	 */
2045 	look = (*poolp)->p_prev;
2046 	while (mfn < mfn_list[look->p_pagenum]) {
2047 		look = look->p_prev;
2048 		if (look == (*poolp)->p_prev)
2049 			break; /* backed all the way to front of list */
2050 	}
2051 
2052 	/* insert after look */
2053 	pp->p_prev = look;
2054 	pp->p_next = look->p_next;
2055 	pp->p_next->p_prev = pp;
2056 	look->p_next = pp;
2057 	if (mfn < mfn_list[(*poolp)->p_pagenum]) {
2058 		/*
2059 		 * we inserted a new first list element
2060 		 * adjust pool pointer to newly inserted element
2061 		 */
2062 		*poolp = pp;
2063 	}
2064 }
2065 
2066 /*
2067  * Add a page to the io_pool.  Setting the force flag will force the page
2068  * into the io_pool no matter what.
2069  */
2070 static void
2071 add_page_to_pool(page_t *pp, int force)
2072 {
2073 	page_t *highest;
2074 	page_t *freep = NULL;
2075 
2076 	mutex_enter(&io_pool_lock);
2077 	/*
2078 	 * Always keep the scarce low memory pages
2079 	 */
2080 	if (mfn_list[pp->p_pagenum] < PFN_16MEG) {
2081 		++io_pool_cnt;
2082 		page_io_pool_add(&io_pool_16m, pp);
2083 		goto done;
2084 	}
2085 	if (io_pool_cnt < io_pool_cnt_max || force || io_pool_4g == NULL) {
2086 		++io_pool_cnt;
2087 		page_io_pool_add(&io_pool_4g, pp);
2088 	} else {
2089 		highest = io_pool_4g->p_prev;
2090 		if (mfn_list[pp->p_pagenum] < mfn_list[highest->p_pagenum]) {
2091 			page_io_pool_sub(&io_pool_4g, highest, highest);
2092 			page_io_pool_add(&io_pool_4g, pp);
2093 			freep = highest;
2094 		} else {
2095 			freep = pp;
2096 		}
2097 	}
2098 done:
2099 	mutex_exit(&io_pool_lock);
2100 	if (freep)
2101 		page_free(freep, 1);
2102 }
2103 
2104 
2105 int contig_pfn_cnt;	/* no of pfns in the contig pfn list */
2106 int contig_pfn_max;	/* capacity of the contig pfn list */
2107 int next_alloc_pfn;	/* next position in list to start a contig search */
2108 int contig_pfnlist_updates;	/* pfn list update count */
2109 int contig_pfnlist_builds;	/* how many times have we (re)built list */
2110 int contig_pfnlist_buildfailed;	/* how many times has list build failed */
2111 int create_contig_pending;	/* nonzero means taskq creating contig list */
2112 pfn_t *contig_pfn_list = NULL;	/* list of contig pfns in ascending mfn order */
2113 
2114 /*
2115  * Function to use in sorting a list of pfns by their underlying mfns.
2116  */
2117 static int
2118 mfn_compare(const void *pfnp1, const void *pfnp2)
2119 {
2120 	mfn_t mfn1 = mfn_list[*(pfn_t *)pfnp1];
2121 	mfn_t mfn2 = mfn_list[*(pfn_t *)pfnp2];
2122 
2123 	if (mfn1 > mfn2)
2124 		return (1);
2125 	if (mfn1 < mfn2)
2126 		return (-1);
2127 	return (0);
2128 }
2129 
2130 /*
2131  * Compact the contig_pfn_list by tossing all the non-contiguous
2132  * elements from the list.
2133  */
2134 static void
2135 compact_contig_pfn_list(void)
2136 {
2137 	pfn_t pfn, lapfn, prev_lapfn;
2138 	mfn_t mfn;
2139 	int i, newcnt = 0;
2140 
2141 	prev_lapfn = 0;
2142 	for (i = 0; i < contig_pfn_cnt - 1; i++) {
2143 		pfn = contig_pfn_list[i];
2144 		lapfn = contig_pfn_list[i + 1];
2145 		mfn = mfn_list[pfn];
2146 		/*
2147 		 * See if next pfn is for a contig mfn
2148 		 */
2149 		if (mfn_list[lapfn] != mfn + 1)
2150 			continue;
2151 		/*
2152 		 * pfn and lookahead are both put in list
2153 		 * unless pfn is the previous lookahead.
2154 		 */
2155 		if (pfn != prev_lapfn)
2156 			contig_pfn_list[newcnt++] = pfn;
2157 		contig_pfn_list[newcnt++] = lapfn;
2158 		prev_lapfn = lapfn;
2159 	}
2160 	for (i = newcnt; i < contig_pfn_cnt; i++)
2161 		contig_pfn_list[i] = 0;
2162 	contig_pfn_cnt = newcnt;
2163 }
2164 
2165 /*ARGSUSED*/
2166 static void
2167 call_create_contiglist(void *arg)
2168 {
2169 	(void) create_contig_pfnlist(PG_WAIT);
2170 }
2171 
2172 /*
2173  * Create list of freelist pfns that have underlying
2174  * contiguous mfns.  The list is kept in ascending mfn order.
2175  * returns 1 if list created else 0.
2176  */
2177 static int
2178 create_contig_pfnlist(uint_t flags)
2179 {
2180 	pfn_t pfn;
2181 	page_t *pp;
2182 	int ret = 1;
2183 
2184 	mutex_enter(&contig_list_lock);
2185 	if (contig_pfn_list != NULL)
2186 		goto out;
2187 	contig_pfn_max = freemem + (freemem / 10);
2188 	contig_pfn_list = kmem_zalloc(contig_pfn_max * sizeof (pfn_t),
2189 	    (flags & PG_WAIT) ? KM_SLEEP : KM_NOSLEEP);
2190 	if (contig_pfn_list == NULL) {
2191 		/*
2192 		 * If we could not create the contig list (because
2193 		 * we could not sleep for memory).  Dispatch a taskq that can
2194 		 * sleep to get the memory.
2195 		 */
2196 		if (!create_contig_pending) {
2197 			if (taskq_dispatch(system_taskq, call_create_contiglist,
2198 			    NULL, TQ_NOSLEEP) != NULL)
2199 				create_contig_pending = 1;
2200 		}
2201 		contig_pfnlist_buildfailed++;	/* count list build failures */
2202 		ret = 0;
2203 		goto out;
2204 	}
2205 	create_contig_pending = 0;
2206 	ASSERT(contig_pfn_cnt == 0);
2207 	for (pfn = 0; pfn < mfn_count; pfn++) {
2208 		pp = page_numtopp_nolock(pfn);
2209 		if (pp == NULL || !PP_ISFREE(pp))
2210 			continue;
2211 		contig_pfn_list[contig_pfn_cnt] = pfn;
2212 		if (++contig_pfn_cnt == contig_pfn_max)
2213 			break;
2214 	}
2215 	/*
2216 	 * Sanity check the new list.
2217 	 */
2218 	if (contig_pfn_cnt < 2) { /* no contig pfns */
2219 		contig_pfn_cnt = 0;
2220 		contig_pfnlist_buildfailed++;
2221 		kmem_free(contig_pfn_list, contig_pfn_max * sizeof (pfn_t));
2222 		contig_pfn_list = NULL;
2223 		contig_pfn_max = 0;
2224 		ret = 0;
2225 		goto out;
2226 	}
2227 	qsort(contig_pfn_list, contig_pfn_cnt, sizeof (pfn_t), mfn_compare);
2228 	compact_contig_pfn_list();
2229 	/*
2230 	 * Make sure next search of the newly created contiguous pfn
2231 	 * list starts at the beginning of the list.
2232 	 */
2233 	next_alloc_pfn = 0;
2234 	contig_pfnlist_builds++;	/* count list builds */
2235 out:
2236 	mutex_exit(&contig_list_lock);
2237 	return (ret);
2238 }
2239 
2240 
2241 /*
2242  * Toss the current contig pfnlist.  Someone is about to do a massive
2243  * update to pfn<->mfn mappings.  So we have them destroy the list and lock
2244  * it till they are done with their update.
2245  */
2246 void
2247 clear_and_lock_contig_pfnlist()
2248 {
2249 	pfn_t *listp = NULL;
2250 	size_t listsize;
2251 
2252 	mutex_enter(&contig_list_lock);
2253 	if (contig_pfn_list != NULL) {
2254 		listp = contig_pfn_list;
2255 		listsize = contig_pfn_max * sizeof (pfn_t);
2256 		contig_pfn_list = NULL;
2257 		contig_pfn_max = contig_pfn_cnt = 0;
2258 	}
2259 	if (listp != NULL)
2260 		kmem_free(listp, listsize);
2261 }
2262 
2263 /*
2264  * Unlock the contig_pfn_list.  The next attempted use of it will cause
2265  * it to be re-created.
2266  */
2267 void
2268 unlock_contig_pfnlist()
2269 {
2270 	mutex_exit(&contig_list_lock);
2271 }
2272 
2273 /*
2274  * Update the contiguous pfn list in response to a pfn <-> mfn reassignment
2275  */
2276 void
2277 update_contig_pfnlist(pfn_t pfn, mfn_t oldmfn, mfn_t newmfn)
2278 {
2279 	int probe_hi, probe_lo, probe_pos, insert_after, insert_point;
2280 	pfn_t probe_pfn;
2281 	mfn_t probe_mfn;
2282 	int drop_lock = 0;
2283 
2284 	if (mutex_owner(&contig_list_lock) != curthread) {
2285 		drop_lock = 1;
2286 		mutex_enter(&contig_list_lock);
2287 	}
2288 	if (contig_pfn_list == NULL)
2289 		goto done;
2290 	contig_pfnlist_updates++;
2291 	/*
2292 	 * Find the pfn in the current list.  Use a binary chop to locate it.
2293 	 */
2294 	probe_hi = contig_pfn_cnt - 1;
2295 	probe_lo = 0;
2296 	probe_pos = (probe_hi + probe_lo) / 2;
2297 	while ((probe_pfn = contig_pfn_list[probe_pos]) != pfn) {
2298 		if (probe_pos == probe_lo) { /* pfn not in list */
2299 			probe_pos = -1;
2300 			break;
2301 		}
2302 		if (pfn_to_mfn(probe_pfn) <= oldmfn)
2303 			probe_lo = probe_pos;
2304 		else
2305 			probe_hi = probe_pos;
2306 		probe_pos = (probe_hi + probe_lo) / 2;
2307 	}
2308 	if (probe_pos >= 0) {
2309 		/*
2310 		 * Remove pfn from list and ensure next alloc
2311 		 * position stays in bounds.
2312 		 */
2313 		if (--contig_pfn_cnt <= next_alloc_pfn)
2314 			next_alloc_pfn = 0;
2315 		if (contig_pfn_cnt < 2) { /* no contig pfns */
2316 			contig_pfn_cnt = 0;
2317 			kmem_free(contig_pfn_list,
2318 			    contig_pfn_max * sizeof (pfn_t));
2319 			contig_pfn_list = NULL;
2320 			contig_pfn_max = 0;
2321 			goto done;
2322 		}
2323 		ovbcopy(&contig_pfn_list[probe_pos + 1],
2324 		    &contig_pfn_list[probe_pos],
2325 		    (contig_pfn_cnt - probe_pos) * sizeof (pfn_t));
2326 	}
2327 	if (newmfn == MFN_INVALID)
2328 		goto done;
2329 	/*
2330 	 * Check if new mfn has adjacent mfns in the list
2331 	 */
2332 	probe_hi = contig_pfn_cnt - 1;
2333 	probe_lo = 0;
2334 	insert_after = -2;
2335 	do {
2336 		probe_pos = (probe_hi + probe_lo) / 2;
2337 		probe_mfn = pfn_to_mfn(contig_pfn_list[probe_pos]);
2338 		if (newmfn == probe_mfn + 1)
2339 			insert_after = probe_pos;
2340 		else if (newmfn == probe_mfn - 1)
2341 			insert_after = probe_pos - 1;
2342 		if (probe_pos == probe_lo)
2343 			break;
2344 		if (probe_mfn <= newmfn)
2345 			probe_lo = probe_pos;
2346 		else
2347 			probe_hi = probe_pos;
2348 	} while (insert_after == -2);
2349 	/*
2350 	 * If there is space in the list and there are adjacent mfns
2351 	 * insert the pfn in to its proper place in the list.
2352 	 */
2353 	if (insert_after != -2 && contig_pfn_cnt + 1 <= contig_pfn_max) {
2354 		insert_point = insert_after + 1;
2355 		ovbcopy(&contig_pfn_list[insert_point],
2356 		    &contig_pfn_list[insert_point + 1],
2357 		    (contig_pfn_cnt - insert_point) * sizeof (pfn_t));
2358 		contig_pfn_list[insert_point] = pfn;
2359 		contig_pfn_cnt++;
2360 	}
2361 done:
2362 	if (drop_lock)
2363 		mutex_exit(&contig_list_lock);
2364 }
2365 
2366 /*
2367  * Called to (re-)populate the io_pool from the free page lists.
2368  */
2369 long
2370 populate_io_pool(void)
2371 {
2372 	pfn_t pfn;
2373 	mfn_t mfn, max_mfn;
2374 	page_t *pp;
2375 
2376 	/*
2377 	 * Figure out the bounds of the pool on first invocation.
2378 	 * We use a percentage of memory for the io pool size.
2379 	 * we allow that to shrink, but not to less than a fixed minimum
2380 	 */
2381 	if (io_pool_cnt_max == 0) {
2382 		io_pool_cnt_max = physmem / (100 / io_pool_physmem_pct);
2383 		io_pool_cnt_lowater = io_pool_cnt_max;
2384 		/*
2385 		 * This is the first time in populate_io_pool, grab a va to use
2386 		 * when we need to allocate pages.
2387 		 */
2388 		io_pool_kva = vmem_alloc(heap_arena, PAGESIZE, VM_SLEEP);
2389 	}
2390 	/*
2391 	 * If we are out of pages in the pool, then grow the size of the pool
2392 	 */
2393 	if (io_pool_cnt == 0) {
2394 		/*
2395 		 * Grow the max size of the io pool by 5%, but never more than
2396 		 * 25% of physical memory.
2397 		 */
2398 		if (io_pool_cnt_max < physmem / 4)
2399 			io_pool_cnt_max += io_pool_cnt_max / 20;
2400 	}
2401 	io_pool_grows++;	/* should be a kstat? */
2402 
2403 	/*
2404 	 * Get highest mfn on this platform, but limit to the 32 bit DMA max.
2405 	 */
2406 	(void) mfn_to_pfn(start_mfn);
2407 	max_mfn = MIN(cached_max_mfn, PFN_4GIG);
2408 	for (mfn = start_mfn; mfn < max_mfn; start_mfn = ++mfn) {
2409 		pfn = mfn_to_pfn(mfn);
2410 		if (pfn & PFN_IS_FOREIGN_MFN)
2411 			continue;
2412 		/*
2413 		 * try to allocate it from free pages
2414 		 */
2415 		pp = page_numtopp_alloc(pfn);
2416 		if (pp == NULL)
2417 			continue;
2418 		PP_CLRFREE(pp);
2419 		add_page_to_pool(pp, 1);
2420 		if (io_pool_cnt >= io_pool_cnt_max)
2421 			break;
2422 	}
2423 
2424 	return (io_pool_cnt);
2425 }
2426 
2427 /*
2428  * Destroy a page that was being used for DMA I/O. It may or
2429  * may not actually go back to the io_pool.
2430  */
2431 void
2432 page_destroy_io(page_t *pp)
2433 {
2434 	mfn_t mfn = mfn_list[pp->p_pagenum];
2435 
2436 	/*
2437 	 * When the page was alloc'd a reservation was made, release it now
2438 	 */
2439 	page_unresv(1);
2440 	/*
2441 	 * Unload translations, if any, then hash out the
2442 	 * page to erase its identity.
2443 	 */
2444 	(void) hat_pageunload(pp, HAT_FORCE_PGUNLOAD);
2445 	page_hashout(pp, NULL);
2446 
2447 	/*
2448 	 * If the page came from the free lists, just put it back to them.
2449 	 * DomU pages always go on the free lists as well.
2450 	 */
2451 	if (!DOMAIN_IS_INITDOMAIN(xen_info) || mfn >= PFN_4GIG) {
2452 		page_free(pp, 1);
2453 		return;
2454 	}
2455 
2456 	add_page_to_pool(pp, 0);
2457 }
2458 
2459 
2460 long contig_searches;		/* count of times contig pages requested */
2461 long contig_search_restarts;	/* count of contig ranges tried */
2462 long contig_search_failed;	/* count of contig alloc failures */
2463 
2464 /*
2465  * Free partial page list
2466  */
2467 static void
2468 free_partial_list(page_t **pplist)
2469 {
2470 	page_t *pp;
2471 
2472 	while (*pplist != NULL) {
2473 		pp = *pplist;
2474 		page_io_pool_sub(pplist, pp, pp);
2475 		page_free(pp, 1);
2476 	}
2477 }
2478 
2479 /*
2480  * Look thru the contiguous pfns that are not part of the io_pool for
2481  * contiguous free pages.  Return a list of the found pages or NULL.
2482  */
2483 page_t *
2484 find_contig_free(uint_t npages, uint_t flags, uint64_t pfnseg,
2485     pgcnt_t pfnalign)
2486 {
2487 	page_t *pp, *plist = NULL;
2488 	mfn_t mfn, prev_mfn, start_mfn;
2489 	pfn_t pfn;
2490 	int pages_needed, pages_requested;
2491 	int search_start;
2492 
2493 	/*
2494 	 * create the contig pfn list if not already done
2495 	 */
2496 retry:
2497 	mutex_enter(&contig_list_lock);
2498 	if (contig_pfn_list == NULL) {
2499 		mutex_exit(&contig_list_lock);
2500 		if (!create_contig_pfnlist(flags)) {
2501 			return (NULL);
2502 		}
2503 		goto retry;
2504 	}
2505 	contig_searches++;
2506 	/*
2507 	 * Search contiguous pfn list for physically contiguous pages not in
2508 	 * the io_pool.  Start the search where the last search left off.
2509 	 */
2510 	pages_requested = pages_needed = npages;
2511 	search_start = next_alloc_pfn;
2512 	start_mfn = prev_mfn = 0;
2513 	while (pages_needed) {
2514 		pfn = contig_pfn_list[next_alloc_pfn];
2515 		mfn = pfn_to_mfn(pfn);
2516 		/*
2517 		 * Check if mfn is first one or contig to previous one and
2518 		 * if page corresponding to mfn is free and that mfn
2519 		 * range is not crossing a segment boundary.
2520 		 */
2521 		if ((prev_mfn == 0 || mfn == prev_mfn + 1) &&
2522 		    (pp = page_numtopp_alloc(pfn)) != NULL &&
2523 		    !((mfn & pfnseg) < (start_mfn & pfnseg))) {
2524 			PP_CLRFREE(pp);
2525 			page_io_pool_add(&plist, pp);
2526 			pages_needed--;
2527 			if (prev_mfn == 0) {
2528 				if (pfnalign &&
2529 				    mfn != P2ROUNDUP(mfn, pfnalign)) {
2530 					/*
2531 					 * not properly aligned
2532 					 */
2533 					contig_search_restarts++;
2534 					free_partial_list(&plist);
2535 					pages_needed = pages_requested;
2536 					start_mfn = prev_mfn = 0;
2537 					goto skip;
2538 				}
2539 				start_mfn = mfn;
2540 			}
2541 			prev_mfn = mfn;
2542 		} else {
2543 			contig_search_restarts++;
2544 			free_partial_list(&plist);
2545 			pages_needed = pages_requested;
2546 			start_mfn = prev_mfn = 0;
2547 		}
2548 skip:
2549 		if (++next_alloc_pfn == contig_pfn_cnt)
2550 			next_alloc_pfn = 0;
2551 		if (next_alloc_pfn == search_start)
2552 			break; /* all pfns searched */
2553 	}
2554 	mutex_exit(&contig_list_lock);
2555 	if (pages_needed) {
2556 		contig_search_failed++;
2557 		/*
2558 		 * Failed to find enough contig pages.
2559 		 * free partial page list
2560 		 */
2561 		free_partial_list(&plist);
2562 	}
2563 	return (plist);
2564 }
2565 
2566 /*
2567  * Search the reserved io pool pages for a page range with the
2568  * desired characteristics.
2569  */
2570 page_t *
2571 page_io_pool_alloc(ddi_dma_attr_t *mattr, int contig, pgcnt_t minctg)
2572 {
2573 	page_t *pp_first, *pp_last;
2574 	page_t *pp, **poolp;
2575 	pgcnt_t nwanted, pfnalign;
2576 	uint64_t pfnseg;
2577 	mfn_t mfn, tmfn, hi_mfn, lo_mfn;
2578 	int align, attempt = 0;
2579 
2580 	if (minctg == 1)
2581 		contig = 0;
2582 	lo_mfn = mmu_btop(mattr->dma_attr_addr_lo);
2583 	hi_mfn = mmu_btop(mattr->dma_attr_addr_hi);
2584 	pfnseg = mmu_btop(mattr->dma_attr_seg);
2585 	align = maxbit(mattr->dma_attr_align, mattr->dma_attr_minxfer);
2586 	if (align > MMU_PAGESIZE)
2587 		pfnalign = mmu_btop(align);
2588 	else
2589 		pfnalign = 0;
2590 
2591 try_again:
2592 	/*
2593 	 * See if we want pages for a legacy device
2594 	 */
2595 	if (hi_mfn < PFN_16MEG)
2596 		poolp = &io_pool_16m;
2597 	else
2598 		poolp = &io_pool_4g;
2599 try_smaller:
2600 	/*
2601 	 * Take pages from I/O pool. We'll use pages from the highest
2602 	 * MFN range possible.
2603 	 */
2604 	pp_first = pp_last = NULL;
2605 	mutex_enter(&io_pool_lock);
2606 	nwanted = minctg;
2607 	for (pp = *poolp; pp && nwanted > 0; ) {
2608 		pp = pp->p_prev;
2609 
2610 		/*
2611 		 * skip pages above allowable range
2612 		 */
2613 		mfn = mfn_list[pp->p_pagenum];
2614 		if (hi_mfn < mfn)
2615 			goto skip;
2616 
2617 		/*
2618 		 * stop at pages below allowable range
2619 		 */
2620 		if (lo_mfn > mfn)
2621 			break;
2622 restart:
2623 		if (pp_last == NULL) {
2624 			/*
2625 			 * Check alignment
2626 			 */
2627 			tmfn = mfn - (minctg - 1);
2628 			if (pfnalign && tmfn != P2ROUNDUP(tmfn, pfnalign))
2629 				goto skip; /* not properly aligned */
2630 			/*
2631 			 * Check segment
2632 			 */
2633 			if ((mfn & pfnseg) < (tmfn & pfnseg))
2634 				goto skip; /* crosses seg boundary */
2635 			/*
2636 			 * Start building page list
2637 			 */
2638 			pp_first = pp_last = pp;
2639 			nwanted--;
2640 		} else {
2641 			/*
2642 			 * check physical contiguity if required
2643 			 */
2644 			if (contig &&
2645 			    mfn_list[pp_first->p_pagenum] != mfn + 1) {
2646 				/*
2647 				 * not a contiguous page, restart list.
2648 				 */
2649 				pp_last = NULL;
2650 				nwanted = minctg;
2651 				goto restart;
2652 			} else { /* add page to list */
2653 				pp_first = pp;
2654 				nwanted--;
2655 			}
2656 		}
2657 skip:
2658 		if (pp == *poolp)
2659 			break;
2660 	}
2661 
2662 	/*
2663 	 * If we didn't find memory. Try the more constrained pool, then
2664 	 * sweep free pages into the DMA pool and try again.
2665 	 */
2666 	if (nwanted != 0) {
2667 		mutex_exit(&io_pool_lock);
2668 		/*
2669 		 * If we were looking in the less constrained pool and
2670 		 * didn't find pages, try the more constrained pool.
2671 		 */
2672 		if (poolp == &io_pool_4g) {
2673 			poolp = &io_pool_16m;
2674 			goto try_smaller;
2675 		}
2676 		kmem_reap();
2677 		if (++attempt < 4) {
2678 			/*
2679 			 * Grab some more io_pool pages
2680 			 */
2681 			(void) populate_io_pool();
2682 			goto try_again; /* go around and retry */
2683 		}
2684 		return (NULL);
2685 	}
2686 	/*
2687 	 * Found the pages, now snip them from the list
2688 	 */
2689 	page_io_pool_sub(poolp, pp_first, pp_last);
2690 	io_pool_cnt -= minctg;
2691 	/*
2692 	 * reset low water mark
2693 	 */
2694 	if (io_pool_cnt < io_pool_cnt_lowater)
2695 		io_pool_cnt_lowater = io_pool_cnt;
2696 	mutex_exit(&io_pool_lock);
2697 	return (pp_first);
2698 }
2699 
2700 page_t *
2701 page_swap_with_hypervisor(struct vnode *vp, u_offset_t off, caddr_t vaddr,
2702     ddi_dma_attr_t *mattr, uint_t flags, pgcnt_t minctg)
2703 {
2704 	uint_t kflags;
2705 	int order, extra, extpages, i, contig, nbits, extents;
2706 	page_t *pp, *expp, *pp_first, **pplist = NULL;
2707 	mfn_t *mfnlist = NULL;
2708 
2709 	contig = flags & PG_PHYSCONTIG;
2710 	if (minctg == 1)
2711 		contig = 0;
2712 	flags &= ~PG_PHYSCONTIG;
2713 	kflags = flags & PG_WAIT ? KM_SLEEP : KM_NOSLEEP;
2714 	/*
2715 	 * Hypervisor will allocate extents, if we want contig
2716 	 * pages extent must be >= minctg
2717 	 */
2718 	if (contig) {
2719 		order = highbit(minctg) - 1;
2720 		if (minctg & ((1 << order) - 1))
2721 			order++;
2722 		extpages = 1 << order;
2723 	} else {
2724 		order = 0;
2725 		extpages = minctg;
2726 	}
2727 	if (extpages > minctg) {
2728 		extra = extpages - minctg;
2729 		if (!page_resv(extra, kflags))
2730 			return (NULL);
2731 	}
2732 	pp_first = NULL;
2733 	pplist = kmem_alloc(extpages * sizeof (page_t *), kflags);
2734 	if (pplist == NULL)
2735 		goto balloon_fail;
2736 	mfnlist = kmem_alloc(extpages * sizeof (mfn_t), kflags);
2737 	if (mfnlist == NULL)
2738 		goto balloon_fail;
2739 	pp = page_create_va(vp, off, minctg * PAGESIZE, flags, &kvseg, vaddr);
2740 	if (pp == NULL)
2741 		goto balloon_fail;
2742 	pp_first = pp;
2743 	if (extpages > minctg) {
2744 		/*
2745 		 * fill out the rest of extent pages to swap
2746 		 * with the hypervisor
2747 		 */
2748 		for (i = 0; i < extra; i++) {
2749 			expp = page_create_va(vp,
2750 			    (u_offset_t)(uintptr_t)io_pool_kva,
2751 			    PAGESIZE, flags, &kvseg, io_pool_kva);
2752 			if (expp == NULL)
2753 				goto balloon_fail;
2754 			(void) hat_pageunload(expp, HAT_FORCE_PGUNLOAD);
2755 			page_io_unlock(expp);
2756 			page_hashout(expp, NULL);
2757 			page_io_lock(expp);
2758 			/*
2759 			 * add page to end of list
2760 			 */
2761 			expp->p_prev = pp_first->p_prev;
2762 			expp->p_next = pp_first;
2763 			expp->p_prev->p_next = expp;
2764 			pp_first->p_prev = expp;
2765 		}
2766 
2767 	}
2768 	for (i = 0; i < extpages; i++) {
2769 		pplist[i] = pp;
2770 		pp = pp->p_next;
2771 	}
2772 	nbits = highbit(mattr->dma_attr_addr_hi);
2773 	extents = contig ? 1 : minctg;
2774 	if (balloon_replace_pages(extents, pplist, nbits, order,
2775 	    mfnlist) != extents) {
2776 		if (ioalloc_dbg)
2777 			cmn_err(CE_NOTE, "request to hypervisor"
2778 			    " for %d pages, maxaddr %" PRIx64 " failed",
2779 			    extpages, mattr->dma_attr_addr_hi);
2780 		goto balloon_fail;
2781 	}
2782 
2783 	kmem_free(pplist, extpages * sizeof (page_t *));
2784 	kmem_free(mfnlist, extpages * sizeof (mfn_t));
2785 	/*
2786 	 * Return any excess pages to free list
2787 	 */
2788 	if (extpages > minctg) {
2789 		for (i = 0; i < extra; i++) {
2790 			pp = pp_first->p_prev;
2791 			page_sub(&pp_first, pp);
2792 			page_io_unlock(pp);
2793 			page_unresv(1);
2794 			page_free(pp, 1);
2795 		}
2796 	}
2797 	return (pp_first);
2798 balloon_fail:
2799 	/*
2800 	 * Return pages to free list and return failure
2801 	 */
2802 	while (pp_first != NULL) {
2803 		pp = pp_first;
2804 		page_sub(&pp_first, pp);
2805 		page_io_unlock(pp);
2806 		if (pp->p_vnode != NULL)
2807 			page_hashout(pp, NULL);
2808 		page_free(pp, 1);
2809 	}
2810 	if (pplist)
2811 		kmem_free(pplist, extpages * sizeof (page_t *));
2812 	if (mfnlist)
2813 		kmem_free(mfnlist, extpages * sizeof (mfn_t));
2814 	page_unresv(extpages - minctg);
2815 	return (NULL);
2816 }
2817 
2818 static void
2819 return_partial_alloc(page_t *plist)
2820 {
2821 	page_t *pp;
2822 
2823 	while (plist != NULL) {
2824 		pp = plist;
2825 		page_sub(&plist, pp);
2826 		page_io_unlock(pp);
2827 		page_destroy_io(pp);
2828 	}
2829 }
2830 
2831 static page_t *
2832 page_get_contigpages(
2833 	struct vnode	*vp,
2834 	u_offset_t	off,
2835 	int		*npagesp,
2836 	uint_t		flags,
2837 	caddr_t		vaddr,
2838 	ddi_dma_attr_t	*mattr)
2839 {
2840 	mfn_t	max_mfn = HYPERVISOR_memory_op(XENMEM_maximum_ram_page, NULL);
2841 	page_t	*plist;	/* list to return */
2842 	page_t	*pp, *mcpl;
2843 	int	contig, anyaddr, npages, getone = 0;
2844 	mfn_t	lo_mfn;
2845 	mfn_t	hi_mfn;
2846 	pgcnt_t	pfnalign = 0;
2847 	int	align, sgllen;
2848 	uint64_t pfnseg;
2849 	pgcnt_t	minctg;
2850 
2851 	npages = *npagesp;
2852 	ASSERT(mattr != NULL);
2853 	lo_mfn = mmu_btop(mattr->dma_attr_addr_lo);
2854 	hi_mfn = mmu_btop(mattr->dma_attr_addr_hi);
2855 	sgllen = mattr->dma_attr_sgllen;
2856 	pfnseg = mmu_btop(mattr->dma_attr_seg);
2857 	align = maxbit(mattr->dma_attr_align, mattr->dma_attr_minxfer);
2858 	if (align > MMU_PAGESIZE)
2859 		pfnalign = mmu_btop(align);
2860 
2861 	contig = flags & PG_PHYSCONTIG;
2862 	if (npages == -1) {
2863 		npages = 1;
2864 		pfnalign = 0;
2865 	}
2866 	/*
2867 	 * Clear the contig flag if only one page is needed.
2868 	 */
2869 	if (npages == 1) {
2870 		getone = 1;
2871 		contig = 0;
2872 	}
2873 
2874 	/*
2875 	 * Check if any page in the system is fine.
2876 	 */
2877 	anyaddr = lo_mfn == 0 && hi_mfn >= max_mfn;
2878 	if (!contig && anyaddr && !pfnalign) {
2879 		flags &= ~PG_PHYSCONTIG;
2880 		plist = page_create_va(vp, off, npages * MMU_PAGESIZE,
2881 		    flags, &kvseg, vaddr);
2882 		if (plist != NULL) {
2883 			*npagesp = 0;
2884 			return (plist);
2885 		}
2886 	}
2887 	plist = NULL;
2888 	minctg = howmany(npages, sgllen);
2889 	while (npages > sgllen || getone) {
2890 		if (minctg > npages)
2891 			minctg = npages;
2892 		mcpl = NULL;
2893 		/*
2894 		 * We could want contig pages with no address range limits.
2895 		 */
2896 		if (anyaddr && contig) {
2897 			/*
2898 			 * Look for free contig pages to satisfy the request.
2899 			 */
2900 			mcpl = find_contig_free(minctg, flags, pfnseg,
2901 			    pfnalign);
2902 		}
2903 		/*
2904 		 * Try the reserved io pools next
2905 		 */
2906 		if (mcpl == NULL)
2907 			mcpl = page_io_pool_alloc(mattr, contig, minctg);
2908 		if (mcpl != NULL) {
2909 			pp = mcpl;
2910 			do {
2911 				if (!page_hashin(pp, vp, off, NULL)) {
2912 					panic("page_get_contigpages:"
2913 					    " hashin failed"
2914 					    " pp %p, vp %p, off %llx",
2915 					    (void *)pp, (void *)vp, off);
2916 				}
2917 				off += MMU_PAGESIZE;
2918 				PP_CLRFREE(pp);
2919 				PP_CLRAGED(pp);
2920 				page_set_props(pp, P_REF);
2921 				page_io_lock(pp);
2922 				pp = pp->p_next;
2923 			} while (pp != mcpl);
2924 		} else {
2925 			/*
2926 			 * Hypervisor exchange doesn't handle segment or
2927 			 * alignment constraints
2928 			 */
2929 			if (mattr->dma_attr_seg < mattr->dma_attr_addr_hi ||
2930 			    pfnalign)
2931 				goto fail;
2932 			/*
2933 			 * Try exchanging pages with the hypervisor
2934 			 */
2935 			mcpl = page_swap_with_hypervisor(vp, off, vaddr, mattr,
2936 			    flags, minctg);
2937 			if (mcpl == NULL)
2938 				goto fail;
2939 			off += minctg * MMU_PAGESIZE;
2940 		}
2941 		check_dma(mattr, mcpl, minctg);
2942 		/*
2943 		 * Here with a minctg run of contiguous pages, add them to the
2944 		 * list we will return for this request.
2945 		 */
2946 		page_list_concat(&plist, &mcpl);
2947 		npages -= minctg;
2948 		*npagesp = npages;
2949 		sgllen--;
2950 		if (getone)
2951 			break;
2952 	}
2953 	return (plist);
2954 fail:
2955 	return_partial_alloc(plist);
2956 	return (NULL);
2957 }
2958 
2959 /*
2960  * Allocator for domain 0 I/O pages. We match the required
2961  * DMA attributes and contiguity constraints.
2962  */
2963 /*ARGSUSED*/
2964 page_t *
2965 page_create_io(
2966 	struct vnode	*vp,
2967 	u_offset_t	off,
2968 	uint_t		bytes,
2969 	uint_t		flags,
2970 	struct as	*as,
2971 	caddr_t		vaddr,
2972 	ddi_dma_attr_t	*mattr)
2973 {
2974 	page_t	*plist = NULL, *pp;
2975 	int	npages = 0, contig, anyaddr, pages_req;
2976 	mfn_t	lo_mfn;
2977 	mfn_t	hi_mfn;
2978 	pgcnt_t	pfnalign = 0;
2979 	int	align;
2980 	int	is_domu = 0;
2981 	int	dummy, bytes_got;
2982 	mfn_t	max_mfn = HYPERVISOR_memory_op(XENMEM_maximum_ram_page, NULL);
2983 
2984 	ASSERT(mattr != NULL);
2985 	lo_mfn = mmu_btop(mattr->dma_attr_addr_lo);
2986 	hi_mfn = mmu_btop(mattr->dma_attr_addr_hi);
2987 	align = maxbit(mattr->dma_attr_align, mattr->dma_attr_minxfer);
2988 	if (align > MMU_PAGESIZE)
2989 		pfnalign = mmu_btop(align);
2990 
2991 	/*
2992 	 * Clear the contig flag if only one page is needed or the scatter
2993 	 * gather list length is >= npages.
2994 	 */
2995 	pages_req = npages = mmu_btopr(bytes);
2996 	contig = (flags & PG_PHYSCONTIG);
2997 	bytes = P2ROUNDUP(bytes, MMU_PAGESIZE);
2998 	if (bytes == MMU_PAGESIZE || mattr->dma_attr_sgllen >= npages)
2999 		contig = 0;
3000 
3001 	/*
3002 	 * Check if any old page in the system is fine.
3003 	 * DomU should always go down this path.
3004 	 */
3005 	is_domu = !DOMAIN_IS_INITDOMAIN(xen_info);
3006 	anyaddr = lo_mfn == 0 && hi_mfn >= max_mfn && !pfnalign;
3007 	if ((!contig && anyaddr) || is_domu) {
3008 		flags &= ~PG_PHYSCONTIG;
3009 		plist = page_create_va(vp, off, bytes, flags, &kvseg, vaddr);
3010 		if (plist != NULL)
3011 			return (plist);
3012 		else if (is_domu)
3013 			return (NULL); /* no memory available */
3014 	}
3015 	/*
3016 	 * DomU should never reach here
3017 	 */
3018 	if (contig) {
3019 		plist = page_get_contigpages(vp, off, &npages, flags, vaddr,
3020 		    mattr);
3021 		if (plist == NULL)
3022 			goto fail;
3023 		bytes_got = (pages_req - npages) << MMU_PAGESHIFT;
3024 		vaddr += bytes_got;
3025 		off += bytes_got;
3026 		/*
3027 		 * We now have all the contiguous pages we need, but
3028 		 * we may still need additional non-contiguous pages.
3029 		 */
3030 	}
3031 	/*
3032 	 * now loop collecting the requested number of pages, these do
3033 	 * not have to be contiguous pages but we will use the contig
3034 	 * page alloc code to get the pages since it will honor any
3035 	 * other constraints the pages may have.
3036 	 */
3037 	while (npages--) {
3038 		dummy = -1;
3039 		pp = page_get_contigpages(vp, off, &dummy, flags, vaddr, mattr);
3040 		if (pp == NULL)
3041 			goto fail;
3042 		page_add(&plist, pp);
3043 		vaddr += MMU_PAGESIZE;
3044 		off += MMU_PAGESIZE;
3045 	}
3046 	return (plist);
3047 fail:
3048 	/*
3049 	 * Failed to get enough pages, return ones we did get
3050 	 */
3051 	return_partial_alloc(plist);
3052 	return (NULL);
3053 }
3054 
3055 /*
3056  * Lock and return the page with the highest mfn that we can find.  last_mfn
3057  * holds the last one found, so the next search can start from there.  We
3058  * also keep a counter so that we don't loop forever if the machine has no
3059  * free pages.
3060  *
3061  * This is called from the balloon thread to find pages to give away.  new_high
3062  * is used when new mfn's have been added to the system - we will reset our
3063  * search if the new mfn's are higher than our current search position.
3064  */
3065 page_t *
3066 page_get_high_mfn(mfn_t new_high)
3067 {
3068 	static mfn_t last_mfn = 0;
3069 	pfn_t pfn;
3070 	page_t *pp;
3071 	ulong_t loop_count = 0;
3072 
3073 	if (new_high > last_mfn)
3074 		last_mfn = new_high;
3075 
3076 	for (; loop_count < mfn_count; loop_count++, last_mfn--) {
3077 		if (last_mfn == 0) {
3078 			last_mfn = cached_max_mfn;
3079 		}
3080 
3081 		pfn = mfn_to_pfn(last_mfn);
3082 		if (pfn & PFN_IS_FOREIGN_MFN)
3083 			continue;
3084 
3085 		/* See if the page is free.  If so, lock it. */
3086 		pp = page_numtopp_alloc(pfn);
3087 		if (pp == NULL)
3088 			continue;
3089 		PP_CLRFREE(pp);
3090 
3091 		ASSERT(PAGE_EXCL(pp));
3092 		ASSERT(pp->p_vnode == NULL);
3093 		ASSERT(!hat_page_is_mapped(pp));
3094 		last_mfn--;
3095 		return (pp);
3096 	}
3097 	return (NULL);
3098 }
3099 
3100 #else /* !__xpv */
3101 
3102 /*
3103  * get a page from any list with the given mnode
3104  */
3105 static page_t *
3106 page_get_mnode_anylist(ulong_t origbin, uchar_t szc, uint_t flags,
3107     int mnode, int mtype, ddi_dma_attr_t *dma_attr)
3108 {
3109 	kmutex_t		*pcm;
3110 	int			i;
3111 	page_t			*pp;
3112 	page_t			*first_pp;
3113 	uint64_t		pgaddr;
3114 	ulong_t			bin;
3115 	int			mtypestart;
3116 	int			plw_initialized;
3117 	page_list_walker_t	plw;
3118 
3119 	VM_STAT_ADD(pga_vmstats.pgma_alloc);
3120 
3121 	ASSERT((flags & PG_MATCH_COLOR) == 0);
3122 	ASSERT(szc == 0);
3123 	ASSERT(dma_attr != NULL);
3124 
3125 	MTYPE_START(mnode, mtype, flags);
3126 	if (mtype < 0) {
3127 		VM_STAT_ADD(pga_vmstats.pgma_allocempty);
3128 		return (NULL);
3129 	}
3130 
3131 	mtypestart = mtype;
3132 
3133 	bin = origbin;
3134 
3135 	/*
3136 	 * check up to page_colors + 1 bins - origbin may be checked twice
3137 	 * because of BIN_STEP skip
3138 	 */
3139 	do {
3140 		plw_initialized = 0;
3141 
3142 		for (plw.plw_count = 0;
3143 		    plw.plw_count < page_colors; plw.plw_count++) {
3144 
3145 			if (PAGE_FREELISTS(mnode, szc, bin, mtype) == NULL)
3146 				goto nextfreebin;
3147 
3148 			pcm = PC_BIN_MUTEX(mnode, bin, PG_FREE_LIST);
3149 			mutex_enter(pcm);
3150 			pp = PAGE_FREELISTS(mnode, szc, bin, mtype);
3151 			first_pp = pp;
3152 			while (pp != NULL) {
3153 				if (IS_DUMP_PAGE(pp) || page_trylock(pp,
3154 				    SE_EXCL) == 0) {
3155 					pp = pp->p_next;
3156 					if (pp == first_pp) {
3157 						pp = NULL;
3158 					}
3159 					continue;
3160 				}
3161 
3162 				ASSERT(PP_ISFREE(pp));
3163 				ASSERT(PP_ISAGED(pp));
3164 				ASSERT(pp->p_vnode == NULL);
3165 				ASSERT(pp->p_hash == NULL);
3166 				ASSERT(pp->p_offset == (u_offset_t)-1);
3167 				ASSERT(pp->p_szc == szc);
3168 				ASSERT(PFN_2_MEM_NODE(pp->p_pagenum) == mnode);
3169 				/* check if page within DMA attributes */
3170 				pgaddr = pa_to_ma(pfn_to_pa(pp->p_pagenum));
3171 				if ((pgaddr >= dma_attr->dma_attr_addr_lo) &&
3172 				    (pgaddr + MMU_PAGESIZE - 1 <=
3173 				    dma_attr->dma_attr_addr_hi)) {
3174 					break;
3175 				}
3176 
3177 				/* continue looking */
3178 				page_unlock(pp);
3179 				pp = pp->p_next;
3180 				if (pp == first_pp)
3181 					pp = NULL;
3182 
3183 			}
3184 			if (pp != NULL) {
3185 				ASSERT(mtype == PP_2_MTYPE(pp));
3186 				ASSERT(pp->p_szc == 0);
3187 
3188 				/* found a page with specified DMA attributes */
3189 				page_sub(&PAGE_FREELISTS(mnode, szc, bin,
3190 				    mtype), pp);
3191 				page_ctr_sub(mnode, mtype, pp, PG_FREE_LIST);
3192 
3193 				if ((PP_ISFREE(pp) == 0) ||
3194 				    (PP_ISAGED(pp) == 0)) {
3195 					cmn_err(CE_PANIC, "page %p is not free",
3196 					    (void *)pp);
3197 				}
3198 
3199 				mutex_exit(pcm);
3200 				check_dma(dma_attr, pp, 1);
3201 				VM_STAT_ADD(pga_vmstats.pgma_allocok);
3202 				return (pp);
3203 			}
3204 			mutex_exit(pcm);
3205 nextfreebin:
3206 			if (plw_initialized == 0) {
3207 				page_list_walk_init(szc, 0, bin, 1, 0, &plw);
3208 				ASSERT(plw.plw_ceq_dif == page_colors);
3209 				plw_initialized = 1;
3210 			}
3211 
3212 			if (plw.plw_do_split) {
3213 				pp = page_freelist_split(szc, bin, mnode,
3214 				    mtype,
3215 				    mmu_btop(dma_attr->dma_attr_addr_lo),
3216 				    mmu_btop(dma_attr->dma_attr_addr_hi + 1),
3217 				    &plw);
3218 				if (pp != NULL) {
3219 					check_dma(dma_attr, pp, 1);
3220 					return (pp);
3221 				}
3222 			}
3223 
3224 			bin = page_list_walk_next_bin(szc, bin, &plw);
3225 		}
3226 
3227 		MTYPE_NEXT(mnode, mtype, flags);
3228 	} while (mtype >= 0);
3229 
3230 	/* failed to find a page in the freelist; try it in the cachelist */
3231 
3232 	/* reset mtype start for cachelist search */
3233 	mtype = mtypestart;
3234 	ASSERT(mtype >= 0);
3235 
3236 	/* start with the bin of matching color */
3237 	bin = origbin;
3238 
3239 	do {
3240 		for (i = 0; i <= page_colors; i++) {
3241 			if (PAGE_CACHELISTS(mnode, bin, mtype) == NULL)
3242 				goto nextcachebin;
3243 			pcm = PC_BIN_MUTEX(mnode, bin, PG_CACHE_LIST);
3244 			mutex_enter(pcm);
3245 			pp = PAGE_CACHELISTS(mnode, bin, mtype);
3246 			first_pp = pp;
3247 			while (pp != NULL) {
3248 				if (IS_DUMP_PAGE(pp) || page_trylock(pp,
3249 				    SE_EXCL) == 0) {
3250 					pp = pp->p_next;
3251 					if (pp == first_pp)
3252 						pp = NULL;
3253 					continue;
3254 				}
3255 				ASSERT(pp->p_vnode);
3256 				ASSERT(PP_ISAGED(pp) == 0);
3257 				ASSERT(pp->p_szc == 0);
3258 				ASSERT(PFN_2_MEM_NODE(pp->p_pagenum) == mnode);
3259 
3260 				/* check if page within DMA attributes */
3261 
3262 				pgaddr = pa_to_ma(pfn_to_pa(pp->p_pagenum));
3263 				if ((pgaddr >= dma_attr->dma_attr_addr_lo) &&
3264 				    (pgaddr + MMU_PAGESIZE - 1 <=
3265 				    dma_attr->dma_attr_addr_hi)) {
3266 					break;
3267 				}
3268 
3269 				/* continue looking */
3270 				page_unlock(pp);
3271 				pp = pp->p_next;
3272 				if (pp == first_pp)
3273 					pp = NULL;
3274 			}
3275 
3276 			if (pp != NULL) {
3277 				ASSERT(mtype == PP_2_MTYPE(pp));
3278 				ASSERT(pp->p_szc == 0);
3279 
3280 				/* found a page with specified DMA attributes */
3281 				page_sub(&PAGE_CACHELISTS(mnode, bin,
3282 				    mtype), pp);
3283 				page_ctr_sub(mnode, mtype, pp, PG_CACHE_LIST);
3284 
3285 				mutex_exit(pcm);
3286 				ASSERT(pp->p_vnode);
3287 				ASSERT(PP_ISAGED(pp) == 0);
3288 				check_dma(dma_attr, pp, 1);
3289 				VM_STAT_ADD(pga_vmstats.pgma_allocok);
3290 				return (pp);
3291 			}
3292 			mutex_exit(pcm);
3293 nextcachebin:
3294 			bin += (i == 0) ? BIN_STEP : 1;
3295 			bin &= page_colors_mask;
3296 		}
3297 		MTYPE_NEXT(mnode, mtype, flags);
3298 	} while (mtype >= 0);
3299 
3300 	VM_STAT_ADD(pga_vmstats.pgma_allocfailed);
3301 	return (NULL);
3302 }
3303 
3304 /*
3305  * This function is similar to page_get_freelist()/page_get_cachelist()
3306  * but it searches both the lists to find a page with the specified
3307  * color (or no color) and DMA attributes. The search is done in the
3308  * freelist first and then in the cache list within the highest memory
3309  * range (based on DMA attributes) before searching in the lower
3310  * memory ranges.
3311  *
3312  * Note: This function is called only by page_create_io().
3313  */
3314 /*ARGSUSED*/
3315 static page_t *
3316 page_get_anylist(struct vnode *vp, u_offset_t off, struct as *as, caddr_t vaddr,
3317     size_t size, uint_t flags, ddi_dma_attr_t *dma_attr, lgrp_t	*lgrp)
3318 {
3319 	uint_t		bin;
3320 	int		mtype;
3321 	page_t		*pp;
3322 	int		n;
3323 	int		m;
3324 	int		szc;
3325 	int		fullrange;
3326 	int		mnode;
3327 	int		local_failed_stat = 0;
3328 	lgrp_mnode_cookie_t	lgrp_cookie;
3329 
3330 	VM_STAT_ADD(pga_vmstats.pga_alloc);
3331 
3332 	/* only base pagesize currently supported */
3333 	if (size != MMU_PAGESIZE)
3334 		return (NULL);
3335 
3336 	/*
3337 	 * If we're passed a specific lgroup, we use it.  Otherwise,
3338 	 * assume first-touch placement is desired.
3339 	 */
3340 	if (!LGRP_EXISTS(lgrp))
3341 		lgrp = lgrp_home_lgrp();
3342 
3343 	/* LINTED */
3344 	AS_2_BIN(as, seg, vp, vaddr, bin, 0);
3345 
3346 	/*
3347 	 * Only hold one freelist or cachelist lock at a time, that way we
3348 	 * can start anywhere and not have to worry about lock
3349 	 * ordering.
3350 	 */
3351 	if (dma_attr == NULL) {
3352 		n = mtype16m;
3353 		m = mtypetop;
3354 		fullrange = 1;
3355 		VM_STAT_ADD(pga_vmstats.pga_nulldmaattr);
3356 	} else {
3357 		pfn_t pfnlo = mmu_btop(dma_attr->dma_attr_addr_lo);
3358 		pfn_t pfnhi = mmu_btop(dma_attr->dma_attr_addr_hi);
3359 
3360 		/*
3361 		 * We can guarantee alignment only for page boundary.
3362 		 */
3363 		if (dma_attr->dma_attr_align > MMU_PAGESIZE)
3364 			return (NULL);
3365 
3366 		/* Sanity check the dma_attr */
3367 		if (pfnlo > pfnhi)
3368 			return (NULL);
3369 
3370 		n = pfn_2_mtype(pfnlo);
3371 		m = pfn_2_mtype(pfnhi);
3372 
3373 		fullrange = ((pfnlo == mnoderanges[n].mnr_pfnlo) &&
3374 		    (pfnhi >= mnoderanges[m].mnr_pfnhi));
3375 	}
3376 	VM_STAT_COND_ADD(fullrange == 0, pga_vmstats.pga_notfullrange);
3377 
3378 	szc = 0;
3379 
3380 	/* cylcing thru mtype handled by RANGE0 if n == mtype16m */
3381 	if (n == mtype16m) {
3382 		flags |= PGI_MT_RANGE0;
3383 		n = m;
3384 	}
3385 
3386 	/*
3387 	 * Try local memory node first, but try remote if we can't
3388 	 * get a page of the right color.
3389 	 */
3390 	LGRP_MNODE_COOKIE_INIT(lgrp_cookie, lgrp, LGRP_SRCH_HIER);
3391 	while ((mnode = lgrp_memnode_choose(&lgrp_cookie)) >= 0) {
3392 		/*
3393 		 * allocate pages from high pfn to low.
3394 		 */
3395 		mtype = m;
3396 		do {
3397 			if (fullrange != 0) {
3398 				pp = page_get_mnode_freelist(mnode,
3399 				    bin, mtype, szc, flags);
3400 				if (pp == NULL) {
3401 					pp = page_get_mnode_cachelist(
3402 					    bin, flags, mnode, mtype);
3403 				}
3404 			} else {
3405 				pp = page_get_mnode_anylist(bin, szc,
3406 				    flags, mnode, mtype, dma_attr);
3407 			}
3408 			if (pp != NULL) {
3409 				VM_STAT_ADD(pga_vmstats.pga_allocok);
3410 				check_dma(dma_attr, pp, 1);
3411 				return (pp);
3412 			}
3413 		} while (mtype != n &&
3414 		    (mtype = mnoderanges[mtype].mnr_next) != -1);
3415 		if (!local_failed_stat) {
3416 			lgrp_stat_add(lgrp->lgrp_id, LGRP_NUM_ALLOC_FAIL, 1);
3417 			local_failed_stat = 1;
3418 		}
3419 	}
3420 	VM_STAT_ADD(pga_vmstats.pga_allocfailed);
3421 
3422 	return (NULL);
3423 }
3424 
3425 /*
3426  * page_create_io()
3427  *
3428  * This function is a copy of page_create_va() with an additional
3429  * argument 'mattr' that specifies DMA memory requirements to
3430  * the page list functions. This function is used by the segkmem
3431  * allocator so it is only to create new pages (i.e PG_EXCL is
3432  * set).
3433  *
3434  * Note: This interface is currently used by x86 PSM only and is
3435  *	 not fully specified so the commitment level is only for
3436  *	 private interface specific to x86. This interface uses PSM
3437  *	 specific page_get_anylist() interface.
3438  */
3439 
3440 #define	PAGE_HASH_SEARCH(index, pp, vp, off) { \
3441 	for ((pp) = page_hash[(index)]; (pp); (pp) = (pp)->p_hash) { \
3442 		if ((pp)->p_vnode == (vp) && (pp)->p_offset == (off)) \
3443 			break; \
3444 	} \
3445 }
3446 
3447 
3448 page_t *
3449 page_create_io(
3450 	struct vnode	*vp,
3451 	u_offset_t	off,
3452 	uint_t		bytes,
3453 	uint_t		flags,
3454 	struct as	*as,
3455 	caddr_t		vaddr,
3456 	ddi_dma_attr_t	*mattr)	/* DMA memory attributes if any */
3457 {
3458 	page_t		*plist = NULL;
3459 	uint_t		plist_len = 0;
3460 	pgcnt_t		npages;
3461 	page_t		*npp = NULL;
3462 	uint_t		pages_req;
3463 	page_t		*pp;
3464 	kmutex_t	*phm = NULL;
3465 	uint_t		index;
3466 
3467 	TRACE_4(TR_FAC_VM, TR_PAGE_CREATE_START,
3468 	    "page_create_start:vp %p off %llx bytes %u flags %x",
3469 	    vp, off, bytes, flags);
3470 
3471 	ASSERT((flags & ~(PG_EXCL | PG_WAIT | PG_PHYSCONTIG)) == 0);
3472 
3473 	pages_req = npages = mmu_btopr(bytes);
3474 
3475 	/*
3476 	 * Do the freemem and pcf accounting.
3477 	 */
3478 	if (!page_create_wait(npages, flags)) {
3479 		return (NULL);
3480 	}
3481 
3482 	TRACE_2(TR_FAC_VM, TR_PAGE_CREATE_SUCCESS,
3483 	    "page_create_success:vp %p off %llx", vp, off);
3484 
3485 	/*
3486 	 * If satisfying this request has left us with too little
3487 	 * memory, start the wheels turning to get some back.  The
3488 	 * first clause of the test prevents waking up the pageout
3489 	 * daemon in situations where it would decide that there's
3490 	 * nothing to do.
3491 	 */
3492 	if (nscan < desscan && freemem < minfree) {
3493 		TRACE_1(TR_FAC_VM, TR_PAGEOUT_CV_SIGNAL,
3494 		    "pageout_cv_signal:freemem %ld", freemem);
3495 		cv_signal(&proc_pageout->p_cv);
3496 	}
3497 
3498 	if (flags & PG_PHYSCONTIG) {
3499 
3500 		plist = page_get_contigpage(&npages, mattr, 1);
3501 		if (plist == NULL) {
3502 			page_create_putback(npages);
3503 			return (NULL);
3504 		}
3505 
3506 		pp = plist;
3507 
3508 		do {
3509 			if (!page_hashin(pp, vp, off, NULL)) {
3510 				panic("pg_creat_io: hashin failed %p %p %llx",
3511 				    (void *)pp, (void *)vp, off);
3512 			}
3513 			VM_STAT_ADD(page_create_new);
3514 			off += MMU_PAGESIZE;
3515 			PP_CLRFREE(pp);
3516 			PP_CLRAGED(pp);
3517 			page_set_props(pp, P_REF);
3518 			pp = pp->p_next;
3519 		} while (pp != plist);
3520 
3521 		if (!npages) {
3522 			check_dma(mattr, plist, pages_req);
3523 			return (plist);
3524 		} else {
3525 			vaddr += (pages_req - npages) << MMU_PAGESHIFT;
3526 		}
3527 
3528 		/*
3529 		 * fall-thru:
3530 		 *
3531 		 * page_get_contigpage returns when npages <= sgllen.
3532 		 * Grab the rest of the non-contig pages below from anylist.
3533 		 */
3534 	}
3535 
3536 	/*
3537 	 * Loop around collecting the requested number of pages.
3538 	 * Most of the time, we have to `create' a new page. With
3539 	 * this in mind, pull the page off the free list before
3540 	 * getting the hash lock.  This will minimize the hash
3541 	 * lock hold time, nesting, and the like.  If it turns
3542 	 * out we don't need the page, we put it back at the end.
3543 	 */
3544 	while (npages--) {
3545 		phm = NULL;
3546 
3547 		index = PAGE_HASH_FUNC(vp, off);
3548 top:
3549 		ASSERT(phm == NULL);
3550 		ASSERT(index == PAGE_HASH_FUNC(vp, off));
3551 		ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp)));
3552 
3553 		if (npp == NULL) {
3554 			/*
3555 			 * Try to get the page of any color either from
3556 			 * the freelist or from the cache list.
3557 			 */
3558 			npp = page_get_anylist(vp, off, as, vaddr, MMU_PAGESIZE,
3559 			    flags & ~PG_MATCH_COLOR, mattr, NULL);
3560 			if (npp == NULL) {
3561 				if (mattr == NULL) {
3562 					/*
3563 					 * Not looking for a special page;
3564 					 * panic!
3565 					 */
3566 					panic("no page found %d", (int)npages);
3567 				}
3568 				/*
3569 				 * No page found! This can happen
3570 				 * if we are looking for a page
3571 				 * within a specific memory range
3572 				 * for DMA purposes. If PG_WAIT is
3573 				 * specified then we wait for a
3574 				 * while and then try again. The
3575 				 * wait could be forever if we
3576 				 * don't get the page(s) we need.
3577 				 *
3578 				 * Note: XXX We really need a mechanism
3579 				 * to wait for pages in the desired
3580 				 * range. For now, we wait for any
3581 				 * pages and see if we can use it.
3582 				 */
3583 
3584 				if ((mattr != NULL) && (flags & PG_WAIT)) {
3585 					delay(10);
3586 					goto top;
3587 				}
3588 				goto fail; /* undo accounting stuff */
3589 			}
3590 
3591 			if (PP_ISAGED(npp) == 0) {
3592 				/*
3593 				 * Since this page came from the
3594 				 * cachelist, we must destroy the
3595 				 * old vnode association.
3596 				 */
3597 				page_hashout(npp, (kmutex_t *)NULL);
3598 			}
3599 		}
3600 
3601 		/*
3602 		 * We own this page!
3603 		 */
3604 		ASSERT(PAGE_EXCL(npp));
3605 		ASSERT(npp->p_vnode == NULL);
3606 		ASSERT(!hat_page_is_mapped(npp));
3607 		PP_CLRFREE(npp);
3608 		PP_CLRAGED(npp);
3609 
3610 		/*
3611 		 * Here we have a page in our hot little mits and are
3612 		 * just waiting to stuff it on the appropriate lists.
3613 		 * Get the mutex and check to see if it really does
3614 		 * not exist.
3615 		 */
3616 		phm = PAGE_HASH_MUTEX(index);
3617 		mutex_enter(phm);
3618 		PAGE_HASH_SEARCH(index, pp, vp, off);
3619 		if (pp == NULL) {
3620 			VM_STAT_ADD(page_create_new);
3621 			pp = npp;
3622 			npp = NULL;
3623 			if (!page_hashin(pp, vp, off, phm)) {
3624 				/*
3625 				 * Since we hold the page hash mutex and
3626 				 * just searched for this page, page_hashin
3627 				 * had better not fail.  If it does, that
3628 				 * means somethread did not follow the
3629 				 * page hash mutex rules.  Panic now and
3630 				 * get it over with.  As usual, go down
3631 				 * holding all the locks.
3632 				 */
3633 				ASSERT(MUTEX_HELD(phm));
3634 				panic("page_create: hashin fail %p %p %llx %p",
3635 				    (void *)pp, (void *)vp, off, (void *)phm);
3636 
3637 			}
3638 			ASSERT(MUTEX_HELD(phm));
3639 			mutex_exit(phm);
3640 			phm = NULL;
3641 
3642 			/*
3643 			 * Hat layer locking need not be done to set
3644 			 * the following bits since the page is not hashed
3645 			 * and was on the free list (i.e., had no mappings).
3646 			 *
3647 			 * Set the reference bit to protect
3648 			 * against immediate pageout
3649 			 *
3650 			 * XXXmh modify freelist code to set reference
3651 			 * bit so we don't have to do it here.
3652 			 */
3653 			page_set_props(pp, P_REF);
3654 		} else {
3655 			ASSERT(MUTEX_HELD(phm));
3656 			mutex_exit(phm);
3657 			phm = NULL;
3658 			/*
3659 			 * NOTE: This should not happen for pages associated
3660 			 *	 with kernel vnode 'kvp'.
3661 			 */
3662 			/* XX64 - to debug why this happens! */
3663 			ASSERT(!VN_ISKAS(vp));
3664 			if (VN_ISKAS(vp))
3665 				cmn_err(CE_NOTE,
3666 				    "page_create: page not expected "
3667 				    "in hash list for kernel vnode - pp 0x%p",
3668 				    (void *)pp);
3669 			VM_STAT_ADD(page_create_exists);
3670 			goto fail;
3671 		}
3672 
3673 		/*
3674 		 * Got a page!  It is locked.  Acquire the i/o
3675 		 * lock since we are going to use the p_next and
3676 		 * p_prev fields to link the requested pages together.
3677 		 */
3678 		page_io_lock(pp);
3679 		page_add(&plist, pp);
3680 		plist = plist->p_next;
3681 		off += MMU_PAGESIZE;
3682 		vaddr += MMU_PAGESIZE;
3683 	}
3684 
3685 	check_dma(mattr, plist, pages_req);
3686 	return (plist);
3687 
3688 fail:
3689 	if (npp != NULL) {
3690 		/*
3691 		 * Did not need this page after all.
3692 		 * Put it back on the free list.
3693 		 */
3694 		VM_STAT_ADD(page_create_putbacks);
3695 		PP_SETFREE(npp);
3696 		PP_SETAGED(npp);
3697 		npp->p_offset = (u_offset_t)-1;
3698 		page_list_add(npp, PG_FREE_LIST | PG_LIST_TAIL);
3699 		page_unlock(npp);
3700 	}
3701 
3702 	/*
3703 	 * Give up the pages we already got.
3704 	 */
3705 	while (plist != NULL) {
3706 		pp = plist;
3707 		page_sub(&plist, pp);
3708 		page_io_unlock(pp);
3709 		plist_len++;
3710 		/*LINTED: constant in conditional ctx*/
3711 		VN_DISPOSE(pp, B_INVAL, 0, kcred);
3712 	}
3713 
3714 	/*
3715 	 * VN_DISPOSE does freemem accounting for the pages in plist
3716 	 * by calling page_free. So, we need to undo the pcf accounting
3717 	 * for only the remaining pages.
3718 	 */
3719 	VM_STAT_ADD(page_create_putbacks);
3720 	page_create_putback(pages_req - plist_len);
3721 
3722 	return (NULL);
3723 }
3724 #endif /* !__xpv */
3725 
3726 
3727 /*
3728  * Copy the data from the physical page represented by "frompp" to
3729  * that represented by "topp". ppcopy uses CPU->cpu_caddr1 and
3730  * CPU->cpu_caddr2.  It assumes that no one uses either map at interrupt
3731  * level and no one sleeps with an active mapping there.
3732  *
3733  * Note that the ref/mod bits in the page_t's are not affected by
3734  * this operation, hence it is up to the caller to update them appropriately.
3735  */
3736 int
3737 ppcopy(page_t *frompp, page_t *topp)
3738 {
3739 	caddr_t		pp_addr1;
3740 	caddr_t		pp_addr2;
3741 	hat_mempte_t	pte1;
3742 	hat_mempte_t	pte2;
3743 	kmutex_t	*ppaddr_mutex;
3744 	label_t		ljb;
3745 	int		ret = 1;
3746 
3747 	ASSERT_STACK_ALIGNED();
3748 	ASSERT(PAGE_LOCKED(frompp));
3749 	ASSERT(PAGE_LOCKED(topp));
3750 
3751 	if (kpm_enable) {
3752 		pp_addr1 = hat_kpm_page2va(frompp, 0);
3753 		pp_addr2 = hat_kpm_page2va(topp, 0);
3754 		kpreempt_disable();
3755 	} else {
3756 		/*
3757 		 * disable pre-emption so that CPU can't change
3758 		 */
3759 		kpreempt_disable();
3760 
3761 		pp_addr1 = CPU->cpu_caddr1;
3762 		pp_addr2 = CPU->cpu_caddr2;
3763 		pte1 = CPU->cpu_caddr1pte;
3764 		pte2 = CPU->cpu_caddr2pte;
3765 
3766 		ppaddr_mutex = &CPU->cpu_ppaddr_mutex;
3767 		mutex_enter(ppaddr_mutex);
3768 
3769 		hat_mempte_remap(page_pptonum(frompp), pp_addr1, pte1,
3770 		    PROT_READ | HAT_STORECACHING_OK, HAT_LOAD_NOCONSIST);
3771 		hat_mempte_remap(page_pptonum(topp), pp_addr2, pte2,
3772 		    PROT_READ | PROT_WRITE | HAT_STORECACHING_OK,
3773 		    HAT_LOAD_NOCONSIST);
3774 	}
3775 
3776 	if (on_fault(&ljb)) {
3777 		ret = 0;
3778 		goto faulted;
3779 	}
3780 	if (use_sse_pagecopy)
3781 #ifdef __xpv
3782 		page_copy_no_xmm(pp_addr2, pp_addr1);
3783 #else
3784 		hwblkpagecopy(pp_addr1, pp_addr2);
3785 #endif
3786 	else
3787 		bcopy(pp_addr1, pp_addr2, PAGESIZE);
3788 
3789 	no_fault();
3790 faulted:
3791 	if (!kpm_enable) {
3792 #ifdef __xpv
3793 		/*
3794 		 * We can't leave unused mappings laying about under the
3795 		 * hypervisor, so blow them away.
3796 		 */
3797 		if (HYPERVISOR_update_va_mapping((uintptr_t)pp_addr1, 0,
3798 		    UVMF_INVLPG | UVMF_LOCAL) < 0)
3799 			panic("HYPERVISOR_update_va_mapping() failed");
3800 		if (HYPERVISOR_update_va_mapping((uintptr_t)pp_addr2, 0,
3801 		    UVMF_INVLPG | UVMF_LOCAL) < 0)
3802 			panic("HYPERVISOR_update_va_mapping() failed");
3803 #endif
3804 		mutex_exit(ppaddr_mutex);
3805 	}
3806 	kpreempt_enable();
3807 	return (ret);
3808 }
3809 
3810 void
3811 pagezero(page_t *pp, uint_t off, uint_t len)
3812 {
3813 	ASSERT(PAGE_LOCKED(pp));
3814 	pfnzero(page_pptonum(pp), off, len);
3815 }
3816 
3817 /*
3818  * Zero the physical page from off to off + len given by pfn
3819  * without changing the reference and modified bits of page.
3820  *
3821  * We use this using CPU private page address #2, see ppcopy() for more info.
3822  * pfnzero() must not be called at interrupt level.
3823  */
3824 void
3825 pfnzero(pfn_t pfn, uint_t off, uint_t len)
3826 {
3827 	caddr_t		pp_addr2;
3828 	hat_mempte_t	pte2;
3829 	kmutex_t	*ppaddr_mutex = NULL;
3830 
3831 	ASSERT_STACK_ALIGNED();
3832 	ASSERT(len <= MMU_PAGESIZE);
3833 	ASSERT(off <= MMU_PAGESIZE);
3834 	ASSERT(off + len <= MMU_PAGESIZE);
3835 
3836 	if (kpm_enable && !pfn_is_foreign(pfn)) {
3837 		pp_addr2 = hat_kpm_pfn2va(pfn);
3838 		kpreempt_disable();
3839 	} else {
3840 		kpreempt_disable();
3841 
3842 		pp_addr2 = CPU->cpu_caddr2;
3843 		pte2 = CPU->cpu_caddr2pte;
3844 
3845 		ppaddr_mutex = &CPU->cpu_ppaddr_mutex;
3846 		mutex_enter(ppaddr_mutex);
3847 
3848 		hat_mempte_remap(pfn, pp_addr2, pte2,
3849 		    PROT_READ | PROT_WRITE | HAT_STORECACHING_OK,
3850 		    HAT_LOAD_NOCONSIST);
3851 	}
3852 
3853 	if (use_sse_pagezero) {
3854 #ifdef __xpv
3855 		uint_t rem;
3856 
3857 		/*
3858 		 * zero a byte at a time until properly aligned for
3859 		 * block_zero_no_xmm().
3860 		 */
3861 		while (!P2NPHASE(off, ((uint_t)BLOCKZEROALIGN)) && len-- > 0)
3862 			pp_addr2[off++] = 0;
3863 
3864 		/*
3865 		 * Now use faster block_zero_no_xmm() for any range
3866 		 * that is properly aligned and sized.
3867 		 */
3868 		rem = P2PHASE(len, ((uint_t)BLOCKZEROALIGN));
3869 		len -= rem;
3870 		if (len != 0) {
3871 			block_zero_no_xmm(pp_addr2 + off, len);
3872 			off += len;
3873 		}
3874 
3875 		/*
3876 		 * zero remainder with byte stores.
3877 		 */
3878 		while (rem-- > 0)
3879 			pp_addr2[off++] = 0;
3880 #else
3881 		hwblkclr(pp_addr2 + off, len);
3882 #endif
3883 	} else {
3884 		bzero(pp_addr2 + off, len);
3885 	}
3886 
3887 	if (!kpm_enable || pfn_is_foreign(pfn)) {
3888 #ifdef __xpv
3889 		/*
3890 		 * On the hypervisor this page might get used for a page
3891 		 * table before any intervening change to this mapping,
3892 		 * so blow it away.
3893 		 */
3894 		if (HYPERVISOR_update_va_mapping((uintptr_t)pp_addr2, 0,
3895 		    UVMF_INVLPG) < 0)
3896 			panic("HYPERVISOR_update_va_mapping() failed");
3897 #endif
3898 		mutex_exit(ppaddr_mutex);
3899 	}
3900 
3901 	kpreempt_enable();
3902 }
3903 
3904 /*
3905  * Platform-dependent page scrub call.
3906  */
3907 void
3908 pagescrub(page_t *pp, uint_t off, uint_t len)
3909 {
3910 	/*
3911 	 * For now, we rely on the fact that pagezero() will
3912 	 * always clear UEs.
3913 	 */
3914 	pagezero(pp, off, len);
3915 }
3916 
3917 /*
3918  * set up two private addresses for use on a given CPU for use in ppcopy()
3919  */
3920 void
3921 setup_vaddr_for_ppcopy(struct cpu *cpup)
3922 {
3923 	void *addr;
3924 	hat_mempte_t pte_pa;
3925 
3926 	addr = vmem_alloc(heap_arena, mmu_ptob(1), VM_SLEEP);
3927 	pte_pa = hat_mempte_setup(addr);
3928 	cpup->cpu_caddr1 = addr;
3929 	cpup->cpu_caddr1pte = pte_pa;
3930 
3931 	addr = vmem_alloc(heap_arena, mmu_ptob(1), VM_SLEEP);
3932 	pte_pa = hat_mempte_setup(addr);
3933 	cpup->cpu_caddr2 = addr;
3934 	cpup->cpu_caddr2pte = pte_pa;
3935 
3936 	mutex_init(&cpup->cpu_ppaddr_mutex, NULL, MUTEX_DEFAULT, NULL);
3937 }
3938 
3939 /*
3940  * Undo setup_vaddr_for_ppcopy
3941  */
3942 void
3943 teardown_vaddr_for_ppcopy(struct cpu *cpup)
3944 {
3945 	mutex_destroy(&cpup->cpu_ppaddr_mutex);
3946 
3947 	hat_mempte_release(cpup->cpu_caddr2, cpup->cpu_caddr2pte);
3948 	cpup->cpu_caddr2pte = 0;
3949 	vmem_free(heap_arena, cpup->cpu_caddr2, mmu_ptob(1));
3950 	cpup->cpu_caddr2 = 0;
3951 
3952 	hat_mempte_release(cpup->cpu_caddr1, cpup->cpu_caddr1pte);
3953 	cpup->cpu_caddr1pte = 0;
3954 	vmem_free(heap_arena, cpup->cpu_caddr1, mmu_ptob(1));
3955 	cpup->cpu_caddr1 = 0;
3956 }
3957 
3958 /*
3959  * Function for flushing D-cache when performing module relocations
3960  * to an alternate mapping.  Unnecessary on Intel / AMD platforms.
3961  */
3962 void
3963 dcache_flushall()
3964 {}
3965 
3966 /*
3967  * Allocate a memory page.  The argument 'seed' can be any pseudo-random
3968  * number to vary where the pages come from.  This is quite a hacked up
3969  * method -- it works for now, but really needs to be fixed up a bit.
3970  *
3971  * We currently use page_create_va() on the kvp with fake offsets,
3972  * segments and virt address.  This is pretty bogus, but was copied from the
3973  * old hat_i86.c code.  A better approach would be to specify either mnode
3974  * random or mnode local and takes a page from whatever color has the MOST
3975  * available - this would have a minimal impact on page coloring.
3976  */
3977 page_t *
3978 page_get_physical(uintptr_t seed)
3979 {
3980 	page_t *pp;
3981 	u_offset_t offset;
3982 	static struct seg tmpseg;
3983 	static uintptr_t ctr = 0;
3984 
3985 	/*
3986 	 * This code is gross, we really need a simpler page allocator.
3987 	 *
3988 	 * We need to assign an offset for the page to call page_create_va()
3989 	 * To avoid conflicts with other pages, we get creative with the offset.
3990 	 * For 32 bits, we need an offset > 4Gig
3991 	 * For 64 bits, need an offset somewhere in the VA hole.
3992 	 */
3993 	offset = seed;
3994 	if (offset > kernelbase)
3995 		offset -= kernelbase;
3996 	offset <<= MMU_PAGESHIFT;
3997 #if defined(__amd64)
3998 	offset += mmu.hole_start;	/* something in VA hole */
3999 #else
4000 	offset += 1ULL << 40;	/* something > 4 Gig */
4001 #endif
4002 
4003 	if (page_resv(1, KM_NOSLEEP) == 0)
4004 		return (NULL);
4005 
4006 #ifdef	DEBUG
4007 	pp = page_exists(&kvp, offset);
4008 	if (pp != NULL)
4009 		panic("page already exists %p", (void *)pp);
4010 #endif
4011 
4012 	pp = page_create_va(&kvp, offset, MMU_PAGESIZE, PG_EXCL,
4013 	    &tmpseg, (caddr_t)(ctr += MMU_PAGESIZE));	/* changing VA usage */
4014 	if (pp != NULL) {
4015 		page_io_unlock(pp);
4016 		page_downgrade(pp);
4017 	}
4018 	return (pp);
4019 }
4020