xref: /illumos-gate/usr/src/uts/i86pc/vm/vm_machdep.c (revision 2d9a5a52c758e1dbaee1569f0d91634a0f5cbe39)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 1992, 2010, Oracle and/or its affiliates. All rights reserved.
23  */
24 /*
25  * Copyright (c) 2010, Intel Corporation.
26  * All rights reserved.
27  * Copyright 2019, Joyent, Inc.
28  */
29 
30 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */
31 /*	All Rights Reserved   */
32 
33 /*
34  * Portions of this source code were derived from Berkeley 4.3 BSD
35  * under license from the Regents of the University of California.
36  */
37 
38 /*
39  * UNIX machine dependent virtual memory support.
40  */
41 
42 #include <sys/types.h>
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/user.h>
46 #include <sys/proc.h>
47 #include <sys/kmem.h>
48 #include <sys/vmem.h>
49 #include <sys/buf.h>
50 #include <sys/cpuvar.h>
51 #include <sys/lgrp.h>
52 #include <sys/disp.h>
53 #include <sys/vm.h>
54 #include <sys/mman.h>
55 #include <sys/vnode.h>
56 #include <sys/cred.h>
57 #include <sys/exec.h>
58 #include <sys/exechdr.h>
59 #include <sys/debug.h>
60 #include <sys/vmsystm.h>
61 #include <sys/swap.h>
62 #include <sys/dumphdr.h>
63 #include <sys/random.h>
64 
65 #include <vm/hat.h>
66 #include <vm/as.h>
67 #include <vm/seg.h>
68 #include <vm/seg_kp.h>
69 #include <vm/seg_vn.h>
70 #include <vm/page.h>
71 #include <vm/seg_kmem.h>
72 #include <vm/seg_kpm.h>
73 #include <vm/vm_dep.h>
74 
75 #include <sys/cpu.h>
76 #include <sys/vm_machparam.h>
77 #include <sys/memlist.h>
78 #include <sys/bootconf.h> /* XXX the memlist stuff belongs in memlist_plat.h */
79 #include <vm/hat_i86.h>
80 #include <sys/x86_archext.h>
81 #include <sys/elf_386.h>
82 #include <sys/cmn_err.h>
83 #include <sys/archsystm.h>
84 #include <sys/machsystm.h>
85 #include <sys/secflags.h>
86 
87 #include <sys/vtrace.h>
88 #include <sys/ddidmareq.h>
89 #include <sys/promif.h>
90 #include <sys/memnode.h>
91 #include <sys/stack.h>
92 #include <util/qsort.h>
93 #include <sys/taskq.h>
94 
95 #ifdef __xpv
96 
97 #include <sys/hypervisor.h>
98 #include <sys/xen_mmu.h>
99 #include <sys/balloon_impl.h>
100 
101 /*
102  * domain 0 pages usable for DMA are kept pre-allocated and kept in
103  * distinct lists, ordered by increasing mfn.
104  */
105 static kmutex_t io_pool_lock;
106 static kmutex_t contig_list_lock;
107 static page_t *io_pool_4g;	/* pool for 32 bit dma limited devices */
108 static page_t *io_pool_16m;	/* pool for 24 bit dma limited legacy devices */
109 static long io_pool_cnt;
110 static long io_pool_cnt_max = 0;
111 #define	DEFAULT_IO_POOL_MIN	128
112 static long io_pool_cnt_min = DEFAULT_IO_POOL_MIN;
113 static long io_pool_cnt_lowater = 0;
114 static long io_pool_shrink_attempts; /* how many times did we try to shrink */
115 static long io_pool_shrinks;	/* how many times did we really shrink */
116 static long io_pool_grows;	/* how many times did we grow */
117 static mfn_t start_mfn = 1;
118 static caddr_t io_pool_kva;	/* use to alloc pages when needed */
119 
120 static int create_contig_pfnlist(uint_t);
121 
122 /*
123  * percentage of phys mem to hold in the i/o pool
124  */
125 #define	DEFAULT_IO_POOL_PCT	2
126 static long io_pool_physmem_pct = DEFAULT_IO_POOL_PCT;
127 static void page_io_pool_sub(page_t **, page_t *, page_t *);
128 int ioalloc_dbg = 0;
129 
130 #endif /* __xpv */
131 
132 uint_t vac_colors = 1;
133 
134 int largepagesupport = 0;
135 extern uint_t page_create_new;
136 extern uint_t page_create_exists;
137 extern uint_t page_create_putbacks;
138 /*
139  * Allow users to disable the kernel's use of SSE.
140  */
141 extern int use_sse_pagecopy, use_sse_pagezero;
142 
143 /*
144  * combined memory ranges from mnode and memranges[] to manage single
145  * mnode/mtype dimension in the page lists.
146  */
147 typedef struct {
148 	pfn_t	mnr_pfnlo;
149 	pfn_t	mnr_pfnhi;
150 	int	mnr_mnode;
151 	int	mnr_memrange;		/* index into memranges[] */
152 	int	mnr_next;		/* next lower PA mnoderange */
153 	int	mnr_exists;
154 	/* maintain page list stats */
155 	pgcnt_t	mnr_mt_clpgcnt;		/* cache list cnt */
156 	pgcnt_t	mnr_mt_flpgcnt[MMU_PAGE_SIZES];	/* free list cnt per szc */
157 	pgcnt_t	mnr_mt_totcnt;		/* sum of cache and free lists */
158 #ifdef DEBUG
159 	struct mnr_mts {		/* mnode/mtype szc stats */
160 		pgcnt_t	mnr_mts_pgcnt;
161 		int	mnr_mts_colors;
162 		pgcnt_t *mnr_mtsc_pgcnt;
163 	}	*mnr_mts;
164 #endif
165 } mnoderange_t;
166 
167 #define	MEMRANGEHI(mtype)						\
168 	((mtype > 0) ? memranges[mtype - 1] - 1: physmax)
169 #define	MEMRANGELO(mtype)	(memranges[mtype])
170 
171 #define	MTYPE_FREEMEM(mt)	(mnoderanges[mt].mnr_mt_totcnt)
172 
173 /*
174  * As the PC architecture evolved memory up was clumped into several
175  * ranges for various historical I/O devices to do DMA.
176  * < 16Meg - ISA bus
177  * < 2Gig - ???
178  * < 4Gig - PCI bus or drivers that don't understand PAE mode
179  *
180  * These are listed in reverse order, so that we can skip over unused
181  * ranges on machines with small memories.
182  *
183  * For now under the Hypervisor, we'll only ever have one memrange.
184  */
185 #define	PFN_4GIG	0x100000
186 #define	PFN_16MEG	0x1000
187 /* Indices into the memory range (arch_memranges) array. */
188 #define	MRI_4G		0
189 #define	MRI_2G		1
190 #define	MRI_16M		2
191 #define	MRI_0		3
192 static pfn_t arch_memranges[NUM_MEM_RANGES] = {
193     PFN_4GIG,	/* pfn range for 4G and above */
194     0x80000,	/* pfn range for 2G-4G */
195     PFN_16MEG,	/* pfn range for 16M-2G */
196     0x00000,	/* pfn range for 0-16M */
197 };
198 pfn_t *memranges = &arch_memranges[0];
199 int nranges = NUM_MEM_RANGES;
200 
201 /*
202  * This combines mem_node_config and memranges into one data
203  * structure to be used for page list management.
204  */
205 static mnoderange_t *mnoderanges;
206 static int mnoderangecnt;
207 static int mtype4g;
208 static int mtype16m;
209 static int mtypetop;
210 
211 /*
212  * 4g memory management variables for systems with more than 4g of memory:
213  *
214  * physical memory below 4g is required for 32bit dma devices and, currently,
215  * for kmem memory. On systems with more than 4g of memory, the pool of memory
216  * below 4g can be depleted without any paging activity given that there is
217  * likely to be sufficient memory above 4g.
218  *
219  * physmax4g is set true if the largest pfn is over 4g. The rest of the
220  * 4g memory management code is enabled only when physmax4g is true.
221  *
222  * maxmem4g is the count of the maximum number of pages on the page lists
223  * with physical addresses below 4g. It can be a lot less then 4g given that
224  * BIOS may reserve large chunks of space below 4g for hot plug pci devices,
225  * agp aperture etc.
226  *
227  * freemem4g maintains the count of the number of available pages on the
228  * page lists with physical addresses below 4g.
229  *
230  * DESFREE4G specifies the desired amount of below 4g memory. It defaults to
231  * 6% (desfree4gshift = 4) of maxmem4g.
232  *
233  * RESTRICT4G_ALLOC returns true if freemem4g falls below DESFREE4G
234  * and the amount of physical memory above 4g is greater than freemem4g.
235  * In this case, page_get_* routines will restrict below 4g allocations
236  * for requests that don't specifically require it.
237  */
238 
239 #define	DESFREE4G	(maxmem4g >> desfree4gshift)
240 
241 #define	RESTRICT4G_ALLOC					\
242 	(physmax4g && (freemem4g < DESFREE4G) && ((freemem4g << 1) < freemem))
243 
244 static pgcnt_t	maxmem4g;
245 static pgcnt_t	freemem4g;
246 static int	physmax4g;
247 static int	desfree4gshift = 4;	/* maxmem4g shift to derive DESFREE4G */
248 
249 /*
250  * 16m memory management:
251  *
252  * reserve some amount of physical memory below 16m for legacy devices.
253  *
254  * RESTRICT16M_ALLOC returns true if an there are sufficient free pages above
255  * 16m or if the 16m pool drops below DESFREE16M.
256  *
257  * In this case, general page allocations via page_get_{free,cache}list
258  * routines will be restricted from allocating from the 16m pool. Allocations
259  * that require specific pfn ranges (page_get_anylist) and PG_PANIC allocations
260  * are not restricted.
261  */
262 
263 #define	FREEMEM16M	MTYPE_FREEMEM(mtype16m)
264 #define	DESFREE16M	desfree16m
265 #define	RESTRICT16M_ALLOC(freemem, pgcnt, flags) \
266 	(mtype16m != -1 && (freemem != 0) && ((flags & PG_PANIC) == 0) && \
267 	    ((freemem >= (FREEMEM16M)) || \
268 	    (FREEMEM16M  < (DESFREE16M + pgcnt))))
269 
270 static pgcnt_t	desfree16m = 0x380;
271 
272 /*
273  * This can be patched via /etc/system to allow old non-PAE aware device
274  * drivers to use kmem_alloc'd memory on 32 bit systems with > 4Gig RAM.
275  */
276 int restricted_kmemalloc = 0;
277 
278 #ifdef VM_STATS
279 struct {
280 	ulong_t	pga_alloc;
281 	ulong_t	pga_notfullrange;
282 	ulong_t	pga_nulldmaattr;
283 	ulong_t	pga_allocok;
284 	ulong_t	pga_allocfailed;
285 	ulong_t	pgma_alloc;
286 	ulong_t	pgma_allocok;
287 	ulong_t	pgma_allocfailed;
288 	ulong_t	pgma_allocempty;
289 } pga_vmstats;
290 #endif
291 
292 uint_t mmu_page_sizes;
293 
294 /* How many page sizes the users can see */
295 uint_t mmu_exported_page_sizes;
296 
297 /* page sizes that legacy applications can see */
298 uint_t mmu_legacy_page_sizes;
299 
300 /*
301  * Number of pages in 1 GB.  Don't enable automatic large pages if we have
302  * fewer than this many pages.
303  */
304 pgcnt_t shm_lpg_min_physmem = 1 << (30 - MMU_PAGESHIFT);
305 pgcnt_t privm_lpg_min_physmem = 1 << (30 - MMU_PAGESHIFT);
306 
307 /*
308  * Maximum and default segment size tunables for user private
309  * and shared anon memory, and user text and initialized data.
310  * These can be patched via /etc/system to allow large pages
311  * to be used for mapping application private and shared anon memory.
312  */
313 size_t mcntl0_lpsize = MMU_PAGESIZE;
314 size_t max_uheap_lpsize = MMU_PAGESIZE;
315 size_t default_uheap_lpsize = MMU_PAGESIZE;
316 size_t max_ustack_lpsize = MMU_PAGESIZE;
317 size_t default_ustack_lpsize = MMU_PAGESIZE;
318 size_t max_privmap_lpsize = MMU_PAGESIZE;
319 size_t max_uidata_lpsize = MMU_PAGESIZE;
320 size_t max_utext_lpsize = MMU_PAGESIZE;
321 size_t max_shm_lpsize = MMU_PAGESIZE;
322 
323 
324 /*
325  * initialized by page_coloring_init().
326  */
327 uint_t	page_colors;
328 uint_t	page_colors_mask;
329 uint_t	page_coloring_shift;
330 int	cpu_page_colors;
331 static uint_t	l2_colors;
332 
333 /*
334  * Page freelists and cachelists are dynamically allocated once mnoderangecnt
335  * and page_colors are calculated from the l2 cache n-way set size.  Within a
336  * mnode range, the page freelist and cachelist are hashed into bins based on
337  * color. This makes it easier to search for a page within a specific memory
338  * range.
339  */
340 #define	PAGE_COLORS_MIN	16
341 
342 page_t ****page_freelists;
343 page_t ***page_cachelists;
344 
345 
346 /*
347  * Used by page layer to know about page sizes
348  */
349 hw_pagesize_t hw_page_array[MAX_NUM_LEVEL + 1];
350 
351 kmutex_t	*fpc_mutex[NPC_MUTEX];
352 kmutex_t	*cpc_mutex[NPC_MUTEX];
353 
354 /* Lock to protect mnoderanges array for memory DR operations. */
355 static kmutex_t mnoderange_lock;
356 
357 /*
358  * Only let one thread at a time try to coalesce large pages, to
359  * prevent them from working against each other.
360  */
361 static kmutex_t	contig_lock;
362 #define	CONTIG_LOCK()	mutex_enter(&contig_lock);
363 #define	CONTIG_UNLOCK()	mutex_exit(&contig_lock);
364 
365 #define	PFN_16M		(mmu_btop((uint64_t)0x1000000))
366 
367 caddr_t
368 i86devmap(pfn_t pf, pgcnt_t pgcnt, uint_t prot)
369 {
370 	caddr_t addr;
371 	caddr_t addr1;
372 	page_t *pp;
373 
374 	addr1 = addr = vmem_alloc(heap_arena, mmu_ptob(pgcnt), VM_SLEEP);
375 
376 	for (; pgcnt != 0; addr += MMU_PAGESIZE, ++pf, --pgcnt) {
377 		pp = page_numtopp_nolock(pf);
378 		if (pp == NULL) {
379 			hat_devload(kas.a_hat, addr, MMU_PAGESIZE, pf,
380 			    prot | HAT_NOSYNC, HAT_LOAD_LOCK);
381 		} else {
382 			hat_memload(kas.a_hat, addr, pp,
383 			    prot | HAT_NOSYNC, HAT_LOAD_LOCK);
384 		}
385 	}
386 
387 	return (addr1);
388 }
389 
390 /*
391  * This routine is like page_numtopp, but accepts only free pages, which
392  * it allocates (unfrees) and returns with the exclusive lock held.
393  * It is used by machdep.c/dma_init() to find contiguous free pages.
394  */
395 page_t *
396 page_numtopp_alloc(pfn_t pfnum)
397 {
398 	page_t *pp;
399 
400 retry:
401 	pp = page_numtopp_nolock(pfnum);
402 	if (pp == NULL) {
403 		return (NULL);
404 	}
405 
406 	if (!page_trylock(pp, SE_EXCL)) {
407 		return (NULL);
408 	}
409 
410 	if (page_pptonum(pp) != pfnum) {
411 		page_unlock(pp);
412 		goto retry;
413 	}
414 
415 	if (!PP_ISFREE(pp)) {
416 		page_unlock(pp);
417 		return (NULL);
418 	}
419 	if (pp->p_szc) {
420 		page_demote_free_pages(pp);
421 		page_unlock(pp);
422 		goto retry;
423 	}
424 
425 	/* If associated with a vnode, destroy mappings */
426 
427 	if (pp->p_vnode) {
428 
429 		page_destroy_free(pp);
430 
431 		if (!page_lock(pp, SE_EXCL, (kmutex_t *)NULL, P_NO_RECLAIM)) {
432 			return (NULL);
433 		}
434 
435 		if (page_pptonum(pp) != pfnum) {
436 			page_unlock(pp);
437 			goto retry;
438 		}
439 	}
440 
441 	if (!PP_ISFREE(pp)) {
442 		page_unlock(pp);
443 		return (NULL);
444 	}
445 
446 	if (!page_reclaim(pp, (kmutex_t *)NULL))
447 		return (NULL);
448 
449 	return (pp);
450 }
451 
452 /*
453  * Return the optimum page size for a given mapping
454  */
455 /*ARGSUSED*/
456 size_t
457 map_pgsz(int maptype, struct proc *p, caddr_t addr, size_t len, int memcntl)
458 {
459 	level_t l = 0;
460 	size_t pgsz = MMU_PAGESIZE;
461 	size_t max_lpsize;
462 	uint_t mszc;
463 
464 	ASSERT(maptype != MAPPGSZ_VA);
465 
466 	if (maptype != MAPPGSZ_ISM && physmem < privm_lpg_min_physmem) {
467 		return (MMU_PAGESIZE);
468 	}
469 
470 	switch (maptype) {
471 	case MAPPGSZ_HEAP:
472 	case MAPPGSZ_STK:
473 		max_lpsize = memcntl ? mcntl0_lpsize : (maptype ==
474 		    MAPPGSZ_HEAP ? max_uheap_lpsize : max_ustack_lpsize);
475 		if (max_lpsize == MMU_PAGESIZE) {
476 			return (MMU_PAGESIZE);
477 		}
478 		if (len == 0) {
479 			len = (maptype == MAPPGSZ_HEAP) ? p->p_brkbase +
480 			    p->p_brksize - p->p_bssbase : p->p_stksize;
481 		}
482 		len = (maptype == MAPPGSZ_HEAP) ? MAX(len,
483 		    default_uheap_lpsize) : MAX(len, default_ustack_lpsize);
484 
485 		/*
486 		 * use the pages size that best fits len
487 		 */
488 		for (l = mmu.umax_page_level; l > 0; --l) {
489 			if (LEVEL_SIZE(l) > max_lpsize || len < LEVEL_SIZE(l)) {
490 				continue;
491 			} else {
492 				pgsz = LEVEL_SIZE(l);
493 			}
494 			break;
495 		}
496 
497 		mszc = (maptype == MAPPGSZ_HEAP ? p->p_brkpageszc :
498 		    p->p_stkpageszc);
499 		if (addr == 0 && (pgsz < hw_page_array[mszc].hp_size)) {
500 			pgsz = hw_page_array[mszc].hp_size;
501 		}
502 		return (pgsz);
503 
504 	case MAPPGSZ_ISM:
505 		for (l = mmu.umax_page_level; l > 0; --l) {
506 			if (len >= LEVEL_SIZE(l))
507 				return (LEVEL_SIZE(l));
508 		}
509 		return (LEVEL_SIZE(0));
510 	}
511 	return (pgsz);
512 }
513 
514 static uint_t
515 map_szcvec(caddr_t addr, size_t size, uintptr_t off, size_t max_lpsize,
516     size_t min_physmem)
517 {
518 	caddr_t eaddr = addr + size;
519 	uint_t szcvec = 0;
520 	caddr_t raddr;
521 	caddr_t readdr;
522 	size_t	pgsz;
523 	int i;
524 
525 	if (physmem < min_physmem || max_lpsize <= MMU_PAGESIZE) {
526 		return (0);
527 	}
528 
529 	for (i = mmu_exported_page_sizes - 1; i > 0; i--) {
530 		pgsz = page_get_pagesize(i);
531 		if (pgsz > max_lpsize) {
532 			continue;
533 		}
534 		raddr = (caddr_t)P2ROUNDUP((uintptr_t)addr, pgsz);
535 		readdr = (caddr_t)P2ALIGN((uintptr_t)eaddr, pgsz);
536 		if (raddr < addr || raddr >= readdr) {
537 			continue;
538 		}
539 		if (P2PHASE((uintptr_t)addr ^ off, pgsz)) {
540 			continue;
541 		}
542 		/*
543 		 * Set szcvec to the remaining page sizes.
544 		 */
545 		szcvec = ((1 << (i + 1)) - 1) & ~1;
546 		break;
547 	}
548 	return (szcvec);
549 }
550 
551 /*
552  * Return a bit vector of large page size codes that
553  * can be used to map [addr, addr + len) region.
554  */
555 /*ARGSUSED*/
556 uint_t
557 map_pgszcvec(caddr_t addr, size_t size, uintptr_t off, int flags, int type,
558     int memcntl)
559 {
560 	size_t max_lpsize = mcntl0_lpsize;
561 
562 	if (mmu.max_page_level == 0)
563 		return (0);
564 
565 	if (flags & MAP_TEXT) {
566 		if (!memcntl)
567 			max_lpsize = max_utext_lpsize;
568 		return (map_szcvec(addr, size, off, max_lpsize,
569 		    shm_lpg_min_physmem));
570 
571 	} else if (flags & MAP_INITDATA) {
572 		if (!memcntl)
573 			max_lpsize = max_uidata_lpsize;
574 		return (map_szcvec(addr, size, off, max_lpsize,
575 		    privm_lpg_min_physmem));
576 
577 	} else if (type == MAPPGSZC_SHM) {
578 		if (!memcntl)
579 			max_lpsize = max_shm_lpsize;
580 		return (map_szcvec(addr, size, off, max_lpsize,
581 		    shm_lpg_min_physmem));
582 
583 	} else if (type == MAPPGSZC_HEAP) {
584 		if (!memcntl)
585 			max_lpsize = max_uheap_lpsize;
586 		return (map_szcvec(addr, size, off, max_lpsize,
587 		    privm_lpg_min_physmem));
588 
589 	} else if (type == MAPPGSZC_STACK) {
590 		if (!memcntl)
591 			max_lpsize = max_ustack_lpsize;
592 		return (map_szcvec(addr, size, off, max_lpsize,
593 		    privm_lpg_min_physmem));
594 
595 	} else {
596 		if (!memcntl)
597 			max_lpsize = max_privmap_lpsize;
598 		return (map_szcvec(addr, size, off, max_lpsize,
599 		    privm_lpg_min_physmem));
600 	}
601 }
602 
603 /*
604  * Handle a pagefault.
605  */
606 faultcode_t
607 pagefault(
608 	caddr_t addr,
609 	enum fault_type type,
610 	enum seg_rw rw,
611 	int iskernel)
612 {
613 	struct as *as;
614 	struct hat *hat;
615 	struct proc *p;
616 	kthread_t *t;
617 	faultcode_t res;
618 	caddr_t base;
619 	size_t len;
620 	int err;
621 	int mapped_red;
622 	uintptr_t ea;
623 
624 	ASSERT_STACK_ALIGNED();
625 
626 	if (INVALID_VADDR(addr))
627 		return (FC_NOMAP);
628 
629 	mapped_red = segkp_map_red();
630 
631 	if (iskernel) {
632 		as = &kas;
633 		hat = as->a_hat;
634 	} else {
635 		t = curthread;
636 		p = ttoproc(t);
637 		as = p->p_as;
638 		hat = as->a_hat;
639 	}
640 
641 	/*
642 	 * Dispatch pagefault.
643 	 */
644 	res = as_fault(hat, as, addr, 1, type, rw);
645 
646 	/*
647 	 * If this isn't a potential unmapped hole in the user's
648 	 * UNIX data or stack segments, just return status info.
649 	 */
650 	if (res != FC_NOMAP || iskernel)
651 		goto out;
652 
653 	/*
654 	 * Check to see if we happened to faulted on a currently unmapped
655 	 * part of the UNIX data or stack segments.  If so, create a zfod
656 	 * mapping there and then try calling the fault routine again.
657 	 */
658 	base = p->p_brkbase;
659 	len = p->p_brksize;
660 
661 	if (addr < base || addr >= base + len) {		/* data seg? */
662 		base = (caddr_t)p->p_usrstack - p->p_stksize;
663 		len = p->p_stksize;
664 		if (addr < base || addr >= p->p_usrstack) {	/* stack seg? */
665 			/* not in either UNIX data or stack segments */
666 			res = FC_NOMAP;
667 			goto out;
668 		}
669 	}
670 
671 	/*
672 	 * the rest of this function implements a 3.X 4.X 5.X compatibility
673 	 * This code is probably not needed anymore
674 	 */
675 	if (p->p_model == DATAMODEL_ILP32) {
676 
677 		/* expand the gap to the page boundaries on each side */
678 		ea = P2ROUNDUP((uintptr_t)base + len, MMU_PAGESIZE);
679 		base = (caddr_t)P2ALIGN((uintptr_t)base, MMU_PAGESIZE);
680 		len = ea - (uintptr_t)base;
681 
682 		as_rangelock(as);
683 		if (as_gap(as, MMU_PAGESIZE, &base, &len, AH_CONTAIN, addr) ==
684 		    0) {
685 			err = as_map(as, base, len, segvn_create, zfod_argsp);
686 			as_rangeunlock(as);
687 			if (err) {
688 				res = FC_MAKE_ERR(err);
689 				goto out;
690 			}
691 		} else {
692 			/*
693 			 * This page is already mapped by another thread after
694 			 * we returned from as_fault() above.  We just fall
695 			 * through as_fault() below.
696 			 */
697 			as_rangeunlock(as);
698 		}
699 
700 		res = as_fault(hat, as, addr, 1, F_INVAL, rw);
701 	}
702 
703 out:
704 	if (mapped_red)
705 		segkp_unmap_red();
706 
707 	return (res);
708 }
709 
710 void
711 map_addr(caddr_t *addrp, size_t len, offset_t off, int vacalign, uint_t flags)
712 {
713 	struct proc *p = curproc;
714 	caddr_t userlimit = (flags & _MAP_LOW32) ?
715 	    (caddr_t)_userlimit32 : p->p_as->a_userlimit;
716 
717 	map_addr_proc(addrp, len, off, vacalign, userlimit, curproc, flags);
718 }
719 
720 /*ARGSUSED*/
721 int
722 map_addr_vacalign_check(caddr_t addr, u_offset_t off)
723 {
724 	return (0);
725 }
726 
727 /*
728  * The maximum amount a randomized mapping will be slewed.  We should perhaps
729  * arrange things so these tunables can be separate for mmap, mmapobj, and
730  * ld.so
731  */
732 size_t aslr_max_map_skew = 256 * 1024 * 1024; /* 256MB */
733 
734 /*
735  * map_addr_proc() is the routine called when the system is to
736  * choose an address for the user.  We will pick an address
737  * range which is the highest available below userlimit.
738  *
739  * Every mapping will have a redzone of a single page on either side of
740  * the request. This is done to leave one page unmapped between segments.
741  * This is not required, but it's useful for the user because if their
742  * program strays across a segment boundary, it will catch a fault
743  * immediately making debugging a little easier.  Currently the redzone
744  * is mandatory.
745  *
746  * addrp is a value/result parameter.
747  *	On input it is a hint from the user to be used in a completely
748  *	machine dependent fashion.  We decide to completely ignore this hint.
749  *	If MAP_ALIGN was specified, addrp contains the minimal alignment, which
750  *	must be some "power of two" multiple of pagesize.
751  *
752  *	On output it is NULL if no address can be found in the current
753  *	processes address space or else an address that is currently
754  *	not mapped for len bytes with a page of red zone on either side.
755  *
756  *	vacalign is not needed on x86 (it's for viturally addressed caches)
757  */
758 /*ARGSUSED*/
759 void
760 map_addr_proc(
761 	caddr_t *addrp,
762 	size_t len,
763 	offset_t off,
764 	int vacalign,
765 	caddr_t userlimit,
766 	struct proc *p,
767 	uint_t flags)
768 {
769 	struct as *as = p->p_as;
770 	caddr_t addr;
771 	caddr_t base;
772 	size_t slen;
773 	size_t align_amount;
774 
775 	ASSERT32(userlimit == as->a_userlimit);
776 
777 	base = p->p_brkbase;
778 	if (p->p_model == DATAMODEL_NATIVE) {
779 		if (userlimit < as->a_userlimit) {
780 			/*
781 			 * This happens when a program wants to map
782 			 * something in a range that's accessible to a
783 			 * program in a smaller address space.  For example,
784 			 * a 64-bit program calling mmap32(2) to guarantee
785 			 * that the returned address is below 4Gbytes.
786 			 */
787 			ASSERT((uintptr_t)userlimit < ADDRESS_C(0xffffffff));
788 
789 			if (userlimit > base)
790 				slen = userlimit - base;
791 			else {
792 				*addrp = NULL;
793 				return;
794 			}
795 		} else {
796 			/*
797 			 * With the stack positioned at a higher address than
798 			 * the heap for 64-bit processes, it is necessary to be
799 			 * mindful of its location and potential size.
800 			 *
801 			 * Unallocated space above the top of the stack (that
802 			 * is, at a lower address) but still within the bounds
803 			 * of the stack limit should be considered unavailable.
804 			 *
805 			 * As the 64-bit stack guard is mapped in immediately
806 			 * adjacent to the stack limit boundary, this prevents
807 			 * new mappings from having accidentally dangerous
808 			 * proximity to the stack.
809 			 */
810 			slen = p->p_usrstack - base -
811 			    ((p->p_stk_ctl + PAGEOFFSET) & PAGEMASK);
812 		}
813 	} else {
814 		slen = userlimit - base;
815 	}
816 
817 	/* Make len be a multiple of PAGESIZE */
818 	len = (len + PAGEOFFSET) & PAGEMASK;
819 
820 	/*
821 	 * figure out what the alignment should be
822 	 *
823 	 * XX64 -- is there an ELF_AMD64_MAXPGSZ or is it the same????
824 	 */
825 	if (len <= ELF_386_MAXPGSZ) {
826 		/*
827 		 * Align virtual addresses to ensure that ELF shared libraries
828 		 * are mapped with the appropriate alignment constraints by
829 		 * the run-time linker.
830 		 */
831 		align_amount = ELF_386_MAXPGSZ;
832 	} else {
833 		/*
834 		 * For 32-bit processes, only those which have specified
835 		 * MAP_ALIGN and an addr will be aligned on a larger page size.
836 		 * Not doing so can potentially waste up to 1G of process
837 		 * address space.
838 		 */
839 		int lvl = (p->p_model == DATAMODEL_ILP32) ? 1 :
840 		    mmu.umax_page_level;
841 
842 		while (lvl && len < LEVEL_SIZE(lvl))
843 			--lvl;
844 
845 		align_amount = LEVEL_SIZE(lvl);
846 	}
847 	if ((flags & MAP_ALIGN) && ((uintptr_t)*addrp > align_amount))
848 		align_amount = (uintptr_t)*addrp;
849 
850 	ASSERT(ISP2(align_amount));
851 	ASSERT(align_amount == 0 || align_amount >= PAGESIZE);
852 
853 	off = off & (align_amount - 1);
854 
855 	/*
856 	 * Look for a large enough hole starting below userlimit.
857 	 * After finding it, use the upper part.
858 	 */
859 	if (as_gap_aligned(as, len, &base, &slen, AH_HI, NULL, align_amount,
860 	    PAGESIZE, off) == 0) {
861 		caddr_t as_addr;
862 
863 		/*
864 		 * addr is the highest possible address to use since we have
865 		 * a PAGESIZE redzone at the beginning and end.
866 		 */
867 		addr = base + slen - (PAGESIZE + len);
868 		as_addr = addr;
869 		/*
870 		 * Round address DOWN to the alignment amount and
871 		 * add the offset in.
872 		 * If addr is greater than as_addr, len would not be large
873 		 * enough to include the redzone, so we must adjust down
874 		 * by the alignment amount.
875 		 */
876 		addr = (caddr_t)((uintptr_t)addr & (~(align_amount - 1)));
877 		addr += (uintptr_t)off;
878 		if (addr > as_addr) {
879 			addr -= align_amount;
880 		}
881 
882 		/*
883 		 * If randomization is requested, slew the allocation
884 		 * backwards, within the same gap, by a random amount.
885 		 */
886 		if (flags & _MAP_RANDOMIZE) {
887 			uint32_t slew;
888 
889 			(void) random_get_pseudo_bytes((uint8_t *)&slew,
890 			    sizeof (slew));
891 
892 			slew = slew % MIN(aslr_max_map_skew, (addr - base));
893 			addr -= P2ALIGN(slew, align_amount);
894 		}
895 
896 		ASSERT(addr > base);
897 		ASSERT(addr + len < base + slen);
898 		ASSERT(((uintptr_t)addr & (align_amount - 1)) ==
899 		    ((uintptr_t)(off)));
900 		*addrp = addr;
901 	} else {
902 		*addrp = NULL;	/* no more virtual space */
903 	}
904 }
905 
906 int valid_va_range_aligned_wraparound;
907 
908 /*
909  * Determine whether [*basep, *basep + *lenp) contains a mappable range of
910  * addresses at least "minlen" long, where the base of the range is at "off"
911  * phase from an "align" boundary and there is space for a "redzone"-sized
912  * redzone on either side of the range.  On success, 1 is returned and *basep
913  * and *lenp are adjusted to describe the acceptable range (including
914  * the redzone).  On failure, 0 is returned.
915  */
916 /*ARGSUSED3*/
917 int
918 valid_va_range_aligned(caddr_t *basep, size_t *lenp, size_t minlen, int dir,
919     size_t align, size_t redzone, size_t off)
920 {
921 	uintptr_t hi, lo;
922 	size_t tot_len;
923 
924 	ASSERT(align == 0 ? off == 0 : off < align);
925 	ASSERT(ISP2(align));
926 	ASSERT(align == 0 || align >= PAGESIZE);
927 
928 	lo = (uintptr_t)*basep;
929 	hi = lo + *lenp;
930 	tot_len = minlen + 2 * redzone; /* need at least this much space */
931 
932 	/*
933 	 * If hi rolled over the top, try cutting back.
934 	 */
935 	if (hi < lo) {
936 		*lenp = 0UL - lo - 1UL;
937 		/* See if this really happens. If so, then we figure out why */
938 		valid_va_range_aligned_wraparound++;
939 		hi = lo + *lenp;
940 	}
941 	if (*lenp < tot_len) {
942 		return (0);
943 	}
944 
945 	/*
946 	 * Deal with a possible hole in the address range between
947 	 * hole_start and hole_end that should never be mapped.
948 	 */
949 	if (lo < hole_start) {
950 		if (hi > hole_start) {
951 			if (hi < hole_end) {
952 				hi = hole_start;
953 			} else {
954 				/* lo < hole_start && hi >= hole_end */
955 				if (dir == AH_LO) {
956 					/*
957 					 * prefer lowest range
958 					 */
959 					if (hole_start - lo >= tot_len)
960 						hi = hole_start;
961 					else if (hi - hole_end >= tot_len)
962 						lo = hole_end;
963 					else
964 						return (0);
965 				} else {
966 					/*
967 					 * prefer highest range
968 					 */
969 					if (hi - hole_end >= tot_len)
970 						lo = hole_end;
971 					else if (hole_start - lo >= tot_len)
972 						hi = hole_start;
973 					else
974 						return (0);
975 				}
976 			}
977 		}
978 	} else {
979 		/* lo >= hole_start */
980 		if (hi < hole_end)
981 			return (0);
982 		if (lo < hole_end)
983 			lo = hole_end;
984 	}
985 
986 	if (hi - lo < tot_len)
987 		return (0);
988 
989 	if (align > 1) {
990 		uintptr_t tlo = lo + redzone;
991 		uintptr_t thi = hi - redzone;
992 		tlo = (uintptr_t)P2PHASEUP(tlo, align, off);
993 		if (tlo < lo + redzone) {
994 			return (0);
995 		}
996 		if (thi < tlo || thi - tlo < minlen) {
997 			return (0);
998 		}
999 	}
1000 
1001 	*basep = (caddr_t)lo;
1002 	*lenp = hi - lo;
1003 	return (1);
1004 }
1005 
1006 /*
1007  * Determine whether [*basep, *basep + *lenp) contains a mappable range of
1008  * addresses at least "minlen" long.  On success, 1 is returned and *basep
1009  * and *lenp are adjusted to describe the acceptable range.  On failure, 0
1010  * is returned.
1011  */
1012 int
1013 valid_va_range(caddr_t *basep, size_t *lenp, size_t minlen, int dir)
1014 {
1015 	return (valid_va_range_aligned(basep, lenp, minlen, dir, 0, 0, 0));
1016 }
1017 
1018 /*
1019  * Default to forbidding the first 64k of address space.  This protects most
1020  * reasonably sized structures from dereferences through NULL:
1021  *     ((foo_t *)0)->bar
1022  */
1023 uintptr_t forbidden_null_mapping_sz = 0x10000;
1024 
1025 /*
1026  * Determine whether [addr, addr+len] are valid user addresses.
1027  */
1028 /*ARGSUSED*/
1029 int
1030 valid_usr_range(caddr_t addr, size_t len, uint_t prot, struct as *as,
1031     caddr_t userlimit)
1032 {
1033 	caddr_t eaddr = addr + len;
1034 
1035 	if (eaddr <= addr || addr >= userlimit || eaddr > userlimit)
1036 		return (RANGE_BADADDR);
1037 
1038 	if ((addr <= (caddr_t)forbidden_null_mapping_sz) &&
1039 	    as->a_proc != NULL &&
1040 	    secflag_enabled(as->a_proc, PROC_SEC_FORBIDNULLMAP))
1041 		return (RANGE_BADADDR);
1042 
1043 	/*
1044 	 * Check for the VA hole
1045 	 */
1046 	if (eaddr > (caddr_t)hole_start && addr < (caddr_t)hole_end)
1047 		return (RANGE_BADADDR);
1048 
1049 	return (RANGE_OKAY);
1050 }
1051 
1052 /*
1053  * Return 1 if the page frame is onboard memory, else 0.
1054  */
1055 int
1056 pf_is_memory(pfn_t pf)
1057 {
1058 	if (pfn_is_foreign(pf))
1059 		return (0);
1060 	return (address_in_memlist(phys_install, pfn_to_pa(pf), 1));
1061 }
1062 
1063 /*
1064  * return the memrange containing pfn
1065  */
1066 int
1067 memrange_num(pfn_t pfn)
1068 {
1069 	int n;
1070 
1071 	for (n = 0; n < nranges - 1; ++n) {
1072 		if (pfn >= memranges[n])
1073 			break;
1074 	}
1075 	return (n);
1076 }
1077 
1078 /*
1079  * return the mnoderange containing pfn
1080  */
1081 /*ARGSUSED*/
1082 int
1083 pfn_2_mtype(pfn_t pfn)
1084 {
1085 #if defined(__xpv)
1086 	return (0);
1087 #else
1088 	int	n;
1089 
1090 	/* Always start from highest pfn and work our way down */
1091 	for (n = mtypetop; n != -1; n = mnoderanges[n].mnr_next) {
1092 		if (pfn >= mnoderanges[n].mnr_pfnlo) {
1093 			break;
1094 		}
1095 	}
1096 	return (n);
1097 #endif
1098 }
1099 
1100 #if !defined(__xpv)
1101 /*
1102  * is_contigpage_free:
1103  *	returns a page list of contiguous pages. It minimally has to return
1104  *	minctg pages. Caller determines minctg based on the scatter-gather
1105  *	list length.
1106  *
1107  *	pfnp is set to the next page frame to search on return.
1108  */
1109 static page_t *
1110 is_contigpage_free(
1111 	pfn_t *pfnp,
1112 	pgcnt_t *pgcnt,
1113 	pgcnt_t minctg,
1114 	uint64_t pfnseg,
1115 	int iolock)
1116 {
1117 	int	i = 0;
1118 	pfn_t	pfn = *pfnp;
1119 	page_t	*pp;
1120 	page_t	*plist = NULL;
1121 
1122 	/*
1123 	 * fail if pfn + minctg crosses a segment boundary.
1124 	 * Adjust for next starting pfn to begin at segment boundary.
1125 	 */
1126 
1127 	if (((*pfnp + minctg - 1) & pfnseg) < (*pfnp & pfnseg)) {
1128 		*pfnp = roundup(*pfnp, pfnseg + 1);
1129 		return (NULL);
1130 	}
1131 
1132 	do {
1133 retry:
1134 		pp = page_numtopp_nolock(pfn + i);
1135 		if ((pp == NULL) || IS_DUMP_PAGE(pp) ||
1136 		    (page_trylock(pp, SE_EXCL) == 0)) {
1137 			(*pfnp)++;
1138 			break;
1139 		}
1140 		if (page_pptonum(pp) != pfn + i) {
1141 			page_unlock(pp);
1142 			goto retry;
1143 		}
1144 
1145 		if (!(PP_ISFREE(pp))) {
1146 			page_unlock(pp);
1147 			(*pfnp)++;
1148 			break;
1149 		}
1150 
1151 		if (!PP_ISAGED(pp)) {
1152 			page_list_sub(pp, PG_CACHE_LIST);
1153 			page_hashout(pp, (kmutex_t *)NULL);
1154 		} else {
1155 			page_list_sub(pp, PG_FREE_LIST);
1156 		}
1157 
1158 		if (iolock)
1159 			page_io_lock(pp);
1160 		page_list_concat(&plist, &pp);
1161 
1162 		/*
1163 		 * exit loop when pgcnt satisfied or segment boundary reached.
1164 		 */
1165 
1166 	} while ((++i < *pgcnt) && ((pfn + i) & pfnseg));
1167 
1168 	*pfnp += i;		/* set to next pfn to search */
1169 
1170 	if (i >= minctg) {
1171 		*pgcnt -= i;
1172 		return (plist);
1173 	}
1174 
1175 	/*
1176 	 * failure: minctg not satisfied.
1177 	 *
1178 	 * if next request crosses segment boundary, set next pfn
1179 	 * to search from the segment boundary.
1180 	 */
1181 	if (((*pfnp + minctg - 1) & pfnseg) < (*pfnp & pfnseg))
1182 		*pfnp = roundup(*pfnp, pfnseg + 1);
1183 
1184 	/* clean up any pages already allocated */
1185 
1186 	while (plist) {
1187 		pp = plist;
1188 		page_sub(&plist, pp);
1189 		page_list_add(pp, PG_FREE_LIST | PG_LIST_TAIL);
1190 		if (iolock)
1191 			page_io_unlock(pp);
1192 		page_unlock(pp);
1193 	}
1194 
1195 	return (NULL);
1196 }
1197 #endif	/* !__xpv */
1198 
1199 /*
1200  * verify that pages being returned from allocator have correct DMA attribute
1201  */
1202 #ifndef DEBUG
1203 #define	check_dma(a, b, c) (void)(0)
1204 #else
1205 static void
1206 check_dma(ddi_dma_attr_t *dma_attr, page_t *pp, int cnt)
1207 {
1208 	if (dma_attr == NULL)
1209 		return;
1210 
1211 	while (cnt-- > 0) {
1212 		if (pa_to_ma(pfn_to_pa(pp->p_pagenum)) <
1213 		    dma_attr->dma_attr_addr_lo)
1214 			panic("PFN (pp=%p) below dma_attr_addr_lo", (void *)pp);
1215 		if (pa_to_ma(pfn_to_pa(pp->p_pagenum)) >=
1216 		    dma_attr->dma_attr_addr_hi)
1217 			panic("PFN (pp=%p) above dma_attr_addr_hi", (void *)pp);
1218 		pp = pp->p_next;
1219 	}
1220 }
1221 #endif
1222 
1223 #if !defined(__xpv)
1224 static page_t *
1225 page_get_contigpage(pgcnt_t *pgcnt, ddi_dma_attr_t *mattr, int iolock)
1226 {
1227 	pfn_t		pfn;
1228 	int		sgllen;
1229 	uint64_t	pfnseg;
1230 	pgcnt_t		minctg;
1231 	page_t		*pplist = NULL, *plist;
1232 	uint64_t	lo, hi;
1233 	pgcnt_t		pfnalign = 0;
1234 	static pfn_t	startpfn;
1235 	static pgcnt_t	lastctgcnt;
1236 	uintptr_t	align;
1237 
1238 	CONTIG_LOCK();
1239 
1240 	if (mattr) {
1241 		lo = mmu_btop((mattr->dma_attr_addr_lo + MMU_PAGEOFFSET));
1242 		hi = mmu_btop(mattr->dma_attr_addr_hi);
1243 		if (hi >= physmax)
1244 			hi = physmax - 1;
1245 		sgllen = mattr->dma_attr_sgllen;
1246 		pfnseg = mmu_btop(mattr->dma_attr_seg);
1247 
1248 		align = maxbit(mattr->dma_attr_align, mattr->dma_attr_minxfer);
1249 		if (align > MMU_PAGESIZE)
1250 			pfnalign = mmu_btop(align);
1251 
1252 		/*
1253 		 * in order to satisfy the request, must minimally
1254 		 * acquire minctg contiguous pages
1255 		 */
1256 		minctg = howmany(*pgcnt, sgllen);
1257 
1258 		ASSERT(hi >= lo);
1259 
1260 		/*
1261 		 * start from where last searched if the minctg >= lastctgcnt
1262 		 */
1263 		if (minctg < lastctgcnt || startpfn < lo || startpfn > hi)
1264 			startpfn = lo;
1265 	} else {
1266 		hi = physmax - 1;
1267 		lo = 0;
1268 		sgllen = 1;
1269 		pfnseg = mmu.highest_pfn;
1270 		minctg = *pgcnt;
1271 
1272 		if (minctg < lastctgcnt)
1273 			startpfn = lo;
1274 	}
1275 	lastctgcnt = minctg;
1276 
1277 	ASSERT(pfnseg + 1 >= (uint64_t)minctg);
1278 
1279 	/* conserve 16m memory - start search above 16m when possible */
1280 	if (hi > PFN_16M && startpfn < PFN_16M)
1281 		startpfn = PFN_16M;
1282 
1283 	pfn = startpfn;
1284 	if (pfnalign)
1285 		pfn = P2ROUNDUP(pfn, pfnalign);
1286 
1287 	while (pfn + minctg - 1 <= hi) {
1288 
1289 		plist = is_contigpage_free(&pfn, pgcnt, minctg, pfnseg, iolock);
1290 		if (plist) {
1291 			page_list_concat(&pplist, &plist);
1292 			sgllen--;
1293 			/*
1294 			 * return when contig pages no longer needed
1295 			 */
1296 			if (!*pgcnt || ((*pgcnt <= sgllen) && !pfnalign)) {
1297 				startpfn = pfn;
1298 				CONTIG_UNLOCK();
1299 				check_dma(mattr, pplist, *pgcnt);
1300 				return (pplist);
1301 			}
1302 			minctg = howmany(*pgcnt, sgllen);
1303 		}
1304 		if (pfnalign)
1305 			pfn = P2ROUNDUP(pfn, pfnalign);
1306 	}
1307 
1308 	/* cannot find contig pages in specified range */
1309 	if (startpfn == lo) {
1310 		CONTIG_UNLOCK();
1311 		return (NULL);
1312 	}
1313 
1314 	/* did not start with lo previously */
1315 	pfn = lo;
1316 	if (pfnalign)
1317 		pfn = P2ROUNDUP(pfn, pfnalign);
1318 
1319 	/* allow search to go above startpfn */
1320 	while (pfn < startpfn) {
1321 
1322 		plist = is_contigpage_free(&pfn, pgcnt, minctg, pfnseg, iolock);
1323 		if (plist != NULL) {
1324 
1325 			page_list_concat(&pplist, &plist);
1326 			sgllen--;
1327 
1328 			/*
1329 			 * return when contig pages no longer needed
1330 			 */
1331 			if (!*pgcnt || ((*pgcnt <= sgllen) && !pfnalign)) {
1332 				startpfn = pfn;
1333 				CONTIG_UNLOCK();
1334 				check_dma(mattr, pplist, *pgcnt);
1335 				return (pplist);
1336 			}
1337 			minctg = howmany(*pgcnt, sgllen);
1338 		}
1339 		if (pfnalign)
1340 			pfn = P2ROUNDUP(pfn, pfnalign);
1341 	}
1342 	CONTIG_UNLOCK();
1343 	return (NULL);
1344 }
1345 #endif	/* !__xpv */
1346 
1347 /*
1348  * mnode_range_cnt() calculates the number of memory ranges for mnode and
1349  * memranges[]. Used to determine the size of page lists and mnoderanges.
1350  */
1351 int
1352 mnode_range_cnt(int mnode)
1353 {
1354 #if defined(__xpv)
1355 	ASSERT(mnode == 0);
1356 	return (1);
1357 #else	/* __xpv */
1358 	int	mri;
1359 	int	mnrcnt = 0;
1360 
1361 	if (mem_node_config[mnode].exists != 0) {
1362 		mri = nranges - 1;
1363 
1364 		/* find the memranges index below contained in mnode range */
1365 
1366 		while (MEMRANGEHI(mri) < mem_node_config[mnode].physbase)
1367 			mri--;
1368 
1369 		/*
1370 		 * increment mnode range counter when memranges or mnode
1371 		 * boundary is reached.
1372 		 */
1373 		while (mri >= 0 &&
1374 		    mem_node_config[mnode].physmax >= MEMRANGELO(mri)) {
1375 			mnrcnt++;
1376 			if (mem_node_config[mnode].physmax > MEMRANGEHI(mri))
1377 				mri--;
1378 			else
1379 				break;
1380 		}
1381 	}
1382 	ASSERT(mnrcnt <= MAX_MNODE_MRANGES);
1383 	return (mnrcnt);
1384 #endif	/* __xpv */
1385 }
1386 
1387 static int
1388 mnoderange_cmp(const void *v1, const void *v2)
1389 {
1390 	const mnoderange_t *m1 = v1;
1391 	const mnoderange_t *m2 = v2;
1392 
1393 	if (m1->mnr_pfnlo < m2->mnr_pfnlo)
1394 		return (-1);
1395 	return (m1->mnr_pfnlo > m2->mnr_pfnlo);
1396 }
1397 
1398 void
1399 mnode_range_setup(mnoderange_t *mnoderanges)
1400 {
1401 	mnoderange_t *mp;
1402 	ssize_t nr_ranges;
1403 	size_t mnode;
1404 
1405 	for (mnode = 0, nr_ranges = 0, mp = mnoderanges;
1406 	    mnode < max_mem_nodes; mnode++) {
1407 		ssize_t mri = nranges - 1;
1408 
1409 		if (mem_node_config[mnode].exists == 0)
1410 			continue;
1411 
1412 		while (MEMRANGEHI(mri) < mem_node_config[mnode].physbase)
1413 			mri--;
1414 
1415 		while (mri >= 0 && mem_node_config[mnode].physmax >=
1416 		    MEMRANGELO(mri)) {
1417 			mp->mnr_pfnlo = MAX(MEMRANGELO(mri),
1418 			    mem_node_config[mnode].physbase);
1419 			mp->mnr_pfnhi = MIN(MEMRANGEHI(mri),
1420 			    mem_node_config[mnode].physmax);
1421 			mp->mnr_mnode = mnode;
1422 			mp->mnr_memrange = mri;
1423 			mp->mnr_next = -1;
1424 			mp->mnr_exists = 1;
1425 			mp++;
1426 			nr_ranges++;
1427 			if (mem_node_config[mnode].physmax > MEMRANGEHI(mri))
1428 				mri--;
1429 			else
1430 				break;
1431 		}
1432 	}
1433 
1434 	/*
1435 	 * mnoderangecnt can be larger than nr_ranges when memory DR is
1436 	 * supposedly supported.
1437 	 */
1438 	VERIFY3U(nr_ranges, <=, mnoderangecnt);
1439 
1440 	qsort(mnoderanges, nr_ranges, sizeof (mnoderange_t), mnoderange_cmp);
1441 
1442 	/*
1443 	 * If some intrepid soul takes the axe to the memory DR code, we can
1444 	 * remove ->mnr_next altogether, as we just sorted by ->mnr_pfnlo order.
1445 	 *
1446 	 * The VERIFY3U() above can be "==" then too.
1447 	 */
1448 	for (size_t i = 1; i < nr_ranges; i++)
1449 		mnoderanges[i].mnr_next = i - 1;
1450 
1451 	mtypetop = nr_ranges - 1;
1452 	mtype16m = pfn_2_mtype(PFN_16MEG - 1); /* Can be -1 ... */
1453 	if (physmax4g)
1454 		mtype4g = pfn_2_mtype(0xfffff);
1455 }
1456 
1457 #ifndef	__xpv
1458 /*
1459  * Update mnoderanges for memory hot-add DR operations.
1460  */
1461 static void
1462 mnode_range_add(int mnode)
1463 {
1464 	int	*prev;
1465 	int	n, mri;
1466 	pfn_t	start, end;
1467 	extern	void membar_sync(void);
1468 
1469 	ASSERT(0 <= mnode && mnode < max_mem_nodes);
1470 	ASSERT(mem_node_config[mnode].exists);
1471 	start = mem_node_config[mnode].physbase;
1472 	end = mem_node_config[mnode].physmax;
1473 	ASSERT(start <= end);
1474 	mutex_enter(&mnoderange_lock);
1475 
1476 #ifdef	DEBUG
1477 	/* Check whether it interleaves with other memory nodes. */
1478 	for (n = mtypetop; n != -1; n = mnoderanges[n].mnr_next) {
1479 		ASSERT(mnoderanges[n].mnr_exists);
1480 		if (mnoderanges[n].mnr_mnode == mnode)
1481 			continue;
1482 		ASSERT(start > mnoderanges[n].mnr_pfnhi ||
1483 		    end < mnoderanges[n].mnr_pfnlo);
1484 	}
1485 #endif	/* DEBUG */
1486 
1487 	mri = nranges - 1;
1488 	while (MEMRANGEHI(mri) < mem_node_config[mnode].physbase)
1489 		mri--;
1490 	while (mri >= 0 && mem_node_config[mnode].physmax >= MEMRANGELO(mri)) {
1491 		/* Check whether mtype already exists. */
1492 		for (n = mtypetop; n != -1; n = mnoderanges[n].mnr_next) {
1493 			if (mnoderanges[n].mnr_mnode == mnode &&
1494 			    mnoderanges[n].mnr_memrange == mri) {
1495 				mnoderanges[n].mnr_pfnlo = MAX(MEMRANGELO(mri),
1496 				    start);
1497 				mnoderanges[n].mnr_pfnhi = MIN(MEMRANGEHI(mri),
1498 				    end);
1499 				break;
1500 			}
1501 		}
1502 
1503 		/* Add a new entry if it doesn't exist yet. */
1504 		if (n == -1) {
1505 			/* Try to find an unused entry in mnoderanges array. */
1506 			for (n = 0; n < mnoderangecnt; n++) {
1507 				if (mnoderanges[n].mnr_exists == 0)
1508 					break;
1509 			}
1510 			ASSERT(n < mnoderangecnt);
1511 			mnoderanges[n].mnr_pfnlo = MAX(MEMRANGELO(mri), start);
1512 			mnoderanges[n].mnr_pfnhi = MIN(MEMRANGEHI(mri), end);
1513 			mnoderanges[n].mnr_mnode = mnode;
1514 			mnoderanges[n].mnr_memrange = mri;
1515 			mnoderanges[n].mnr_exists = 1;
1516 			/* Page 0 should always be present. */
1517 			for (prev = &mtypetop;
1518 			    mnoderanges[*prev].mnr_pfnlo > start;
1519 			    prev = &mnoderanges[*prev].mnr_next) {
1520 				ASSERT(mnoderanges[*prev].mnr_next >= 0);
1521 				ASSERT(mnoderanges[*prev].mnr_pfnlo > end);
1522 			}
1523 			mnoderanges[n].mnr_next = *prev;
1524 			membar_sync();
1525 			*prev = n;
1526 		}
1527 
1528 		if (mem_node_config[mnode].physmax > MEMRANGEHI(mri))
1529 			mri--;
1530 		else
1531 			break;
1532 	}
1533 
1534 	mutex_exit(&mnoderange_lock);
1535 }
1536 
1537 /*
1538  * Update mnoderanges for memory hot-removal DR operations.
1539  */
1540 static void
1541 mnode_range_del(int mnode)
1542 {
1543 	_NOTE(ARGUNUSED(mnode));
1544 	ASSERT(0 <= mnode && mnode < max_mem_nodes);
1545 	/* TODO: support deletion operation. */
1546 	ASSERT(0);
1547 }
1548 
1549 void
1550 plat_slice_add(pfn_t start, pfn_t end)
1551 {
1552 	mem_node_add_slice(start, end);
1553 	if (plat_dr_enabled()) {
1554 		mnode_range_add(PFN_2_MEM_NODE(start));
1555 	}
1556 }
1557 
1558 void
1559 plat_slice_del(pfn_t start, pfn_t end)
1560 {
1561 	ASSERT(PFN_2_MEM_NODE(start) == PFN_2_MEM_NODE(end));
1562 	ASSERT(plat_dr_enabled());
1563 	mnode_range_del(PFN_2_MEM_NODE(start));
1564 	mem_node_del_slice(start, end);
1565 }
1566 #endif	/* __xpv */
1567 
1568 /*ARGSUSED*/
1569 int
1570 mtype_init(vnode_t *vp, caddr_t vaddr, uint_t *flags, size_t pgsz)
1571 {
1572 	int mtype = mtypetop;
1573 
1574 #if !defined(__xpv)
1575 	if (RESTRICT4G_ALLOC) {
1576 		VM_STAT_ADD(vmm_vmstats.restrict4gcnt);
1577 		/* here only for > 4g systems */
1578 		*flags |= PGI_MT_RANGE4G;
1579 	} else if (RESTRICT16M_ALLOC(freemem, btop(pgsz), *flags)) {
1580 		*flags |= PGI_MT_RANGE16M;
1581 	} else {
1582 		VM_STAT_ADD(vmm_vmstats.unrestrict16mcnt);
1583 		VM_STAT_COND_ADD((*flags & PG_PANIC), vmm_vmstats.pgpanicalloc);
1584 		*flags |= PGI_MT_RANGE0;
1585 	}
1586 #endif /* !__xpv */
1587 	return (mtype);
1588 }
1589 
1590 
1591 /* mtype init for page_get_replacement_page */
1592 /*ARGSUSED*/
1593 int
1594 mtype_pgr_init(int *flags, page_t *pp, pgcnt_t pgcnt)
1595 {
1596 	int mtype = mtypetop;
1597 #if !defined(__xpv)
1598 	if (RESTRICT16M_ALLOC(freemem, pgcnt, *flags)) {
1599 		*flags |= PGI_MT_RANGE16M;
1600 	} else {
1601 		VM_STAT_ADD(vmm_vmstats.unrestrict16mcnt);
1602 		*flags |= PGI_MT_RANGE0;
1603 	}
1604 #endif
1605 	return (mtype);
1606 }
1607 
1608 /*
1609  * Determine if the mnode range specified in mtype contains memory belonging
1610  * to memory node mnode.  If flags & PGI_MT_RANGE is set then mtype contains
1611  * the range from high pfn to 0, 16m or 4g.
1612  *
1613  * Return first mnode range type index found otherwise return -1 if none found.
1614  */
1615 int
1616 mtype_func(int mnode, int mtype, uint_t flags)
1617 {
1618 	if (flags & PGI_MT_RANGE) {
1619 		int	mnr_lim = MRI_0;
1620 
1621 		if (flags & PGI_MT_NEXT) {
1622 			mtype = mnoderanges[mtype].mnr_next;
1623 		}
1624 		if (flags & PGI_MT_RANGE4G)
1625 			mnr_lim = MRI_4G;	/* exclude 0-4g range */
1626 		else if (flags & PGI_MT_RANGE16M)
1627 			mnr_lim = MRI_16M;	/* exclude 0-16m range */
1628 		while (mtype != -1 &&
1629 		    mnoderanges[mtype].mnr_memrange <= mnr_lim) {
1630 			if (mnoderanges[mtype].mnr_mnode == mnode)
1631 				return (mtype);
1632 			mtype = mnoderanges[mtype].mnr_next;
1633 		}
1634 	} else if (mnoderanges[mtype].mnr_mnode == mnode) {
1635 		return (mtype);
1636 	}
1637 	return (-1);
1638 }
1639 
1640 /*
1641  * Update the page list max counts with the pfn range specified by the
1642  * input parameters.
1643  */
1644 void
1645 mtype_modify_max(pfn_t startpfn, long cnt)
1646 {
1647 	int		mtype;
1648 	pgcnt_t		inc;
1649 	spgcnt_t	scnt = (spgcnt_t)(cnt);
1650 	pgcnt_t		acnt = ABS(scnt);
1651 	pfn_t		endpfn = startpfn + acnt;
1652 	pfn_t		pfn, lo;
1653 
1654 	if (!physmax4g)
1655 		return;
1656 
1657 	mtype = mtypetop;
1658 	for (pfn = endpfn; pfn > startpfn; ) {
1659 		ASSERT(mtype != -1);
1660 		lo = mnoderanges[mtype].mnr_pfnlo;
1661 		if (pfn > lo) {
1662 			if (startpfn >= lo) {
1663 				inc = pfn - startpfn;
1664 			} else {
1665 				inc = pfn - lo;
1666 			}
1667 			if (mnoderanges[mtype].mnr_memrange != MRI_4G) {
1668 				if (scnt > 0)
1669 					maxmem4g += inc;
1670 				else
1671 					maxmem4g -= inc;
1672 			}
1673 			pfn -= inc;
1674 		}
1675 		mtype = mnoderanges[mtype].mnr_next;
1676 	}
1677 }
1678 
1679 int
1680 mtype_2_mrange(int mtype)
1681 {
1682 	return (mnoderanges[mtype].mnr_memrange);
1683 }
1684 
1685 void
1686 mnodetype_2_pfn(int mnode, int mtype, pfn_t *pfnlo, pfn_t *pfnhi)
1687 {
1688 	_NOTE(ARGUNUSED(mnode));
1689 	ASSERT(mnoderanges[mtype].mnr_mnode == mnode);
1690 	*pfnlo = mnoderanges[mtype].mnr_pfnlo;
1691 	*pfnhi = mnoderanges[mtype].mnr_pfnhi;
1692 }
1693 
1694 size_t
1695 plcnt_sz(size_t ctrs_sz)
1696 {
1697 #ifdef DEBUG
1698 	int	szc, colors;
1699 
1700 	ctrs_sz += mnoderangecnt * sizeof (struct mnr_mts) * mmu_page_sizes;
1701 	for (szc = 0; szc < mmu_page_sizes; szc++) {
1702 		colors = page_get_pagecolors(szc);
1703 		ctrs_sz += mnoderangecnt * sizeof (pgcnt_t) * colors;
1704 	}
1705 #endif
1706 	return (ctrs_sz);
1707 }
1708 
1709 caddr_t
1710 plcnt_init(caddr_t addr)
1711 {
1712 #ifdef DEBUG
1713 	int	mt, szc, colors;
1714 
1715 	for (mt = 0; mt < mnoderangecnt; mt++) {
1716 		mnoderanges[mt].mnr_mts = (struct mnr_mts *)addr;
1717 		addr += (sizeof (struct mnr_mts) * mmu_page_sizes);
1718 		for (szc = 0; szc < mmu_page_sizes; szc++) {
1719 			colors = page_get_pagecolors(szc);
1720 			mnoderanges[mt].mnr_mts[szc].mnr_mts_colors = colors;
1721 			mnoderanges[mt].mnr_mts[szc].mnr_mtsc_pgcnt =
1722 			    (pgcnt_t *)addr;
1723 			addr += (sizeof (pgcnt_t) * colors);
1724 		}
1725 	}
1726 #endif
1727 	return (addr);
1728 }
1729 
1730 void
1731 plcnt_inc_dec(page_t *pp, int mtype, int szc, long cnt, int flags)
1732 {
1733 	_NOTE(ARGUNUSED(pp));
1734 #ifdef DEBUG
1735 	int	bin = PP_2_BIN(pp);
1736 
1737 	atomic_add_long(&mnoderanges[mtype].mnr_mts[szc].mnr_mts_pgcnt, cnt);
1738 	atomic_add_long(&mnoderanges[mtype].mnr_mts[szc].mnr_mtsc_pgcnt[bin],
1739 	    cnt);
1740 #endif
1741 	ASSERT(mtype == PP_2_MTYPE(pp));
1742 	if (physmax4g && mnoderanges[mtype].mnr_memrange != MRI_4G)
1743 		atomic_add_long(&freemem4g, cnt);
1744 	if (flags & PG_CACHE_LIST)
1745 		atomic_add_long(&mnoderanges[mtype].mnr_mt_clpgcnt, cnt);
1746 	else
1747 		atomic_add_long(&mnoderanges[mtype].mnr_mt_flpgcnt[szc], cnt);
1748 	atomic_add_long(&mnoderanges[mtype].mnr_mt_totcnt, cnt);
1749 }
1750 
1751 /*
1752  * Returns the free page count for mnode
1753  */
1754 int
1755 mnode_pgcnt(int mnode)
1756 {
1757 	int	mtype = mtypetop;
1758 	int	flags = PGI_MT_RANGE0;
1759 	pgcnt_t	pgcnt = 0;
1760 
1761 	mtype = mtype_func(mnode, mtype, flags);
1762 
1763 	while (mtype != -1) {
1764 		pgcnt += MTYPE_FREEMEM(mtype);
1765 		mtype = mtype_func(mnode, mtype, flags | PGI_MT_NEXT);
1766 	}
1767 	return (pgcnt);
1768 }
1769 
1770 /*
1771  * Initialize page coloring variables based on the l2 cache parameters.
1772  * Calculate and return memory needed for page coloring data structures.
1773  */
1774 size_t
1775 page_coloring_init(uint_t l2_sz, int l2_linesz, int l2_assoc)
1776 {
1777 	_NOTE(ARGUNUSED(l2_linesz));
1778 	size_t	colorsz = 0;
1779 	int	i;
1780 	int	colors;
1781 
1782 #if defined(__xpv)
1783 	/*
1784 	 * Hypervisor domains currently don't have any concept of NUMA.
1785 	 * Hence we'll act like there is only 1 memrange.
1786 	 */
1787 	i = memrange_num(1);
1788 #else /* !__xpv */
1789 	/*
1790 	 * Reduce the memory ranges lists if we don't have large amounts
1791 	 * of memory. This avoids searching known empty free lists.
1792 	 * To support memory DR operations, we need to keep memory ranges
1793 	 * for possible memory hot-add operations.
1794 	 */
1795 	if (plat_dr_physmax > physmax)
1796 		i = memrange_num(plat_dr_physmax);
1797 	else
1798 		i = memrange_num(physmax);
1799 	/* physmax greater than 4g */
1800 	if (i == MRI_4G)
1801 		physmax4g = 1;
1802 #endif /* !__xpv */
1803 	memranges += i;
1804 	nranges -= i;
1805 
1806 	ASSERT(mmu_page_sizes <= MMU_PAGE_SIZES);
1807 
1808 	ASSERT(ISP2(l2_linesz));
1809 	ASSERT(l2_sz > MMU_PAGESIZE);
1810 
1811 	/* l2_assoc is 0 for fully associative l2 cache */
1812 	if (l2_assoc)
1813 		l2_colors = MAX(1, l2_sz / (l2_assoc * MMU_PAGESIZE));
1814 	else
1815 		l2_colors = 1;
1816 
1817 	ASSERT(ISP2(l2_colors));
1818 
1819 	/* for scalability, configure at least PAGE_COLORS_MIN color bins */
1820 	page_colors = MAX(l2_colors, PAGE_COLORS_MIN);
1821 
1822 	/*
1823 	 * cpu_page_colors is non-zero when a page color may be spread across
1824 	 * multiple bins.
1825 	 */
1826 	if (l2_colors < page_colors)
1827 		cpu_page_colors = l2_colors;
1828 
1829 	ASSERT(ISP2(page_colors));
1830 
1831 	page_colors_mask = page_colors - 1;
1832 
1833 	ASSERT(ISP2(CPUSETSIZE()));
1834 	page_coloring_shift = lowbit(CPUSETSIZE());
1835 
1836 	/* initialize number of colors per page size */
1837 	for (i = 0; i <= mmu.max_page_level; i++) {
1838 		hw_page_array[i].hp_size = LEVEL_SIZE(i);
1839 		hw_page_array[i].hp_shift = LEVEL_SHIFT(i);
1840 		hw_page_array[i].hp_pgcnt = LEVEL_SIZE(i) >> LEVEL_SHIFT(0);
1841 		hw_page_array[i].hp_colors = (page_colors_mask >>
1842 		    (hw_page_array[i].hp_shift - hw_page_array[0].hp_shift))
1843 		    + 1;
1844 		colorequivszc[i] = 0;
1845 	}
1846 
1847 	/*
1848 	 * The value of cpu_page_colors determines if additional color bins
1849 	 * need to be checked for a particular color in the page_get routines.
1850 	 */
1851 	if (cpu_page_colors != 0) {
1852 
1853 		int a = lowbit(page_colors) - lowbit(cpu_page_colors);
1854 		ASSERT(a > 0);
1855 		ASSERT(a < 16);
1856 
1857 		for (i = 0; i <= mmu.max_page_level; i++) {
1858 			if ((colors = hw_page_array[i].hp_colors) <= 1) {
1859 				colorequivszc[i] = 0;
1860 				continue;
1861 			}
1862 			while ((colors >> a) == 0)
1863 				a--;
1864 			ASSERT(a >= 0);
1865 
1866 			/* higher 4 bits encodes color equiv mask */
1867 			colorequivszc[i] = (a << 4);
1868 		}
1869 	}
1870 
1871 	/* factor in colorequiv to check additional 'equivalent' bins. */
1872 	if (colorequiv > 1) {
1873 
1874 		int a = lowbit(colorequiv) - 1;
1875 		if (a > 15)
1876 			a = 15;
1877 
1878 		for (i = 0; i <= mmu.max_page_level; i++) {
1879 			if ((colors = hw_page_array[i].hp_colors) <= 1) {
1880 				continue;
1881 			}
1882 			while ((colors >> a) == 0)
1883 				a--;
1884 			if ((a << 4) > colorequivszc[i]) {
1885 				colorequivszc[i] = (a << 4);
1886 			}
1887 		}
1888 	}
1889 
1890 	/* size for mnoderanges */
1891 	for (mnoderangecnt = 0, i = 0; i < max_mem_nodes; i++)
1892 		mnoderangecnt += mnode_range_cnt(i);
1893 	if (plat_dr_support_memory()) {
1894 		/*
1895 		 * Reserve enough space for memory DR operations.
1896 		 * Two extra mnoderanges for possbile fragmentations,
1897 		 * one for the 2G boundary and the other for the 4G boundary.
1898 		 * We don't expect a memory board crossing the 16M boundary
1899 		 * for memory hot-add operations on x86 platforms.
1900 		 */
1901 		mnoderangecnt += 2 + max_mem_nodes - lgrp_plat_node_cnt;
1902 	}
1903 	colorsz = mnoderangecnt * sizeof (mnoderange_t);
1904 
1905 	/* size for fpc_mutex and cpc_mutex */
1906 	colorsz += (2 * max_mem_nodes * sizeof (kmutex_t) * NPC_MUTEX);
1907 
1908 	/* size of page_freelists */
1909 	colorsz += mnoderangecnt * sizeof (page_t ***);
1910 	colorsz += mnoderangecnt * mmu_page_sizes * sizeof (page_t **);
1911 
1912 	for (i = 0; i < mmu_page_sizes; i++) {
1913 		colors = page_get_pagecolors(i);
1914 		colorsz += mnoderangecnt * colors * sizeof (page_t *);
1915 	}
1916 
1917 	/* size of page_cachelists */
1918 	colorsz += mnoderangecnt * sizeof (page_t **);
1919 	colorsz += mnoderangecnt * page_colors * sizeof (page_t *);
1920 
1921 	return (colorsz);
1922 }
1923 
1924 /*
1925  * Called once at startup to configure page_coloring data structures and
1926  * does the 1st page_free()/page_freelist_add().
1927  */
1928 void
1929 page_coloring_setup(caddr_t pcmemaddr)
1930 {
1931 	int	i;
1932 	int	j;
1933 	int	k;
1934 	caddr_t	addr;
1935 	int	colors;
1936 
1937 	/*
1938 	 * do page coloring setup
1939 	 */
1940 	addr = pcmemaddr;
1941 
1942 	mnoderanges = (mnoderange_t *)addr;
1943 	addr += (mnoderangecnt * sizeof (mnoderange_t));
1944 
1945 	mnode_range_setup(mnoderanges);
1946 
1947 	for (k = 0; k < NPC_MUTEX; k++) {
1948 		fpc_mutex[k] = (kmutex_t *)addr;
1949 		addr += (max_mem_nodes * sizeof (kmutex_t));
1950 	}
1951 	for (k = 0; k < NPC_MUTEX; k++) {
1952 		cpc_mutex[k] = (kmutex_t *)addr;
1953 		addr += (max_mem_nodes * sizeof (kmutex_t));
1954 	}
1955 	page_freelists = (page_t ****)addr;
1956 	addr += (mnoderangecnt * sizeof (page_t ***));
1957 
1958 	page_cachelists = (page_t ***)addr;
1959 	addr += (mnoderangecnt * sizeof (page_t **));
1960 
1961 	for (i = 0; i < mnoderangecnt; i++) {
1962 		page_freelists[i] = (page_t ***)addr;
1963 		addr += (mmu_page_sizes * sizeof (page_t **));
1964 
1965 		for (j = 0; j < mmu_page_sizes; j++) {
1966 			colors = page_get_pagecolors(j);
1967 			page_freelists[i][j] = (page_t **)addr;
1968 			addr += (colors * sizeof (page_t *));
1969 		}
1970 		page_cachelists[i] = (page_t **)addr;
1971 		addr += (page_colors * sizeof (page_t *));
1972 	}
1973 }
1974 
1975 #if defined(__xpv)
1976 /*
1977  * Give back 10% of the io_pool pages to the free list.
1978  * Don't shrink the pool below some absolute minimum.
1979  */
1980 static void
1981 page_io_pool_shrink()
1982 {
1983 	int retcnt;
1984 	page_t *pp, *pp_first, *pp_last, **curpool;
1985 	mfn_t mfn;
1986 	int bothpools = 0;
1987 
1988 	mutex_enter(&io_pool_lock);
1989 	io_pool_shrink_attempts++;	/* should be a kstat? */
1990 	retcnt = io_pool_cnt / 10;
1991 	if (io_pool_cnt - retcnt < io_pool_cnt_min)
1992 		retcnt = io_pool_cnt - io_pool_cnt_min;
1993 	if (retcnt <= 0)
1994 		goto done;
1995 	io_pool_shrinks++;	/* should be a kstat? */
1996 	curpool = &io_pool_4g;
1997 domore:
1998 	/*
1999 	 * Loop through taking pages from the end of the list
2000 	 * (highest mfns) till amount to return reached.
2001 	 */
2002 	for (pp = *curpool; pp && retcnt > 0; ) {
2003 		pp_first = pp_last = pp->p_prev;
2004 		if (pp_first == *curpool)
2005 			break;
2006 		retcnt--;
2007 		io_pool_cnt--;
2008 		page_io_pool_sub(curpool, pp_first, pp_last);
2009 		if ((mfn = pfn_to_mfn(pp->p_pagenum)) < start_mfn)
2010 			start_mfn = mfn;
2011 		page_free(pp_first, 1);
2012 		pp = *curpool;
2013 	}
2014 	if (retcnt != 0 && !bothpools) {
2015 		/*
2016 		 * If not enough found in less constrained pool try the
2017 		 * more constrained one.
2018 		 */
2019 		curpool = &io_pool_16m;
2020 		bothpools = 1;
2021 		goto domore;
2022 	}
2023 done:
2024 	mutex_exit(&io_pool_lock);
2025 }
2026 
2027 #endif	/* __xpv */
2028 
2029 uint_t
2030 page_create_update_flags_x86(uint_t flags)
2031 {
2032 #if defined(__xpv)
2033 	/*
2034 	 * Check this is an urgent allocation and free pages are depleted.
2035 	 */
2036 	if (!(flags & PG_WAIT) && freemem < desfree)
2037 		page_io_pool_shrink();
2038 #else /* !__xpv */
2039 	/*
2040 	 * page_create_get_something may call this because 4g memory may be
2041 	 * depleted. Set flags to allow for relocation of base page below
2042 	 * 4g if necessary.
2043 	 */
2044 	if (physmax4g)
2045 		flags |= (PGI_PGCPSZC0 | PGI_PGCPHIPRI);
2046 #endif /* __xpv */
2047 	return (flags);
2048 }
2049 
2050 /*ARGSUSED*/
2051 int
2052 bp_color(struct buf *bp)
2053 {
2054 	return (0);
2055 }
2056 
2057 #if defined(__xpv)
2058 
2059 /*
2060  * Take pages out of an io_pool
2061  */
2062 static void
2063 page_io_pool_sub(page_t **poolp, page_t *pp_first, page_t *pp_last)
2064 {
2065 	if (*poolp == pp_first) {
2066 		*poolp = pp_last->p_next;
2067 		if (*poolp == pp_first)
2068 			*poolp = NULL;
2069 	}
2070 	pp_first->p_prev->p_next = pp_last->p_next;
2071 	pp_last->p_next->p_prev = pp_first->p_prev;
2072 	pp_first->p_prev = pp_last;
2073 	pp_last->p_next = pp_first;
2074 }
2075 
2076 /*
2077  * Put a page on the io_pool list. The list is ordered by increasing MFN.
2078  */
2079 static void
2080 page_io_pool_add(page_t **poolp, page_t *pp)
2081 {
2082 	page_t	*look;
2083 	mfn_t	mfn = mfn_list[pp->p_pagenum];
2084 
2085 	if (*poolp == NULL) {
2086 		*poolp = pp;
2087 		pp->p_next = pp;
2088 		pp->p_prev = pp;
2089 		return;
2090 	}
2091 
2092 	/*
2093 	 * Since we try to take pages from the high end of the pool
2094 	 * chances are good that the pages to be put on the list will
2095 	 * go at or near the end of the list. so start at the end and
2096 	 * work backwards.
2097 	 */
2098 	look = (*poolp)->p_prev;
2099 	while (mfn < mfn_list[look->p_pagenum]) {
2100 		look = look->p_prev;
2101 		if (look == (*poolp)->p_prev)
2102 			break; /* backed all the way to front of list */
2103 	}
2104 
2105 	/* insert after look */
2106 	pp->p_prev = look;
2107 	pp->p_next = look->p_next;
2108 	pp->p_next->p_prev = pp;
2109 	look->p_next = pp;
2110 	if (mfn < mfn_list[(*poolp)->p_pagenum]) {
2111 		/*
2112 		 * we inserted a new first list element
2113 		 * adjust pool pointer to newly inserted element
2114 		 */
2115 		*poolp = pp;
2116 	}
2117 }
2118 
2119 /*
2120  * Add a page to the io_pool.  Setting the force flag will force the page
2121  * into the io_pool no matter what.
2122  */
2123 static void
2124 add_page_to_pool(page_t *pp, int force)
2125 {
2126 	page_t *highest;
2127 	page_t *freep = NULL;
2128 
2129 	mutex_enter(&io_pool_lock);
2130 	/*
2131 	 * Always keep the scarce low memory pages
2132 	 */
2133 	if (mfn_list[pp->p_pagenum] < PFN_16MEG) {
2134 		++io_pool_cnt;
2135 		page_io_pool_add(&io_pool_16m, pp);
2136 		goto done;
2137 	}
2138 	if (io_pool_cnt < io_pool_cnt_max || force || io_pool_4g == NULL) {
2139 		++io_pool_cnt;
2140 		page_io_pool_add(&io_pool_4g, pp);
2141 	} else {
2142 		highest = io_pool_4g->p_prev;
2143 		if (mfn_list[pp->p_pagenum] < mfn_list[highest->p_pagenum]) {
2144 			page_io_pool_sub(&io_pool_4g, highest, highest);
2145 			page_io_pool_add(&io_pool_4g, pp);
2146 			freep = highest;
2147 		} else {
2148 			freep = pp;
2149 		}
2150 	}
2151 done:
2152 	mutex_exit(&io_pool_lock);
2153 	if (freep)
2154 		page_free(freep, 1);
2155 }
2156 
2157 
2158 int contig_pfn_cnt;	/* no of pfns in the contig pfn list */
2159 int contig_pfn_max;	/* capacity of the contig pfn list */
2160 int next_alloc_pfn;	/* next position in list to start a contig search */
2161 int contig_pfnlist_updates;	/* pfn list update count */
2162 int contig_pfnlist_builds;	/* how many times have we (re)built list */
2163 int contig_pfnlist_buildfailed;	/* how many times has list build failed */
2164 int create_contig_pending;	/* nonzero means taskq creating contig list */
2165 pfn_t *contig_pfn_list = NULL;	/* list of contig pfns in ascending mfn order */
2166 
2167 /*
2168  * Function to use in sorting a list of pfns by their underlying mfns.
2169  */
2170 static int
2171 mfn_compare(const void *pfnp1, const void *pfnp2)
2172 {
2173 	mfn_t mfn1 = mfn_list[*(pfn_t *)pfnp1];
2174 	mfn_t mfn2 = mfn_list[*(pfn_t *)pfnp2];
2175 
2176 	if (mfn1 > mfn2)
2177 		return (1);
2178 	if (mfn1 < mfn2)
2179 		return (-1);
2180 	return (0);
2181 }
2182 
2183 /*
2184  * Compact the contig_pfn_list by tossing all the non-contiguous
2185  * elements from the list.
2186  */
2187 static void
2188 compact_contig_pfn_list(void)
2189 {
2190 	pfn_t pfn, lapfn, prev_lapfn;
2191 	mfn_t mfn;
2192 	int i, newcnt = 0;
2193 
2194 	prev_lapfn = 0;
2195 	for (i = 0; i < contig_pfn_cnt - 1; i++) {
2196 		pfn = contig_pfn_list[i];
2197 		lapfn = contig_pfn_list[i + 1];
2198 		mfn = mfn_list[pfn];
2199 		/*
2200 		 * See if next pfn is for a contig mfn
2201 		 */
2202 		if (mfn_list[lapfn] != mfn + 1)
2203 			continue;
2204 		/*
2205 		 * pfn and lookahead are both put in list
2206 		 * unless pfn is the previous lookahead.
2207 		 */
2208 		if (pfn != prev_lapfn)
2209 			contig_pfn_list[newcnt++] = pfn;
2210 		contig_pfn_list[newcnt++] = lapfn;
2211 		prev_lapfn = lapfn;
2212 	}
2213 	for (i = newcnt; i < contig_pfn_cnt; i++)
2214 		contig_pfn_list[i] = 0;
2215 	contig_pfn_cnt = newcnt;
2216 }
2217 
2218 /*ARGSUSED*/
2219 static void
2220 call_create_contiglist(void *arg)
2221 {
2222 	(void) create_contig_pfnlist(PG_WAIT);
2223 }
2224 
2225 /*
2226  * Create list of freelist pfns that have underlying
2227  * contiguous mfns.  The list is kept in ascending mfn order.
2228  * returns 1 if list created else 0.
2229  */
2230 static int
2231 create_contig_pfnlist(uint_t flags)
2232 {
2233 	pfn_t pfn;
2234 	page_t *pp;
2235 	int ret = 1;
2236 
2237 	mutex_enter(&contig_list_lock);
2238 	if (contig_pfn_list != NULL)
2239 		goto out;
2240 	contig_pfn_max = freemem + (freemem / 10);
2241 	contig_pfn_list = kmem_zalloc(contig_pfn_max * sizeof (pfn_t),
2242 	    (flags & PG_WAIT) ? KM_SLEEP : KM_NOSLEEP);
2243 	if (contig_pfn_list == NULL) {
2244 		/*
2245 		 * If we could not create the contig list (because
2246 		 * we could not sleep for memory).  Dispatch a taskq that can
2247 		 * sleep to get the memory.
2248 		 */
2249 		if (!create_contig_pending) {
2250 			if (taskq_dispatch(system_taskq, call_create_contiglist,
2251 			    NULL, TQ_NOSLEEP) != TASKQID_INVALID)
2252 				create_contig_pending = 1;
2253 		}
2254 		contig_pfnlist_buildfailed++;	/* count list build failures */
2255 		ret = 0;
2256 		goto out;
2257 	}
2258 	create_contig_pending = 0;
2259 	ASSERT(contig_pfn_cnt == 0);
2260 	for (pfn = 0; pfn < mfn_count; pfn++) {
2261 		pp = page_numtopp_nolock(pfn);
2262 		if (pp == NULL || !PP_ISFREE(pp))
2263 			continue;
2264 		contig_pfn_list[contig_pfn_cnt] = pfn;
2265 		if (++contig_pfn_cnt == contig_pfn_max)
2266 			break;
2267 	}
2268 	/*
2269 	 * Sanity check the new list.
2270 	 */
2271 	if (contig_pfn_cnt < 2) { /* no contig pfns */
2272 		contig_pfn_cnt = 0;
2273 		contig_pfnlist_buildfailed++;
2274 		kmem_free(contig_pfn_list, contig_pfn_max * sizeof (pfn_t));
2275 		contig_pfn_list = NULL;
2276 		contig_pfn_max = 0;
2277 		ret = 0;
2278 		goto out;
2279 	}
2280 	qsort(contig_pfn_list, contig_pfn_cnt, sizeof (pfn_t), mfn_compare);
2281 	compact_contig_pfn_list();
2282 	/*
2283 	 * Make sure next search of the newly created contiguous pfn
2284 	 * list starts at the beginning of the list.
2285 	 */
2286 	next_alloc_pfn = 0;
2287 	contig_pfnlist_builds++;	/* count list builds */
2288 out:
2289 	mutex_exit(&contig_list_lock);
2290 	return (ret);
2291 }
2292 
2293 
2294 /*
2295  * Toss the current contig pfnlist.  Someone is about to do a massive
2296  * update to pfn<->mfn mappings.  So we have them destroy the list and lock
2297  * it till they are done with their update.
2298  */
2299 void
2300 clear_and_lock_contig_pfnlist()
2301 {
2302 	pfn_t *listp = NULL;
2303 	size_t listsize;
2304 
2305 	mutex_enter(&contig_list_lock);
2306 	if (contig_pfn_list != NULL) {
2307 		listp = contig_pfn_list;
2308 		listsize = contig_pfn_max * sizeof (pfn_t);
2309 		contig_pfn_list = NULL;
2310 		contig_pfn_max = contig_pfn_cnt = 0;
2311 	}
2312 	if (listp != NULL)
2313 		kmem_free(listp, listsize);
2314 }
2315 
2316 /*
2317  * Unlock the contig_pfn_list.  The next attempted use of it will cause
2318  * it to be re-created.
2319  */
2320 void
2321 unlock_contig_pfnlist()
2322 {
2323 	mutex_exit(&contig_list_lock);
2324 }
2325 
2326 /*
2327  * Update the contiguous pfn list in response to a pfn <-> mfn reassignment
2328  */
2329 void
2330 update_contig_pfnlist(pfn_t pfn, mfn_t oldmfn, mfn_t newmfn)
2331 {
2332 	int probe_hi, probe_lo, probe_pos, insert_after, insert_point;
2333 	pfn_t probe_pfn;
2334 	mfn_t probe_mfn;
2335 	int drop_lock = 0;
2336 
2337 	if (mutex_owner(&contig_list_lock) != curthread) {
2338 		drop_lock = 1;
2339 		mutex_enter(&contig_list_lock);
2340 	}
2341 	if (contig_pfn_list == NULL)
2342 		goto done;
2343 	contig_pfnlist_updates++;
2344 	/*
2345 	 * Find the pfn in the current list.  Use a binary chop to locate it.
2346 	 */
2347 	probe_hi = contig_pfn_cnt - 1;
2348 	probe_lo = 0;
2349 	probe_pos = (probe_hi + probe_lo) / 2;
2350 	while ((probe_pfn = contig_pfn_list[probe_pos]) != pfn) {
2351 		if (probe_pos == probe_lo) { /* pfn not in list */
2352 			probe_pos = -1;
2353 			break;
2354 		}
2355 		if (pfn_to_mfn(probe_pfn) <= oldmfn)
2356 			probe_lo = probe_pos;
2357 		else
2358 			probe_hi = probe_pos;
2359 		probe_pos = (probe_hi + probe_lo) / 2;
2360 	}
2361 	if (probe_pos >= 0) {
2362 		/*
2363 		 * Remove pfn from list and ensure next alloc
2364 		 * position stays in bounds.
2365 		 */
2366 		if (--contig_pfn_cnt <= next_alloc_pfn)
2367 			next_alloc_pfn = 0;
2368 		if (contig_pfn_cnt < 2) { /* no contig pfns */
2369 			contig_pfn_cnt = 0;
2370 			kmem_free(contig_pfn_list,
2371 			    contig_pfn_max * sizeof (pfn_t));
2372 			contig_pfn_list = NULL;
2373 			contig_pfn_max = 0;
2374 			goto done;
2375 		}
2376 		ovbcopy(&contig_pfn_list[probe_pos + 1],
2377 		    &contig_pfn_list[probe_pos],
2378 		    (contig_pfn_cnt - probe_pos) * sizeof (pfn_t));
2379 	}
2380 	if (newmfn == MFN_INVALID)
2381 		goto done;
2382 	/*
2383 	 * Check if new mfn has adjacent mfns in the list
2384 	 */
2385 	probe_hi = contig_pfn_cnt - 1;
2386 	probe_lo = 0;
2387 	insert_after = -2;
2388 	do {
2389 		probe_pos = (probe_hi + probe_lo) / 2;
2390 		probe_mfn = pfn_to_mfn(contig_pfn_list[probe_pos]);
2391 		if (newmfn == probe_mfn + 1)
2392 			insert_after = probe_pos;
2393 		else if (newmfn == probe_mfn - 1)
2394 			insert_after = probe_pos - 1;
2395 		if (probe_pos == probe_lo)
2396 			break;
2397 		if (probe_mfn <= newmfn)
2398 			probe_lo = probe_pos;
2399 		else
2400 			probe_hi = probe_pos;
2401 	} while (insert_after == -2);
2402 	/*
2403 	 * If there is space in the list and there are adjacent mfns
2404 	 * insert the pfn in to its proper place in the list.
2405 	 */
2406 	if (insert_after != -2 && contig_pfn_cnt + 1 <= contig_pfn_max) {
2407 		insert_point = insert_after + 1;
2408 		ovbcopy(&contig_pfn_list[insert_point],
2409 		    &contig_pfn_list[insert_point + 1],
2410 		    (contig_pfn_cnt - insert_point) * sizeof (pfn_t));
2411 		contig_pfn_list[insert_point] = pfn;
2412 		contig_pfn_cnt++;
2413 	}
2414 done:
2415 	if (drop_lock)
2416 		mutex_exit(&contig_list_lock);
2417 }
2418 
2419 /*
2420  * Called to (re-)populate the io_pool from the free page lists.
2421  */
2422 long
2423 populate_io_pool(void)
2424 {
2425 	pfn_t pfn;
2426 	mfn_t mfn, max_mfn;
2427 	page_t *pp;
2428 
2429 	/*
2430 	 * Figure out the bounds of the pool on first invocation.
2431 	 * We use a percentage of memory for the io pool size.
2432 	 * we allow that to shrink, but not to less than a fixed minimum
2433 	 */
2434 	if (io_pool_cnt_max == 0) {
2435 		io_pool_cnt_max = physmem / (100 / io_pool_physmem_pct);
2436 		io_pool_cnt_lowater = io_pool_cnt_max;
2437 		/*
2438 		 * This is the first time in populate_io_pool, grab a va to use
2439 		 * when we need to allocate pages.
2440 		 */
2441 		io_pool_kva = vmem_alloc(heap_arena, PAGESIZE, VM_SLEEP);
2442 	}
2443 	/*
2444 	 * If we are out of pages in the pool, then grow the size of the pool
2445 	 */
2446 	if (io_pool_cnt == 0) {
2447 		/*
2448 		 * Grow the max size of the io pool by 5%, but never more than
2449 		 * 25% of physical memory.
2450 		 */
2451 		if (io_pool_cnt_max < physmem / 4)
2452 			io_pool_cnt_max += io_pool_cnt_max / 20;
2453 	}
2454 	io_pool_grows++;	/* should be a kstat? */
2455 
2456 	/*
2457 	 * Get highest mfn on this platform, but limit to the 32 bit DMA max.
2458 	 */
2459 	(void) mfn_to_pfn(start_mfn);
2460 	max_mfn = MIN(cached_max_mfn, PFN_4GIG);
2461 	for (mfn = start_mfn; mfn < max_mfn; start_mfn = ++mfn) {
2462 		pfn = mfn_to_pfn(mfn);
2463 		if (pfn & PFN_IS_FOREIGN_MFN)
2464 			continue;
2465 		/*
2466 		 * try to allocate it from free pages
2467 		 */
2468 		pp = page_numtopp_alloc(pfn);
2469 		if (pp == NULL)
2470 			continue;
2471 		PP_CLRFREE(pp);
2472 		add_page_to_pool(pp, 1);
2473 		if (io_pool_cnt >= io_pool_cnt_max)
2474 			break;
2475 	}
2476 
2477 	return (io_pool_cnt);
2478 }
2479 
2480 /*
2481  * Destroy a page that was being used for DMA I/O. It may or
2482  * may not actually go back to the io_pool.
2483  */
2484 void
2485 page_destroy_io(page_t *pp)
2486 {
2487 	mfn_t mfn = mfn_list[pp->p_pagenum];
2488 
2489 	/*
2490 	 * When the page was alloc'd a reservation was made, release it now
2491 	 */
2492 	page_unresv(1);
2493 	/*
2494 	 * Unload translations, if any, then hash out the
2495 	 * page to erase its identity.
2496 	 */
2497 	(void) hat_pageunload(pp, HAT_FORCE_PGUNLOAD);
2498 	page_hashout(pp, NULL);
2499 
2500 	/*
2501 	 * If the page came from the free lists, just put it back to them.
2502 	 * DomU pages always go on the free lists as well.
2503 	 */
2504 	if (!DOMAIN_IS_INITDOMAIN(xen_info) || mfn >= PFN_4GIG) {
2505 		page_free(pp, 1);
2506 		return;
2507 	}
2508 
2509 	add_page_to_pool(pp, 0);
2510 }
2511 
2512 
2513 long contig_searches;		/* count of times contig pages requested */
2514 long contig_search_restarts;	/* count of contig ranges tried */
2515 long contig_search_failed;	/* count of contig alloc failures */
2516 
2517 /*
2518  * Free partial page list
2519  */
2520 static void
2521 free_partial_list(page_t **pplist)
2522 {
2523 	page_t *pp;
2524 
2525 	while (*pplist != NULL) {
2526 		pp = *pplist;
2527 		page_io_pool_sub(pplist, pp, pp);
2528 		page_free(pp, 1);
2529 	}
2530 }
2531 
2532 /*
2533  * Look thru the contiguous pfns that are not part of the io_pool for
2534  * contiguous free pages.  Return a list of the found pages or NULL.
2535  */
2536 page_t *
2537 find_contig_free(uint_t npages, uint_t flags, uint64_t pfnseg,
2538     pgcnt_t pfnalign)
2539 {
2540 	page_t *pp, *plist = NULL;
2541 	mfn_t mfn, prev_mfn, start_mfn;
2542 	pfn_t pfn;
2543 	int pages_needed, pages_requested;
2544 	int search_start;
2545 
2546 	/*
2547 	 * create the contig pfn list if not already done
2548 	 */
2549 retry:
2550 	mutex_enter(&contig_list_lock);
2551 	if (contig_pfn_list == NULL) {
2552 		mutex_exit(&contig_list_lock);
2553 		if (!create_contig_pfnlist(flags)) {
2554 			return (NULL);
2555 		}
2556 		goto retry;
2557 	}
2558 	contig_searches++;
2559 	/*
2560 	 * Search contiguous pfn list for physically contiguous pages not in
2561 	 * the io_pool.  Start the search where the last search left off.
2562 	 */
2563 	pages_requested = pages_needed = npages;
2564 	search_start = next_alloc_pfn;
2565 	start_mfn = prev_mfn = 0;
2566 	while (pages_needed) {
2567 		pfn = contig_pfn_list[next_alloc_pfn];
2568 		mfn = pfn_to_mfn(pfn);
2569 		/*
2570 		 * Check if mfn is first one or contig to previous one and
2571 		 * if page corresponding to mfn is free and that mfn
2572 		 * range is not crossing a segment boundary.
2573 		 */
2574 		if ((prev_mfn == 0 || mfn == prev_mfn + 1) &&
2575 		    (pp = page_numtopp_alloc(pfn)) != NULL &&
2576 		    !((mfn & pfnseg) < (start_mfn & pfnseg))) {
2577 			PP_CLRFREE(pp);
2578 			page_io_pool_add(&plist, pp);
2579 			pages_needed--;
2580 			if (prev_mfn == 0) {
2581 				if (pfnalign &&
2582 				    mfn != P2ROUNDUP(mfn, pfnalign)) {
2583 					/*
2584 					 * not properly aligned
2585 					 */
2586 					contig_search_restarts++;
2587 					free_partial_list(&plist);
2588 					pages_needed = pages_requested;
2589 					start_mfn = prev_mfn = 0;
2590 					goto skip;
2591 				}
2592 				start_mfn = mfn;
2593 			}
2594 			prev_mfn = mfn;
2595 		} else {
2596 			contig_search_restarts++;
2597 			free_partial_list(&plist);
2598 			pages_needed = pages_requested;
2599 			start_mfn = prev_mfn = 0;
2600 		}
2601 skip:
2602 		if (++next_alloc_pfn == contig_pfn_cnt)
2603 			next_alloc_pfn = 0;
2604 		if (next_alloc_pfn == search_start)
2605 			break; /* all pfns searched */
2606 	}
2607 	mutex_exit(&contig_list_lock);
2608 	if (pages_needed) {
2609 		contig_search_failed++;
2610 		/*
2611 		 * Failed to find enough contig pages.
2612 		 * free partial page list
2613 		 */
2614 		free_partial_list(&plist);
2615 	}
2616 	return (plist);
2617 }
2618 
2619 /*
2620  * Search the reserved io pool pages for a page range with the
2621  * desired characteristics.
2622  */
2623 page_t *
2624 page_io_pool_alloc(ddi_dma_attr_t *mattr, int contig, pgcnt_t minctg)
2625 {
2626 	page_t *pp_first, *pp_last;
2627 	page_t *pp, **poolp;
2628 	pgcnt_t nwanted, pfnalign;
2629 	uint64_t pfnseg;
2630 	mfn_t mfn, tmfn, hi_mfn, lo_mfn;
2631 	int align, attempt = 0;
2632 
2633 	if (minctg == 1)
2634 		contig = 0;
2635 	lo_mfn = mmu_btop(mattr->dma_attr_addr_lo);
2636 	hi_mfn = mmu_btop(mattr->dma_attr_addr_hi);
2637 	pfnseg = mmu_btop(mattr->dma_attr_seg);
2638 	align = maxbit(mattr->dma_attr_align, mattr->dma_attr_minxfer);
2639 	if (align > MMU_PAGESIZE)
2640 		pfnalign = mmu_btop(align);
2641 	else
2642 		pfnalign = 0;
2643 
2644 try_again:
2645 	/*
2646 	 * See if we want pages for a legacy device
2647 	 */
2648 	if (hi_mfn < PFN_16MEG)
2649 		poolp = &io_pool_16m;
2650 	else
2651 		poolp = &io_pool_4g;
2652 try_smaller:
2653 	/*
2654 	 * Take pages from I/O pool. We'll use pages from the highest
2655 	 * MFN range possible.
2656 	 */
2657 	pp_first = pp_last = NULL;
2658 	mutex_enter(&io_pool_lock);
2659 	nwanted = minctg;
2660 	for (pp = *poolp; pp && nwanted > 0; ) {
2661 		pp = pp->p_prev;
2662 
2663 		/*
2664 		 * skip pages above allowable range
2665 		 */
2666 		mfn = mfn_list[pp->p_pagenum];
2667 		if (hi_mfn < mfn)
2668 			goto skip;
2669 
2670 		/*
2671 		 * stop at pages below allowable range
2672 		 */
2673 		if (lo_mfn > mfn)
2674 			break;
2675 restart:
2676 		if (pp_last == NULL) {
2677 			/*
2678 			 * Check alignment
2679 			 */
2680 			tmfn = mfn - (minctg - 1);
2681 			if (pfnalign && tmfn != P2ROUNDUP(tmfn, pfnalign))
2682 				goto skip; /* not properly aligned */
2683 			/*
2684 			 * Check segment
2685 			 */
2686 			if ((mfn & pfnseg) < (tmfn & pfnseg))
2687 				goto skip; /* crosses seg boundary */
2688 			/*
2689 			 * Start building page list
2690 			 */
2691 			pp_first = pp_last = pp;
2692 			nwanted--;
2693 		} else {
2694 			/*
2695 			 * check physical contiguity if required
2696 			 */
2697 			if (contig &&
2698 			    mfn_list[pp_first->p_pagenum] != mfn + 1) {
2699 				/*
2700 				 * not a contiguous page, restart list.
2701 				 */
2702 				pp_last = NULL;
2703 				nwanted = minctg;
2704 				goto restart;
2705 			} else { /* add page to list */
2706 				pp_first = pp;
2707 				nwanted--;
2708 			}
2709 		}
2710 skip:
2711 		if (pp == *poolp)
2712 			break;
2713 	}
2714 
2715 	/*
2716 	 * If we didn't find memory. Try the more constrained pool, then
2717 	 * sweep free pages into the DMA pool and try again.
2718 	 */
2719 	if (nwanted != 0) {
2720 		mutex_exit(&io_pool_lock);
2721 		/*
2722 		 * If we were looking in the less constrained pool and
2723 		 * didn't find pages, try the more constrained pool.
2724 		 */
2725 		if (poolp == &io_pool_4g) {
2726 			poolp = &io_pool_16m;
2727 			goto try_smaller;
2728 		}
2729 		kmem_reap();
2730 		if (++attempt < 4) {
2731 			/*
2732 			 * Grab some more io_pool pages
2733 			 */
2734 			(void) populate_io_pool();
2735 			goto try_again; /* go around and retry */
2736 		}
2737 		return (NULL);
2738 	}
2739 	/*
2740 	 * Found the pages, now snip them from the list
2741 	 */
2742 	page_io_pool_sub(poolp, pp_first, pp_last);
2743 	io_pool_cnt -= minctg;
2744 	/*
2745 	 * reset low water mark
2746 	 */
2747 	if (io_pool_cnt < io_pool_cnt_lowater)
2748 		io_pool_cnt_lowater = io_pool_cnt;
2749 	mutex_exit(&io_pool_lock);
2750 	return (pp_first);
2751 }
2752 
2753 page_t *
2754 page_swap_with_hypervisor(struct vnode *vp, u_offset_t off, caddr_t vaddr,
2755     ddi_dma_attr_t *mattr, uint_t flags, pgcnt_t minctg)
2756 {
2757 	uint_t kflags;
2758 	int order, extra, extpages, i, contig, nbits, extents;
2759 	page_t *pp, *expp, *pp_first, **pplist = NULL;
2760 	mfn_t *mfnlist = NULL;
2761 
2762 	extra = 0;
2763 	contig = flags & PG_PHYSCONTIG;
2764 	if (minctg == 1)
2765 		contig = 0;
2766 	flags &= ~PG_PHYSCONTIG;
2767 	kflags = flags & PG_WAIT ? KM_SLEEP : KM_NOSLEEP;
2768 	/*
2769 	 * Hypervisor will allocate extents, if we want contig
2770 	 * pages extent must be >= minctg
2771 	 */
2772 	if (contig) {
2773 		order = highbit(minctg) - 1;
2774 		if (minctg & ((1 << order) - 1))
2775 			order++;
2776 		extpages = 1 << order;
2777 	} else {
2778 		order = 0;
2779 		extpages = minctg;
2780 	}
2781 	if (extpages > minctg) {
2782 		extra = extpages - minctg;
2783 		if (!page_resv(extra, kflags))
2784 			return (NULL);
2785 	}
2786 	pp_first = NULL;
2787 	pplist = kmem_alloc(extpages * sizeof (page_t *), kflags);
2788 	if (pplist == NULL)
2789 		goto balloon_fail;
2790 	mfnlist = kmem_alloc(extpages * sizeof (mfn_t), kflags);
2791 	if (mfnlist == NULL)
2792 		goto balloon_fail;
2793 	pp = page_create_va(vp, off, minctg * PAGESIZE, flags, &kvseg, vaddr);
2794 	if (pp == NULL)
2795 		goto balloon_fail;
2796 	pp_first = pp;
2797 	if (extpages > minctg) {
2798 		/*
2799 		 * fill out the rest of extent pages to swap
2800 		 * with the hypervisor
2801 		 */
2802 		for (i = 0; i < extra; i++) {
2803 			expp = page_create_va(vp,
2804 			    (u_offset_t)(uintptr_t)io_pool_kva,
2805 			    PAGESIZE, flags, &kvseg, io_pool_kva);
2806 			if (expp == NULL)
2807 				goto balloon_fail;
2808 			(void) hat_pageunload(expp, HAT_FORCE_PGUNLOAD);
2809 			page_io_unlock(expp);
2810 			page_hashout(expp, NULL);
2811 			page_io_lock(expp);
2812 			/*
2813 			 * add page to end of list
2814 			 */
2815 			expp->p_prev = pp_first->p_prev;
2816 			expp->p_next = pp_first;
2817 			expp->p_prev->p_next = expp;
2818 			pp_first->p_prev = expp;
2819 		}
2820 
2821 	}
2822 	for (i = 0; i < extpages; i++) {
2823 		pplist[i] = pp;
2824 		pp = pp->p_next;
2825 	}
2826 	nbits = highbit(mattr->dma_attr_addr_hi);
2827 	extents = contig ? 1 : minctg;
2828 	if (balloon_replace_pages(extents, pplist, nbits, order,
2829 	    mfnlist) != extents) {
2830 		if (ioalloc_dbg)
2831 			cmn_err(CE_NOTE, "request to hypervisor"
2832 			    " for %d pages, maxaddr %" PRIx64 " failed",
2833 			    extpages, mattr->dma_attr_addr_hi);
2834 		goto balloon_fail;
2835 	}
2836 
2837 	kmem_free(pplist, extpages * sizeof (page_t *));
2838 	kmem_free(mfnlist, extpages * sizeof (mfn_t));
2839 	/*
2840 	 * Return any excess pages to free list
2841 	 */
2842 	if (extpages > minctg) {
2843 		for (i = 0; i < extra; i++) {
2844 			pp = pp_first->p_prev;
2845 			page_sub(&pp_first, pp);
2846 			page_io_unlock(pp);
2847 			page_unresv(1);
2848 			page_free(pp, 1);
2849 		}
2850 	}
2851 	return (pp_first);
2852 balloon_fail:
2853 	/*
2854 	 * Return pages to free list and return failure
2855 	 */
2856 	while (pp_first != NULL) {
2857 		pp = pp_first;
2858 		page_sub(&pp_first, pp);
2859 		page_io_unlock(pp);
2860 		if (pp->p_vnode != NULL)
2861 			page_hashout(pp, NULL);
2862 		page_free(pp, 1);
2863 	}
2864 	if (pplist)
2865 		kmem_free(pplist, extpages * sizeof (page_t *));
2866 	if (mfnlist)
2867 		kmem_free(mfnlist, extpages * sizeof (mfn_t));
2868 	page_unresv(extpages - minctg);
2869 	return (NULL);
2870 }
2871 
2872 static void
2873 return_partial_alloc(page_t *plist)
2874 {
2875 	page_t *pp;
2876 
2877 	while (plist != NULL) {
2878 		pp = plist;
2879 		page_sub(&plist, pp);
2880 		page_io_unlock(pp);
2881 		page_destroy_io(pp);
2882 	}
2883 }
2884 
2885 static page_t *
2886 page_get_contigpages(
2887 	struct vnode	*vp,
2888 	u_offset_t	off,
2889 	int		*npagesp,
2890 	uint_t		flags,
2891 	caddr_t		vaddr,
2892 	ddi_dma_attr_t	*mattr)
2893 {
2894 	mfn_t	max_mfn = HYPERVISOR_memory_op(XENMEM_maximum_ram_page, NULL);
2895 	page_t	*plist;	/* list to return */
2896 	page_t	*pp, *mcpl;
2897 	int	contig, anyaddr, npages, getone = 0;
2898 	mfn_t	lo_mfn;
2899 	mfn_t	hi_mfn;
2900 	pgcnt_t	pfnalign = 0;
2901 	int	align, sgllen;
2902 	uint64_t pfnseg;
2903 	pgcnt_t	minctg;
2904 
2905 	npages = *npagesp;
2906 	ASSERT(mattr != NULL);
2907 	lo_mfn = mmu_btop(mattr->dma_attr_addr_lo);
2908 	hi_mfn = mmu_btop(mattr->dma_attr_addr_hi);
2909 	sgllen = mattr->dma_attr_sgllen;
2910 	pfnseg = mmu_btop(mattr->dma_attr_seg);
2911 	align = maxbit(mattr->dma_attr_align, mattr->dma_attr_minxfer);
2912 	if (align > MMU_PAGESIZE)
2913 		pfnalign = mmu_btop(align);
2914 
2915 	contig = flags & PG_PHYSCONTIG;
2916 	if (npages == -1) {
2917 		npages = 1;
2918 		pfnalign = 0;
2919 	}
2920 	/*
2921 	 * Clear the contig flag if only one page is needed.
2922 	 */
2923 	if (npages == 1) {
2924 		getone = 1;
2925 		contig = 0;
2926 	}
2927 
2928 	/*
2929 	 * Check if any page in the system is fine.
2930 	 */
2931 	anyaddr = lo_mfn == 0 && hi_mfn >= max_mfn;
2932 	if (!contig && anyaddr && !pfnalign) {
2933 		flags &= ~PG_PHYSCONTIG;
2934 		plist = page_create_va(vp, off, npages * MMU_PAGESIZE,
2935 		    flags, &kvseg, vaddr);
2936 		if (plist != NULL) {
2937 			*npagesp = 0;
2938 			return (plist);
2939 		}
2940 	}
2941 	plist = NULL;
2942 	minctg = howmany(npages, sgllen);
2943 	while (npages > sgllen || getone) {
2944 		if (minctg > npages)
2945 			minctg = npages;
2946 		mcpl = NULL;
2947 		/*
2948 		 * We could want contig pages with no address range limits.
2949 		 */
2950 		if (anyaddr && contig) {
2951 			/*
2952 			 * Look for free contig pages to satisfy the request.
2953 			 */
2954 			mcpl = find_contig_free(minctg, flags, pfnseg,
2955 			    pfnalign);
2956 		}
2957 		/*
2958 		 * Try the reserved io pools next
2959 		 */
2960 		if (mcpl == NULL)
2961 			mcpl = page_io_pool_alloc(mattr, contig, minctg);
2962 		if (mcpl != NULL) {
2963 			pp = mcpl;
2964 			do {
2965 				if (!page_hashin(pp, vp, off, NULL)) {
2966 					panic("page_get_contigpages:"
2967 					    " hashin failed"
2968 					    " pp %p, vp %p, off %llx",
2969 					    (void *)pp, (void *)vp, off);
2970 				}
2971 				off += MMU_PAGESIZE;
2972 				PP_CLRFREE(pp);
2973 				PP_CLRAGED(pp);
2974 				page_set_props(pp, P_REF);
2975 				page_io_lock(pp);
2976 				pp = pp->p_next;
2977 			} while (pp != mcpl);
2978 		} else {
2979 			/*
2980 			 * Hypervisor exchange doesn't handle segment or
2981 			 * alignment constraints
2982 			 */
2983 			if (mattr->dma_attr_seg < mattr->dma_attr_addr_hi ||
2984 			    pfnalign)
2985 				goto fail;
2986 			/*
2987 			 * Try exchanging pages with the hypervisor
2988 			 */
2989 			mcpl = page_swap_with_hypervisor(vp, off, vaddr, mattr,
2990 			    flags, minctg);
2991 			if (mcpl == NULL)
2992 				goto fail;
2993 			off += minctg * MMU_PAGESIZE;
2994 		}
2995 		check_dma(mattr, mcpl, minctg);
2996 		/*
2997 		 * Here with a minctg run of contiguous pages, add them to the
2998 		 * list we will return for this request.
2999 		 */
3000 		page_list_concat(&plist, &mcpl);
3001 		npages -= minctg;
3002 		*npagesp = npages;
3003 		sgllen--;
3004 		if (getone)
3005 			break;
3006 	}
3007 	return (plist);
3008 fail:
3009 	return_partial_alloc(plist);
3010 	return (NULL);
3011 }
3012 
3013 /*
3014  * Allocator for domain 0 I/O pages. We match the required
3015  * DMA attributes and contiguity constraints.
3016  */
3017 /*ARGSUSED*/
3018 page_t *
3019 page_create_io(
3020 	struct vnode	*vp,
3021 	u_offset_t	off,
3022 	uint_t		bytes,
3023 	uint_t		flags,
3024 	struct as	*as,
3025 	caddr_t		vaddr,
3026 	ddi_dma_attr_t	*mattr)
3027 {
3028 	page_t	*plist = NULL, *pp;
3029 	int	npages = 0, contig, anyaddr, pages_req;
3030 	mfn_t	lo_mfn;
3031 	mfn_t	hi_mfn;
3032 	pgcnt_t	pfnalign = 0;
3033 	int	align;
3034 	int	is_domu = 0;
3035 	int	dummy, bytes_got;
3036 	mfn_t	max_mfn = HYPERVISOR_memory_op(XENMEM_maximum_ram_page, NULL);
3037 
3038 	ASSERT(mattr != NULL);
3039 	lo_mfn = mmu_btop(mattr->dma_attr_addr_lo);
3040 	hi_mfn = mmu_btop(mattr->dma_attr_addr_hi);
3041 	align = maxbit(mattr->dma_attr_align, mattr->dma_attr_minxfer);
3042 	if (align > MMU_PAGESIZE)
3043 		pfnalign = mmu_btop(align);
3044 
3045 	/*
3046 	 * Clear the contig flag if only one page is needed or the scatter
3047 	 * gather list length is >= npages.
3048 	 */
3049 	pages_req = npages = mmu_btopr(bytes);
3050 	contig = (flags & PG_PHYSCONTIG);
3051 	bytes = P2ROUNDUP(bytes, MMU_PAGESIZE);
3052 	if (bytes == MMU_PAGESIZE || mattr->dma_attr_sgllen >= npages)
3053 		contig = 0;
3054 
3055 	/*
3056 	 * Check if any old page in the system is fine.
3057 	 * DomU should always go down this path.
3058 	 */
3059 	is_domu = !DOMAIN_IS_INITDOMAIN(xen_info);
3060 	anyaddr = lo_mfn == 0 && hi_mfn >= max_mfn && !pfnalign;
3061 	if ((!contig && anyaddr) || is_domu) {
3062 		flags &= ~PG_PHYSCONTIG;
3063 		plist = page_create_va(vp, off, bytes, flags, &kvseg, vaddr);
3064 		if (plist != NULL)
3065 			return (plist);
3066 		else if (is_domu)
3067 			return (NULL); /* no memory available */
3068 	}
3069 	/*
3070 	 * DomU should never reach here
3071 	 */
3072 	if (contig) {
3073 		plist = page_get_contigpages(vp, off, &npages, flags, vaddr,
3074 		    mattr);
3075 		if (plist == NULL)
3076 			goto fail;
3077 		bytes_got = (pages_req - npages) << MMU_PAGESHIFT;
3078 		vaddr += bytes_got;
3079 		off += bytes_got;
3080 		/*
3081 		 * We now have all the contiguous pages we need, but
3082 		 * we may still need additional non-contiguous pages.
3083 		 */
3084 	}
3085 	/*
3086 	 * now loop collecting the requested number of pages, these do
3087 	 * not have to be contiguous pages but we will use the contig
3088 	 * page alloc code to get the pages since it will honor any
3089 	 * other constraints the pages may have.
3090 	 */
3091 	while (npages--) {
3092 		dummy = -1;
3093 		pp = page_get_contigpages(vp, off, &dummy, flags, vaddr, mattr);
3094 		if (pp == NULL)
3095 			goto fail;
3096 		page_add(&plist, pp);
3097 		vaddr += MMU_PAGESIZE;
3098 		off += MMU_PAGESIZE;
3099 	}
3100 	return (plist);
3101 fail:
3102 	/*
3103 	 * Failed to get enough pages, return ones we did get
3104 	 */
3105 	return_partial_alloc(plist);
3106 	return (NULL);
3107 }
3108 
3109 /*
3110  * Lock and return the page with the highest mfn that we can find.  last_mfn
3111  * holds the last one found, so the next search can start from there.  We
3112  * also keep a counter so that we don't loop forever if the machine has no
3113  * free pages.
3114  *
3115  * This is called from the balloon thread to find pages to give away.  new_high
3116  * is used when new mfn's have been added to the system - we will reset our
3117  * search if the new mfn's are higher than our current search position.
3118  */
3119 page_t *
3120 page_get_high_mfn(mfn_t new_high)
3121 {
3122 	static mfn_t last_mfn = 0;
3123 	pfn_t pfn;
3124 	page_t *pp;
3125 	ulong_t loop_count = 0;
3126 
3127 	if (new_high > last_mfn)
3128 		last_mfn = new_high;
3129 
3130 	for (; loop_count < mfn_count; loop_count++, last_mfn--) {
3131 		if (last_mfn == 0) {
3132 			last_mfn = cached_max_mfn;
3133 		}
3134 
3135 		pfn = mfn_to_pfn(last_mfn);
3136 		if (pfn & PFN_IS_FOREIGN_MFN)
3137 			continue;
3138 
3139 		/* See if the page is free.  If so, lock it. */
3140 		pp = page_numtopp_alloc(pfn);
3141 		if (pp == NULL)
3142 			continue;
3143 		PP_CLRFREE(pp);
3144 
3145 		ASSERT(PAGE_EXCL(pp));
3146 		ASSERT(pp->p_vnode == NULL);
3147 		ASSERT(!hat_page_is_mapped(pp));
3148 		last_mfn--;
3149 		return (pp);
3150 	}
3151 	return (NULL);
3152 }
3153 
3154 #else /* !__xpv */
3155 
3156 /*
3157  * get a page from any list with the given mnode
3158  */
3159 static page_t *
3160 page_get_mnode_anylist(ulong_t origbin, uchar_t szc, uint_t flags,
3161     int mnode, int mtype, ddi_dma_attr_t *dma_attr)
3162 {
3163 	kmutex_t		*pcm;
3164 	int			i;
3165 	page_t			*pp;
3166 	page_t			*first_pp;
3167 	uint64_t		pgaddr;
3168 	ulong_t			bin;
3169 	int			mtypestart;
3170 	int			plw_initialized;
3171 	page_list_walker_t	plw;
3172 
3173 	VM_STAT_ADD(pga_vmstats.pgma_alloc);
3174 
3175 	ASSERT((flags & PG_MATCH_COLOR) == 0);
3176 	ASSERT(szc == 0);
3177 	ASSERT(dma_attr != NULL);
3178 
3179 	MTYPE_START(mnode, mtype, flags);
3180 	if (mtype < 0) {
3181 		VM_STAT_ADD(pga_vmstats.pgma_allocempty);
3182 		return (NULL);
3183 	}
3184 
3185 	mtypestart = mtype;
3186 
3187 	bin = origbin;
3188 
3189 	/*
3190 	 * check up to page_colors + 1 bins - origbin may be checked twice
3191 	 * because of BIN_STEP skip
3192 	 */
3193 	do {
3194 		plw_initialized = 0;
3195 
3196 		for (plw.plw_count = 0;
3197 		    plw.plw_count < page_colors; plw.plw_count++) {
3198 
3199 			if (PAGE_FREELISTS(mnode, szc, bin, mtype) == NULL)
3200 				goto nextfreebin;
3201 
3202 			pcm = PC_BIN_MUTEX(mnode, bin, PG_FREE_LIST);
3203 			mutex_enter(pcm);
3204 			pp = PAGE_FREELISTS(mnode, szc, bin, mtype);
3205 			first_pp = pp;
3206 			while (pp != NULL) {
3207 				if (IS_DUMP_PAGE(pp) || page_trylock(pp,
3208 				    SE_EXCL) == 0) {
3209 					pp = pp->p_next;
3210 					if (pp == first_pp) {
3211 						pp = NULL;
3212 					}
3213 					continue;
3214 				}
3215 
3216 				ASSERT(PP_ISFREE(pp));
3217 				ASSERT(PP_ISAGED(pp));
3218 				ASSERT(pp->p_vnode == NULL);
3219 				ASSERT(pp->p_hash == NULL);
3220 				ASSERT(pp->p_offset == (u_offset_t)-1);
3221 				ASSERT(pp->p_szc == szc);
3222 				ASSERT(PFN_2_MEM_NODE(pp->p_pagenum) == mnode);
3223 				/* check if page within DMA attributes */
3224 				pgaddr = pa_to_ma(pfn_to_pa(pp->p_pagenum));
3225 				if ((pgaddr >= dma_attr->dma_attr_addr_lo) &&
3226 				    (pgaddr + MMU_PAGESIZE - 1 <=
3227 				    dma_attr->dma_attr_addr_hi)) {
3228 					break;
3229 				}
3230 
3231 				/* continue looking */
3232 				page_unlock(pp);
3233 				pp = pp->p_next;
3234 				if (pp == first_pp)
3235 					pp = NULL;
3236 
3237 			}
3238 			if (pp != NULL) {
3239 				ASSERT(mtype == PP_2_MTYPE(pp));
3240 				ASSERT(pp->p_szc == 0);
3241 
3242 				/* found a page with specified DMA attributes */
3243 				page_sub(&PAGE_FREELISTS(mnode, szc, bin,
3244 				    mtype), pp);
3245 				page_ctr_sub(mnode, mtype, pp, PG_FREE_LIST);
3246 
3247 				if ((PP_ISFREE(pp) == 0) ||
3248 				    (PP_ISAGED(pp) == 0)) {
3249 					cmn_err(CE_PANIC, "page %p is not free",
3250 					    (void *)pp);
3251 				}
3252 
3253 				mutex_exit(pcm);
3254 				check_dma(dma_attr, pp, 1);
3255 				VM_STAT_ADD(pga_vmstats.pgma_allocok);
3256 				return (pp);
3257 			}
3258 			mutex_exit(pcm);
3259 nextfreebin:
3260 			if (plw_initialized == 0) {
3261 				page_list_walk_init(szc, 0, bin, 1, 0, &plw);
3262 				ASSERT(plw.plw_ceq_dif == page_colors);
3263 				plw_initialized = 1;
3264 			}
3265 
3266 			if (plw.plw_do_split) {
3267 				pp = page_freelist_split(szc, bin, mnode,
3268 				    mtype,
3269 				    mmu_btop(dma_attr->dma_attr_addr_lo),
3270 				    mmu_btop(dma_attr->dma_attr_addr_hi + 1),
3271 				    &plw);
3272 				if (pp != NULL) {
3273 					check_dma(dma_attr, pp, 1);
3274 					return (pp);
3275 				}
3276 			}
3277 
3278 			bin = page_list_walk_next_bin(szc, bin, &plw);
3279 		}
3280 
3281 		MTYPE_NEXT(mnode, mtype, flags);
3282 	} while (mtype >= 0);
3283 
3284 	/* failed to find a page in the freelist; try it in the cachelist */
3285 
3286 	/* reset mtype start for cachelist search */
3287 	mtype = mtypestart;
3288 	ASSERT(mtype >= 0);
3289 
3290 	/* start with the bin of matching color */
3291 	bin = origbin;
3292 
3293 	do {
3294 		for (i = 0; i <= page_colors; i++) {
3295 			if (PAGE_CACHELISTS(mnode, bin, mtype) == NULL)
3296 				goto nextcachebin;
3297 			pcm = PC_BIN_MUTEX(mnode, bin, PG_CACHE_LIST);
3298 			mutex_enter(pcm);
3299 			pp = PAGE_CACHELISTS(mnode, bin, mtype);
3300 			first_pp = pp;
3301 			while (pp != NULL) {
3302 				if (IS_DUMP_PAGE(pp) || page_trylock(pp,
3303 				    SE_EXCL) == 0) {
3304 					pp = pp->p_next;
3305 					if (pp == first_pp)
3306 						pp = NULL;
3307 					continue;
3308 				}
3309 				ASSERT(pp->p_vnode);
3310 				ASSERT(PP_ISAGED(pp) == 0);
3311 				ASSERT(pp->p_szc == 0);
3312 				ASSERT(PFN_2_MEM_NODE(pp->p_pagenum) == mnode);
3313 
3314 				/* check if page within DMA attributes */
3315 
3316 				pgaddr = pa_to_ma(pfn_to_pa(pp->p_pagenum));
3317 				if ((pgaddr >= dma_attr->dma_attr_addr_lo) &&
3318 				    (pgaddr + MMU_PAGESIZE - 1 <=
3319 				    dma_attr->dma_attr_addr_hi)) {
3320 					break;
3321 				}
3322 
3323 				/* continue looking */
3324 				page_unlock(pp);
3325 				pp = pp->p_next;
3326 				if (pp == first_pp)
3327 					pp = NULL;
3328 			}
3329 
3330 			if (pp != NULL) {
3331 				ASSERT(mtype == PP_2_MTYPE(pp));
3332 				ASSERT(pp->p_szc == 0);
3333 
3334 				/* found a page with specified DMA attributes */
3335 				page_sub(&PAGE_CACHELISTS(mnode, bin,
3336 				    mtype), pp);
3337 				page_ctr_sub(mnode, mtype, pp, PG_CACHE_LIST);
3338 
3339 				mutex_exit(pcm);
3340 				ASSERT(pp->p_vnode);
3341 				ASSERT(PP_ISAGED(pp) == 0);
3342 				check_dma(dma_attr, pp, 1);
3343 				VM_STAT_ADD(pga_vmstats.pgma_allocok);
3344 				return (pp);
3345 			}
3346 			mutex_exit(pcm);
3347 nextcachebin:
3348 			bin += (i == 0) ? BIN_STEP : 1;
3349 			bin &= page_colors_mask;
3350 		}
3351 		MTYPE_NEXT(mnode, mtype, flags);
3352 	} while (mtype >= 0);
3353 
3354 	VM_STAT_ADD(pga_vmstats.pgma_allocfailed);
3355 	return (NULL);
3356 }
3357 
3358 /*
3359  * This function is similar to page_get_freelist()/page_get_cachelist()
3360  * but it searches both the lists to find a page with the specified
3361  * color (or no color) and DMA attributes. The search is done in the
3362  * freelist first and then in the cache list within the highest memory
3363  * range (based on DMA attributes) before searching in the lower
3364  * memory ranges.
3365  *
3366  * Note: This function is called only by page_create_io().
3367  */
3368 /*ARGSUSED*/
3369 static page_t *
3370 page_get_anylist(struct vnode *vp, u_offset_t off, struct as *as, caddr_t vaddr,
3371     size_t size, uint_t flags, ddi_dma_attr_t *dma_attr, lgrp_t	*lgrp)
3372 {
3373 	uint_t		bin;
3374 	int		mtype;
3375 	page_t		*pp;
3376 	int		n;
3377 	int		m;
3378 	int		szc;
3379 	int		fullrange;
3380 	int		mnode;
3381 	int		local_failed_stat = 0;
3382 	lgrp_mnode_cookie_t	lgrp_cookie;
3383 
3384 	VM_STAT_ADD(pga_vmstats.pga_alloc);
3385 
3386 	/* only base pagesize currently supported */
3387 	if (size != MMU_PAGESIZE)
3388 		return (NULL);
3389 
3390 	/*
3391 	 * If we're passed a specific lgroup, we use it.  Otherwise,
3392 	 * assume first-touch placement is desired.
3393 	 */
3394 	if (!LGRP_EXISTS(lgrp))
3395 		lgrp = lgrp_home_lgrp();
3396 
3397 	/* LINTED */
3398 	AS_2_BIN(as, seg, vp, vaddr, bin, 0);
3399 
3400 	/*
3401 	 * Only hold one freelist or cachelist lock at a time, that way we
3402 	 * can start anywhere and not have to worry about lock
3403 	 * ordering.
3404 	 */
3405 	if (dma_attr == NULL) {
3406 		n = mtype16m;
3407 		m = mtypetop;
3408 		fullrange = 1;
3409 		VM_STAT_ADD(pga_vmstats.pga_nulldmaattr);
3410 	} else {
3411 		pfn_t pfnlo = mmu_btop(dma_attr->dma_attr_addr_lo);
3412 		pfn_t pfnhi = mmu_btop(dma_attr->dma_attr_addr_hi);
3413 
3414 		/*
3415 		 * We can guarantee alignment only for page boundary.
3416 		 */
3417 		if (dma_attr->dma_attr_align > MMU_PAGESIZE)
3418 			return (NULL);
3419 
3420 		/* Sanity check the dma_attr */
3421 		if (pfnlo > pfnhi)
3422 			return (NULL);
3423 
3424 		n = pfn_2_mtype(pfnlo);
3425 		m = pfn_2_mtype(pfnhi);
3426 
3427 		fullrange = ((pfnlo == mnoderanges[n].mnr_pfnlo) &&
3428 		    (pfnhi >= mnoderanges[m].mnr_pfnhi));
3429 	}
3430 	VM_STAT_COND_ADD(fullrange == 0, pga_vmstats.pga_notfullrange);
3431 
3432 	szc = 0;
3433 
3434 	/* cylcing thru mtype handled by RANGE0 if n == mtype16m */
3435 	if (n == mtype16m) {
3436 		flags |= PGI_MT_RANGE0;
3437 		n = m;
3438 	}
3439 
3440 	/*
3441 	 * Try local memory node first, but try remote if we can't
3442 	 * get a page of the right color.
3443 	 */
3444 	LGRP_MNODE_COOKIE_INIT(lgrp_cookie, lgrp, LGRP_SRCH_HIER);
3445 	while ((mnode = lgrp_memnode_choose(&lgrp_cookie)) >= 0) {
3446 		/*
3447 		 * allocate pages from high pfn to low.
3448 		 */
3449 		mtype = m;
3450 		do {
3451 			if (fullrange != 0) {
3452 				pp = page_get_mnode_freelist(mnode,
3453 				    bin, mtype, szc, flags);
3454 				if (pp == NULL) {
3455 					pp = page_get_mnode_cachelist(
3456 					    bin, flags, mnode, mtype);
3457 				}
3458 			} else {
3459 				pp = page_get_mnode_anylist(bin, szc,
3460 				    flags, mnode, mtype, dma_attr);
3461 			}
3462 			if (pp != NULL) {
3463 				VM_STAT_ADD(pga_vmstats.pga_allocok);
3464 				check_dma(dma_attr, pp, 1);
3465 				return (pp);
3466 			}
3467 		} while (mtype != n &&
3468 		    (mtype = mnoderanges[mtype].mnr_next) != -1);
3469 		if (!local_failed_stat) {
3470 			lgrp_stat_add(lgrp->lgrp_id, LGRP_NUM_ALLOC_FAIL, 1);
3471 			local_failed_stat = 1;
3472 		}
3473 	}
3474 	VM_STAT_ADD(pga_vmstats.pga_allocfailed);
3475 
3476 	return (NULL);
3477 }
3478 
3479 /*
3480  * page_create_io()
3481  *
3482  * This function is a copy of page_create_va() with an additional
3483  * argument 'mattr' that specifies DMA memory requirements to
3484  * the page list functions. This function is used by the segkmem
3485  * allocator so it is only to create new pages (i.e PG_EXCL is
3486  * set).
3487  *
3488  * Note: This interface is currently used by x86 PSM only and is
3489  *	 not fully specified so the commitment level is only for
3490  *	 private interface specific to x86. This interface uses PSM
3491  *	 specific page_get_anylist() interface.
3492  */
3493 
3494 #define	PAGE_HASH_SEARCH(index, pp, vp, off) { \
3495 	for ((pp) = page_hash[(index)]; (pp); (pp) = (pp)->p_hash) { \
3496 		if ((pp)->p_vnode == (vp) && (pp)->p_offset == (off)) \
3497 			break; \
3498 	} \
3499 }
3500 
3501 
3502 page_t *
3503 page_create_io(
3504 	struct vnode	*vp,
3505 	u_offset_t	off,
3506 	uint_t		bytes,
3507 	uint_t		flags,
3508 	struct as	*as,
3509 	caddr_t		vaddr,
3510 	ddi_dma_attr_t	*mattr)	/* DMA memory attributes if any */
3511 {
3512 	page_t		*plist = NULL;
3513 	uint_t		plist_len = 0;
3514 	pgcnt_t		npages;
3515 	page_t		*npp = NULL;
3516 	uint_t		pages_req;
3517 	page_t		*pp;
3518 	kmutex_t	*phm = NULL;
3519 	uint_t		index;
3520 
3521 	TRACE_4(TR_FAC_VM, TR_PAGE_CREATE_START,
3522 	    "page_create_start:vp %p off %llx bytes %u flags %x",
3523 	    vp, off, bytes, flags);
3524 
3525 	ASSERT((flags & ~(PG_EXCL | PG_WAIT | PG_PHYSCONTIG)) == 0);
3526 
3527 	pages_req = npages = mmu_btopr(bytes);
3528 
3529 	/*
3530 	 * Do the freemem and pcf accounting.
3531 	 */
3532 	if (!page_create_wait(npages, flags)) {
3533 		return (NULL);
3534 	}
3535 
3536 	TRACE_2(TR_FAC_VM, TR_PAGE_CREATE_SUCCESS,
3537 	    "page_create_success:vp %p off %llx", vp, off);
3538 
3539 	/*
3540 	 * If satisfying this request has left us with too little
3541 	 * memory, start the wheels turning to get some back.  The
3542 	 * first clause of the test prevents waking up the pageout
3543 	 * daemon in situations where it would decide that there's
3544 	 * nothing to do.
3545 	 */
3546 	if (nscan < desscan && freemem < minfree) {
3547 		TRACE_1(TR_FAC_VM, TR_PAGEOUT_CV_SIGNAL,
3548 		    "pageout_cv_signal:freemem %ld", freemem);
3549 		WAKE_PAGEOUT_SCANNER(page__create__io);
3550 	}
3551 
3552 	if (flags & PG_PHYSCONTIG) {
3553 
3554 		plist = page_get_contigpage(&npages, mattr, 1);
3555 		if (plist == NULL) {
3556 			page_create_putback(npages);
3557 			return (NULL);
3558 		}
3559 
3560 		pp = plist;
3561 
3562 		do {
3563 			if (!page_hashin(pp, vp, off, NULL)) {
3564 				panic("pg_creat_io: hashin failed %p %p %llx",
3565 				    (void *)pp, (void *)vp, off);
3566 			}
3567 			VM_STAT_ADD(page_create_new);
3568 			off += MMU_PAGESIZE;
3569 			PP_CLRFREE(pp);
3570 			PP_CLRAGED(pp);
3571 			page_set_props(pp, P_REF);
3572 			pp = pp->p_next;
3573 		} while (pp != plist);
3574 
3575 		if (!npages) {
3576 			check_dma(mattr, plist, pages_req);
3577 			return (plist);
3578 		} else {
3579 			vaddr += (pages_req - npages) << MMU_PAGESHIFT;
3580 		}
3581 
3582 		/*
3583 		 * fall-thru:
3584 		 *
3585 		 * page_get_contigpage returns when npages <= sgllen.
3586 		 * Grab the rest of the non-contig pages below from anylist.
3587 		 */
3588 	}
3589 
3590 	/*
3591 	 * Loop around collecting the requested number of pages.
3592 	 * Most of the time, we have to `create' a new page. With
3593 	 * this in mind, pull the page off the free list before
3594 	 * getting the hash lock.  This will minimize the hash
3595 	 * lock hold time, nesting, and the like.  If it turns
3596 	 * out we don't need the page, we put it back at the end.
3597 	 */
3598 	while (npages--) {
3599 		phm = NULL;
3600 
3601 		index = PAGE_HASH_FUNC(vp, off);
3602 top:
3603 		ASSERT(phm == NULL);
3604 		ASSERT(index == PAGE_HASH_FUNC(vp, off));
3605 		ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp)));
3606 
3607 		if (npp == NULL) {
3608 			/*
3609 			 * Try to get the page of any color either from
3610 			 * the freelist or from the cache list.
3611 			 */
3612 			npp = page_get_anylist(vp, off, as, vaddr, MMU_PAGESIZE,
3613 			    flags & ~PG_MATCH_COLOR, mattr, NULL);
3614 			if (npp == NULL) {
3615 				if (mattr == NULL) {
3616 					/*
3617 					 * Not looking for a special page;
3618 					 * panic!
3619 					 */
3620 					panic("no page found %d", (int)npages);
3621 				}
3622 				/*
3623 				 * No page found! This can happen
3624 				 * if we are looking for a page
3625 				 * within a specific memory range
3626 				 * for DMA purposes. If PG_WAIT is
3627 				 * specified then we wait for a
3628 				 * while and then try again. The
3629 				 * wait could be forever if we
3630 				 * don't get the page(s) we need.
3631 				 *
3632 				 * Note: XXX We really need a mechanism
3633 				 * to wait for pages in the desired
3634 				 * range. For now, we wait for any
3635 				 * pages and see if we can use it.
3636 				 */
3637 
3638 				if ((mattr != NULL) && (flags & PG_WAIT)) {
3639 					delay(10);
3640 					goto top;
3641 				}
3642 				goto fail; /* undo accounting stuff */
3643 			}
3644 
3645 			if (PP_ISAGED(npp) == 0) {
3646 				/*
3647 				 * Since this page came from the
3648 				 * cachelist, we must destroy the
3649 				 * old vnode association.
3650 				 */
3651 				page_hashout(npp, (kmutex_t *)NULL);
3652 			}
3653 		}
3654 
3655 		/*
3656 		 * We own this page!
3657 		 */
3658 		ASSERT(PAGE_EXCL(npp));
3659 		ASSERT(npp->p_vnode == NULL);
3660 		ASSERT(!hat_page_is_mapped(npp));
3661 		PP_CLRFREE(npp);
3662 		PP_CLRAGED(npp);
3663 
3664 		/*
3665 		 * Here we have a page in our hot little mits and are
3666 		 * just waiting to stuff it on the appropriate lists.
3667 		 * Get the mutex and check to see if it really does
3668 		 * not exist.
3669 		 */
3670 		phm = PAGE_HASH_MUTEX(index);
3671 		mutex_enter(phm);
3672 		PAGE_HASH_SEARCH(index, pp, vp, off);
3673 		if (pp == NULL) {
3674 			VM_STAT_ADD(page_create_new);
3675 			pp = npp;
3676 			npp = NULL;
3677 			if (!page_hashin(pp, vp, off, phm)) {
3678 				/*
3679 				 * Since we hold the page hash mutex and
3680 				 * just searched for this page, page_hashin
3681 				 * had better not fail.  If it does, that
3682 				 * means somethread did not follow the
3683 				 * page hash mutex rules.  Panic now and
3684 				 * get it over with.  As usual, go down
3685 				 * holding all the locks.
3686 				 */
3687 				ASSERT(MUTEX_HELD(phm));
3688 				panic("page_create: hashin fail %p %p %llx %p",
3689 				    (void *)pp, (void *)vp, off, (void *)phm);
3690 
3691 			}
3692 			ASSERT(MUTEX_HELD(phm));
3693 			mutex_exit(phm);
3694 			phm = NULL;
3695 
3696 			/*
3697 			 * Hat layer locking need not be done to set
3698 			 * the following bits since the page is not hashed
3699 			 * and was on the free list (i.e., had no mappings).
3700 			 *
3701 			 * Set the reference bit to protect
3702 			 * against immediate pageout
3703 			 *
3704 			 * XXXmh modify freelist code to set reference
3705 			 * bit so we don't have to do it here.
3706 			 */
3707 			page_set_props(pp, P_REF);
3708 		} else {
3709 			ASSERT(MUTEX_HELD(phm));
3710 			mutex_exit(phm);
3711 			phm = NULL;
3712 			/*
3713 			 * NOTE: This should not happen for pages associated
3714 			 *	 with kernel vnode 'kvp'.
3715 			 */
3716 			/* XX64 - to debug why this happens! */
3717 			ASSERT(!VN_ISKAS(vp));
3718 			if (VN_ISKAS(vp))
3719 				cmn_err(CE_NOTE,
3720 				    "page_create: page not expected "
3721 				    "in hash list for kernel vnode - pp 0x%p",
3722 				    (void *)pp);
3723 			VM_STAT_ADD(page_create_exists);
3724 			goto fail;
3725 		}
3726 
3727 		/*
3728 		 * Got a page!  It is locked.  Acquire the i/o
3729 		 * lock since we are going to use the p_next and
3730 		 * p_prev fields to link the requested pages together.
3731 		 */
3732 		page_io_lock(pp);
3733 		page_add(&plist, pp);
3734 		plist = plist->p_next;
3735 		off += MMU_PAGESIZE;
3736 		vaddr += MMU_PAGESIZE;
3737 	}
3738 
3739 	check_dma(mattr, plist, pages_req);
3740 	return (plist);
3741 
3742 fail:
3743 	if (npp != NULL) {
3744 		/*
3745 		 * Did not need this page after all.
3746 		 * Put it back on the free list.
3747 		 */
3748 		VM_STAT_ADD(page_create_putbacks);
3749 		PP_SETFREE(npp);
3750 		PP_SETAGED(npp);
3751 		npp->p_offset = (u_offset_t)-1;
3752 		page_list_add(npp, PG_FREE_LIST | PG_LIST_TAIL);
3753 		page_unlock(npp);
3754 	}
3755 
3756 	/*
3757 	 * Give up the pages we already got.
3758 	 */
3759 	while (plist != NULL) {
3760 		pp = plist;
3761 		page_sub(&plist, pp);
3762 		page_io_unlock(pp);
3763 		plist_len++;
3764 		/*LINTED: constant in conditional ctx*/
3765 		VN_DISPOSE(pp, B_INVAL, 0, kcred);
3766 	}
3767 
3768 	/*
3769 	 * VN_DISPOSE does freemem accounting for the pages in plist
3770 	 * by calling page_free. So, we need to undo the pcf accounting
3771 	 * for only the remaining pages.
3772 	 */
3773 	VM_STAT_ADD(page_create_putbacks);
3774 	page_create_putback(pages_req - plist_len);
3775 
3776 	return (NULL);
3777 }
3778 #endif /* !__xpv */
3779 
3780 
3781 /*
3782  * Copy the data from the physical page represented by "frompp" to
3783  * that represented by "topp". ppcopy uses CPU->cpu_caddr1 and
3784  * CPU->cpu_caddr2.  It assumes that no one uses either map at interrupt
3785  * level and no one sleeps with an active mapping there.
3786  *
3787  * Note that the ref/mod bits in the page_t's are not affected by
3788  * this operation, hence it is up to the caller to update them appropriately.
3789  */
3790 int
3791 ppcopy(page_t *frompp, page_t *topp)
3792 {
3793 	caddr_t		pp_addr1;
3794 	caddr_t		pp_addr2;
3795 	hat_mempte_t	pte1;
3796 	hat_mempte_t	pte2;
3797 	label_t		ljb;
3798 	int		ret;
3799 
3800 	ASSERT_STACK_ALIGNED();
3801 	ASSERT(PAGE_LOCKED(frompp));
3802 	ASSERT(PAGE_LOCKED(topp));
3803 
3804 	if (kpm_enable) {
3805 		pp_addr1 = hat_kpm_page2va(frompp, 0);
3806 		pp_addr2 = hat_kpm_page2va(topp, 0);
3807 		kpreempt_disable();
3808 	} else {
3809 		/*
3810 		 * disable pre-emption so that CPU can't change
3811 		 */
3812 		kpreempt_disable();
3813 
3814 		pp_addr1 = CPU->cpu_caddr1;
3815 		pp_addr2 = CPU->cpu_caddr2;
3816 		pte1 = CPU->cpu_caddr1pte;
3817 		pte2 = CPU->cpu_caddr2pte;
3818 
3819 		mutex_enter(&CPU->cpu_ppaddr_mutex);
3820 
3821 		hat_mempte_remap(page_pptonum(frompp), pp_addr1, pte1,
3822 		    PROT_READ | HAT_STORECACHING_OK, HAT_LOAD_NOCONSIST);
3823 		hat_mempte_remap(page_pptonum(topp), pp_addr2, pte2,
3824 		    PROT_READ | PROT_WRITE | HAT_STORECACHING_OK,
3825 		    HAT_LOAD_NOCONSIST);
3826 	}
3827 
3828 	if (on_fault(&ljb)) {
3829 		ret = 0;
3830 		goto faulted;
3831 	} else {
3832 		ret = 1;
3833 	}
3834 	if (use_sse_pagecopy)
3835 #ifdef __xpv
3836 		page_copy_no_xmm(pp_addr2, pp_addr1);
3837 #else
3838 		hwblkpagecopy(pp_addr1, pp_addr2);
3839 #endif
3840 	else
3841 		bcopy(pp_addr1, pp_addr2, PAGESIZE);
3842 
3843 	no_fault();
3844 faulted:
3845 	if (!kpm_enable) {
3846 #ifdef __xpv
3847 		/*
3848 		 * We can't leave unused mappings laying about under the
3849 		 * hypervisor, so blow them away.
3850 		 */
3851 		if (HYPERVISOR_update_va_mapping((uintptr_t)pp_addr1, 0,
3852 		    UVMF_INVLPG | UVMF_LOCAL) < 0)
3853 			panic("HYPERVISOR_update_va_mapping() failed");
3854 		if (HYPERVISOR_update_va_mapping((uintptr_t)pp_addr2, 0,
3855 		    UVMF_INVLPG | UVMF_LOCAL) < 0)
3856 			panic("HYPERVISOR_update_va_mapping() failed");
3857 #endif
3858 		mutex_exit(&CPU->cpu_ppaddr_mutex);
3859 	}
3860 	kpreempt_enable();
3861 	return (ret);
3862 }
3863 
3864 void
3865 pagezero(page_t *pp, uint_t off, uint_t len)
3866 {
3867 	ASSERT(PAGE_LOCKED(pp));
3868 	pfnzero(page_pptonum(pp), off, len);
3869 }
3870 
3871 /*
3872  * Zero the physical page from off to off + len given by pfn
3873  * without changing the reference and modified bits of page.
3874  *
3875  * We use this using CPU private page address #2, see ppcopy() for more info.
3876  * pfnzero() must not be called at interrupt level.
3877  */
3878 void
3879 pfnzero(pfn_t pfn, uint_t off, uint_t len)
3880 {
3881 	caddr_t		pp_addr2;
3882 	hat_mempte_t	pte2;
3883 	kmutex_t	*ppaddr_mutex = NULL;
3884 
3885 	ASSERT_STACK_ALIGNED();
3886 	ASSERT(len <= MMU_PAGESIZE);
3887 	ASSERT(off <= MMU_PAGESIZE);
3888 	ASSERT(off + len <= MMU_PAGESIZE);
3889 
3890 	if (kpm_enable && !pfn_is_foreign(pfn)) {
3891 		pp_addr2 = hat_kpm_pfn2va(pfn);
3892 		kpreempt_disable();
3893 	} else {
3894 		kpreempt_disable();
3895 
3896 		pp_addr2 = CPU->cpu_caddr2;
3897 		pte2 = CPU->cpu_caddr2pte;
3898 
3899 		ppaddr_mutex = &CPU->cpu_ppaddr_mutex;
3900 		mutex_enter(ppaddr_mutex);
3901 
3902 		hat_mempte_remap(pfn, pp_addr2, pte2,
3903 		    PROT_READ | PROT_WRITE | HAT_STORECACHING_OK,
3904 		    HAT_LOAD_NOCONSIST);
3905 	}
3906 
3907 	if (use_sse_pagezero) {
3908 #ifdef __xpv
3909 		uint_t rem;
3910 
3911 		/*
3912 		 * zero a byte at a time until properly aligned for
3913 		 * block_zero_no_xmm().
3914 		 */
3915 		while (!P2NPHASE(off, ((uint_t)BLOCKZEROALIGN)) && len-- > 0)
3916 			pp_addr2[off++] = 0;
3917 
3918 		/*
3919 		 * Now use faster block_zero_no_xmm() for any range
3920 		 * that is properly aligned and sized.
3921 		 */
3922 		rem = P2PHASE(len, ((uint_t)BLOCKZEROALIGN));
3923 		len -= rem;
3924 		if (len != 0) {
3925 			block_zero_no_xmm(pp_addr2 + off, len);
3926 			off += len;
3927 		}
3928 
3929 		/*
3930 		 * zero remainder with byte stores.
3931 		 */
3932 		while (rem-- > 0)
3933 			pp_addr2[off++] = 0;
3934 #else
3935 		hwblkclr(pp_addr2 + off, len);
3936 #endif
3937 	} else {
3938 		bzero(pp_addr2 + off, len);
3939 	}
3940 
3941 	if (!kpm_enable || pfn_is_foreign(pfn)) {
3942 #ifdef __xpv
3943 		/*
3944 		 * On the hypervisor this page might get used for a page
3945 		 * table before any intervening change to this mapping,
3946 		 * so blow it away.
3947 		 */
3948 		if (HYPERVISOR_update_va_mapping((uintptr_t)pp_addr2, 0,
3949 		    UVMF_INVLPG) < 0)
3950 			panic("HYPERVISOR_update_va_mapping() failed");
3951 #endif
3952 		mutex_exit(ppaddr_mutex);
3953 	}
3954 
3955 	kpreempt_enable();
3956 }
3957 
3958 /*
3959  * Platform-dependent page scrub call.
3960  */
3961 void
3962 pagescrub(page_t *pp, uint_t off, uint_t len)
3963 {
3964 	/*
3965 	 * For now, we rely on the fact that pagezero() will
3966 	 * always clear UEs.
3967 	 */
3968 	pagezero(pp, off, len);
3969 }
3970 
3971 /*
3972  * set up two private addresses for use on a given CPU for use in ppcopy()
3973  */
3974 void
3975 setup_vaddr_for_ppcopy(struct cpu *cpup)
3976 {
3977 	void *addr;
3978 	hat_mempte_t pte_pa;
3979 
3980 	addr = vmem_alloc(heap_arena, mmu_ptob(1), VM_SLEEP);
3981 	pte_pa = hat_mempte_setup(addr);
3982 	cpup->cpu_caddr1 = addr;
3983 	cpup->cpu_caddr1pte = pte_pa;
3984 
3985 	addr = vmem_alloc(heap_arena, mmu_ptob(1), VM_SLEEP);
3986 	pte_pa = hat_mempte_setup(addr);
3987 	cpup->cpu_caddr2 = addr;
3988 	cpup->cpu_caddr2pte = pte_pa;
3989 
3990 	mutex_init(&cpup->cpu_ppaddr_mutex, NULL, MUTEX_DEFAULT, NULL);
3991 }
3992 
3993 /*
3994  * Undo setup_vaddr_for_ppcopy
3995  */
3996 void
3997 teardown_vaddr_for_ppcopy(struct cpu *cpup)
3998 {
3999 	mutex_destroy(&cpup->cpu_ppaddr_mutex);
4000 
4001 	hat_mempte_release(cpup->cpu_caddr2, cpup->cpu_caddr2pte);
4002 	cpup->cpu_caddr2pte = 0;
4003 	vmem_free(heap_arena, cpup->cpu_caddr2, mmu_ptob(1));
4004 	cpup->cpu_caddr2 = 0;
4005 
4006 	hat_mempte_release(cpup->cpu_caddr1, cpup->cpu_caddr1pte);
4007 	cpup->cpu_caddr1pte = 0;
4008 	vmem_free(heap_arena, cpup->cpu_caddr1, mmu_ptob(1));
4009 	cpup->cpu_caddr1 = 0;
4010 }
4011 
4012 /*
4013  * Function for flushing D-cache when performing module relocations
4014  * to an alternate mapping.  Unnecessary on Intel / AMD platforms.
4015  */
4016 void
4017 dcache_flushall()
4018 {}
4019 
4020 /*
4021  * Allocate a memory page.  The argument 'seed' can be any pseudo-random
4022  * number to vary where the pages come from.  This is quite a hacked up
4023  * method -- it works for now, but really needs to be fixed up a bit.
4024  *
4025  * We currently use page_create_va() on the kvp with fake offsets,
4026  * segments and virt address.  This is pretty bogus, but was copied from the
4027  * old hat_i86.c code.  A better approach would be to specify either mnode
4028  * random or mnode local and takes a page from whatever color has the MOST
4029  * available - this would have a minimal impact on page coloring.
4030  */
4031 page_t *
4032 page_get_physical(uintptr_t seed)
4033 {
4034 	page_t *pp;
4035 	u_offset_t offset;
4036 	static struct seg tmpseg;
4037 	static uintptr_t ctr = 0;
4038 
4039 	/*
4040 	 * This code is gross, we really need a simpler page allocator.
4041 	 *
4042 	 * We need to assign an offset for the page to call page_create_va()
4043 	 * To avoid conflicts with other pages, we get creative with the offset.
4044 	 * For 32 bits, we need an offset > 4Gig
4045 	 * For 64 bits, need an offset somewhere in the VA hole.
4046 	 */
4047 	offset = seed;
4048 	if (offset > kernelbase)
4049 		offset -= kernelbase;
4050 	offset <<= MMU_PAGESHIFT;
4051 	offset += mmu.hole_start;	/* something in VA hole */
4052 
4053 	if (page_resv(1, KM_NOSLEEP) == 0)
4054 		return (NULL);
4055 
4056 #ifdef	DEBUG
4057 	pp = page_exists(&kvp, offset);
4058 	if (pp != NULL)
4059 		panic("page already exists %p", (void *)pp);
4060 #endif
4061 
4062 	pp = page_create_va(&kvp, offset, MMU_PAGESIZE, PG_EXCL,
4063 	    &tmpseg, (caddr_t)(ctr += MMU_PAGESIZE));	/* changing VA usage */
4064 	if (pp != NULL) {
4065 		page_io_unlock(pp);
4066 		page_downgrade(pp);
4067 	}
4068 	return (pp);
4069 }
4070