xref: /illumos-gate/usr/src/uts/i86pc/vm/vm_dep.h (revision c686756220120076a07be0dcce54be698101a3d1)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2004, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright 2019 Joyent, Inc.
24  */
25 /*
26  * Copyright (c) 2010, Intel Corporation.
27  * All rights reserved.
28  */
29 
30 /*
31  * UNIX machine dependent virtual memory support.
32  */
33 
34 #ifndef	_VM_DEP_H
35 #define	_VM_DEP_H
36 
37 
38 #ifdef	__cplusplus
39 extern "C" {
40 #endif
41 
42 #include <sys/clock.h>
43 #include <vm/hat_pte.h>
44 #include <sys/param.h>
45 #include <sys/memnode.h>
46 
47 /*
48  * WARNING: vm_dep.h is included by files in common.
49  */
50 
51 #define	GETTICK()	tsc_read()
52 /*
53  * Do not use this function for obtaining clock tick.  This
54  * is called by callers who do not need to have a guarenteed
55  * correct tick value.  The proper routine to use is tsc_read().
56  */
57 
58 extern u_longlong_t	randtick();
59 extern uint_t page_create_update_flags_x86(uint_t);
60 
61 extern size_t plcnt_sz(size_t);
62 #define	PLCNT_SZ(ctrs_sz) (ctrs_sz = plcnt_sz(ctrs_sz))
63 
64 extern caddr_t plcnt_init(caddr_t);
65 #define	PLCNT_INIT(addr) (addr = plcnt_init(addr))
66 
67 extern void plcnt_inc_dec(page_t *, int, int, long, int);
68 #define	PLCNT_INCR(pp, mnode, mtype, szc, flags)			\
69 	plcnt_inc_dec(pp, mtype, szc, 1l << PAGE_BSZS_SHIFT(szc), flags)
70 #define	PLCNT_DECR(pp, mnode, mtype, szc, flags)			\
71 	plcnt_inc_dec(pp, mtype, szc, \
72 	(long)(ULONG_MAX << PAGE_BSZS_SHIFT(szc)), flags)
73 
74 /*
75  * macro to update page list max counts.  no-op on x86.
76  */
77 #define	PLCNT_XFER_NORELOC(pp)
78 
79 /*
80  * macro to modify the page list max counts when memory is added to
81  * the page lists during startup (add_physmem) or during a DR operation
82  * when memory is added (kphysm_add_memory_dynamic) or deleted
83  * (kphysm_del_cleanup).
84  */
85 #define	PLCNT_MODIFY_MAX(pfn, cnt)	mtype_modify_max(pfn, cnt)
86 
87 extern int memrange_num(pfn_t);
88 extern int pfn_2_mtype(pfn_t);
89 extern int mtype_func(int, int, uint_t);
90 extern void mtype_modify_max(pfn_t, long);
91 extern int mnode_pgcnt(int);
92 extern int mnode_range_cnt(int);
93 
94 /*
95  * candidate counters in vm_pagelist.c are indexed by color and range
96  */
97 #define	NUM_MEM_RANGES		4		/* memory range types */
98 #define	MAX_MNODE_MRANGES	NUM_MEM_RANGES
99 #define	MNODE_RANGE_CNT(mnode)	mnode_range_cnt(mnode)
100 #define	MNODE_MAX_MRANGE(mnode)	memrange_num(mem_node_config[mnode].physbase)
101 
102 /*
103  * This was really badly defined, it implicitly uses mnode_maxmrange[]
104  * which is a static in vm_pagelist.c
105  */
106 extern int mtype_2_mrange(int);
107 #define	MTYPE_2_MRANGE(mnode, mtype)	\
108 	(mnode_maxmrange[mnode] - mtype_2_mrange(mtype))
109 
110 /*
111  * Per page size free lists. Allocated dynamically.
112  * dimensions [mtype][mmu_page_sizes][colors]
113  *
114  * mtype specifies a physical memory range with a unique mnode.
115  */
116 
117 extern page_t ****page_freelists;
118 
119 #define	PAGE_FREELISTS(mnode, szc, color, mtype)		\
120 	(*(page_freelists[mtype][szc] + (color)))
121 
122 /*
123  * For now there is only a single size cache list. Allocated dynamically.
124  * dimensions [mtype][colors]
125  *
126  * mtype specifies a physical memory range with a unique mnode.
127  */
128 extern page_t ***page_cachelists;
129 
130 #define	PAGE_CACHELISTS(mnode, color, mtype)		\
131 	(*(page_cachelists[mtype] + (color)))
132 
133 /*
134  * There are mutexes for both the page freelist
135  * and the page cachelist.  We want enough locks to make contention
136  * reasonable, but not too many -- otherwise page_freelist_lock() gets
137  * so expensive that it becomes the bottleneck!
138  */
139 
140 #define	NPC_MUTEX	16
141 
142 extern kmutex_t	*fpc_mutex[NPC_MUTEX];
143 extern kmutex_t	*cpc_mutex[NPC_MUTEX];
144 
145 extern page_t *page_get_mnode_freelist(int, uint_t, int, uchar_t, uint_t);
146 extern page_t *page_get_mnode_cachelist(uint_t, uint_t, int, int);
147 
148 /* mem node iterator is not used on x86 */
149 #define	MEM_NODE_ITERATOR_DECL(it)
150 #define	MEM_NODE_ITERATOR_INIT(pfn, mnode, szc, it)
151 
152 /*
153  * interleaved_mnodes mode is never set on x86, therefore,
154  * simply return the limits of the given mnode, which then
155  * determines the length of hpm_counters array for the mnode.
156  */
157 #define	HPM_COUNTERS_LIMITS(mnode, physbase, physmax, first)	\
158 	{							\
159 		(physbase) = mem_node_config[(mnode)].physbase;	\
160 		(physmax) = mem_node_config[(mnode)].physmax;	\
161 		(first) = (mnode);				\
162 	}
163 
164 #define	PAGE_CTRS_WRITE_LOCK(mnode)				\
165 	{							\
166 		rw_enter(&page_ctrs_rwlock[(mnode)], RW_WRITER);\
167 		page_freelist_lock(mnode);			\
168 	}
169 
170 #define	PAGE_CTRS_WRITE_UNLOCK(mnode)				\
171 	{							\
172 		page_freelist_unlock(mnode);			\
173 		rw_exit(&page_ctrs_rwlock[(mnode)]);		\
174 	}
175 
176 /*
177  * macro to call page_ctrs_adjust() when memory is added
178  * during a DR operation.
179  */
180 #define	PAGE_CTRS_ADJUST(pfn, cnt, rv) {				       \
181 	spgcnt_t _cnt = (spgcnt_t)(cnt);				       \
182 	int _mn;							       \
183 	pgcnt_t _np;							       \
184 	pfn_t _pfn = (pfn);						       \
185 	pfn_t _endpfn = _pfn + _cnt;					       \
186 	rv = 0;								       \
187 	while (_pfn < _endpfn) {					       \
188 		_mn = PFN_2_MEM_NODE(_pfn);				       \
189 		_np = MIN(_endpfn, mem_node_config[_mn].physmax + 1) - _pfn;   \
190 		_pfn += _np;						       \
191 		if ((rv = page_ctrs_adjust(_mn)) != 0)			       \
192 			break;						       \
193 	}								       \
194 }
195 
196 #define	PAGE_GET_COLOR_SHIFT(szc, nszc)				\
197 	    (hw_page_array[(nszc)].hp_shift - hw_page_array[(szc)].hp_shift)
198 
199 #define	PAGE_CONVERT_COLOR(ncolor, szc, nszc)			\
200 	    ((ncolor) << PAGE_GET_COLOR_SHIFT((szc), (nszc)))
201 
202 #define	PFN_2_COLOR(pfn, szc, it)					\
203 	(((pfn) & page_colors_mask) >>			                \
204 	(hw_page_array[szc].hp_shift - hw_page_array[0].hp_shift))
205 
206 #define	PNUM_SIZE(szc)							\
207 	(hw_page_array[(szc)].hp_pgcnt)
208 #define	PNUM_SHIFT(szc)							\
209 	(hw_page_array[(szc)].hp_shift - hw_page_array[0].hp_shift)
210 #define	PAGE_GET_SHIFT(szc)						\
211 	(hw_page_array[(szc)].hp_shift)
212 #define	PAGE_GET_PAGECOLORS(szc)					\
213 	(hw_page_array[(szc)].hp_colors)
214 
215 /*
216  * This macro calculates the next sequential pfn with the specified
217  * color using color equivalency mask
218  */
219 #define	PAGE_NEXT_PFN_FOR_COLOR(pfn, szc, color, ceq_mask, color_mask, it)    \
220 	{								      \
221 		uint_t	pfn_shift = PAGE_BSZS_SHIFT(szc);                     \
222 		pfn_t	spfn = pfn >> pfn_shift;                              \
223 		pfn_t	stride = (ceq_mask) + 1;                              \
224 		ASSERT(((color) & ~(ceq_mask)) == 0);                         \
225 		ASSERT((((ceq_mask) + 1) & (ceq_mask)) == 0);                 \
226 		if (((spfn ^ (color)) & (ceq_mask)) == 0) {                   \
227 			pfn += stride << pfn_shift;                           \
228 		} else {                                                      \
229 			pfn = (spfn & ~(pfn_t)(ceq_mask)) | (color);          \
230 			pfn = (pfn > spfn ? pfn : pfn + stride) << pfn_shift; \
231 		}                                                             \
232 	}
233 
234 /* get the color equivalency mask for the next szc */
235 #define	PAGE_GET_NSZ_MASK(szc, mask)                                         \
236 	((mask) >> (PAGE_GET_SHIFT((szc) + 1) - PAGE_GET_SHIFT(szc)))
237 
238 /* get the color of the next szc */
239 #define	PAGE_GET_NSZ_COLOR(szc, color)                                       \
240 	((color) >> (PAGE_GET_SHIFT((szc) + 1) - PAGE_GET_SHIFT(szc)))
241 
242 /* Find the bin for the given page if it was of size szc */
243 #define	PP_2_BIN_SZC(pp, szc)	(PFN_2_COLOR(pp->p_pagenum, szc, NULL))
244 
245 #define	PP_2_BIN(pp)		(PP_2_BIN_SZC(pp, pp->p_szc))
246 
247 #define	PP_2_MEM_NODE(pp)	(PFN_2_MEM_NODE(pp->p_pagenum))
248 #define	PP_2_MTYPE(pp)		(pfn_2_mtype(pp->p_pagenum))
249 #define	PP_2_SZC(pp)		(pp->p_szc)
250 
251 #define	SZCPAGES(szc)		(1 << PAGE_BSZS_SHIFT(szc))
252 #define	PFN_BASE(pfnum, szc)	(pfnum & ~(SZCPAGES(szc) - 1))
253 
254 /*
255  * this structure is used for walking free page lists
256  * controls when to split large pages into smaller pages,
257  * and when to coalesce smaller pages into larger pages
258  */
259 typedef struct page_list_walker {
260 	uint_t	plw_colors;		/* num of colors for szc */
261 	uint_t  plw_color_mask;		/* colors-1 */
262 	uint_t	plw_bin_step;		/* next bin: 1 or 2 */
263 	uint_t  plw_count;		/* loop count */
264 	uint_t	plw_bin0;		/* starting bin */
265 	uint_t  plw_bin_marker;		/* bin after initial jump */
266 	uint_t  plw_bin_split_prev;	/* last bin we tried to split */
267 	uint_t  plw_do_split;		/* set if OK to split */
268 	uint_t  plw_split_next;		/* next bin to split */
269 	uint_t	plw_ceq_dif;		/* number of different color groups */
270 					/* to check */
271 	uint_t	plw_ceq_mask[MMU_PAGE_SIZES + 1]; /* color equiv mask */
272 	uint_t	plw_bins[MMU_PAGE_SIZES + 1];	/* num of bins */
273 } page_list_walker_t;
274 
275 void	page_list_walk_init(uchar_t szc, uint_t flags, uint_t bin,
276     int can_split, int use_ceq, page_list_walker_t *plw);
277 
278 uint_t	page_list_walk_next_bin(uchar_t szc, uint_t bin,
279     page_list_walker_t *plw);
280 
281 extern struct cpu	cpus[];
282 #define	CPU0		cpus
283 
284 extern int mtype_init(vnode_t *, caddr_t, uint_t *, size_t);
285 #define	MTYPE_INIT(mtype, vp, vaddr, flags, pgsz)		\
286 	(mtype = mtype_init(vp, vaddr, &(flags), pgsz))
287 
288 /*
289  * macros to loop through the mtype range (page_get_mnode_{free,cache,any}list,
290  * and page_get_contig_pages)
291  *
292  * MTYPE_START sets the initial mtype. -1 if the mtype range specified does
293  * not contain mnode.
294  *
295  * MTYPE_NEXT sets the next mtype. -1 if there are no more valid
296  * mtype in the range.
297  */
298 
299 #define	MTYPE_START(mnode, mtype, flags)				\
300 	(mtype = mtype_func(mnode, mtype, flags))
301 
302 #define	MTYPE_NEXT(mnode, mtype, flags) {				\
303 	if (flags & PGI_MT_RANGE) {					\
304 		mtype = mtype_func(mnode, mtype, flags | PGI_MT_NEXT);	\
305 	} else {							\
306 		mtype = -1;						\
307 	}								\
308 }
309 
310 extern int mtype_pgr_init(int *, page_t *, pgcnt_t);
311 #define	MTYPE_PGR_INIT(mtype, flags, pp, pgcnt)				\
312 	(mtype = mtype_pgr_init(&flags, pp, pgcnt))
313 
314 #define	MNODE_PGCNT(mnode)		mnode_pgcnt(mnode)
315 
316 extern void mnodetype_2_pfn(int, int, pfn_t *, pfn_t *);
317 #define	MNODETYPE_2_PFN(mnode, mtype, pfnlo, pfnhi)			\
318 	mnodetype_2_pfn(mnode, mtype, &pfnlo, &pfnhi)
319 
320 #define	PC_BIN_MUTEX(mnode, bin, flags) ((flags & PG_FREE_LIST) ?	\
321 	&fpc_mutex[(bin) & (NPC_MUTEX - 1)][mnode] :			\
322 	&cpc_mutex[(bin) & (NPC_MUTEX - 1)][mnode])
323 
324 #define	FPC_MUTEX(mnode, i)	(&fpc_mutex[i][mnode])
325 #define	CPC_MUTEX(mnode, i)	(&cpc_mutex[i][mnode])
326 
327 #ifdef DEBUG
328 #define	CHK_LPG(pp, szc)	chk_lpg(pp, szc)
329 extern void	chk_lpg(page_t *, uchar_t);
330 #else
331 #define	CHK_LPG(pp, szc)
332 #endif
333 
334 #define	FULL_REGION_CNT(rg_szc)	\
335 	(LEVEL_SIZE(rg_szc) >> LEVEL_SHIFT(rg_szc - 1))
336 
337 /* Return the leader for this mapping size */
338 #define	PP_GROUPLEADER(pp, szc) \
339 	(&(pp)[-(int)((pp)->p_pagenum & (SZCPAGES(szc)-1))])
340 
341 /* Return the root page for this page based on p_szc */
342 #define	PP_PAGEROOT(pp) ((pp)->p_szc == 0 ? (pp) : \
343 	PP_GROUPLEADER((pp), (pp)->p_szc))
344 
345 /*
346  * The counter base must be per page_counter element to prevent
347  * races when re-indexing, and the base page size element should
348  * be aligned on a boundary of the given region size.
349  *
350  * We also round up the number of pages spanned by the counters
351  * for a given region to PC_BASE_ALIGN in certain situations to simplify
352  * the coding for some non-performance critical routines.
353  */
354 
355 #define	PC_BASE_ALIGN		((pfn_t)1 << PAGE_BSZS_SHIFT(MMU_PAGE_SIZES-1))
356 #define	PC_BASE_ALIGN_MASK	(PC_BASE_ALIGN - 1)
357 
358 /*
359  * cpu/mmu-dependent vm variables
360  */
361 extern uint_t mmu_page_sizes;
362 extern uint_t mmu_exported_page_sizes;
363 /*
364  * page sizes that legacy applications can see via getpagesizes(3c).
365  * Used to prevent legacy applications from inadvertantly using the
366  * 'new' large pagesizes (1g and above).
367  */
368 extern uint_t mmu_legacy_page_sizes;
369 
370 /* For x86, userszc is the same as the kernel's szc */
371 #define	USERSZC_2_SZC(userszc)	(userszc)
372 #define	SZC_2_USERSZC(szc)	(szc)
373 
374 /*
375  * for hw_page_map_t, sized to hold the ratio of large page to base
376  * pagesize (1024 max)
377  */
378 typedef	short	hpmctr_t;
379 
380 /*
381  * get the setsize of the current cpu - assume homogenous for x86
382  */
383 extern int	l2cache_sz, l2cache_linesz, l2cache_assoc;
384 
385 #define	L2CACHE_ALIGN		l2cache_linesz
386 #define	L2CACHE_ALIGN_MAX	64
387 #define	CPUSETSIZE()		\
388 	(l2cache_assoc ? (l2cache_sz / l2cache_assoc) : MMU_PAGESIZE)
389 
390 /*
391  * Return the log2(pagesize(szc) / MMU_PAGESIZE) --- or the shift count
392  * for the number of base pages in this pagesize
393  */
394 #define	PAGE_BSZS_SHIFT(szc) (LEVEL_SHIFT(szc) - MMU_PAGESHIFT)
395 
396 /*
397  * Internal PG_ flags.
398  */
399 #define	PGI_RELOCONLY	0x010000	/* opposite of PG_NORELOC */
400 #define	PGI_NOCAGE	0x020000	/* cage is disabled */
401 #define	PGI_PGCPHIPRI	0x040000	/* page_get_contig_page pri alloc */
402 #define	PGI_PGCPSZC0	0x080000	/* relocate base pagesize page */
403 
404 /*
405  * PGI range flags - should not overlap PGI flags
406  */
407 #define	PGI_MT_RANGE0	0x1000000	/* mtype range to 0 */
408 #define	PGI_MT_RANGE16M 0x2000000	/* mtype range to 16m */
409 #define	PGI_MT_RANGE4G	0x4000000	/* mtype range to 4g */
410 #define	PGI_MT_NEXT	0x8000000	/* get next mtype */
411 #define	PGI_MT_RANGE	(PGI_MT_RANGE0 | PGI_MT_RANGE16M | PGI_MT_RANGE4G)
412 
413 
414 /*
415  * Maximum and default values for user heap, stack, private and shared
416  * anonymous memory, and user text and initialized data.
417  * Used by map_pgsz*() routines.
418  */
419 extern size_t max_uheap_lpsize;
420 extern size_t default_uheap_lpsize;
421 extern size_t max_ustack_lpsize;
422 extern size_t default_ustack_lpsize;
423 extern size_t max_privmap_lpsize;
424 extern size_t max_uidata_lpsize;
425 extern size_t max_utext_lpsize;
426 extern size_t max_shm_lpsize;
427 extern size_t mcntl0_lpsize;
428 
429 /*
430  * Sanity control. Don't use large pages regardless of user
431  * settings if there's less than priv or shm_lpg_min_physmem memory installed.
432  * The units for this variable are 8K pages.
433  */
434 extern pgcnt_t privm_lpg_min_physmem;
435 extern pgcnt_t shm_lpg_min_physmem;
436 
437 /*
438  * hash as and addr to get a bin.
439  */
440 
441 #define	AS_2_BIN(as, seg, vp, addr, bin, szc)				    \
442 	bin = (((((uintptr_t)(addr) >> PAGESHIFT) + ((uintptr_t)(as) >> 4)) \
443 	    & page_colors_mask) >>					    \
444 	    (hw_page_array[szc].hp_shift - hw_page_array[0].hp_shift))
445 
446 /*
447  * cpu private vm data - accessed thru CPU->cpu_vm_data
448  *	vc_pnum_memseg: tracks last memseg visited in page_numtopp_nolock()
449  *	vc_pnext_memseg: tracks last memseg visited in page_nextn()
450  *	vc_kmptr: orignal unaligned kmem pointer for this vm_cpu_data_t
451  *	vc_kmsize: orignal kmem size for this vm_cpu_data_t
452  */
453 
454 typedef struct {
455 	struct memseg	*vc_pnum_memseg;
456 	struct memseg	*vc_pnext_memseg;
457 	void		*vc_kmptr;
458 	size_t		vc_kmsize;
459 } vm_cpu_data_t;
460 
461 /* allocation size to ensure vm_cpu_data_t resides in its own cache line */
462 #define	VM_CPU_DATA_PADSIZE						\
463 	(P2ROUNDUP(sizeof (vm_cpu_data_t), L2CACHE_ALIGN_MAX))
464 
465 /*
466  * When a bin is empty, and we can't satisfy a color request correctly,
467  * we scan.  If we assume that the programs have reasonable spatial
468  * behavior, then it will not be a good idea to use the adjacent color.
469  * Using the adjacent color would result in virtually adjacent addresses
470  * mapping into the same spot in the cache.  So, if we stumble across
471  * an empty bin, skip a bunch before looking.  After the first skip,
472  * then just look one bin at a time so we don't miss our cache on
473  * every look. Be sure to check every bin.  Page_create() will panic
474  * if we miss a page.
475  *
476  * This also explains the `<=' in the for loops in both page_get_freelist()
477  * and page_get_cachelist().  Since we checked the target bin, skipped
478  * a bunch, then continued one a time, we wind up checking the target bin
479  * twice to make sure we get all of them bins.
480  */
481 #define	BIN_STEP	19
482 
483 #ifdef VM_STATS
484 struct vmm_vmstats_str {
485 	ulong_t pgf_alloc[MMU_PAGE_SIZES];	/* page_get_freelist */
486 	ulong_t pgf_allocok[MMU_PAGE_SIZES];
487 	ulong_t pgf_allocokrem[MMU_PAGE_SIZES];
488 	ulong_t pgf_allocfailed[MMU_PAGE_SIZES];
489 	ulong_t	pgf_allocdeferred;
490 	ulong_t	pgf_allocretry[MMU_PAGE_SIZES];
491 	ulong_t pgc_alloc;			/* page_get_cachelist */
492 	ulong_t pgc_allocok;
493 	ulong_t pgc_allocokrem;
494 	ulong_t pgc_allocokdeferred;
495 	ulong_t pgc_allocfailed;
496 	ulong_t	pgcp_alloc[MMU_PAGE_SIZES];	/* page_get_contig_pages */
497 	ulong_t	pgcp_allocfailed[MMU_PAGE_SIZES];
498 	ulong_t	pgcp_allocempty[MMU_PAGE_SIZES];
499 	ulong_t	pgcp_allocok[MMU_PAGE_SIZES];
500 	ulong_t	ptcp[MMU_PAGE_SIZES];		/* page_trylock_contig_pages */
501 	ulong_t	ptcpfreethresh[MMU_PAGE_SIZES];
502 	ulong_t	ptcpfailexcl[MMU_PAGE_SIZES];
503 	ulong_t	ptcpfailszc[MMU_PAGE_SIZES];
504 	ulong_t	ptcpfailcage[MMU_PAGE_SIZES];
505 	ulong_t	ptcpok[MMU_PAGE_SIZES];
506 	ulong_t	pgmf_alloc[MMU_PAGE_SIZES];	/* page_get_mnode_freelist */
507 	ulong_t	pgmf_allocfailed[MMU_PAGE_SIZES];
508 	ulong_t	pgmf_allocempty[MMU_PAGE_SIZES];
509 	ulong_t	pgmf_allocok[MMU_PAGE_SIZES];
510 	ulong_t	pgmc_alloc;			/* page_get_mnode_cachelist */
511 	ulong_t	pgmc_allocfailed;
512 	ulong_t	pgmc_allocempty;
513 	ulong_t	pgmc_allocok;
514 	ulong_t	pladd_free[MMU_PAGE_SIZES];	/* page_list_add/sub */
515 	ulong_t	plsub_free[MMU_PAGE_SIZES];
516 	ulong_t	pladd_cache;
517 	ulong_t	plsub_cache;
518 	ulong_t	plsubpages_szcbig;
519 	ulong_t	plsubpages_szc0;
520 	ulong_t	pfs_req[MMU_PAGE_SIZES];	/* page_freelist_split */
521 	ulong_t	pfs_demote[MMU_PAGE_SIZES];
522 	ulong_t	pfc_coalok[MMU_PAGE_SIZES][MAX_MNODE_MRANGES];
523 	ulong_t	ppr_reloc[MMU_PAGE_SIZES];	/* page_relocate */
524 	ulong_t ppr_relocnoroot[MMU_PAGE_SIZES];
525 	ulong_t ppr_reloc_replnoroot[MMU_PAGE_SIZES];
526 	ulong_t ppr_relocnolock[MMU_PAGE_SIZES];
527 	ulong_t ppr_relocnomem[MMU_PAGE_SIZES];
528 	ulong_t ppr_relocok[MMU_PAGE_SIZES];
529 	ulong_t ppr_copyfail;
530 	/* page coalesce counter */
531 	ulong_t page_ctrs_coalesce[MMU_PAGE_SIZES][MAX_MNODE_MRANGES];
532 	/* candidates useful */
533 	ulong_t page_ctrs_cands_skip[MMU_PAGE_SIZES][MAX_MNODE_MRANGES];
534 	/* ctrs changed after locking */
535 	ulong_t page_ctrs_changed[MMU_PAGE_SIZES][MAX_MNODE_MRANGES];
536 	/* page_freelist_coalesce failed */
537 	ulong_t page_ctrs_failed[MMU_PAGE_SIZES][MAX_MNODE_MRANGES];
538 	ulong_t page_ctrs_coalesce_all;	/* page coalesce all counter */
539 	ulong_t page_ctrs_cands_skip_all; /* candidates useful for all func */
540 	ulong_t	restrict4gcnt;
541 	ulong_t	unrestrict16mcnt;	/* non-DMA 16m allocs allowed */
542 	ulong_t	pgpanicalloc;		/* PG_PANIC allocation */
543 	ulong_t	pcf_deny[MMU_PAGE_SIZES];	/* page_chk_freelist */
544 	ulong_t	pcf_allow[MMU_PAGE_SIZES];
545 };
546 extern struct vmm_vmstats_str vmm_vmstats;
547 #endif	/* VM_STATS */
548 
549 extern size_t page_ctrs_sz(void);
550 extern caddr_t page_ctrs_alloc(caddr_t);
551 extern void page_ctr_sub(int, int, page_t *, int);
552 extern page_t *page_freelist_split(uchar_t,
553     uint_t, int, int, pfn_t, pfn_t, page_list_walker_t *);
554 extern page_t *page_freelist_coalesce(int, uchar_t, uint_t, uint_t, int,
555     pfn_t);
556 extern void page_freelist_coalesce_all(int);
557 extern uint_t page_get_pagecolors(uint_t);
558 extern void pfnzero(pfn_t, uint_t, uint_t);
559 
560 #ifdef	__cplusplus
561 }
562 #endif
563 
564 #endif	/* _VM_DEP_H */
565