1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 1992, 2010, Oracle and/or its affiliates. All rights reserved. 23 */ 24 /* 25 * Copyright (c) 2010, Intel Corporation. 26 * All rights reserved. 27 */ 28 29 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */ 30 /* All Rights Reserved */ 31 32 /* 33 * Portions of this source code were derived from Berkeley 4.3 BSD 34 * under license from the Regents of the University of California. 35 */ 36 37 /* 38 * UNIX machine dependent virtual memory support. 39 */ 40 41 #include <sys/types.h> 42 #include <sys/param.h> 43 #include <sys/systm.h> 44 #include <sys/user.h> 45 #include <sys/proc.h> 46 #include <sys/kmem.h> 47 #include <sys/vmem.h> 48 #include <sys/buf.h> 49 #include <sys/cpuvar.h> 50 #include <sys/lgrp.h> 51 #include <sys/disp.h> 52 #include <sys/vm.h> 53 #include <sys/mman.h> 54 #include <sys/vnode.h> 55 #include <sys/cred.h> 56 #include <sys/exec.h> 57 #include <sys/exechdr.h> 58 #include <sys/debug.h> 59 #include <sys/vmsystm.h> 60 #include <sys/swap.h> 61 #include <sys/dumphdr.h> 62 63 #include <vm/hat.h> 64 #include <vm/as.h> 65 #include <vm/seg.h> 66 #include <vm/seg_kp.h> 67 #include <vm/seg_vn.h> 68 #include <vm/page.h> 69 #include <vm/seg_kmem.h> 70 #include <vm/seg_kpm.h> 71 #include <vm/vm_dep.h> 72 73 #include <sys/cpu.h> 74 #include <sys/vm_machparam.h> 75 #include <sys/memlist.h> 76 #include <sys/bootconf.h> /* XXX the memlist stuff belongs in memlist_plat.h */ 77 #include <vm/hat_i86.h> 78 #include <sys/x86_archext.h> 79 #include <sys/elf_386.h> 80 #include <sys/cmn_err.h> 81 #include <sys/archsystm.h> 82 #include <sys/machsystm.h> 83 84 #include <sys/vtrace.h> 85 #include <sys/ddidmareq.h> 86 #include <sys/promif.h> 87 #include <sys/memnode.h> 88 #include <sys/stack.h> 89 #include <util/qsort.h> 90 #include <sys/taskq.h> 91 92 #ifdef __xpv 93 94 #include <sys/hypervisor.h> 95 #include <sys/xen_mmu.h> 96 #include <sys/balloon_impl.h> 97 98 /* 99 * domain 0 pages usable for DMA are kept pre-allocated and kept in 100 * distinct lists, ordered by increasing mfn. 101 */ 102 static kmutex_t io_pool_lock; 103 static kmutex_t contig_list_lock; 104 static page_t *io_pool_4g; /* pool for 32 bit dma limited devices */ 105 static page_t *io_pool_16m; /* pool for 24 bit dma limited legacy devices */ 106 static long io_pool_cnt; 107 static long io_pool_cnt_max = 0; 108 #define DEFAULT_IO_POOL_MIN 128 109 static long io_pool_cnt_min = DEFAULT_IO_POOL_MIN; 110 static long io_pool_cnt_lowater = 0; 111 static long io_pool_shrink_attempts; /* how many times did we try to shrink */ 112 static long io_pool_shrinks; /* how many times did we really shrink */ 113 static long io_pool_grows; /* how many times did we grow */ 114 static mfn_t start_mfn = 1; 115 static caddr_t io_pool_kva; /* use to alloc pages when needed */ 116 117 static int create_contig_pfnlist(uint_t); 118 119 /* 120 * percentage of phys mem to hold in the i/o pool 121 */ 122 #define DEFAULT_IO_POOL_PCT 2 123 static long io_pool_physmem_pct = DEFAULT_IO_POOL_PCT; 124 static void page_io_pool_sub(page_t **, page_t *, page_t *); 125 int ioalloc_dbg = 0; 126 127 #endif /* __xpv */ 128 129 uint_t vac_colors = 1; 130 131 int largepagesupport = 0; 132 extern uint_t page_create_new; 133 extern uint_t page_create_exists; 134 extern uint_t page_create_putbacks; 135 /* 136 * Allow users to disable the kernel's use of SSE. 137 */ 138 extern int use_sse_pagecopy, use_sse_pagezero; 139 140 /* 141 * combined memory ranges from mnode and memranges[] to manage single 142 * mnode/mtype dimension in the page lists. 143 */ 144 typedef struct { 145 pfn_t mnr_pfnlo; 146 pfn_t mnr_pfnhi; 147 int mnr_mnode; 148 int mnr_memrange; /* index into memranges[] */ 149 int mnr_next; /* next lower PA mnoderange */ 150 int mnr_exists; 151 /* maintain page list stats */ 152 pgcnt_t mnr_mt_clpgcnt; /* cache list cnt */ 153 pgcnt_t mnr_mt_flpgcnt[MMU_PAGE_SIZES]; /* free list cnt per szc */ 154 pgcnt_t mnr_mt_totcnt; /* sum of cache and free lists */ 155 #ifdef DEBUG 156 struct mnr_mts { /* mnode/mtype szc stats */ 157 pgcnt_t mnr_mts_pgcnt; 158 int mnr_mts_colors; 159 pgcnt_t *mnr_mtsc_pgcnt; 160 } *mnr_mts; 161 #endif 162 } mnoderange_t; 163 164 #define MEMRANGEHI(mtype) \ 165 ((mtype > 0) ? memranges[mtype - 1] - 1: physmax) 166 #define MEMRANGELO(mtype) (memranges[mtype]) 167 168 #define MTYPE_FREEMEM(mt) (mnoderanges[mt].mnr_mt_totcnt) 169 170 /* 171 * As the PC architecture evolved memory up was clumped into several 172 * ranges for various historical I/O devices to do DMA. 173 * < 16Meg - ISA bus 174 * < 2Gig - ??? 175 * < 4Gig - PCI bus or drivers that don't understand PAE mode 176 * 177 * These are listed in reverse order, so that we can skip over unused 178 * ranges on machines with small memories. 179 * 180 * For now under the Hypervisor, we'll only ever have one memrange. 181 */ 182 #define PFN_4GIG 0x100000 183 #define PFN_16MEG 0x1000 184 /* Indices into the memory range (arch_memranges) array. */ 185 #define MRI_4G 0 186 #define MRI_2G 1 187 #define MRI_16M 2 188 #define MRI_0 3 189 static pfn_t arch_memranges[NUM_MEM_RANGES] = { 190 PFN_4GIG, /* pfn range for 4G and above */ 191 0x80000, /* pfn range for 2G-4G */ 192 PFN_16MEG, /* pfn range for 16M-2G */ 193 0x00000, /* pfn range for 0-16M */ 194 }; 195 pfn_t *memranges = &arch_memranges[0]; 196 int nranges = NUM_MEM_RANGES; 197 198 /* 199 * This combines mem_node_config and memranges into one data 200 * structure to be used for page list management. 201 */ 202 mnoderange_t *mnoderanges; 203 int mnoderangecnt; 204 int mtype4g; 205 int mtype16m; 206 int mtypetop; /* index of highest pfn'ed mnoderange */ 207 208 /* 209 * 4g memory management variables for systems with more than 4g of memory: 210 * 211 * physical memory below 4g is required for 32bit dma devices and, currently, 212 * for kmem memory. On systems with more than 4g of memory, the pool of memory 213 * below 4g can be depleted without any paging activity given that there is 214 * likely to be sufficient memory above 4g. 215 * 216 * physmax4g is set true if the largest pfn is over 4g. The rest of the 217 * 4g memory management code is enabled only when physmax4g is true. 218 * 219 * maxmem4g is the count of the maximum number of pages on the page lists 220 * with physical addresses below 4g. It can be a lot less then 4g given that 221 * BIOS may reserve large chunks of space below 4g for hot plug pci devices, 222 * agp aperture etc. 223 * 224 * freemem4g maintains the count of the number of available pages on the 225 * page lists with physical addresses below 4g. 226 * 227 * DESFREE4G specifies the desired amount of below 4g memory. It defaults to 228 * 6% (desfree4gshift = 4) of maxmem4g. 229 * 230 * RESTRICT4G_ALLOC returns true if freemem4g falls below DESFREE4G 231 * and the amount of physical memory above 4g is greater than freemem4g. 232 * In this case, page_get_* routines will restrict below 4g allocations 233 * for requests that don't specifically require it. 234 */ 235 236 #define DESFREE4G (maxmem4g >> desfree4gshift) 237 238 #define RESTRICT4G_ALLOC \ 239 (physmax4g && (freemem4g < DESFREE4G) && ((freemem4g << 1) < freemem)) 240 241 static pgcnt_t maxmem4g; 242 static pgcnt_t freemem4g; 243 static int physmax4g; 244 static int desfree4gshift = 4; /* maxmem4g shift to derive DESFREE4G */ 245 246 /* 247 * 16m memory management: 248 * 249 * reserve some amount of physical memory below 16m for legacy devices. 250 * 251 * RESTRICT16M_ALLOC returns true if an there are sufficient free pages above 252 * 16m or if the 16m pool drops below DESFREE16M. 253 * 254 * In this case, general page allocations via page_get_{free,cache}list 255 * routines will be restricted from allocating from the 16m pool. Allocations 256 * that require specific pfn ranges (page_get_anylist) and PG_PANIC allocations 257 * are not restricted. 258 */ 259 260 #define FREEMEM16M MTYPE_FREEMEM(mtype16m) 261 #define DESFREE16M desfree16m 262 #define RESTRICT16M_ALLOC(freemem, pgcnt, flags) \ 263 ((freemem != 0) && ((flags & PG_PANIC) == 0) && \ 264 ((freemem >= (FREEMEM16M)) || \ 265 (FREEMEM16M < (DESFREE16M + pgcnt)))) 266 267 static pgcnt_t desfree16m = 0x380; 268 269 /* 270 * This can be patched via /etc/system to allow old non-PAE aware device 271 * drivers to use kmem_alloc'd memory on 32 bit systems with > 4Gig RAM. 272 */ 273 int restricted_kmemalloc = 0; 274 275 #ifdef VM_STATS 276 struct { 277 ulong_t pga_alloc; 278 ulong_t pga_notfullrange; 279 ulong_t pga_nulldmaattr; 280 ulong_t pga_allocok; 281 ulong_t pga_allocfailed; 282 ulong_t pgma_alloc; 283 ulong_t pgma_allocok; 284 ulong_t pgma_allocfailed; 285 ulong_t pgma_allocempty; 286 } pga_vmstats; 287 #endif 288 289 uint_t mmu_page_sizes; 290 291 /* How many page sizes the users can see */ 292 uint_t mmu_exported_page_sizes; 293 294 /* page sizes that legacy applications can see */ 295 uint_t mmu_legacy_page_sizes; 296 297 /* 298 * Number of pages in 1 GB. Don't enable automatic large pages if we have 299 * fewer than this many pages. 300 */ 301 pgcnt_t shm_lpg_min_physmem = 1 << (30 - MMU_PAGESHIFT); 302 pgcnt_t privm_lpg_min_physmem = 1 << (30 - MMU_PAGESHIFT); 303 304 /* 305 * Maximum and default segment size tunables for user private 306 * and shared anon memory, and user text and initialized data. 307 * These can be patched via /etc/system to allow large pages 308 * to be used for mapping application private and shared anon memory. 309 */ 310 size_t mcntl0_lpsize = MMU_PAGESIZE; 311 size_t max_uheap_lpsize = MMU_PAGESIZE; 312 size_t default_uheap_lpsize = MMU_PAGESIZE; 313 size_t max_ustack_lpsize = MMU_PAGESIZE; 314 size_t default_ustack_lpsize = MMU_PAGESIZE; 315 size_t max_privmap_lpsize = MMU_PAGESIZE; 316 size_t max_uidata_lpsize = MMU_PAGESIZE; 317 size_t max_utext_lpsize = MMU_PAGESIZE; 318 size_t max_shm_lpsize = MMU_PAGESIZE; 319 320 321 /* 322 * initialized by page_coloring_init(). 323 */ 324 uint_t page_colors; 325 uint_t page_colors_mask; 326 uint_t page_coloring_shift; 327 int cpu_page_colors; 328 static uint_t l2_colors; 329 330 /* 331 * Page freelists and cachelists are dynamically allocated once mnoderangecnt 332 * and page_colors are calculated from the l2 cache n-way set size. Within a 333 * mnode range, the page freelist and cachelist are hashed into bins based on 334 * color. This makes it easier to search for a page within a specific memory 335 * range. 336 */ 337 #define PAGE_COLORS_MIN 16 338 339 page_t ****page_freelists; 340 page_t ***page_cachelists; 341 342 343 /* 344 * Used by page layer to know about page sizes 345 */ 346 hw_pagesize_t hw_page_array[MAX_NUM_LEVEL + 1]; 347 348 kmutex_t *fpc_mutex[NPC_MUTEX]; 349 kmutex_t *cpc_mutex[NPC_MUTEX]; 350 351 /* Lock to protect mnoderanges array for memory DR operations. */ 352 static kmutex_t mnoderange_lock; 353 354 /* 355 * Only let one thread at a time try to coalesce large pages, to 356 * prevent them from working against each other. 357 */ 358 static kmutex_t contig_lock; 359 #define CONTIG_LOCK() mutex_enter(&contig_lock); 360 #define CONTIG_UNLOCK() mutex_exit(&contig_lock); 361 362 #define PFN_16M (mmu_btop((uint64_t)0x1000000)) 363 364 /* 365 * Return the optimum page size for a given mapping 366 */ 367 /*ARGSUSED*/ 368 size_t 369 map_pgsz(int maptype, struct proc *p, caddr_t addr, size_t len, int memcntl) 370 { 371 level_t l = 0; 372 size_t pgsz = MMU_PAGESIZE; 373 size_t max_lpsize; 374 uint_t mszc; 375 376 ASSERT(maptype != MAPPGSZ_VA); 377 378 if (maptype != MAPPGSZ_ISM && physmem < privm_lpg_min_physmem) { 379 return (MMU_PAGESIZE); 380 } 381 382 switch (maptype) { 383 case MAPPGSZ_HEAP: 384 case MAPPGSZ_STK: 385 max_lpsize = memcntl ? mcntl0_lpsize : (maptype == 386 MAPPGSZ_HEAP ? max_uheap_lpsize : max_ustack_lpsize); 387 if (max_lpsize == MMU_PAGESIZE) { 388 return (MMU_PAGESIZE); 389 } 390 if (len == 0) { 391 len = (maptype == MAPPGSZ_HEAP) ? p->p_brkbase + 392 p->p_brksize - p->p_bssbase : p->p_stksize; 393 } 394 len = (maptype == MAPPGSZ_HEAP) ? MAX(len, 395 default_uheap_lpsize) : MAX(len, default_ustack_lpsize); 396 397 /* 398 * use the pages size that best fits len 399 */ 400 for (l = mmu.umax_page_level; l > 0; --l) { 401 if (LEVEL_SIZE(l) > max_lpsize || len < LEVEL_SIZE(l)) { 402 continue; 403 } else { 404 pgsz = LEVEL_SIZE(l); 405 } 406 break; 407 } 408 409 mszc = (maptype == MAPPGSZ_HEAP ? p->p_brkpageszc : 410 p->p_stkpageszc); 411 if (addr == 0 && (pgsz < hw_page_array[mszc].hp_size)) { 412 pgsz = hw_page_array[mszc].hp_size; 413 } 414 return (pgsz); 415 416 case MAPPGSZ_ISM: 417 for (l = mmu.umax_page_level; l > 0; --l) { 418 if (len >= LEVEL_SIZE(l)) 419 return (LEVEL_SIZE(l)); 420 } 421 return (LEVEL_SIZE(0)); 422 } 423 return (pgsz); 424 } 425 426 static uint_t 427 map_szcvec(caddr_t addr, size_t size, uintptr_t off, size_t max_lpsize, 428 size_t min_physmem) 429 { 430 caddr_t eaddr = addr + size; 431 uint_t szcvec = 0; 432 caddr_t raddr; 433 caddr_t readdr; 434 size_t pgsz; 435 int i; 436 437 if (physmem < min_physmem || max_lpsize <= MMU_PAGESIZE) { 438 return (0); 439 } 440 441 for (i = mmu_exported_page_sizes - 1; i > 0; i--) { 442 pgsz = page_get_pagesize(i); 443 if (pgsz > max_lpsize) { 444 continue; 445 } 446 raddr = (caddr_t)P2ROUNDUP((uintptr_t)addr, pgsz); 447 readdr = (caddr_t)P2ALIGN((uintptr_t)eaddr, pgsz); 448 if (raddr < addr || raddr >= readdr) { 449 continue; 450 } 451 if (P2PHASE((uintptr_t)addr ^ off, pgsz)) { 452 continue; 453 } 454 /* 455 * Set szcvec to the remaining page sizes. 456 */ 457 szcvec = ((1 << (i + 1)) - 1) & ~1; 458 break; 459 } 460 return (szcvec); 461 } 462 463 /* 464 * Return a bit vector of large page size codes that 465 * can be used to map [addr, addr + len) region. 466 */ 467 /*ARGSUSED*/ 468 uint_t 469 map_pgszcvec(caddr_t addr, size_t size, uintptr_t off, int flags, int type, 470 int memcntl) 471 { 472 size_t max_lpsize = mcntl0_lpsize; 473 474 if (mmu.max_page_level == 0) 475 return (0); 476 477 if (flags & MAP_TEXT) { 478 if (!memcntl) 479 max_lpsize = max_utext_lpsize; 480 return (map_szcvec(addr, size, off, max_lpsize, 481 shm_lpg_min_physmem)); 482 483 } else if (flags & MAP_INITDATA) { 484 if (!memcntl) 485 max_lpsize = max_uidata_lpsize; 486 return (map_szcvec(addr, size, off, max_lpsize, 487 privm_lpg_min_physmem)); 488 489 } else if (type == MAPPGSZC_SHM) { 490 if (!memcntl) 491 max_lpsize = max_shm_lpsize; 492 return (map_szcvec(addr, size, off, max_lpsize, 493 shm_lpg_min_physmem)); 494 495 } else if (type == MAPPGSZC_HEAP) { 496 if (!memcntl) 497 max_lpsize = max_uheap_lpsize; 498 return (map_szcvec(addr, size, off, max_lpsize, 499 privm_lpg_min_physmem)); 500 501 } else if (type == MAPPGSZC_STACK) { 502 if (!memcntl) 503 max_lpsize = max_ustack_lpsize; 504 return (map_szcvec(addr, size, off, max_lpsize, 505 privm_lpg_min_physmem)); 506 507 } else { 508 if (!memcntl) 509 max_lpsize = max_privmap_lpsize; 510 return (map_szcvec(addr, size, off, max_lpsize, 511 privm_lpg_min_physmem)); 512 } 513 } 514 515 /* 516 * Handle a pagefault. 517 */ 518 faultcode_t 519 pagefault( 520 caddr_t addr, 521 enum fault_type type, 522 enum seg_rw rw, 523 int iskernel) 524 { 525 struct as *as; 526 struct hat *hat; 527 struct proc *p; 528 kthread_t *t; 529 faultcode_t res; 530 caddr_t base; 531 size_t len; 532 int err; 533 int mapped_red; 534 uintptr_t ea; 535 536 ASSERT_STACK_ALIGNED(); 537 538 if (INVALID_VADDR(addr)) 539 return (FC_NOMAP); 540 541 mapped_red = segkp_map_red(); 542 543 if (iskernel) { 544 as = &kas; 545 hat = as->a_hat; 546 } else { 547 t = curthread; 548 p = ttoproc(t); 549 as = p->p_as; 550 hat = as->a_hat; 551 } 552 553 /* 554 * Dispatch pagefault. 555 */ 556 res = as_fault(hat, as, addr, 1, type, rw); 557 558 /* 559 * If this isn't a potential unmapped hole in the user's 560 * UNIX data or stack segments, just return status info. 561 */ 562 if (res != FC_NOMAP || iskernel) 563 goto out; 564 565 /* 566 * Check to see if we happened to faulted on a currently unmapped 567 * part of the UNIX data or stack segments. If so, create a zfod 568 * mapping there and then try calling the fault routine again. 569 */ 570 base = p->p_brkbase; 571 len = p->p_brksize; 572 573 if (addr < base || addr >= base + len) { /* data seg? */ 574 base = (caddr_t)p->p_usrstack - p->p_stksize; 575 len = p->p_stksize; 576 if (addr < base || addr >= p->p_usrstack) { /* stack seg? */ 577 /* not in either UNIX data or stack segments */ 578 res = FC_NOMAP; 579 goto out; 580 } 581 } 582 583 /* 584 * the rest of this function implements a 3.X 4.X 5.X compatibility 585 * This code is probably not needed anymore 586 */ 587 if (p->p_model == DATAMODEL_ILP32) { 588 589 /* expand the gap to the page boundaries on each side */ 590 ea = P2ROUNDUP((uintptr_t)base + len, MMU_PAGESIZE); 591 base = (caddr_t)P2ALIGN((uintptr_t)base, MMU_PAGESIZE); 592 len = ea - (uintptr_t)base; 593 594 as_rangelock(as); 595 if (as_gap(as, MMU_PAGESIZE, &base, &len, AH_CONTAIN, addr) == 596 0) { 597 err = as_map(as, base, len, segvn_create, zfod_argsp); 598 as_rangeunlock(as); 599 if (err) { 600 res = FC_MAKE_ERR(err); 601 goto out; 602 } 603 } else { 604 /* 605 * This page is already mapped by another thread after 606 * we returned from as_fault() above. We just fall 607 * through as_fault() below. 608 */ 609 as_rangeunlock(as); 610 } 611 612 res = as_fault(hat, as, addr, 1, F_INVAL, rw); 613 } 614 615 out: 616 if (mapped_red) 617 segkp_unmap_red(); 618 619 return (res); 620 } 621 622 void 623 map_addr(caddr_t *addrp, size_t len, offset_t off, int vacalign, uint_t flags) 624 { 625 struct proc *p = curproc; 626 caddr_t userlimit = (flags & _MAP_LOW32) ? 627 (caddr_t)_userlimit32 : p->p_as->a_userlimit; 628 629 map_addr_proc(addrp, len, off, vacalign, userlimit, curproc, flags); 630 } 631 632 /*ARGSUSED*/ 633 int 634 map_addr_vacalign_check(caddr_t addr, u_offset_t off) 635 { 636 return (0); 637 } 638 639 /* 640 * map_addr_proc() is the routine called when the system is to 641 * choose an address for the user. We will pick an address 642 * range which is the highest available below userlimit. 643 * 644 * Every mapping will have a redzone of a single page on either side of 645 * the request. This is done to leave one page unmapped between segments. 646 * This is not required, but it's useful for the user because if their 647 * program strays across a segment boundary, it will catch a fault 648 * immediately making debugging a little easier. Currently the redzone 649 * is mandatory. 650 * 651 * addrp is a value/result parameter. 652 * On input it is a hint from the user to be used in a completely 653 * machine dependent fashion. We decide to completely ignore this hint. 654 * If MAP_ALIGN was specified, addrp contains the minimal alignment, which 655 * must be some "power of two" multiple of pagesize. 656 * 657 * On output it is NULL if no address can be found in the current 658 * processes address space or else an address that is currently 659 * not mapped for len bytes with a page of red zone on either side. 660 * 661 * vacalign is not needed on x86 (it's for viturally addressed caches) 662 */ 663 /*ARGSUSED*/ 664 void 665 map_addr_proc( 666 caddr_t *addrp, 667 size_t len, 668 offset_t off, 669 int vacalign, 670 caddr_t userlimit, 671 struct proc *p, 672 uint_t flags) 673 { 674 struct as *as = p->p_as; 675 caddr_t addr; 676 caddr_t base; 677 size_t slen; 678 size_t align_amount; 679 680 ASSERT32(userlimit == as->a_userlimit); 681 682 base = p->p_brkbase; 683 #if defined(__amd64) 684 /* 685 * XX64 Yes, this needs more work. 686 */ 687 if (p->p_model == DATAMODEL_NATIVE) { 688 if (userlimit < as->a_userlimit) { 689 /* 690 * This happens when a program wants to map 691 * something in a range that's accessible to a 692 * program in a smaller address space. For example, 693 * a 64-bit program calling mmap32(2) to guarantee 694 * that the returned address is below 4Gbytes. 695 */ 696 ASSERT((uintptr_t)userlimit < ADDRESS_C(0xffffffff)); 697 698 if (userlimit > base) 699 slen = userlimit - base; 700 else { 701 *addrp = NULL; 702 return; 703 } 704 } else { 705 /* 706 * XX64 This layout is probably wrong .. but in 707 * the event we make the amd64 address space look 708 * like sparcv9 i.e. with the stack -above- the 709 * heap, this bit of code might even be correct. 710 */ 711 slen = p->p_usrstack - base - 712 ((p->p_stk_ctl + PAGEOFFSET) & PAGEMASK); 713 } 714 } else 715 #endif 716 slen = userlimit - base; 717 718 /* Make len be a multiple of PAGESIZE */ 719 len = (len + PAGEOFFSET) & PAGEMASK; 720 721 /* 722 * figure out what the alignment should be 723 * 724 * XX64 -- is there an ELF_AMD64_MAXPGSZ or is it the same???? 725 */ 726 if (len <= ELF_386_MAXPGSZ) { 727 /* 728 * Align virtual addresses to ensure that ELF shared libraries 729 * are mapped with the appropriate alignment constraints by 730 * the run-time linker. 731 */ 732 align_amount = ELF_386_MAXPGSZ; 733 } else { 734 /* 735 * For 32-bit processes, only those which have specified 736 * MAP_ALIGN and an addr will be aligned on a larger page size. 737 * Not doing so can potentially waste up to 1G of process 738 * address space. 739 */ 740 int lvl = (p->p_model == DATAMODEL_ILP32) ? 1 : 741 mmu.umax_page_level; 742 743 while (lvl && len < LEVEL_SIZE(lvl)) 744 --lvl; 745 746 align_amount = LEVEL_SIZE(lvl); 747 } 748 if ((flags & MAP_ALIGN) && ((uintptr_t)*addrp > align_amount)) 749 align_amount = (uintptr_t)*addrp; 750 751 ASSERT(ISP2(align_amount)); 752 ASSERT(align_amount == 0 || align_amount >= PAGESIZE); 753 754 off = off & (align_amount - 1); 755 /* 756 * Look for a large enough hole starting below userlimit. 757 * After finding it, use the upper part. 758 */ 759 if (as_gap_aligned(as, len, &base, &slen, AH_HI, NULL, align_amount, 760 PAGESIZE, off) == 0) { 761 caddr_t as_addr; 762 763 /* 764 * addr is the highest possible address to use since we have 765 * a PAGESIZE redzone at the beginning and end. 766 */ 767 addr = base + slen - (PAGESIZE + len); 768 as_addr = addr; 769 /* 770 * Round address DOWN to the alignment amount and 771 * add the offset in. 772 * If addr is greater than as_addr, len would not be large 773 * enough to include the redzone, so we must adjust down 774 * by the alignment amount. 775 */ 776 addr = (caddr_t)((uintptr_t)addr & (~(align_amount - 1))); 777 addr += (uintptr_t)off; 778 if (addr > as_addr) { 779 addr -= align_amount; 780 } 781 782 ASSERT(addr > base); 783 ASSERT(addr + len < base + slen); 784 ASSERT(((uintptr_t)addr & (align_amount - 1)) == 785 ((uintptr_t)(off))); 786 *addrp = addr; 787 } else { 788 *addrp = NULL; /* no more virtual space */ 789 } 790 } 791 792 int valid_va_range_aligned_wraparound; 793 794 /* 795 * Determine whether [*basep, *basep + *lenp) contains a mappable range of 796 * addresses at least "minlen" long, where the base of the range is at "off" 797 * phase from an "align" boundary and there is space for a "redzone"-sized 798 * redzone on either side of the range. On success, 1 is returned and *basep 799 * and *lenp are adjusted to describe the acceptable range (including 800 * the redzone). On failure, 0 is returned. 801 */ 802 /*ARGSUSED3*/ 803 int 804 valid_va_range_aligned(caddr_t *basep, size_t *lenp, size_t minlen, int dir, 805 size_t align, size_t redzone, size_t off) 806 { 807 uintptr_t hi, lo; 808 size_t tot_len; 809 810 ASSERT(align == 0 ? off == 0 : off < align); 811 ASSERT(ISP2(align)); 812 ASSERT(align == 0 || align >= PAGESIZE); 813 814 lo = (uintptr_t)*basep; 815 hi = lo + *lenp; 816 tot_len = minlen + 2 * redzone; /* need at least this much space */ 817 818 /* 819 * If hi rolled over the top, try cutting back. 820 */ 821 if (hi < lo) { 822 *lenp = 0UL - lo - 1UL; 823 /* See if this really happens. If so, then we figure out why */ 824 valid_va_range_aligned_wraparound++; 825 hi = lo + *lenp; 826 } 827 if (*lenp < tot_len) { 828 return (0); 829 } 830 831 #if defined(__amd64) 832 /* 833 * Deal with a possible hole in the address range between 834 * hole_start and hole_end that should never be mapped. 835 */ 836 if (lo < hole_start) { 837 if (hi > hole_start) { 838 if (hi < hole_end) { 839 hi = hole_start; 840 } else { 841 /* lo < hole_start && hi >= hole_end */ 842 if (dir == AH_LO) { 843 /* 844 * prefer lowest range 845 */ 846 if (hole_start - lo >= tot_len) 847 hi = hole_start; 848 else if (hi - hole_end >= tot_len) 849 lo = hole_end; 850 else 851 return (0); 852 } else { 853 /* 854 * prefer highest range 855 */ 856 if (hi - hole_end >= tot_len) 857 lo = hole_end; 858 else if (hole_start - lo >= tot_len) 859 hi = hole_start; 860 else 861 return (0); 862 } 863 } 864 } 865 } else { 866 /* lo >= hole_start */ 867 if (hi < hole_end) 868 return (0); 869 if (lo < hole_end) 870 lo = hole_end; 871 } 872 #endif 873 874 if (hi - lo < tot_len) 875 return (0); 876 877 if (align > 1) { 878 uintptr_t tlo = lo + redzone; 879 uintptr_t thi = hi - redzone; 880 tlo = (uintptr_t)P2PHASEUP(tlo, align, off); 881 if (tlo < lo + redzone) { 882 return (0); 883 } 884 if (thi < tlo || thi - tlo < minlen) { 885 return (0); 886 } 887 } 888 889 *basep = (caddr_t)lo; 890 *lenp = hi - lo; 891 return (1); 892 } 893 894 /* 895 * Determine whether [*basep, *basep + *lenp) contains a mappable range of 896 * addresses at least "minlen" long. On success, 1 is returned and *basep 897 * and *lenp are adjusted to describe the acceptable range. On failure, 0 898 * is returned. 899 */ 900 int 901 valid_va_range(caddr_t *basep, size_t *lenp, size_t minlen, int dir) 902 { 903 return (valid_va_range_aligned(basep, lenp, minlen, dir, 0, 0, 0)); 904 } 905 906 /* 907 * Determine whether [addr, addr+len] are valid user addresses. 908 */ 909 /*ARGSUSED*/ 910 int 911 valid_usr_range(caddr_t addr, size_t len, uint_t prot, struct as *as, 912 caddr_t userlimit) 913 { 914 caddr_t eaddr = addr + len; 915 916 if (eaddr <= addr || addr >= userlimit || eaddr > userlimit) 917 return (RANGE_BADADDR); 918 919 #if defined(__amd64) 920 /* 921 * Check for the VA hole 922 */ 923 if (eaddr > (caddr_t)hole_start && addr < (caddr_t)hole_end) 924 return (RANGE_BADADDR); 925 #endif 926 927 return (RANGE_OKAY); 928 } 929 930 /* 931 * Return 1 if the page frame is onboard memory, else 0. 932 */ 933 int 934 pf_is_memory(pfn_t pf) 935 { 936 if (pfn_is_foreign(pf)) 937 return (0); 938 return (address_in_memlist(phys_install, pfn_to_pa(pf), 1)); 939 } 940 941 /* 942 * return the memrange containing pfn 943 */ 944 int 945 memrange_num(pfn_t pfn) 946 { 947 int n; 948 949 for (n = 0; n < nranges - 1; ++n) { 950 if (pfn >= memranges[n]) 951 break; 952 } 953 return (n); 954 } 955 956 /* 957 * return the mnoderange containing pfn 958 */ 959 /*ARGSUSED*/ 960 int 961 pfn_2_mtype(pfn_t pfn) 962 { 963 #if defined(__xpv) 964 return (0); 965 #else 966 int n; 967 968 /* Always start from highest pfn and work our way down */ 969 for (n = mtypetop; n != -1; n = mnoderanges[n].mnr_next) { 970 if (pfn >= mnoderanges[n].mnr_pfnlo) { 971 break; 972 } 973 } 974 return (n); 975 #endif 976 } 977 978 #if !defined(__xpv) 979 /* 980 * is_contigpage_free: 981 * returns a page list of contiguous pages. It minimally has to return 982 * minctg pages. Caller determines minctg based on the scatter-gather 983 * list length. 984 * 985 * pfnp is set to the next page frame to search on return. 986 */ 987 static page_t * 988 is_contigpage_free( 989 pfn_t *pfnp, 990 pgcnt_t *pgcnt, 991 pgcnt_t minctg, 992 uint64_t pfnseg, 993 int iolock) 994 { 995 int i = 0; 996 pfn_t pfn = *pfnp; 997 page_t *pp; 998 page_t *plist = NULL; 999 1000 /* 1001 * fail if pfn + minctg crosses a segment boundary. 1002 * Adjust for next starting pfn to begin at segment boundary. 1003 */ 1004 1005 if (((*pfnp + minctg - 1) & pfnseg) < (*pfnp & pfnseg)) { 1006 *pfnp = roundup(*pfnp, pfnseg + 1); 1007 return (NULL); 1008 } 1009 1010 do { 1011 retry: 1012 pp = page_numtopp_nolock(pfn + i); 1013 if ((pp == NULL) || IS_DUMP_PAGE(pp) || 1014 (page_trylock(pp, SE_EXCL) == 0)) { 1015 (*pfnp)++; 1016 break; 1017 } 1018 if (page_pptonum(pp) != pfn + i) { 1019 page_unlock(pp); 1020 goto retry; 1021 } 1022 1023 if (!(PP_ISFREE(pp))) { 1024 page_unlock(pp); 1025 (*pfnp)++; 1026 break; 1027 } 1028 1029 if (!PP_ISAGED(pp)) { 1030 page_list_sub(pp, PG_CACHE_LIST); 1031 page_hashout(pp, (kmutex_t *)NULL); 1032 } else { 1033 page_list_sub(pp, PG_FREE_LIST); 1034 } 1035 1036 if (iolock) 1037 page_io_lock(pp); 1038 page_list_concat(&plist, &pp); 1039 1040 /* 1041 * exit loop when pgcnt satisfied or segment boundary reached. 1042 */ 1043 1044 } while ((++i < *pgcnt) && ((pfn + i) & pfnseg)); 1045 1046 *pfnp += i; /* set to next pfn to search */ 1047 1048 if (i >= minctg) { 1049 *pgcnt -= i; 1050 return (plist); 1051 } 1052 1053 /* 1054 * failure: minctg not satisfied. 1055 * 1056 * if next request crosses segment boundary, set next pfn 1057 * to search from the segment boundary. 1058 */ 1059 if (((*pfnp + minctg - 1) & pfnseg) < (*pfnp & pfnseg)) 1060 *pfnp = roundup(*pfnp, pfnseg + 1); 1061 1062 /* clean up any pages already allocated */ 1063 1064 while (plist) { 1065 pp = plist; 1066 page_sub(&plist, pp); 1067 page_list_add(pp, PG_FREE_LIST | PG_LIST_TAIL); 1068 if (iolock) 1069 page_io_unlock(pp); 1070 page_unlock(pp); 1071 } 1072 1073 return (NULL); 1074 } 1075 #endif /* !__xpv */ 1076 1077 /* 1078 * verify that pages being returned from allocator have correct DMA attribute 1079 */ 1080 #ifndef DEBUG 1081 #define check_dma(a, b, c) (void)(0) 1082 #else 1083 static void 1084 check_dma(ddi_dma_attr_t *dma_attr, page_t *pp, int cnt) 1085 { 1086 if (dma_attr == NULL) 1087 return; 1088 1089 while (cnt-- > 0) { 1090 if (pa_to_ma(pfn_to_pa(pp->p_pagenum)) < 1091 dma_attr->dma_attr_addr_lo) 1092 panic("PFN (pp=%p) below dma_attr_addr_lo", (void *)pp); 1093 if (pa_to_ma(pfn_to_pa(pp->p_pagenum)) >= 1094 dma_attr->dma_attr_addr_hi) 1095 panic("PFN (pp=%p) above dma_attr_addr_hi", (void *)pp); 1096 pp = pp->p_next; 1097 } 1098 } 1099 #endif 1100 1101 #if !defined(__xpv) 1102 static page_t * 1103 page_get_contigpage(pgcnt_t *pgcnt, ddi_dma_attr_t *mattr, int iolock) 1104 { 1105 pfn_t pfn; 1106 int sgllen; 1107 uint64_t pfnseg; 1108 pgcnt_t minctg; 1109 page_t *pplist = NULL, *plist; 1110 uint64_t lo, hi; 1111 pgcnt_t pfnalign = 0; 1112 static pfn_t startpfn; 1113 static pgcnt_t lastctgcnt; 1114 uintptr_t align; 1115 1116 CONTIG_LOCK(); 1117 1118 if (mattr) { 1119 lo = mmu_btop((mattr->dma_attr_addr_lo + MMU_PAGEOFFSET)); 1120 hi = mmu_btop(mattr->dma_attr_addr_hi); 1121 if (hi >= physmax) 1122 hi = physmax - 1; 1123 sgllen = mattr->dma_attr_sgllen; 1124 pfnseg = mmu_btop(mattr->dma_attr_seg); 1125 1126 align = maxbit(mattr->dma_attr_align, mattr->dma_attr_minxfer); 1127 if (align > MMU_PAGESIZE) 1128 pfnalign = mmu_btop(align); 1129 1130 /* 1131 * in order to satisfy the request, must minimally 1132 * acquire minctg contiguous pages 1133 */ 1134 minctg = howmany(*pgcnt, sgllen); 1135 1136 ASSERT(hi >= lo); 1137 1138 /* 1139 * start from where last searched if the minctg >= lastctgcnt 1140 */ 1141 if (minctg < lastctgcnt || startpfn < lo || startpfn > hi) 1142 startpfn = lo; 1143 } else { 1144 hi = physmax - 1; 1145 lo = 0; 1146 sgllen = 1; 1147 pfnseg = mmu.highest_pfn; 1148 minctg = *pgcnt; 1149 1150 if (minctg < lastctgcnt) 1151 startpfn = lo; 1152 } 1153 lastctgcnt = minctg; 1154 1155 ASSERT(pfnseg + 1 >= (uint64_t)minctg); 1156 1157 /* conserve 16m memory - start search above 16m when possible */ 1158 if (hi > PFN_16M && startpfn < PFN_16M) 1159 startpfn = PFN_16M; 1160 1161 pfn = startpfn; 1162 if (pfnalign) 1163 pfn = P2ROUNDUP(pfn, pfnalign); 1164 1165 while (pfn + minctg - 1 <= hi) { 1166 1167 plist = is_contigpage_free(&pfn, pgcnt, minctg, pfnseg, iolock); 1168 if (plist) { 1169 page_list_concat(&pplist, &plist); 1170 sgllen--; 1171 /* 1172 * return when contig pages no longer needed 1173 */ 1174 if (!*pgcnt || ((*pgcnt <= sgllen) && !pfnalign)) { 1175 startpfn = pfn; 1176 CONTIG_UNLOCK(); 1177 check_dma(mattr, pplist, *pgcnt); 1178 return (pplist); 1179 } 1180 minctg = howmany(*pgcnt, sgllen); 1181 } 1182 if (pfnalign) 1183 pfn = P2ROUNDUP(pfn, pfnalign); 1184 } 1185 1186 /* cannot find contig pages in specified range */ 1187 if (startpfn == lo) { 1188 CONTIG_UNLOCK(); 1189 return (NULL); 1190 } 1191 1192 /* did not start with lo previously */ 1193 pfn = lo; 1194 if (pfnalign) 1195 pfn = P2ROUNDUP(pfn, pfnalign); 1196 1197 /* allow search to go above startpfn */ 1198 while (pfn < startpfn) { 1199 1200 plist = is_contigpage_free(&pfn, pgcnt, minctg, pfnseg, iolock); 1201 if (plist != NULL) { 1202 1203 page_list_concat(&pplist, &plist); 1204 sgllen--; 1205 1206 /* 1207 * return when contig pages no longer needed 1208 */ 1209 if (!*pgcnt || ((*pgcnt <= sgllen) && !pfnalign)) { 1210 startpfn = pfn; 1211 CONTIG_UNLOCK(); 1212 check_dma(mattr, pplist, *pgcnt); 1213 return (pplist); 1214 } 1215 minctg = howmany(*pgcnt, sgllen); 1216 } 1217 if (pfnalign) 1218 pfn = P2ROUNDUP(pfn, pfnalign); 1219 } 1220 CONTIG_UNLOCK(); 1221 return (NULL); 1222 } 1223 #endif /* !__xpv */ 1224 1225 /* 1226 * mnode_range_cnt() calculates the number of memory ranges for mnode and 1227 * memranges[]. Used to determine the size of page lists and mnoderanges. 1228 */ 1229 int 1230 mnode_range_cnt(int mnode) 1231 { 1232 #if defined(__xpv) 1233 ASSERT(mnode == 0); 1234 return (1); 1235 #else /* __xpv */ 1236 int mri; 1237 int mnrcnt = 0; 1238 1239 if (mem_node_config[mnode].exists != 0) { 1240 mri = nranges - 1; 1241 1242 /* find the memranges index below contained in mnode range */ 1243 1244 while (MEMRANGEHI(mri) < mem_node_config[mnode].physbase) 1245 mri--; 1246 1247 /* 1248 * increment mnode range counter when memranges or mnode 1249 * boundary is reached. 1250 */ 1251 while (mri >= 0 && 1252 mem_node_config[mnode].physmax >= MEMRANGELO(mri)) { 1253 mnrcnt++; 1254 if (mem_node_config[mnode].physmax > MEMRANGEHI(mri)) 1255 mri--; 1256 else 1257 break; 1258 } 1259 } 1260 ASSERT(mnrcnt <= MAX_MNODE_MRANGES); 1261 return (mnrcnt); 1262 #endif /* __xpv */ 1263 } 1264 1265 /* 1266 * mnode_range_setup() initializes mnoderanges. 1267 */ 1268 void 1269 mnode_range_setup(mnoderange_t *mnoderanges) 1270 { 1271 mnoderange_t *mp = mnoderanges; 1272 int mnode, mri; 1273 int mindex = 0; /* current index into mnoderanges array */ 1274 int i, j; 1275 pfn_t hipfn; 1276 int last, hi; 1277 1278 for (mnode = 0; mnode < max_mem_nodes; mnode++) { 1279 if (mem_node_config[mnode].exists == 0) 1280 continue; 1281 1282 mri = nranges - 1; 1283 1284 while (MEMRANGEHI(mri) < mem_node_config[mnode].physbase) 1285 mri--; 1286 1287 while (mri >= 0 && mem_node_config[mnode].physmax >= 1288 MEMRANGELO(mri)) { 1289 mnoderanges->mnr_pfnlo = MAX(MEMRANGELO(mri), 1290 mem_node_config[mnode].physbase); 1291 mnoderanges->mnr_pfnhi = MIN(MEMRANGEHI(mri), 1292 mem_node_config[mnode].physmax); 1293 mnoderanges->mnr_mnode = mnode; 1294 mnoderanges->mnr_memrange = mri; 1295 mnoderanges->mnr_exists = 1; 1296 mnoderanges++; 1297 mindex++; 1298 if (mem_node_config[mnode].physmax > MEMRANGEHI(mri)) 1299 mri--; 1300 else 1301 break; 1302 } 1303 } 1304 1305 /* 1306 * For now do a simple sort of the mnoderanges array to fill in 1307 * the mnr_next fields. Since mindex is expected to be relatively 1308 * small, using a simple O(N^2) algorithm. 1309 */ 1310 for (i = 0; i < mindex; i++) { 1311 if (mp[i].mnr_pfnlo == 0) /* find lowest */ 1312 break; 1313 } 1314 ASSERT(i < mindex); 1315 last = i; 1316 mtype16m = last; 1317 mp[last].mnr_next = -1; 1318 for (i = 0; i < mindex - 1; i++) { 1319 hipfn = (pfn_t)(-1); 1320 hi = -1; 1321 /* find next highest mnode range */ 1322 for (j = 0; j < mindex; j++) { 1323 if (mp[j].mnr_pfnlo > mp[last].mnr_pfnlo && 1324 mp[j].mnr_pfnlo < hipfn) { 1325 hipfn = mp[j].mnr_pfnlo; 1326 hi = j; 1327 } 1328 } 1329 mp[hi].mnr_next = last; 1330 last = hi; 1331 } 1332 mtypetop = last; 1333 } 1334 1335 #ifndef __xpv 1336 /* 1337 * Update mnoderanges for memory hot-add DR operations. 1338 */ 1339 static void 1340 mnode_range_add(int mnode) 1341 { 1342 int *prev; 1343 int n, mri; 1344 pfn_t start, end; 1345 extern void membar_sync(void); 1346 1347 ASSERT(0 <= mnode && mnode < max_mem_nodes); 1348 ASSERT(mem_node_config[mnode].exists); 1349 start = mem_node_config[mnode].physbase; 1350 end = mem_node_config[mnode].physmax; 1351 ASSERT(start <= end); 1352 mutex_enter(&mnoderange_lock); 1353 1354 #ifdef DEBUG 1355 /* Check whether it interleaves with other memory nodes. */ 1356 for (n = mtypetop; n != -1; n = mnoderanges[n].mnr_next) { 1357 ASSERT(mnoderanges[n].mnr_exists); 1358 if (mnoderanges[n].mnr_mnode == mnode) 1359 continue; 1360 ASSERT(start > mnoderanges[n].mnr_pfnhi || 1361 end < mnoderanges[n].mnr_pfnlo); 1362 } 1363 #endif /* DEBUG */ 1364 1365 mri = nranges - 1; 1366 while (MEMRANGEHI(mri) < mem_node_config[mnode].physbase) 1367 mri--; 1368 while (mri >= 0 && mem_node_config[mnode].physmax >= MEMRANGELO(mri)) { 1369 /* Check whether mtype already exists. */ 1370 for (n = mtypetop; n != -1; n = mnoderanges[n].mnr_next) { 1371 if (mnoderanges[n].mnr_mnode == mnode && 1372 mnoderanges[n].mnr_memrange == mri) { 1373 mnoderanges[n].mnr_pfnlo = MAX(MEMRANGELO(mri), 1374 start); 1375 mnoderanges[n].mnr_pfnhi = MIN(MEMRANGEHI(mri), 1376 end); 1377 break; 1378 } 1379 } 1380 1381 /* Add a new entry if it doesn't exist yet. */ 1382 if (n == -1) { 1383 /* Try to find an unused entry in mnoderanges array. */ 1384 for (n = 0; n < mnoderangecnt; n++) { 1385 if (mnoderanges[n].mnr_exists == 0) 1386 break; 1387 } 1388 ASSERT(n < mnoderangecnt); 1389 mnoderanges[n].mnr_pfnlo = MAX(MEMRANGELO(mri), start); 1390 mnoderanges[n].mnr_pfnhi = MIN(MEMRANGEHI(mri), end); 1391 mnoderanges[n].mnr_mnode = mnode; 1392 mnoderanges[n].mnr_memrange = mri; 1393 mnoderanges[n].mnr_exists = 1; 1394 /* Page 0 should always be present. */ 1395 for (prev = &mtypetop; 1396 mnoderanges[*prev].mnr_pfnlo > start; 1397 prev = &mnoderanges[*prev].mnr_next) { 1398 ASSERT(mnoderanges[*prev].mnr_next >= 0); 1399 ASSERT(mnoderanges[*prev].mnr_pfnlo > end); 1400 } 1401 mnoderanges[n].mnr_next = *prev; 1402 membar_sync(); 1403 *prev = n; 1404 } 1405 1406 if (mem_node_config[mnode].physmax > MEMRANGEHI(mri)) 1407 mri--; 1408 else 1409 break; 1410 } 1411 1412 mutex_exit(&mnoderange_lock); 1413 } 1414 1415 /* 1416 * Update mnoderanges for memory hot-removal DR operations. 1417 */ 1418 static void 1419 mnode_range_del(int mnode) 1420 { 1421 _NOTE(ARGUNUSED(mnode)); 1422 ASSERT(0 <= mnode && mnode < max_mem_nodes); 1423 /* TODO: support deletion operation. */ 1424 ASSERT(0); 1425 } 1426 1427 void 1428 plat_slice_add(pfn_t start, pfn_t end) 1429 { 1430 mem_node_add_slice(start, end); 1431 if (plat_dr_enabled()) { 1432 mnode_range_add(PFN_2_MEM_NODE(start)); 1433 } 1434 } 1435 1436 void 1437 plat_slice_del(pfn_t start, pfn_t end) 1438 { 1439 ASSERT(PFN_2_MEM_NODE(start) == PFN_2_MEM_NODE(end)); 1440 ASSERT(plat_dr_enabled()); 1441 mnode_range_del(PFN_2_MEM_NODE(start)); 1442 mem_node_del_slice(start, end); 1443 } 1444 #endif /* __xpv */ 1445 1446 /*ARGSUSED*/ 1447 int 1448 mtype_init(vnode_t *vp, caddr_t vaddr, uint_t *flags, size_t pgsz) 1449 { 1450 int mtype = mtypetop; 1451 1452 #if !defined(__xpv) 1453 #if defined(__i386) 1454 /* 1455 * set the mtype range 1456 * - kmem requests need to be below 4g if restricted_kmemalloc is set. 1457 * - for non kmem requests, set range to above 4g if memory below 4g 1458 * runs low. 1459 */ 1460 if (restricted_kmemalloc && VN_ISKAS(vp) && 1461 (caddr_t)(vaddr) >= kernelheap && 1462 (caddr_t)(vaddr) < ekernelheap) { 1463 ASSERT(physmax4g); 1464 mtype = mtype4g; 1465 if (RESTRICT16M_ALLOC(freemem4g - btop(pgsz), 1466 btop(pgsz), *flags)) { 1467 *flags |= PGI_MT_RANGE16M; 1468 } else { 1469 VM_STAT_ADD(vmm_vmstats.unrestrict16mcnt); 1470 VM_STAT_COND_ADD((*flags & PG_PANIC), 1471 vmm_vmstats.pgpanicalloc); 1472 *flags |= PGI_MT_RANGE0; 1473 } 1474 return (mtype); 1475 } 1476 #endif /* __i386 */ 1477 1478 if (RESTRICT4G_ALLOC) { 1479 VM_STAT_ADD(vmm_vmstats.restrict4gcnt); 1480 /* here only for > 4g systems */ 1481 *flags |= PGI_MT_RANGE4G; 1482 } else if (RESTRICT16M_ALLOC(freemem, btop(pgsz), *flags)) { 1483 *flags |= PGI_MT_RANGE16M; 1484 } else { 1485 VM_STAT_ADD(vmm_vmstats.unrestrict16mcnt); 1486 VM_STAT_COND_ADD((*flags & PG_PANIC), vmm_vmstats.pgpanicalloc); 1487 *flags |= PGI_MT_RANGE0; 1488 } 1489 #endif /* !__xpv */ 1490 return (mtype); 1491 } 1492 1493 1494 /* mtype init for page_get_replacement_page */ 1495 /*ARGSUSED*/ 1496 int 1497 mtype_pgr_init(int *flags, page_t *pp, int mnode, pgcnt_t pgcnt) 1498 { 1499 int mtype = mtypetop; 1500 #if !defined(__xpv) 1501 if (RESTRICT16M_ALLOC(freemem, pgcnt, *flags)) { 1502 *flags |= PGI_MT_RANGE16M; 1503 } else { 1504 VM_STAT_ADD(vmm_vmstats.unrestrict16mcnt); 1505 *flags |= PGI_MT_RANGE0; 1506 } 1507 #endif 1508 return (mtype); 1509 } 1510 1511 /* 1512 * Determine if the mnode range specified in mtype contains memory belonging 1513 * to memory node mnode. If flags & PGI_MT_RANGE is set then mtype contains 1514 * the range from high pfn to 0, 16m or 4g. 1515 * 1516 * Return first mnode range type index found otherwise return -1 if none found. 1517 */ 1518 int 1519 mtype_func(int mnode, int mtype, uint_t flags) 1520 { 1521 if (flags & PGI_MT_RANGE) { 1522 int mnr_lim = MRI_0; 1523 1524 if (flags & PGI_MT_NEXT) { 1525 mtype = mnoderanges[mtype].mnr_next; 1526 } 1527 if (flags & PGI_MT_RANGE4G) 1528 mnr_lim = MRI_4G; /* exclude 0-4g range */ 1529 else if (flags & PGI_MT_RANGE16M) 1530 mnr_lim = MRI_16M; /* exclude 0-16m range */ 1531 while (mtype != -1 && 1532 mnoderanges[mtype].mnr_memrange <= mnr_lim) { 1533 if (mnoderanges[mtype].mnr_mnode == mnode) 1534 return (mtype); 1535 mtype = mnoderanges[mtype].mnr_next; 1536 } 1537 } else if (mnoderanges[mtype].mnr_mnode == mnode) { 1538 return (mtype); 1539 } 1540 return (-1); 1541 } 1542 1543 /* 1544 * Update the page list max counts with the pfn range specified by the 1545 * input parameters. 1546 */ 1547 void 1548 mtype_modify_max(pfn_t startpfn, long cnt) 1549 { 1550 int mtype; 1551 pgcnt_t inc; 1552 spgcnt_t scnt = (spgcnt_t)(cnt); 1553 pgcnt_t acnt = ABS(scnt); 1554 pfn_t endpfn = startpfn + acnt; 1555 pfn_t pfn, lo; 1556 1557 if (!physmax4g) 1558 return; 1559 1560 mtype = mtypetop; 1561 for (pfn = endpfn; pfn > startpfn; ) { 1562 ASSERT(mtype != -1); 1563 lo = mnoderanges[mtype].mnr_pfnlo; 1564 if (pfn > lo) { 1565 if (startpfn >= lo) { 1566 inc = pfn - startpfn; 1567 } else { 1568 inc = pfn - lo; 1569 } 1570 if (mnoderanges[mtype].mnr_memrange != MRI_4G) { 1571 if (scnt > 0) 1572 maxmem4g += inc; 1573 else 1574 maxmem4g -= inc; 1575 } 1576 pfn -= inc; 1577 } 1578 mtype = mnoderanges[mtype].mnr_next; 1579 } 1580 } 1581 1582 int 1583 mtype_2_mrange(int mtype) 1584 { 1585 return (mnoderanges[mtype].mnr_memrange); 1586 } 1587 1588 void 1589 mnodetype_2_pfn(int mnode, int mtype, pfn_t *pfnlo, pfn_t *pfnhi) 1590 { 1591 _NOTE(ARGUNUSED(mnode)); 1592 ASSERT(mnoderanges[mtype].mnr_mnode == mnode); 1593 *pfnlo = mnoderanges[mtype].mnr_pfnlo; 1594 *pfnhi = mnoderanges[mtype].mnr_pfnhi; 1595 } 1596 1597 size_t 1598 plcnt_sz(size_t ctrs_sz) 1599 { 1600 #ifdef DEBUG 1601 int szc, colors; 1602 1603 ctrs_sz += mnoderangecnt * sizeof (struct mnr_mts) * mmu_page_sizes; 1604 for (szc = 0; szc < mmu_page_sizes; szc++) { 1605 colors = page_get_pagecolors(szc); 1606 ctrs_sz += mnoderangecnt * sizeof (pgcnt_t) * colors; 1607 } 1608 #endif 1609 return (ctrs_sz); 1610 } 1611 1612 caddr_t 1613 plcnt_init(caddr_t addr) 1614 { 1615 #ifdef DEBUG 1616 int mt, szc, colors; 1617 1618 for (mt = 0; mt < mnoderangecnt; mt++) { 1619 mnoderanges[mt].mnr_mts = (struct mnr_mts *)addr; 1620 addr += (sizeof (struct mnr_mts) * mmu_page_sizes); 1621 for (szc = 0; szc < mmu_page_sizes; szc++) { 1622 colors = page_get_pagecolors(szc); 1623 mnoderanges[mt].mnr_mts[szc].mnr_mts_colors = colors; 1624 mnoderanges[mt].mnr_mts[szc].mnr_mtsc_pgcnt = 1625 (pgcnt_t *)addr; 1626 addr += (sizeof (pgcnt_t) * colors); 1627 } 1628 } 1629 #endif 1630 return (addr); 1631 } 1632 1633 void 1634 plcnt_inc_dec(page_t *pp, int mtype, int szc, long cnt, int flags) 1635 { 1636 _NOTE(ARGUNUSED(pp)); 1637 #ifdef DEBUG 1638 int bin = PP_2_BIN(pp); 1639 1640 atomic_add_long(&mnoderanges[mtype].mnr_mts[szc].mnr_mts_pgcnt, cnt); 1641 atomic_add_long(&mnoderanges[mtype].mnr_mts[szc].mnr_mtsc_pgcnt[bin], 1642 cnt); 1643 #endif 1644 ASSERT(mtype == PP_2_MTYPE(pp)); 1645 if (physmax4g && mnoderanges[mtype].mnr_memrange != MRI_4G) 1646 atomic_add_long(&freemem4g, cnt); 1647 if (flags & PG_CACHE_LIST) 1648 atomic_add_long(&mnoderanges[mtype].mnr_mt_clpgcnt, cnt); 1649 else 1650 atomic_add_long(&mnoderanges[mtype].mnr_mt_flpgcnt[szc], cnt); 1651 atomic_add_long(&mnoderanges[mtype].mnr_mt_totcnt, cnt); 1652 } 1653 1654 /* 1655 * Returns the free page count for mnode 1656 */ 1657 int 1658 mnode_pgcnt(int mnode) 1659 { 1660 int mtype = mtypetop; 1661 int flags = PGI_MT_RANGE0; 1662 pgcnt_t pgcnt = 0; 1663 1664 mtype = mtype_func(mnode, mtype, flags); 1665 1666 while (mtype != -1) { 1667 pgcnt += MTYPE_FREEMEM(mtype); 1668 mtype = mtype_func(mnode, mtype, flags | PGI_MT_NEXT); 1669 } 1670 return (pgcnt); 1671 } 1672 1673 /* 1674 * Initialize page coloring variables based on the l2 cache parameters. 1675 * Calculate and return memory needed for page coloring data structures. 1676 */ 1677 size_t 1678 page_coloring_init(uint_t l2_sz, int l2_linesz, int l2_assoc) 1679 { 1680 _NOTE(ARGUNUSED(l2_linesz)); 1681 size_t colorsz = 0; 1682 int i; 1683 int colors; 1684 1685 #if defined(__xpv) 1686 /* 1687 * Hypervisor domains currently don't have any concept of NUMA. 1688 * Hence we'll act like there is only 1 memrange. 1689 */ 1690 i = memrange_num(1); 1691 #else /* !__xpv */ 1692 /* 1693 * Reduce the memory ranges lists if we don't have large amounts 1694 * of memory. This avoids searching known empty free lists. 1695 * To support memory DR operations, we need to keep memory ranges 1696 * for possible memory hot-add operations. 1697 */ 1698 if (plat_dr_physmax > physmax) 1699 i = memrange_num(plat_dr_physmax); 1700 else 1701 i = memrange_num(physmax); 1702 #if defined(__i386) 1703 if (i > MRI_4G) 1704 restricted_kmemalloc = 0; 1705 #endif 1706 /* physmax greater than 4g */ 1707 if (i == MRI_4G) 1708 physmax4g = 1; 1709 #endif /* !__xpv */ 1710 memranges += i; 1711 nranges -= i; 1712 1713 ASSERT(mmu_page_sizes <= MMU_PAGE_SIZES); 1714 1715 ASSERT(ISP2(l2_linesz)); 1716 ASSERT(l2_sz > MMU_PAGESIZE); 1717 1718 /* l2_assoc is 0 for fully associative l2 cache */ 1719 if (l2_assoc) 1720 l2_colors = MAX(1, l2_sz / (l2_assoc * MMU_PAGESIZE)); 1721 else 1722 l2_colors = 1; 1723 1724 ASSERT(ISP2(l2_colors)); 1725 1726 /* for scalability, configure at least PAGE_COLORS_MIN color bins */ 1727 page_colors = MAX(l2_colors, PAGE_COLORS_MIN); 1728 1729 /* 1730 * cpu_page_colors is non-zero when a page color may be spread across 1731 * multiple bins. 1732 */ 1733 if (l2_colors < page_colors) 1734 cpu_page_colors = l2_colors; 1735 1736 ASSERT(ISP2(page_colors)); 1737 1738 page_colors_mask = page_colors - 1; 1739 1740 ASSERT(ISP2(CPUSETSIZE())); 1741 page_coloring_shift = lowbit(CPUSETSIZE()); 1742 1743 /* initialize number of colors per page size */ 1744 for (i = 0; i <= mmu.max_page_level; i++) { 1745 hw_page_array[i].hp_size = LEVEL_SIZE(i); 1746 hw_page_array[i].hp_shift = LEVEL_SHIFT(i); 1747 hw_page_array[i].hp_pgcnt = LEVEL_SIZE(i) >> LEVEL_SHIFT(0); 1748 hw_page_array[i].hp_colors = (page_colors_mask >> 1749 (hw_page_array[i].hp_shift - hw_page_array[0].hp_shift)) 1750 + 1; 1751 colorequivszc[i] = 0; 1752 } 1753 1754 /* 1755 * The value of cpu_page_colors determines if additional color bins 1756 * need to be checked for a particular color in the page_get routines. 1757 */ 1758 if (cpu_page_colors != 0) { 1759 1760 int a = lowbit(page_colors) - lowbit(cpu_page_colors); 1761 ASSERT(a > 0); 1762 ASSERT(a < 16); 1763 1764 for (i = 0; i <= mmu.max_page_level; i++) { 1765 if ((colors = hw_page_array[i].hp_colors) <= 1) { 1766 colorequivszc[i] = 0; 1767 continue; 1768 } 1769 while ((colors >> a) == 0) 1770 a--; 1771 ASSERT(a >= 0); 1772 1773 /* higher 4 bits encodes color equiv mask */ 1774 colorequivszc[i] = (a << 4); 1775 } 1776 } 1777 1778 /* factor in colorequiv to check additional 'equivalent' bins. */ 1779 if (colorequiv > 1) { 1780 1781 int a = lowbit(colorequiv) - 1; 1782 if (a > 15) 1783 a = 15; 1784 1785 for (i = 0; i <= mmu.max_page_level; i++) { 1786 if ((colors = hw_page_array[i].hp_colors) <= 1) { 1787 continue; 1788 } 1789 while ((colors >> a) == 0) 1790 a--; 1791 if ((a << 4) > colorequivszc[i]) { 1792 colorequivszc[i] = (a << 4); 1793 } 1794 } 1795 } 1796 1797 /* size for mnoderanges */ 1798 for (mnoderangecnt = 0, i = 0; i < max_mem_nodes; i++) 1799 mnoderangecnt += mnode_range_cnt(i); 1800 if (plat_dr_support_memory()) { 1801 /* 1802 * Reserve enough space for memory DR operations. 1803 * Two extra mnoderanges for possbile fragmentations, 1804 * one for the 2G boundary and the other for the 4G boundary. 1805 * We don't expect a memory board crossing the 16M boundary 1806 * for memory hot-add operations on x86 platforms. 1807 */ 1808 mnoderangecnt += 2 + max_mem_nodes - lgrp_plat_node_cnt; 1809 } 1810 colorsz = mnoderangecnt * sizeof (mnoderange_t); 1811 1812 /* size for fpc_mutex and cpc_mutex */ 1813 colorsz += (2 * max_mem_nodes * sizeof (kmutex_t) * NPC_MUTEX); 1814 1815 /* size of page_freelists */ 1816 colorsz += mnoderangecnt * sizeof (page_t ***); 1817 colorsz += mnoderangecnt * mmu_page_sizes * sizeof (page_t **); 1818 1819 for (i = 0; i < mmu_page_sizes; i++) { 1820 colors = page_get_pagecolors(i); 1821 colorsz += mnoderangecnt * colors * sizeof (page_t *); 1822 } 1823 1824 /* size of page_cachelists */ 1825 colorsz += mnoderangecnt * sizeof (page_t **); 1826 colorsz += mnoderangecnt * page_colors * sizeof (page_t *); 1827 1828 return (colorsz); 1829 } 1830 1831 /* 1832 * Called once at startup to configure page_coloring data structures and 1833 * does the 1st page_free()/page_freelist_add(). 1834 */ 1835 void 1836 page_coloring_setup(caddr_t pcmemaddr) 1837 { 1838 int i; 1839 int j; 1840 int k; 1841 caddr_t addr; 1842 int colors; 1843 1844 /* 1845 * do page coloring setup 1846 */ 1847 addr = pcmemaddr; 1848 1849 mnoderanges = (mnoderange_t *)addr; 1850 addr += (mnoderangecnt * sizeof (mnoderange_t)); 1851 1852 mnode_range_setup(mnoderanges); 1853 1854 if (physmax4g) 1855 mtype4g = pfn_2_mtype(0xfffff); 1856 1857 for (k = 0; k < NPC_MUTEX; k++) { 1858 fpc_mutex[k] = (kmutex_t *)addr; 1859 addr += (max_mem_nodes * sizeof (kmutex_t)); 1860 } 1861 for (k = 0; k < NPC_MUTEX; k++) { 1862 cpc_mutex[k] = (kmutex_t *)addr; 1863 addr += (max_mem_nodes * sizeof (kmutex_t)); 1864 } 1865 page_freelists = (page_t ****)addr; 1866 addr += (mnoderangecnt * sizeof (page_t ***)); 1867 1868 page_cachelists = (page_t ***)addr; 1869 addr += (mnoderangecnt * sizeof (page_t **)); 1870 1871 for (i = 0; i < mnoderangecnt; i++) { 1872 page_freelists[i] = (page_t ***)addr; 1873 addr += (mmu_page_sizes * sizeof (page_t **)); 1874 1875 for (j = 0; j < mmu_page_sizes; j++) { 1876 colors = page_get_pagecolors(j); 1877 page_freelists[i][j] = (page_t **)addr; 1878 addr += (colors * sizeof (page_t *)); 1879 } 1880 page_cachelists[i] = (page_t **)addr; 1881 addr += (page_colors * sizeof (page_t *)); 1882 } 1883 } 1884 1885 #if defined(__xpv) 1886 /* 1887 * Give back 10% of the io_pool pages to the free list. 1888 * Don't shrink the pool below some absolute minimum. 1889 */ 1890 static void 1891 page_io_pool_shrink() 1892 { 1893 int retcnt; 1894 page_t *pp, *pp_first, *pp_last, **curpool; 1895 mfn_t mfn; 1896 int bothpools = 0; 1897 1898 mutex_enter(&io_pool_lock); 1899 io_pool_shrink_attempts++; /* should be a kstat? */ 1900 retcnt = io_pool_cnt / 10; 1901 if (io_pool_cnt - retcnt < io_pool_cnt_min) 1902 retcnt = io_pool_cnt - io_pool_cnt_min; 1903 if (retcnt <= 0) 1904 goto done; 1905 io_pool_shrinks++; /* should be a kstat? */ 1906 curpool = &io_pool_4g; 1907 domore: 1908 /* 1909 * Loop through taking pages from the end of the list 1910 * (highest mfns) till amount to return reached. 1911 */ 1912 for (pp = *curpool; pp && retcnt > 0; ) { 1913 pp_first = pp_last = pp->p_prev; 1914 if (pp_first == *curpool) 1915 break; 1916 retcnt--; 1917 io_pool_cnt--; 1918 page_io_pool_sub(curpool, pp_first, pp_last); 1919 if ((mfn = pfn_to_mfn(pp->p_pagenum)) < start_mfn) 1920 start_mfn = mfn; 1921 page_free(pp_first, 1); 1922 pp = *curpool; 1923 } 1924 if (retcnt != 0 && !bothpools) { 1925 /* 1926 * If not enough found in less constrained pool try the 1927 * more constrained one. 1928 */ 1929 curpool = &io_pool_16m; 1930 bothpools = 1; 1931 goto domore; 1932 } 1933 done: 1934 mutex_exit(&io_pool_lock); 1935 } 1936 1937 #endif /* __xpv */ 1938 1939 uint_t 1940 page_create_update_flags_x86(uint_t flags) 1941 { 1942 #if defined(__xpv) 1943 /* 1944 * Check this is an urgent allocation and free pages are depleted. 1945 */ 1946 if (!(flags & PG_WAIT) && freemem < desfree) 1947 page_io_pool_shrink(); 1948 #else /* !__xpv */ 1949 /* 1950 * page_create_get_something may call this because 4g memory may be 1951 * depleted. Set flags to allow for relocation of base page below 1952 * 4g if necessary. 1953 */ 1954 if (physmax4g) 1955 flags |= (PGI_PGCPSZC0 | PGI_PGCPHIPRI); 1956 #endif /* __xpv */ 1957 return (flags); 1958 } 1959 1960 /*ARGSUSED*/ 1961 int 1962 bp_color(struct buf *bp) 1963 { 1964 return (0); 1965 } 1966 1967 #if defined(__xpv) 1968 1969 /* 1970 * Take pages out of an io_pool 1971 */ 1972 static void 1973 page_io_pool_sub(page_t **poolp, page_t *pp_first, page_t *pp_last) 1974 { 1975 if (*poolp == pp_first) { 1976 *poolp = pp_last->p_next; 1977 if (*poolp == pp_first) 1978 *poolp = NULL; 1979 } 1980 pp_first->p_prev->p_next = pp_last->p_next; 1981 pp_last->p_next->p_prev = pp_first->p_prev; 1982 pp_first->p_prev = pp_last; 1983 pp_last->p_next = pp_first; 1984 } 1985 1986 /* 1987 * Put a page on the io_pool list. The list is ordered by increasing MFN. 1988 */ 1989 static void 1990 page_io_pool_add(page_t **poolp, page_t *pp) 1991 { 1992 page_t *look; 1993 mfn_t mfn = mfn_list[pp->p_pagenum]; 1994 1995 if (*poolp == NULL) { 1996 *poolp = pp; 1997 pp->p_next = pp; 1998 pp->p_prev = pp; 1999 return; 2000 } 2001 2002 /* 2003 * Since we try to take pages from the high end of the pool 2004 * chances are good that the pages to be put on the list will 2005 * go at or near the end of the list. so start at the end and 2006 * work backwards. 2007 */ 2008 look = (*poolp)->p_prev; 2009 while (mfn < mfn_list[look->p_pagenum]) { 2010 look = look->p_prev; 2011 if (look == (*poolp)->p_prev) 2012 break; /* backed all the way to front of list */ 2013 } 2014 2015 /* insert after look */ 2016 pp->p_prev = look; 2017 pp->p_next = look->p_next; 2018 pp->p_next->p_prev = pp; 2019 look->p_next = pp; 2020 if (mfn < mfn_list[(*poolp)->p_pagenum]) { 2021 /* 2022 * we inserted a new first list element 2023 * adjust pool pointer to newly inserted element 2024 */ 2025 *poolp = pp; 2026 } 2027 } 2028 2029 /* 2030 * Add a page to the io_pool. Setting the force flag will force the page 2031 * into the io_pool no matter what. 2032 */ 2033 static void 2034 add_page_to_pool(page_t *pp, int force) 2035 { 2036 page_t *highest; 2037 page_t *freep = NULL; 2038 2039 mutex_enter(&io_pool_lock); 2040 /* 2041 * Always keep the scarce low memory pages 2042 */ 2043 if (mfn_list[pp->p_pagenum] < PFN_16MEG) { 2044 ++io_pool_cnt; 2045 page_io_pool_add(&io_pool_16m, pp); 2046 goto done; 2047 } 2048 if (io_pool_cnt < io_pool_cnt_max || force || io_pool_4g == NULL) { 2049 ++io_pool_cnt; 2050 page_io_pool_add(&io_pool_4g, pp); 2051 } else { 2052 highest = io_pool_4g->p_prev; 2053 if (mfn_list[pp->p_pagenum] < mfn_list[highest->p_pagenum]) { 2054 page_io_pool_sub(&io_pool_4g, highest, highest); 2055 page_io_pool_add(&io_pool_4g, pp); 2056 freep = highest; 2057 } else { 2058 freep = pp; 2059 } 2060 } 2061 done: 2062 mutex_exit(&io_pool_lock); 2063 if (freep) 2064 page_free(freep, 1); 2065 } 2066 2067 2068 int contig_pfn_cnt; /* no of pfns in the contig pfn list */ 2069 int contig_pfn_max; /* capacity of the contig pfn list */ 2070 int next_alloc_pfn; /* next position in list to start a contig search */ 2071 int contig_pfnlist_updates; /* pfn list update count */ 2072 int contig_pfnlist_builds; /* how many times have we (re)built list */ 2073 int contig_pfnlist_buildfailed; /* how many times has list build failed */ 2074 int create_contig_pending; /* nonzero means taskq creating contig list */ 2075 pfn_t *contig_pfn_list = NULL; /* list of contig pfns in ascending mfn order */ 2076 2077 /* 2078 * Function to use in sorting a list of pfns by their underlying mfns. 2079 */ 2080 static int 2081 mfn_compare(const void *pfnp1, const void *pfnp2) 2082 { 2083 mfn_t mfn1 = mfn_list[*(pfn_t *)pfnp1]; 2084 mfn_t mfn2 = mfn_list[*(pfn_t *)pfnp2]; 2085 2086 if (mfn1 > mfn2) 2087 return (1); 2088 if (mfn1 < mfn2) 2089 return (-1); 2090 return (0); 2091 } 2092 2093 /* 2094 * Compact the contig_pfn_list by tossing all the non-contiguous 2095 * elements from the list. 2096 */ 2097 static void 2098 compact_contig_pfn_list(void) 2099 { 2100 pfn_t pfn, lapfn, prev_lapfn; 2101 mfn_t mfn; 2102 int i, newcnt = 0; 2103 2104 prev_lapfn = 0; 2105 for (i = 0; i < contig_pfn_cnt - 1; i++) { 2106 pfn = contig_pfn_list[i]; 2107 lapfn = contig_pfn_list[i + 1]; 2108 mfn = mfn_list[pfn]; 2109 /* 2110 * See if next pfn is for a contig mfn 2111 */ 2112 if (mfn_list[lapfn] != mfn + 1) 2113 continue; 2114 /* 2115 * pfn and lookahead are both put in list 2116 * unless pfn is the previous lookahead. 2117 */ 2118 if (pfn != prev_lapfn) 2119 contig_pfn_list[newcnt++] = pfn; 2120 contig_pfn_list[newcnt++] = lapfn; 2121 prev_lapfn = lapfn; 2122 } 2123 for (i = newcnt; i < contig_pfn_cnt; i++) 2124 contig_pfn_list[i] = 0; 2125 contig_pfn_cnt = newcnt; 2126 } 2127 2128 /*ARGSUSED*/ 2129 static void 2130 call_create_contiglist(void *arg) 2131 { 2132 (void) create_contig_pfnlist(PG_WAIT); 2133 } 2134 2135 /* 2136 * Create list of freelist pfns that have underlying 2137 * contiguous mfns. The list is kept in ascending mfn order. 2138 * returns 1 if list created else 0. 2139 */ 2140 static int 2141 create_contig_pfnlist(uint_t flags) 2142 { 2143 pfn_t pfn; 2144 page_t *pp; 2145 int ret = 1; 2146 2147 mutex_enter(&contig_list_lock); 2148 if (contig_pfn_list != NULL) 2149 goto out; 2150 contig_pfn_max = freemem + (freemem / 10); 2151 contig_pfn_list = kmem_zalloc(contig_pfn_max * sizeof (pfn_t), 2152 (flags & PG_WAIT) ? KM_SLEEP : KM_NOSLEEP); 2153 if (contig_pfn_list == NULL) { 2154 /* 2155 * If we could not create the contig list (because 2156 * we could not sleep for memory). Dispatch a taskq that can 2157 * sleep to get the memory. 2158 */ 2159 if (!create_contig_pending) { 2160 if (taskq_dispatch(system_taskq, call_create_contiglist, 2161 NULL, TQ_NOSLEEP) != NULL) 2162 create_contig_pending = 1; 2163 } 2164 contig_pfnlist_buildfailed++; /* count list build failures */ 2165 ret = 0; 2166 goto out; 2167 } 2168 create_contig_pending = 0; 2169 ASSERT(contig_pfn_cnt == 0); 2170 for (pfn = 0; pfn < mfn_count; pfn++) { 2171 pp = page_numtopp_nolock(pfn); 2172 if (pp == NULL || !PP_ISFREE(pp)) 2173 continue; 2174 contig_pfn_list[contig_pfn_cnt] = pfn; 2175 if (++contig_pfn_cnt == contig_pfn_max) 2176 break; 2177 } 2178 /* 2179 * Sanity check the new list. 2180 */ 2181 if (contig_pfn_cnt < 2) { /* no contig pfns */ 2182 contig_pfn_cnt = 0; 2183 contig_pfnlist_buildfailed++; 2184 kmem_free(contig_pfn_list, contig_pfn_max * sizeof (pfn_t)); 2185 contig_pfn_list = NULL; 2186 contig_pfn_max = 0; 2187 ret = 0; 2188 goto out; 2189 } 2190 qsort(contig_pfn_list, contig_pfn_cnt, sizeof (pfn_t), mfn_compare); 2191 compact_contig_pfn_list(); 2192 /* 2193 * Make sure next search of the newly created contiguous pfn 2194 * list starts at the beginning of the list. 2195 */ 2196 next_alloc_pfn = 0; 2197 contig_pfnlist_builds++; /* count list builds */ 2198 out: 2199 mutex_exit(&contig_list_lock); 2200 return (ret); 2201 } 2202 2203 2204 /* 2205 * Toss the current contig pfnlist. Someone is about to do a massive 2206 * update to pfn<->mfn mappings. So we have them destroy the list and lock 2207 * it till they are done with their update. 2208 */ 2209 void 2210 clear_and_lock_contig_pfnlist() 2211 { 2212 pfn_t *listp = NULL; 2213 size_t listsize; 2214 2215 mutex_enter(&contig_list_lock); 2216 if (contig_pfn_list != NULL) { 2217 listp = contig_pfn_list; 2218 listsize = contig_pfn_max * sizeof (pfn_t); 2219 contig_pfn_list = NULL; 2220 contig_pfn_max = contig_pfn_cnt = 0; 2221 } 2222 if (listp != NULL) 2223 kmem_free(listp, listsize); 2224 } 2225 2226 /* 2227 * Unlock the contig_pfn_list. The next attempted use of it will cause 2228 * it to be re-created. 2229 */ 2230 void 2231 unlock_contig_pfnlist() 2232 { 2233 mutex_exit(&contig_list_lock); 2234 } 2235 2236 /* 2237 * Update the contiguous pfn list in response to a pfn <-> mfn reassignment 2238 */ 2239 void 2240 update_contig_pfnlist(pfn_t pfn, mfn_t oldmfn, mfn_t newmfn) 2241 { 2242 int probe_hi, probe_lo, probe_pos, insert_after, insert_point; 2243 pfn_t probe_pfn; 2244 mfn_t probe_mfn; 2245 int drop_lock = 0; 2246 2247 if (mutex_owner(&contig_list_lock) != curthread) { 2248 drop_lock = 1; 2249 mutex_enter(&contig_list_lock); 2250 } 2251 if (contig_pfn_list == NULL) 2252 goto done; 2253 contig_pfnlist_updates++; 2254 /* 2255 * Find the pfn in the current list. Use a binary chop to locate it. 2256 */ 2257 probe_hi = contig_pfn_cnt - 1; 2258 probe_lo = 0; 2259 probe_pos = (probe_hi + probe_lo) / 2; 2260 while ((probe_pfn = contig_pfn_list[probe_pos]) != pfn) { 2261 if (probe_pos == probe_lo) { /* pfn not in list */ 2262 probe_pos = -1; 2263 break; 2264 } 2265 if (pfn_to_mfn(probe_pfn) <= oldmfn) 2266 probe_lo = probe_pos; 2267 else 2268 probe_hi = probe_pos; 2269 probe_pos = (probe_hi + probe_lo) / 2; 2270 } 2271 if (probe_pos >= 0) { 2272 /* 2273 * Remove pfn from list and ensure next alloc 2274 * position stays in bounds. 2275 */ 2276 if (--contig_pfn_cnt <= next_alloc_pfn) 2277 next_alloc_pfn = 0; 2278 if (contig_pfn_cnt < 2) { /* no contig pfns */ 2279 contig_pfn_cnt = 0; 2280 kmem_free(contig_pfn_list, 2281 contig_pfn_max * sizeof (pfn_t)); 2282 contig_pfn_list = NULL; 2283 contig_pfn_max = 0; 2284 goto done; 2285 } 2286 ovbcopy(&contig_pfn_list[probe_pos + 1], 2287 &contig_pfn_list[probe_pos], 2288 (contig_pfn_cnt - probe_pos) * sizeof (pfn_t)); 2289 } 2290 if (newmfn == MFN_INVALID) 2291 goto done; 2292 /* 2293 * Check if new mfn has adjacent mfns in the list 2294 */ 2295 probe_hi = contig_pfn_cnt - 1; 2296 probe_lo = 0; 2297 insert_after = -2; 2298 do { 2299 probe_pos = (probe_hi + probe_lo) / 2; 2300 probe_mfn = pfn_to_mfn(contig_pfn_list[probe_pos]); 2301 if (newmfn == probe_mfn + 1) 2302 insert_after = probe_pos; 2303 else if (newmfn == probe_mfn - 1) 2304 insert_after = probe_pos - 1; 2305 if (probe_pos == probe_lo) 2306 break; 2307 if (probe_mfn <= newmfn) 2308 probe_lo = probe_pos; 2309 else 2310 probe_hi = probe_pos; 2311 } while (insert_after == -2); 2312 /* 2313 * If there is space in the list and there are adjacent mfns 2314 * insert the pfn in to its proper place in the list. 2315 */ 2316 if (insert_after != -2 && contig_pfn_cnt + 1 <= contig_pfn_max) { 2317 insert_point = insert_after + 1; 2318 ovbcopy(&contig_pfn_list[insert_point], 2319 &contig_pfn_list[insert_point + 1], 2320 (contig_pfn_cnt - insert_point) * sizeof (pfn_t)); 2321 contig_pfn_list[insert_point] = pfn; 2322 contig_pfn_cnt++; 2323 } 2324 done: 2325 if (drop_lock) 2326 mutex_exit(&contig_list_lock); 2327 } 2328 2329 /* 2330 * Called to (re-)populate the io_pool from the free page lists. 2331 */ 2332 long 2333 populate_io_pool(void) 2334 { 2335 pfn_t pfn; 2336 mfn_t mfn, max_mfn; 2337 page_t *pp; 2338 2339 /* 2340 * Figure out the bounds of the pool on first invocation. 2341 * We use a percentage of memory for the io pool size. 2342 * we allow that to shrink, but not to less than a fixed minimum 2343 */ 2344 if (io_pool_cnt_max == 0) { 2345 io_pool_cnt_max = physmem / (100 / io_pool_physmem_pct); 2346 io_pool_cnt_lowater = io_pool_cnt_max; 2347 /* 2348 * This is the first time in populate_io_pool, grab a va to use 2349 * when we need to allocate pages. 2350 */ 2351 io_pool_kva = vmem_alloc(heap_arena, PAGESIZE, VM_SLEEP); 2352 } 2353 /* 2354 * If we are out of pages in the pool, then grow the size of the pool 2355 */ 2356 if (io_pool_cnt == 0) { 2357 /* 2358 * Grow the max size of the io pool by 5%, but never more than 2359 * 25% of physical memory. 2360 */ 2361 if (io_pool_cnt_max < physmem / 4) 2362 io_pool_cnt_max += io_pool_cnt_max / 20; 2363 } 2364 io_pool_grows++; /* should be a kstat? */ 2365 2366 /* 2367 * Get highest mfn on this platform, but limit to the 32 bit DMA max. 2368 */ 2369 (void) mfn_to_pfn(start_mfn); 2370 max_mfn = MIN(cached_max_mfn, PFN_4GIG); 2371 for (mfn = start_mfn; mfn < max_mfn; start_mfn = ++mfn) { 2372 pfn = mfn_to_pfn(mfn); 2373 if (pfn & PFN_IS_FOREIGN_MFN) 2374 continue; 2375 /* 2376 * try to allocate it from free pages 2377 */ 2378 pp = page_numtopp_alloc(pfn); 2379 if (pp == NULL) 2380 continue; 2381 PP_CLRFREE(pp); 2382 add_page_to_pool(pp, 1); 2383 if (io_pool_cnt >= io_pool_cnt_max) 2384 break; 2385 } 2386 2387 return (io_pool_cnt); 2388 } 2389 2390 /* 2391 * Destroy a page that was being used for DMA I/O. It may or 2392 * may not actually go back to the io_pool. 2393 */ 2394 void 2395 page_destroy_io(page_t *pp) 2396 { 2397 mfn_t mfn = mfn_list[pp->p_pagenum]; 2398 2399 /* 2400 * When the page was alloc'd a reservation was made, release it now 2401 */ 2402 page_unresv(1); 2403 /* 2404 * Unload translations, if any, then hash out the 2405 * page to erase its identity. 2406 */ 2407 (void) hat_pageunload(pp, HAT_FORCE_PGUNLOAD); 2408 page_hashout(pp, NULL); 2409 2410 /* 2411 * If the page came from the free lists, just put it back to them. 2412 * DomU pages always go on the free lists as well. 2413 */ 2414 if (!DOMAIN_IS_INITDOMAIN(xen_info) || mfn >= PFN_4GIG) { 2415 page_free(pp, 1); 2416 return; 2417 } 2418 2419 add_page_to_pool(pp, 0); 2420 } 2421 2422 2423 long contig_searches; /* count of times contig pages requested */ 2424 long contig_search_restarts; /* count of contig ranges tried */ 2425 long contig_search_failed; /* count of contig alloc failures */ 2426 2427 /* 2428 * Free partial page list 2429 */ 2430 static void 2431 free_partial_list(page_t **pplist) 2432 { 2433 page_t *pp; 2434 2435 while (*pplist != NULL) { 2436 pp = *pplist; 2437 page_io_pool_sub(pplist, pp, pp); 2438 page_free(pp, 1); 2439 } 2440 } 2441 2442 /* 2443 * Look thru the contiguous pfns that are not part of the io_pool for 2444 * contiguous free pages. Return a list of the found pages or NULL. 2445 */ 2446 page_t * 2447 find_contig_free(uint_t npages, uint_t flags, uint64_t pfnseg, 2448 pgcnt_t pfnalign) 2449 { 2450 page_t *pp, *plist = NULL; 2451 mfn_t mfn, prev_mfn, start_mfn; 2452 pfn_t pfn; 2453 int pages_needed, pages_requested; 2454 int search_start; 2455 2456 /* 2457 * create the contig pfn list if not already done 2458 */ 2459 retry: 2460 mutex_enter(&contig_list_lock); 2461 if (contig_pfn_list == NULL) { 2462 mutex_exit(&contig_list_lock); 2463 if (!create_contig_pfnlist(flags)) { 2464 return (NULL); 2465 } 2466 goto retry; 2467 } 2468 contig_searches++; 2469 /* 2470 * Search contiguous pfn list for physically contiguous pages not in 2471 * the io_pool. Start the search where the last search left off. 2472 */ 2473 pages_requested = pages_needed = npages; 2474 search_start = next_alloc_pfn; 2475 start_mfn = prev_mfn = 0; 2476 while (pages_needed) { 2477 pfn = contig_pfn_list[next_alloc_pfn]; 2478 mfn = pfn_to_mfn(pfn); 2479 /* 2480 * Check if mfn is first one or contig to previous one and 2481 * if page corresponding to mfn is free and that mfn 2482 * range is not crossing a segment boundary. 2483 */ 2484 if ((prev_mfn == 0 || mfn == prev_mfn + 1) && 2485 (pp = page_numtopp_alloc(pfn)) != NULL && 2486 !((mfn & pfnseg) < (start_mfn & pfnseg))) { 2487 PP_CLRFREE(pp); 2488 page_io_pool_add(&plist, pp); 2489 pages_needed--; 2490 if (prev_mfn == 0) { 2491 if (pfnalign && 2492 mfn != P2ROUNDUP(mfn, pfnalign)) { 2493 /* 2494 * not properly aligned 2495 */ 2496 contig_search_restarts++; 2497 free_partial_list(&plist); 2498 pages_needed = pages_requested; 2499 start_mfn = prev_mfn = 0; 2500 goto skip; 2501 } 2502 start_mfn = mfn; 2503 } 2504 prev_mfn = mfn; 2505 } else { 2506 contig_search_restarts++; 2507 free_partial_list(&plist); 2508 pages_needed = pages_requested; 2509 start_mfn = prev_mfn = 0; 2510 } 2511 skip: 2512 if (++next_alloc_pfn == contig_pfn_cnt) 2513 next_alloc_pfn = 0; 2514 if (next_alloc_pfn == search_start) 2515 break; /* all pfns searched */ 2516 } 2517 mutex_exit(&contig_list_lock); 2518 if (pages_needed) { 2519 contig_search_failed++; 2520 /* 2521 * Failed to find enough contig pages. 2522 * free partial page list 2523 */ 2524 free_partial_list(&plist); 2525 } 2526 return (plist); 2527 } 2528 2529 /* 2530 * Search the reserved io pool pages for a page range with the 2531 * desired characteristics. 2532 */ 2533 page_t * 2534 page_io_pool_alloc(ddi_dma_attr_t *mattr, int contig, pgcnt_t minctg) 2535 { 2536 page_t *pp_first, *pp_last; 2537 page_t *pp, **poolp; 2538 pgcnt_t nwanted, pfnalign; 2539 uint64_t pfnseg; 2540 mfn_t mfn, tmfn, hi_mfn, lo_mfn; 2541 int align, attempt = 0; 2542 2543 if (minctg == 1) 2544 contig = 0; 2545 lo_mfn = mmu_btop(mattr->dma_attr_addr_lo); 2546 hi_mfn = mmu_btop(mattr->dma_attr_addr_hi); 2547 pfnseg = mmu_btop(mattr->dma_attr_seg); 2548 align = maxbit(mattr->dma_attr_align, mattr->dma_attr_minxfer); 2549 if (align > MMU_PAGESIZE) 2550 pfnalign = mmu_btop(align); 2551 else 2552 pfnalign = 0; 2553 2554 try_again: 2555 /* 2556 * See if we want pages for a legacy device 2557 */ 2558 if (hi_mfn < PFN_16MEG) 2559 poolp = &io_pool_16m; 2560 else 2561 poolp = &io_pool_4g; 2562 try_smaller: 2563 /* 2564 * Take pages from I/O pool. We'll use pages from the highest 2565 * MFN range possible. 2566 */ 2567 pp_first = pp_last = NULL; 2568 mutex_enter(&io_pool_lock); 2569 nwanted = minctg; 2570 for (pp = *poolp; pp && nwanted > 0; ) { 2571 pp = pp->p_prev; 2572 2573 /* 2574 * skip pages above allowable range 2575 */ 2576 mfn = mfn_list[pp->p_pagenum]; 2577 if (hi_mfn < mfn) 2578 goto skip; 2579 2580 /* 2581 * stop at pages below allowable range 2582 */ 2583 if (lo_mfn > mfn) 2584 break; 2585 restart: 2586 if (pp_last == NULL) { 2587 /* 2588 * Check alignment 2589 */ 2590 tmfn = mfn - (minctg - 1); 2591 if (pfnalign && tmfn != P2ROUNDUP(tmfn, pfnalign)) 2592 goto skip; /* not properly aligned */ 2593 /* 2594 * Check segment 2595 */ 2596 if ((mfn & pfnseg) < (tmfn & pfnseg)) 2597 goto skip; /* crosses seg boundary */ 2598 /* 2599 * Start building page list 2600 */ 2601 pp_first = pp_last = pp; 2602 nwanted--; 2603 } else { 2604 /* 2605 * check physical contiguity if required 2606 */ 2607 if (contig && 2608 mfn_list[pp_first->p_pagenum] != mfn + 1) { 2609 /* 2610 * not a contiguous page, restart list. 2611 */ 2612 pp_last = NULL; 2613 nwanted = minctg; 2614 goto restart; 2615 } else { /* add page to list */ 2616 pp_first = pp; 2617 nwanted--; 2618 } 2619 } 2620 skip: 2621 if (pp == *poolp) 2622 break; 2623 } 2624 2625 /* 2626 * If we didn't find memory. Try the more constrained pool, then 2627 * sweep free pages into the DMA pool and try again. 2628 */ 2629 if (nwanted != 0) { 2630 mutex_exit(&io_pool_lock); 2631 /* 2632 * If we were looking in the less constrained pool and 2633 * didn't find pages, try the more constrained pool. 2634 */ 2635 if (poolp == &io_pool_4g) { 2636 poolp = &io_pool_16m; 2637 goto try_smaller; 2638 } 2639 kmem_reap(); 2640 if (++attempt < 4) { 2641 /* 2642 * Grab some more io_pool pages 2643 */ 2644 (void) populate_io_pool(); 2645 goto try_again; /* go around and retry */ 2646 } 2647 return (NULL); 2648 } 2649 /* 2650 * Found the pages, now snip them from the list 2651 */ 2652 page_io_pool_sub(poolp, pp_first, pp_last); 2653 io_pool_cnt -= minctg; 2654 /* 2655 * reset low water mark 2656 */ 2657 if (io_pool_cnt < io_pool_cnt_lowater) 2658 io_pool_cnt_lowater = io_pool_cnt; 2659 mutex_exit(&io_pool_lock); 2660 return (pp_first); 2661 } 2662 2663 page_t * 2664 page_swap_with_hypervisor(struct vnode *vp, u_offset_t off, caddr_t vaddr, 2665 ddi_dma_attr_t *mattr, uint_t flags, pgcnt_t minctg) 2666 { 2667 uint_t kflags; 2668 int order, extra, extpages, i, contig, nbits, extents; 2669 page_t *pp, *expp, *pp_first, **pplist = NULL; 2670 mfn_t *mfnlist = NULL; 2671 2672 contig = flags & PG_PHYSCONTIG; 2673 if (minctg == 1) 2674 contig = 0; 2675 flags &= ~PG_PHYSCONTIG; 2676 kflags = flags & PG_WAIT ? KM_SLEEP : KM_NOSLEEP; 2677 /* 2678 * Hypervisor will allocate extents, if we want contig 2679 * pages extent must be >= minctg 2680 */ 2681 if (contig) { 2682 order = highbit(minctg) - 1; 2683 if (minctg & ((1 << order) - 1)) 2684 order++; 2685 extpages = 1 << order; 2686 } else { 2687 order = 0; 2688 extpages = minctg; 2689 } 2690 if (extpages > minctg) { 2691 extra = extpages - minctg; 2692 if (!page_resv(extra, kflags)) 2693 return (NULL); 2694 } 2695 pp_first = NULL; 2696 pplist = kmem_alloc(extpages * sizeof (page_t *), kflags); 2697 if (pplist == NULL) 2698 goto balloon_fail; 2699 mfnlist = kmem_alloc(extpages * sizeof (mfn_t), kflags); 2700 if (mfnlist == NULL) 2701 goto balloon_fail; 2702 pp = page_create_va(vp, off, minctg * PAGESIZE, flags, &kvseg, vaddr); 2703 if (pp == NULL) 2704 goto balloon_fail; 2705 pp_first = pp; 2706 if (extpages > minctg) { 2707 /* 2708 * fill out the rest of extent pages to swap 2709 * with the hypervisor 2710 */ 2711 for (i = 0; i < extra; i++) { 2712 expp = page_create_va(vp, 2713 (u_offset_t)(uintptr_t)io_pool_kva, 2714 PAGESIZE, flags, &kvseg, io_pool_kva); 2715 if (expp == NULL) 2716 goto balloon_fail; 2717 (void) hat_pageunload(expp, HAT_FORCE_PGUNLOAD); 2718 page_io_unlock(expp); 2719 page_hashout(expp, NULL); 2720 page_io_lock(expp); 2721 /* 2722 * add page to end of list 2723 */ 2724 expp->p_prev = pp_first->p_prev; 2725 expp->p_next = pp_first; 2726 expp->p_prev->p_next = expp; 2727 pp_first->p_prev = expp; 2728 } 2729 2730 } 2731 for (i = 0; i < extpages; i++) { 2732 pplist[i] = pp; 2733 pp = pp->p_next; 2734 } 2735 nbits = highbit(mattr->dma_attr_addr_hi); 2736 extents = contig ? 1 : minctg; 2737 if (balloon_replace_pages(extents, pplist, nbits, order, 2738 mfnlist) != extents) { 2739 if (ioalloc_dbg) 2740 cmn_err(CE_NOTE, "request to hypervisor" 2741 " for %d pages, maxaddr %" PRIx64 " failed", 2742 extpages, mattr->dma_attr_addr_hi); 2743 goto balloon_fail; 2744 } 2745 2746 kmem_free(pplist, extpages * sizeof (page_t *)); 2747 kmem_free(mfnlist, extpages * sizeof (mfn_t)); 2748 /* 2749 * Return any excess pages to free list 2750 */ 2751 if (extpages > minctg) { 2752 for (i = 0; i < extra; i++) { 2753 pp = pp_first->p_prev; 2754 page_sub(&pp_first, pp); 2755 page_io_unlock(pp); 2756 page_unresv(1); 2757 page_free(pp, 1); 2758 } 2759 } 2760 return (pp_first); 2761 balloon_fail: 2762 /* 2763 * Return pages to free list and return failure 2764 */ 2765 while (pp_first != NULL) { 2766 pp = pp_first; 2767 page_sub(&pp_first, pp); 2768 page_io_unlock(pp); 2769 if (pp->p_vnode != NULL) 2770 page_hashout(pp, NULL); 2771 page_free(pp, 1); 2772 } 2773 if (pplist) 2774 kmem_free(pplist, extpages * sizeof (page_t *)); 2775 if (mfnlist) 2776 kmem_free(mfnlist, extpages * sizeof (mfn_t)); 2777 page_unresv(extpages - minctg); 2778 return (NULL); 2779 } 2780 2781 static void 2782 return_partial_alloc(page_t *plist) 2783 { 2784 page_t *pp; 2785 2786 while (plist != NULL) { 2787 pp = plist; 2788 page_sub(&plist, pp); 2789 page_io_unlock(pp); 2790 page_destroy_io(pp); 2791 } 2792 } 2793 2794 static page_t * 2795 page_get_contigpages( 2796 struct vnode *vp, 2797 u_offset_t off, 2798 int *npagesp, 2799 uint_t flags, 2800 caddr_t vaddr, 2801 ddi_dma_attr_t *mattr) 2802 { 2803 mfn_t max_mfn = HYPERVISOR_memory_op(XENMEM_maximum_ram_page, NULL); 2804 page_t *plist; /* list to return */ 2805 page_t *pp, *mcpl; 2806 int contig, anyaddr, npages, getone = 0; 2807 mfn_t lo_mfn; 2808 mfn_t hi_mfn; 2809 pgcnt_t pfnalign = 0; 2810 int align, sgllen; 2811 uint64_t pfnseg; 2812 pgcnt_t minctg; 2813 2814 npages = *npagesp; 2815 ASSERT(mattr != NULL); 2816 lo_mfn = mmu_btop(mattr->dma_attr_addr_lo); 2817 hi_mfn = mmu_btop(mattr->dma_attr_addr_hi); 2818 sgllen = mattr->dma_attr_sgllen; 2819 pfnseg = mmu_btop(mattr->dma_attr_seg); 2820 align = maxbit(mattr->dma_attr_align, mattr->dma_attr_minxfer); 2821 if (align > MMU_PAGESIZE) 2822 pfnalign = mmu_btop(align); 2823 2824 contig = flags & PG_PHYSCONTIG; 2825 if (npages == -1) { 2826 npages = 1; 2827 pfnalign = 0; 2828 } 2829 /* 2830 * Clear the contig flag if only one page is needed. 2831 */ 2832 if (npages == 1) { 2833 getone = 1; 2834 contig = 0; 2835 } 2836 2837 /* 2838 * Check if any page in the system is fine. 2839 */ 2840 anyaddr = lo_mfn == 0 && hi_mfn >= max_mfn; 2841 if (!contig && anyaddr && !pfnalign) { 2842 flags &= ~PG_PHYSCONTIG; 2843 plist = page_create_va(vp, off, npages * MMU_PAGESIZE, 2844 flags, &kvseg, vaddr); 2845 if (plist != NULL) { 2846 *npagesp = 0; 2847 return (plist); 2848 } 2849 } 2850 plist = NULL; 2851 minctg = howmany(npages, sgllen); 2852 while (npages > sgllen || getone) { 2853 if (minctg > npages) 2854 minctg = npages; 2855 mcpl = NULL; 2856 /* 2857 * We could want contig pages with no address range limits. 2858 */ 2859 if (anyaddr && contig) { 2860 /* 2861 * Look for free contig pages to satisfy the request. 2862 */ 2863 mcpl = find_contig_free(minctg, flags, pfnseg, 2864 pfnalign); 2865 } 2866 /* 2867 * Try the reserved io pools next 2868 */ 2869 if (mcpl == NULL) 2870 mcpl = page_io_pool_alloc(mattr, contig, minctg); 2871 if (mcpl != NULL) { 2872 pp = mcpl; 2873 do { 2874 if (!page_hashin(pp, vp, off, NULL)) { 2875 panic("page_get_contigpages:" 2876 " hashin failed" 2877 " pp %p, vp %p, off %llx", 2878 (void *)pp, (void *)vp, off); 2879 } 2880 off += MMU_PAGESIZE; 2881 PP_CLRFREE(pp); 2882 PP_CLRAGED(pp); 2883 page_set_props(pp, P_REF); 2884 page_io_lock(pp); 2885 pp = pp->p_next; 2886 } while (pp != mcpl); 2887 } else { 2888 /* 2889 * Hypervisor exchange doesn't handle segment or 2890 * alignment constraints 2891 */ 2892 if (mattr->dma_attr_seg < mattr->dma_attr_addr_hi || 2893 pfnalign) 2894 goto fail; 2895 /* 2896 * Try exchanging pages with the hypervisor 2897 */ 2898 mcpl = page_swap_with_hypervisor(vp, off, vaddr, mattr, 2899 flags, minctg); 2900 if (mcpl == NULL) 2901 goto fail; 2902 off += minctg * MMU_PAGESIZE; 2903 } 2904 check_dma(mattr, mcpl, minctg); 2905 /* 2906 * Here with a minctg run of contiguous pages, add them to the 2907 * list we will return for this request. 2908 */ 2909 page_list_concat(&plist, &mcpl); 2910 npages -= minctg; 2911 *npagesp = npages; 2912 sgllen--; 2913 if (getone) 2914 break; 2915 } 2916 return (plist); 2917 fail: 2918 return_partial_alloc(plist); 2919 return (NULL); 2920 } 2921 2922 /* 2923 * Allocator for domain 0 I/O pages. We match the required 2924 * DMA attributes and contiguity constraints. 2925 */ 2926 /*ARGSUSED*/ 2927 page_t * 2928 page_create_io( 2929 struct vnode *vp, 2930 u_offset_t off, 2931 uint_t bytes, 2932 uint_t flags, 2933 struct as *as, 2934 caddr_t vaddr, 2935 ddi_dma_attr_t *mattr) 2936 { 2937 page_t *plist = NULL, *pp; 2938 int npages = 0, contig, anyaddr, pages_req; 2939 mfn_t lo_mfn; 2940 mfn_t hi_mfn; 2941 pgcnt_t pfnalign = 0; 2942 int align; 2943 int is_domu = 0; 2944 int dummy, bytes_got; 2945 mfn_t max_mfn = HYPERVISOR_memory_op(XENMEM_maximum_ram_page, NULL); 2946 2947 ASSERT(mattr != NULL); 2948 lo_mfn = mmu_btop(mattr->dma_attr_addr_lo); 2949 hi_mfn = mmu_btop(mattr->dma_attr_addr_hi); 2950 align = maxbit(mattr->dma_attr_align, mattr->dma_attr_minxfer); 2951 if (align > MMU_PAGESIZE) 2952 pfnalign = mmu_btop(align); 2953 2954 /* 2955 * Clear the contig flag if only one page is needed or the scatter 2956 * gather list length is >= npages. 2957 */ 2958 pages_req = npages = mmu_btopr(bytes); 2959 contig = (flags & PG_PHYSCONTIG); 2960 bytes = P2ROUNDUP(bytes, MMU_PAGESIZE); 2961 if (bytes == MMU_PAGESIZE || mattr->dma_attr_sgllen >= npages) 2962 contig = 0; 2963 2964 /* 2965 * Check if any old page in the system is fine. 2966 * DomU should always go down this path. 2967 */ 2968 is_domu = !DOMAIN_IS_INITDOMAIN(xen_info); 2969 anyaddr = lo_mfn == 0 && hi_mfn >= max_mfn && !pfnalign; 2970 if ((!contig && anyaddr) || is_domu) { 2971 flags &= ~PG_PHYSCONTIG; 2972 plist = page_create_va(vp, off, bytes, flags, &kvseg, vaddr); 2973 if (plist != NULL) 2974 return (plist); 2975 else if (is_domu) 2976 return (NULL); /* no memory available */ 2977 } 2978 /* 2979 * DomU should never reach here 2980 */ 2981 if (contig) { 2982 plist = page_get_contigpages(vp, off, &npages, flags, vaddr, 2983 mattr); 2984 if (plist == NULL) 2985 goto fail; 2986 bytes_got = (pages_req - npages) << MMU_PAGESHIFT; 2987 vaddr += bytes_got; 2988 off += bytes_got; 2989 /* 2990 * We now have all the contiguous pages we need, but 2991 * we may still need additional non-contiguous pages. 2992 */ 2993 } 2994 /* 2995 * now loop collecting the requested number of pages, these do 2996 * not have to be contiguous pages but we will use the contig 2997 * page alloc code to get the pages since it will honor any 2998 * other constraints the pages may have. 2999 */ 3000 while (npages--) { 3001 dummy = -1; 3002 pp = page_get_contigpages(vp, off, &dummy, flags, vaddr, mattr); 3003 if (pp == NULL) 3004 goto fail; 3005 page_add(&plist, pp); 3006 vaddr += MMU_PAGESIZE; 3007 off += MMU_PAGESIZE; 3008 } 3009 return (plist); 3010 fail: 3011 /* 3012 * Failed to get enough pages, return ones we did get 3013 */ 3014 return_partial_alloc(plist); 3015 return (NULL); 3016 } 3017 3018 /* 3019 * Lock and return the page with the highest mfn that we can find. last_mfn 3020 * holds the last one found, so the next search can start from there. We 3021 * also keep a counter so that we don't loop forever if the machine has no 3022 * free pages. 3023 * 3024 * This is called from the balloon thread to find pages to give away. new_high 3025 * is used when new mfn's have been added to the system - we will reset our 3026 * search if the new mfn's are higher than our current search position. 3027 */ 3028 page_t * 3029 page_get_high_mfn(mfn_t new_high) 3030 { 3031 static mfn_t last_mfn = 0; 3032 pfn_t pfn; 3033 page_t *pp; 3034 ulong_t loop_count = 0; 3035 3036 if (new_high > last_mfn) 3037 last_mfn = new_high; 3038 3039 for (; loop_count < mfn_count; loop_count++, last_mfn--) { 3040 if (last_mfn == 0) { 3041 last_mfn = cached_max_mfn; 3042 } 3043 3044 pfn = mfn_to_pfn(last_mfn); 3045 if (pfn & PFN_IS_FOREIGN_MFN) 3046 continue; 3047 3048 /* See if the page is free. If so, lock it. */ 3049 pp = page_numtopp_alloc(pfn); 3050 if (pp == NULL) 3051 continue; 3052 PP_CLRFREE(pp); 3053 3054 ASSERT(PAGE_EXCL(pp)); 3055 ASSERT(pp->p_vnode == NULL); 3056 ASSERT(!hat_page_is_mapped(pp)); 3057 last_mfn--; 3058 return (pp); 3059 } 3060 return (NULL); 3061 } 3062 3063 #else /* !__xpv */ 3064 3065 /* 3066 * get a page from any list with the given mnode 3067 */ 3068 static page_t * 3069 page_get_mnode_anylist(ulong_t origbin, uchar_t szc, uint_t flags, 3070 int mnode, int mtype, ddi_dma_attr_t *dma_attr) 3071 { 3072 kmutex_t *pcm; 3073 int i; 3074 page_t *pp; 3075 page_t *first_pp; 3076 uint64_t pgaddr; 3077 ulong_t bin; 3078 int mtypestart; 3079 int plw_initialized; 3080 page_list_walker_t plw; 3081 3082 VM_STAT_ADD(pga_vmstats.pgma_alloc); 3083 3084 ASSERT((flags & PG_MATCH_COLOR) == 0); 3085 ASSERT(szc == 0); 3086 ASSERT(dma_attr != NULL); 3087 3088 MTYPE_START(mnode, mtype, flags); 3089 if (mtype < 0) { 3090 VM_STAT_ADD(pga_vmstats.pgma_allocempty); 3091 return (NULL); 3092 } 3093 3094 mtypestart = mtype; 3095 3096 bin = origbin; 3097 3098 /* 3099 * check up to page_colors + 1 bins - origbin may be checked twice 3100 * because of BIN_STEP skip 3101 */ 3102 do { 3103 plw_initialized = 0; 3104 3105 for (plw.plw_count = 0; 3106 plw.plw_count < page_colors; plw.plw_count++) { 3107 3108 if (PAGE_FREELISTS(mnode, szc, bin, mtype) == NULL) 3109 goto nextfreebin; 3110 3111 pcm = PC_BIN_MUTEX(mnode, bin, PG_FREE_LIST); 3112 mutex_enter(pcm); 3113 pp = PAGE_FREELISTS(mnode, szc, bin, mtype); 3114 first_pp = pp; 3115 while (pp != NULL) { 3116 if (IS_DUMP_PAGE(pp) || page_trylock(pp, 3117 SE_EXCL) == 0) { 3118 pp = pp->p_next; 3119 if (pp == first_pp) { 3120 pp = NULL; 3121 } 3122 continue; 3123 } 3124 3125 ASSERT(PP_ISFREE(pp)); 3126 ASSERT(PP_ISAGED(pp)); 3127 ASSERT(pp->p_vnode == NULL); 3128 ASSERT(pp->p_hash == NULL); 3129 ASSERT(pp->p_offset == (u_offset_t)-1); 3130 ASSERT(pp->p_szc == szc); 3131 ASSERT(PFN_2_MEM_NODE(pp->p_pagenum) == mnode); 3132 /* check if page within DMA attributes */ 3133 pgaddr = pa_to_ma(pfn_to_pa(pp->p_pagenum)); 3134 if ((pgaddr >= dma_attr->dma_attr_addr_lo) && 3135 (pgaddr + MMU_PAGESIZE - 1 <= 3136 dma_attr->dma_attr_addr_hi)) { 3137 break; 3138 } 3139 3140 /* continue looking */ 3141 page_unlock(pp); 3142 pp = pp->p_next; 3143 if (pp == first_pp) 3144 pp = NULL; 3145 3146 } 3147 if (pp != NULL) { 3148 ASSERT(mtype == PP_2_MTYPE(pp)); 3149 ASSERT(pp->p_szc == 0); 3150 3151 /* found a page with specified DMA attributes */ 3152 page_sub(&PAGE_FREELISTS(mnode, szc, bin, 3153 mtype), pp); 3154 page_ctr_sub(mnode, mtype, pp, PG_FREE_LIST); 3155 3156 if ((PP_ISFREE(pp) == 0) || 3157 (PP_ISAGED(pp) == 0)) { 3158 cmn_err(CE_PANIC, "page %p is not free", 3159 (void *)pp); 3160 } 3161 3162 mutex_exit(pcm); 3163 check_dma(dma_attr, pp, 1); 3164 VM_STAT_ADD(pga_vmstats.pgma_allocok); 3165 return (pp); 3166 } 3167 mutex_exit(pcm); 3168 nextfreebin: 3169 if (plw_initialized == 0) { 3170 page_list_walk_init(szc, 0, bin, 1, 0, &plw); 3171 ASSERT(plw.plw_ceq_dif == page_colors); 3172 plw_initialized = 1; 3173 } 3174 3175 if (plw.plw_do_split) { 3176 pp = page_freelist_split(szc, bin, mnode, 3177 mtype, 3178 mmu_btop(dma_attr->dma_attr_addr_lo), 3179 mmu_btop(dma_attr->dma_attr_addr_hi + 1), 3180 &plw); 3181 if (pp != NULL) { 3182 check_dma(dma_attr, pp, 1); 3183 return (pp); 3184 } 3185 } 3186 3187 bin = page_list_walk_next_bin(szc, bin, &plw); 3188 } 3189 3190 MTYPE_NEXT(mnode, mtype, flags); 3191 } while (mtype >= 0); 3192 3193 /* failed to find a page in the freelist; try it in the cachelist */ 3194 3195 /* reset mtype start for cachelist search */ 3196 mtype = mtypestart; 3197 ASSERT(mtype >= 0); 3198 3199 /* start with the bin of matching color */ 3200 bin = origbin; 3201 3202 do { 3203 for (i = 0; i <= page_colors; i++) { 3204 if (PAGE_CACHELISTS(mnode, bin, mtype) == NULL) 3205 goto nextcachebin; 3206 pcm = PC_BIN_MUTEX(mnode, bin, PG_CACHE_LIST); 3207 mutex_enter(pcm); 3208 pp = PAGE_CACHELISTS(mnode, bin, mtype); 3209 first_pp = pp; 3210 while (pp != NULL) { 3211 if (IS_DUMP_PAGE(pp) || page_trylock(pp, 3212 SE_EXCL) == 0) { 3213 pp = pp->p_next; 3214 if (pp == first_pp) 3215 pp = NULL; 3216 continue; 3217 } 3218 ASSERT(pp->p_vnode); 3219 ASSERT(PP_ISAGED(pp) == 0); 3220 ASSERT(pp->p_szc == 0); 3221 ASSERT(PFN_2_MEM_NODE(pp->p_pagenum) == mnode); 3222 3223 /* check if page within DMA attributes */ 3224 3225 pgaddr = pa_to_ma(pfn_to_pa(pp->p_pagenum)); 3226 if ((pgaddr >= dma_attr->dma_attr_addr_lo) && 3227 (pgaddr + MMU_PAGESIZE - 1 <= 3228 dma_attr->dma_attr_addr_hi)) { 3229 break; 3230 } 3231 3232 /* continue looking */ 3233 page_unlock(pp); 3234 pp = pp->p_next; 3235 if (pp == first_pp) 3236 pp = NULL; 3237 } 3238 3239 if (pp != NULL) { 3240 ASSERT(mtype == PP_2_MTYPE(pp)); 3241 ASSERT(pp->p_szc == 0); 3242 3243 /* found a page with specified DMA attributes */ 3244 page_sub(&PAGE_CACHELISTS(mnode, bin, 3245 mtype), pp); 3246 page_ctr_sub(mnode, mtype, pp, PG_CACHE_LIST); 3247 3248 mutex_exit(pcm); 3249 ASSERT(pp->p_vnode); 3250 ASSERT(PP_ISAGED(pp) == 0); 3251 check_dma(dma_attr, pp, 1); 3252 VM_STAT_ADD(pga_vmstats.pgma_allocok); 3253 return (pp); 3254 } 3255 mutex_exit(pcm); 3256 nextcachebin: 3257 bin += (i == 0) ? BIN_STEP : 1; 3258 bin &= page_colors_mask; 3259 } 3260 MTYPE_NEXT(mnode, mtype, flags); 3261 } while (mtype >= 0); 3262 3263 VM_STAT_ADD(pga_vmstats.pgma_allocfailed); 3264 return (NULL); 3265 } 3266 3267 /* 3268 * This function is similar to page_get_freelist()/page_get_cachelist() 3269 * but it searches both the lists to find a page with the specified 3270 * color (or no color) and DMA attributes. The search is done in the 3271 * freelist first and then in the cache list within the highest memory 3272 * range (based on DMA attributes) before searching in the lower 3273 * memory ranges. 3274 * 3275 * Note: This function is called only by page_create_io(). 3276 */ 3277 /*ARGSUSED*/ 3278 static page_t * 3279 page_get_anylist(struct vnode *vp, u_offset_t off, struct as *as, caddr_t vaddr, 3280 size_t size, uint_t flags, ddi_dma_attr_t *dma_attr, lgrp_t *lgrp) 3281 { 3282 uint_t bin; 3283 int mtype; 3284 page_t *pp; 3285 int n; 3286 int m; 3287 int szc; 3288 int fullrange; 3289 int mnode; 3290 int local_failed_stat = 0; 3291 lgrp_mnode_cookie_t lgrp_cookie; 3292 3293 VM_STAT_ADD(pga_vmstats.pga_alloc); 3294 3295 /* only base pagesize currently supported */ 3296 if (size != MMU_PAGESIZE) 3297 return (NULL); 3298 3299 /* 3300 * If we're passed a specific lgroup, we use it. Otherwise, 3301 * assume first-touch placement is desired. 3302 */ 3303 if (!LGRP_EXISTS(lgrp)) 3304 lgrp = lgrp_home_lgrp(); 3305 3306 /* LINTED */ 3307 AS_2_BIN(as, seg, vp, vaddr, bin, 0); 3308 3309 /* 3310 * Only hold one freelist or cachelist lock at a time, that way we 3311 * can start anywhere and not have to worry about lock 3312 * ordering. 3313 */ 3314 if (dma_attr == NULL) { 3315 n = mtype16m; 3316 m = mtypetop; 3317 fullrange = 1; 3318 VM_STAT_ADD(pga_vmstats.pga_nulldmaattr); 3319 } else { 3320 pfn_t pfnlo = mmu_btop(dma_attr->dma_attr_addr_lo); 3321 pfn_t pfnhi = mmu_btop(dma_attr->dma_attr_addr_hi); 3322 3323 /* 3324 * We can guarantee alignment only for page boundary. 3325 */ 3326 if (dma_attr->dma_attr_align > MMU_PAGESIZE) 3327 return (NULL); 3328 3329 /* Sanity check the dma_attr */ 3330 if (pfnlo > pfnhi) 3331 return (NULL); 3332 3333 n = pfn_2_mtype(pfnlo); 3334 m = pfn_2_mtype(pfnhi); 3335 3336 fullrange = ((pfnlo == mnoderanges[n].mnr_pfnlo) && 3337 (pfnhi >= mnoderanges[m].mnr_pfnhi)); 3338 } 3339 VM_STAT_COND_ADD(fullrange == 0, pga_vmstats.pga_notfullrange); 3340 3341 szc = 0; 3342 3343 /* cylcing thru mtype handled by RANGE0 if n == mtype16m */ 3344 if (n == mtype16m) { 3345 flags |= PGI_MT_RANGE0; 3346 n = m; 3347 } 3348 3349 /* 3350 * Try local memory node first, but try remote if we can't 3351 * get a page of the right color. 3352 */ 3353 LGRP_MNODE_COOKIE_INIT(lgrp_cookie, lgrp, LGRP_SRCH_HIER); 3354 while ((mnode = lgrp_memnode_choose(&lgrp_cookie)) >= 0) { 3355 /* 3356 * allocate pages from high pfn to low. 3357 */ 3358 mtype = m; 3359 do { 3360 if (fullrange != 0) { 3361 pp = page_get_mnode_freelist(mnode, 3362 bin, mtype, szc, flags); 3363 if (pp == NULL) { 3364 pp = page_get_mnode_cachelist( 3365 bin, flags, mnode, mtype); 3366 } 3367 } else { 3368 pp = page_get_mnode_anylist(bin, szc, 3369 flags, mnode, mtype, dma_attr); 3370 } 3371 if (pp != NULL) { 3372 VM_STAT_ADD(pga_vmstats.pga_allocok); 3373 check_dma(dma_attr, pp, 1); 3374 return (pp); 3375 } 3376 } while (mtype != n && 3377 (mtype = mnoderanges[mtype].mnr_next) != -1); 3378 if (!local_failed_stat) { 3379 lgrp_stat_add(lgrp->lgrp_id, LGRP_NUM_ALLOC_FAIL, 1); 3380 local_failed_stat = 1; 3381 } 3382 } 3383 VM_STAT_ADD(pga_vmstats.pga_allocfailed); 3384 3385 return (NULL); 3386 } 3387 3388 /* 3389 * page_create_io() 3390 * 3391 * This function is a copy of page_create_va() with an additional 3392 * argument 'mattr' that specifies DMA memory requirements to 3393 * the page list functions. This function is used by the segkmem 3394 * allocator so it is only to create new pages (i.e PG_EXCL is 3395 * set). 3396 * 3397 * Note: This interface is currently used by x86 PSM only and is 3398 * not fully specified so the commitment level is only for 3399 * private interface specific to x86. This interface uses PSM 3400 * specific page_get_anylist() interface. 3401 */ 3402 3403 #define PAGE_HASH_SEARCH(index, pp, vp, off) { \ 3404 for ((pp) = page_hash[(index)]; (pp); (pp) = (pp)->p_hash) { \ 3405 if ((pp)->p_vnode == (vp) && (pp)->p_offset == (off)) \ 3406 break; \ 3407 } \ 3408 } 3409 3410 3411 page_t * 3412 page_create_io( 3413 struct vnode *vp, 3414 u_offset_t off, 3415 uint_t bytes, 3416 uint_t flags, 3417 struct as *as, 3418 caddr_t vaddr, 3419 ddi_dma_attr_t *mattr) /* DMA memory attributes if any */ 3420 { 3421 page_t *plist = NULL; 3422 uint_t plist_len = 0; 3423 pgcnt_t npages; 3424 page_t *npp = NULL; 3425 uint_t pages_req; 3426 page_t *pp; 3427 kmutex_t *phm = NULL; 3428 uint_t index; 3429 3430 TRACE_4(TR_FAC_VM, TR_PAGE_CREATE_START, 3431 "page_create_start:vp %p off %llx bytes %u flags %x", 3432 vp, off, bytes, flags); 3433 3434 ASSERT((flags & ~(PG_EXCL | PG_WAIT | PG_PHYSCONTIG)) == 0); 3435 3436 pages_req = npages = mmu_btopr(bytes); 3437 3438 /* 3439 * Do the freemem and pcf accounting. 3440 */ 3441 if (!page_create_wait(npages, flags)) { 3442 return (NULL); 3443 } 3444 3445 TRACE_2(TR_FAC_VM, TR_PAGE_CREATE_SUCCESS, 3446 "page_create_success:vp %p off %llx", vp, off); 3447 3448 /* 3449 * If satisfying this request has left us with too little 3450 * memory, start the wheels turning to get some back. The 3451 * first clause of the test prevents waking up the pageout 3452 * daemon in situations where it would decide that there's 3453 * nothing to do. 3454 */ 3455 if (nscan < desscan && freemem < minfree) { 3456 TRACE_1(TR_FAC_VM, TR_PAGEOUT_CV_SIGNAL, 3457 "pageout_cv_signal:freemem %ld", freemem); 3458 cv_signal(&proc_pageout->p_cv); 3459 } 3460 3461 if (flags & PG_PHYSCONTIG) { 3462 3463 plist = page_get_contigpage(&npages, mattr, 1); 3464 if (plist == NULL) { 3465 page_create_putback(npages); 3466 return (NULL); 3467 } 3468 3469 pp = plist; 3470 3471 do { 3472 if (!page_hashin(pp, vp, off, NULL)) { 3473 panic("pg_creat_io: hashin failed %p %p %llx", 3474 (void *)pp, (void *)vp, off); 3475 } 3476 VM_STAT_ADD(page_create_new); 3477 off += MMU_PAGESIZE; 3478 PP_CLRFREE(pp); 3479 PP_CLRAGED(pp); 3480 page_set_props(pp, P_REF); 3481 pp = pp->p_next; 3482 } while (pp != plist); 3483 3484 if (!npages) { 3485 check_dma(mattr, plist, pages_req); 3486 return (plist); 3487 } else { 3488 vaddr += (pages_req - npages) << MMU_PAGESHIFT; 3489 } 3490 3491 /* 3492 * fall-thru: 3493 * 3494 * page_get_contigpage returns when npages <= sgllen. 3495 * Grab the rest of the non-contig pages below from anylist. 3496 */ 3497 } 3498 3499 /* 3500 * Loop around collecting the requested number of pages. 3501 * Most of the time, we have to `create' a new page. With 3502 * this in mind, pull the page off the free list before 3503 * getting the hash lock. This will minimize the hash 3504 * lock hold time, nesting, and the like. If it turns 3505 * out we don't need the page, we put it back at the end. 3506 */ 3507 while (npages--) { 3508 phm = NULL; 3509 3510 index = PAGE_HASH_FUNC(vp, off); 3511 top: 3512 ASSERT(phm == NULL); 3513 ASSERT(index == PAGE_HASH_FUNC(vp, off)); 3514 ASSERT(MUTEX_NOT_HELD(page_vnode_mutex(vp))); 3515 3516 if (npp == NULL) { 3517 /* 3518 * Try to get the page of any color either from 3519 * the freelist or from the cache list. 3520 */ 3521 npp = page_get_anylist(vp, off, as, vaddr, MMU_PAGESIZE, 3522 flags & ~PG_MATCH_COLOR, mattr, NULL); 3523 if (npp == NULL) { 3524 if (mattr == NULL) { 3525 /* 3526 * Not looking for a special page; 3527 * panic! 3528 */ 3529 panic("no page found %d", (int)npages); 3530 } 3531 /* 3532 * No page found! This can happen 3533 * if we are looking for a page 3534 * within a specific memory range 3535 * for DMA purposes. If PG_WAIT is 3536 * specified then we wait for a 3537 * while and then try again. The 3538 * wait could be forever if we 3539 * don't get the page(s) we need. 3540 * 3541 * Note: XXX We really need a mechanism 3542 * to wait for pages in the desired 3543 * range. For now, we wait for any 3544 * pages and see if we can use it. 3545 */ 3546 3547 if ((mattr != NULL) && (flags & PG_WAIT)) { 3548 delay(10); 3549 goto top; 3550 } 3551 goto fail; /* undo accounting stuff */ 3552 } 3553 3554 if (PP_ISAGED(npp) == 0) { 3555 /* 3556 * Since this page came from the 3557 * cachelist, we must destroy the 3558 * old vnode association. 3559 */ 3560 page_hashout(npp, (kmutex_t *)NULL); 3561 } 3562 } 3563 3564 /* 3565 * We own this page! 3566 */ 3567 ASSERT(PAGE_EXCL(npp)); 3568 ASSERT(npp->p_vnode == NULL); 3569 ASSERT(!hat_page_is_mapped(npp)); 3570 PP_CLRFREE(npp); 3571 PP_CLRAGED(npp); 3572 3573 /* 3574 * Here we have a page in our hot little mits and are 3575 * just waiting to stuff it on the appropriate lists. 3576 * Get the mutex and check to see if it really does 3577 * not exist. 3578 */ 3579 phm = PAGE_HASH_MUTEX(index); 3580 mutex_enter(phm); 3581 PAGE_HASH_SEARCH(index, pp, vp, off); 3582 if (pp == NULL) { 3583 VM_STAT_ADD(page_create_new); 3584 pp = npp; 3585 npp = NULL; 3586 if (!page_hashin(pp, vp, off, phm)) { 3587 /* 3588 * Since we hold the page hash mutex and 3589 * just searched for this page, page_hashin 3590 * had better not fail. If it does, that 3591 * means somethread did not follow the 3592 * page hash mutex rules. Panic now and 3593 * get it over with. As usual, go down 3594 * holding all the locks. 3595 */ 3596 ASSERT(MUTEX_HELD(phm)); 3597 panic("page_create: hashin fail %p %p %llx %p", 3598 (void *)pp, (void *)vp, off, (void *)phm); 3599 3600 } 3601 ASSERT(MUTEX_HELD(phm)); 3602 mutex_exit(phm); 3603 phm = NULL; 3604 3605 /* 3606 * Hat layer locking need not be done to set 3607 * the following bits since the page is not hashed 3608 * and was on the free list (i.e., had no mappings). 3609 * 3610 * Set the reference bit to protect 3611 * against immediate pageout 3612 * 3613 * XXXmh modify freelist code to set reference 3614 * bit so we don't have to do it here. 3615 */ 3616 page_set_props(pp, P_REF); 3617 } else { 3618 ASSERT(MUTEX_HELD(phm)); 3619 mutex_exit(phm); 3620 phm = NULL; 3621 /* 3622 * NOTE: This should not happen for pages associated 3623 * with kernel vnode 'kvp'. 3624 */ 3625 /* XX64 - to debug why this happens! */ 3626 ASSERT(!VN_ISKAS(vp)); 3627 if (VN_ISKAS(vp)) 3628 cmn_err(CE_NOTE, 3629 "page_create: page not expected " 3630 "in hash list for kernel vnode - pp 0x%p", 3631 (void *)pp); 3632 VM_STAT_ADD(page_create_exists); 3633 goto fail; 3634 } 3635 3636 /* 3637 * Got a page! It is locked. Acquire the i/o 3638 * lock since we are going to use the p_next and 3639 * p_prev fields to link the requested pages together. 3640 */ 3641 page_io_lock(pp); 3642 page_add(&plist, pp); 3643 plist = plist->p_next; 3644 off += MMU_PAGESIZE; 3645 vaddr += MMU_PAGESIZE; 3646 } 3647 3648 check_dma(mattr, plist, pages_req); 3649 return (plist); 3650 3651 fail: 3652 if (npp != NULL) { 3653 /* 3654 * Did not need this page after all. 3655 * Put it back on the free list. 3656 */ 3657 VM_STAT_ADD(page_create_putbacks); 3658 PP_SETFREE(npp); 3659 PP_SETAGED(npp); 3660 npp->p_offset = (u_offset_t)-1; 3661 page_list_add(npp, PG_FREE_LIST | PG_LIST_TAIL); 3662 page_unlock(npp); 3663 } 3664 3665 /* 3666 * Give up the pages we already got. 3667 */ 3668 while (plist != NULL) { 3669 pp = plist; 3670 page_sub(&plist, pp); 3671 page_io_unlock(pp); 3672 plist_len++; 3673 /*LINTED: constant in conditional ctx*/ 3674 VN_DISPOSE(pp, B_INVAL, 0, kcred); 3675 } 3676 3677 /* 3678 * VN_DISPOSE does freemem accounting for the pages in plist 3679 * by calling page_free. So, we need to undo the pcf accounting 3680 * for only the remaining pages. 3681 */ 3682 VM_STAT_ADD(page_create_putbacks); 3683 page_create_putback(pages_req - plist_len); 3684 3685 return (NULL); 3686 } 3687 #endif /* !__xpv */ 3688 3689 3690 /* 3691 * Copy the data from the physical page represented by "frompp" to 3692 * that represented by "topp". ppcopy uses CPU->cpu_caddr1 and 3693 * CPU->cpu_caddr2. It assumes that no one uses either map at interrupt 3694 * level and no one sleeps with an active mapping there. 3695 * 3696 * Note that the ref/mod bits in the page_t's are not affected by 3697 * this operation, hence it is up to the caller to update them appropriately. 3698 */ 3699 int 3700 ppcopy(page_t *frompp, page_t *topp) 3701 { 3702 caddr_t pp_addr1; 3703 caddr_t pp_addr2; 3704 hat_mempte_t pte1; 3705 hat_mempte_t pte2; 3706 kmutex_t *ppaddr_mutex; 3707 label_t ljb; 3708 int ret = 1; 3709 3710 ASSERT_STACK_ALIGNED(); 3711 ASSERT(PAGE_LOCKED(frompp)); 3712 ASSERT(PAGE_LOCKED(topp)); 3713 3714 if (kpm_enable) { 3715 pp_addr1 = hat_kpm_page2va(frompp, 0); 3716 pp_addr2 = hat_kpm_page2va(topp, 0); 3717 kpreempt_disable(); 3718 } else { 3719 /* 3720 * disable pre-emption so that CPU can't change 3721 */ 3722 kpreempt_disable(); 3723 3724 pp_addr1 = CPU->cpu_caddr1; 3725 pp_addr2 = CPU->cpu_caddr2; 3726 pte1 = CPU->cpu_caddr1pte; 3727 pte2 = CPU->cpu_caddr2pte; 3728 3729 ppaddr_mutex = &CPU->cpu_ppaddr_mutex; 3730 mutex_enter(ppaddr_mutex); 3731 3732 hat_mempte_remap(page_pptonum(frompp), pp_addr1, pte1, 3733 PROT_READ | HAT_STORECACHING_OK, HAT_LOAD_NOCONSIST); 3734 hat_mempte_remap(page_pptonum(topp), pp_addr2, pte2, 3735 PROT_READ | PROT_WRITE | HAT_STORECACHING_OK, 3736 HAT_LOAD_NOCONSIST); 3737 } 3738 3739 if (on_fault(&ljb)) { 3740 ret = 0; 3741 goto faulted; 3742 } 3743 if (use_sse_pagecopy) 3744 #ifdef __xpv 3745 page_copy_no_xmm(pp_addr2, pp_addr1); 3746 #else 3747 hwblkpagecopy(pp_addr1, pp_addr2); 3748 #endif 3749 else 3750 bcopy(pp_addr1, pp_addr2, PAGESIZE); 3751 3752 no_fault(); 3753 faulted: 3754 if (!kpm_enable) { 3755 #ifdef __xpv 3756 /* 3757 * We can't leave unused mappings laying about under the 3758 * hypervisor, so blow them away. 3759 */ 3760 if (HYPERVISOR_update_va_mapping((uintptr_t)pp_addr1, 0, 3761 UVMF_INVLPG | UVMF_LOCAL) < 0) 3762 panic("HYPERVISOR_update_va_mapping() failed"); 3763 if (HYPERVISOR_update_va_mapping((uintptr_t)pp_addr2, 0, 3764 UVMF_INVLPG | UVMF_LOCAL) < 0) 3765 panic("HYPERVISOR_update_va_mapping() failed"); 3766 #endif 3767 mutex_exit(ppaddr_mutex); 3768 } 3769 kpreempt_enable(); 3770 return (ret); 3771 } 3772 3773 void 3774 pagezero(page_t *pp, uint_t off, uint_t len) 3775 { 3776 ASSERT(PAGE_LOCKED(pp)); 3777 pfnzero(page_pptonum(pp), off, len); 3778 } 3779 3780 /* 3781 * Zero the physical page from off to off + len given by pfn 3782 * without changing the reference and modified bits of page. 3783 * 3784 * We use this using CPU private page address #2, see ppcopy() for more info. 3785 * pfnzero() must not be called at interrupt level. 3786 */ 3787 void 3788 pfnzero(pfn_t pfn, uint_t off, uint_t len) 3789 { 3790 caddr_t pp_addr2; 3791 hat_mempte_t pte2; 3792 kmutex_t *ppaddr_mutex = NULL; 3793 3794 ASSERT_STACK_ALIGNED(); 3795 ASSERT(len <= MMU_PAGESIZE); 3796 ASSERT(off <= MMU_PAGESIZE); 3797 ASSERT(off + len <= MMU_PAGESIZE); 3798 3799 if (kpm_enable && !pfn_is_foreign(pfn)) { 3800 pp_addr2 = hat_kpm_pfn2va(pfn); 3801 kpreempt_disable(); 3802 } else { 3803 kpreempt_disable(); 3804 3805 pp_addr2 = CPU->cpu_caddr2; 3806 pte2 = CPU->cpu_caddr2pte; 3807 3808 ppaddr_mutex = &CPU->cpu_ppaddr_mutex; 3809 mutex_enter(ppaddr_mutex); 3810 3811 hat_mempte_remap(pfn, pp_addr2, pte2, 3812 PROT_READ | PROT_WRITE | HAT_STORECACHING_OK, 3813 HAT_LOAD_NOCONSIST); 3814 } 3815 3816 if (use_sse_pagezero) { 3817 #ifdef __xpv 3818 uint_t rem; 3819 3820 /* 3821 * zero a byte at a time until properly aligned for 3822 * block_zero_no_xmm(). 3823 */ 3824 while (!P2NPHASE(off, ((uint_t)BLOCKZEROALIGN)) && len-- > 0) 3825 pp_addr2[off++] = 0; 3826 3827 /* 3828 * Now use faster block_zero_no_xmm() for any range 3829 * that is properly aligned and sized. 3830 */ 3831 rem = P2PHASE(len, ((uint_t)BLOCKZEROALIGN)); 3832 len -= rem; 3833 if (len != 0) { 3834 block_zero_no_xmm(pp_addr2 + off, len); 3835 off += len; 3836 } 3837 3838 /* 3839 * zero remainder with byte stores. 3840 */ 3841 while (rem-- > 0) 3842 pp_addr2[off++] = 0; 3843 #else 3844 hwblkclr(pp_addr2 + off, len); 3845 #endif 3846 } else { 3847 bzero(pp_addr2 + off, len); 3848 } 3849 3850 if (!kpm_enable || pfn_is_foreign(pfn)) { 3851 #ifdef __xpv 3852 /* 3853 * On the hypervisor this page might get used for a page 3854 * table before any intervening change to this mapping, 3855 * so blow it away. 3856 */ 3857 if (HYPERVISOR_update_va_mapping((uintptr_t)pp_addr2, 0, 3858 UVMF_INVLPG) < 0) 3859 panic("HYPERVISOR_update_va_mapping() failed"); 3860 #endif 3861 mutex_exit(ppaddr_mutex); 3862 } 3863 3864 kpreempt_enable(); 3865 } 3866 3867 /* 3868 * Platform-dependent page scrub call. 3869 */ 3870 void 3871 pagescrub(page_t *pp, uint_t off, uint_t len) 3872 { 3873 /* 3874 * For now, we rely on the fact that pagezero() will 3875 * always clear UEs. 3876 */ 3877 pagezero(pp, off, len); 3878 } 3879 3880 /* 3881 * set up two private addresses for use on a given CPU for use in ppcopy() 3882 */ 3883 void 3884 setup_vaddr_for_ppcopy(struct cpu *cpup) 3885 { 3886 void *addr; 3887 hat_mempte_t pte_pa; 3888 3889 addr = vmem_alloc(heap_arena, mmu_ptob(1), VM_SLEEP); 3890 pte_pa = hat_mempte_setup(addr); 3891 cpup->cpu_caddr1 = addr; 3892 cpup->cpu_caddr1pte = pte_pa; 3893 3894 addr = vmem_alloc(heap_arena, mmu_ptob(1), VM_SLEEP); 3895 pte_pa = hat_mempte_setup(addr); 3896 cpup->cpu_caddr2 = addr; 3897 cpup->cpu_caddr2pte = pte_pa; 3898 3899 mutex_init(&cpup->cpu_ppaddr_mutex, NULL, MUTEX_DEFAULT, NULL); 3900 } 3901 3902 /* 3903 * Undo setup_vaddr_for_ppcopy 3904 */ 3905 void 3906 teardown_vaddr_for_ppcopy(struct cpu *cpup) 3907 { 3908 mutex_destroy(&cpup->cpu_ppaddr_mutex); 3909 3910 hat_mempte_release(cpup->cpu_caddr2, cpup->cpu_caddr2pte); 3911 cpup->cpu_caddr2pte = 0; 3912 vmem_free(heap_arena, cpup->cpu_caddr2, mmu_ptob(1)); 3913 cpup->cpu_caddr2 = 0; 3914 3915 hat_mempte_release(cpup->cpu_caddr1, cpup->cpu_caddr1pte); 3916 cpup->cpu_caddr1pte = 0; 3917 vmem_free(heap_arena, cpup->cpu_caddr1, mmu_ptob(1)); 3918 cpup->cpu_caddr1 = 0; 3919 } 3920 3921 /* 3922 * Function for flushing D-cache when performing module relocations 3923 * to an alternate mapping. Unnecessary on Intel / AMD platforms. 3924 */ 3925 void 3926 dcache_flushall() 3927 {} 3928 3929 size_t 3930 exec_get_spslew(void) 3931 { 3932 return (0); 3933 } 3934 3935 /* 3936 * Allocate a memory page. The argument 'seed' can be any pseudo-random 3937 * number to vary where the pages come from. This is quite a hacked up 3938 * method -- it works for now, but really needs to be fixed up a bit. 3939 * 3940 * We currently use page_create_va() on the kvp with fake offsets, 3941 * segments and virt address. This is pretty bogus, but was copied from the 3942 * old hat_i86.c code. A better approach would be to specify either mnode 3943 * random or mnode local and takes a page from whatever color has the MOST 3944 * available - this would have a minimal impact on page coloring. 3945 */ 3946 page_t * 3947 page_get_physical(uintptr_t seed) 3948 { 3949 page_t *pp; 3950 u_offset_t offset; 3951 static struct seg tmpseg; 3952 static uintptr_t ctr = 0; 3953 3954 /* 3955 * This code is gross, we really need a simpler page allocator. 3956 * 3957 * We need to assign an offset for the page to call page_create_va() 3958 * To avoid conflicts with other pages, we get creative with the offset. 3959 * For 32 bits, we need an offset > 4Gig 3960 * For 64 bits, need an offset somewhere in the VA hole. 3961 */ 3962 offset = seed; 3963 if (offset > kernelbase) 3964 offset -= kernelbase; 3965 offset <<= MMU_PAGESHIFT; 3966 #if defined(__amd64) 3967 offset += mmu.hole_start; /* something in VA hole */ 3968 #else 3969 offset += 1ULL << 40; /* something > 4 Gig */ 3970 #endif 3971 3972 if (page_resv(1, KM_NOSLEEP) == 0) 3973 return (NULL); 3974 3975 #ifdef DEBUG 3976 pp = page_exists(&kvp, offset); 3977 if (pp != NULL) 3978 panic("page already exists %p", (void *)pp); 3979 #endif 3980 3981 pp = page_create_va(&kvp, offset, MMU_PAGESIZE, PG_EXCL, 3982 &tmpseg, (caddr_t)(ctr += MMU_PAGESIZE)); /* changing VA usage */ 3983 if (pp != NULL) { 3984 page_io_unlock(pp); 3985 page_hashout(pp, NULL); 3986 page_downgrade(pp); 3987 } 3988 return (pp); 3989 } 3990