1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2004, 2010, Oracle and/or its affiliates. All rights reserved. 23 */ 24 /* 25 * Copyright (c) 2010, Intel Corporation. 26 * All rights reserved. 27 */ 28 29 /* 30 * UNIX machine dependent virtual memory support. 31 */ 32 33 #ifndef _VM_DEP_H 34 #define _VM_DEP_H 35 36 37 #ifdef __cplusplus 38 extern "C" { 39 #endif 40 41 #include <sys/clock.h> 42 #include <vm/hat_pte.h> 43 #include <sys/param.h> 44 #include <sys/memnode.h> 45 46 /* 47 * WARNING: vm_dep.h is included by files in common. 48 */ 49 50 #define GETTICK() tsc_read() 51 /* 52 * Do not use this function for obtaining clock tick. This 53 * is called by callers who do not need to have a guarenteed 54 * correct tick value. The proper routine to use is tsc_read(). 55 */ 56 57 extern u_longlong_t randtick(); 58 extern uint_t page_create_update_flags_x86(uint_t); 59 60 extern size_t plcnt_sz(size_t); 61 #define PLCNT_SZ(ctrs_sz) (ctrs_sz = plcnt_sz(ctrs_sz)) 62 63 extern caddr_t plcnt_init(caddr_t); 64 #define PLCNT_INIT(addr) (addr = plcnt_init(addr)) 65 66 extern void plcnt_inc_dec(page_t *, int, int, long, int); 67 #define PLCNT_INCR(pp, mnode, mtype, szc, flags) \ 68 plcnt_inc_dec(pp, mtype, szc, 1l << PAGE_BSZS_SHIFT(szc), flags) 69 #define PLCNT_DECR(pp, mnode, mtype, szc, flags) \ 70 plcnt_inc_dec(pp, mtype, szc, -1l << PAGE_BSZS_SHIFT(szc), flags) 71 72 /* 73 * macro to update page list max counts. no-op on x86. 74 */ 75 #define PLCNT_XFER_NORELOC(pp) 76 77 /* 78 * macro to modify the page list max counts when memory is added to 79 * the page lists during startup (add_physmem) or during a DR operation 80 * when memory is added (kphysm_add_memory_dynamic) or deleted 81 * (kphysm_del_cleanup). 82 */ 83 #define PLCNT_MODIFY_MAX(pfn, cnt) mtype_modify_max(pfn, cnt) 84 85 extern int memrange_num(pfn_t); 86 extern int pfn_2_mtype(pfn_t); 87 extern int mtype_func(int, int, uint_t); 88 extern void mtype_modify_max(pfn_t, long); 89 extern int mnode_pgcnt(int); 90 extern int mnode_range_cnt(int); 91 92 /* 93 * candidate counters in vm_pagelist.c are indexed by color and range 94 */ 95 #define NUM_MEM_RANGES 4 /* memory range types */ 96 #define MAX_MNODE_MRANGES NUM_MEM_RANGES 97 #define MNODE_RANGE_CNT(mnode) mnode_range_cnt(mnode) 98 #define MNODE_MAX_MRANGE(mnode) memrange_num(mem_node_config[mnode].physbase) 99 100 /* 101 * This was really badly defined, it implicitly uses mnode_maxmrange[] 102 * which is a static in vm_pagelist.c 103 */ 104 extern int mtype_2_mrange(int); 105 #define MTYPE_2_MRANGE(mnode, mtype) \ 106 (mnode_maxmrange[mnode] - mtype_2_mrange(mtype)) 107 108 /* 109 * Per page size free lists. Allocated dynamically. 110 * dimensions [mtype][mmu_page_sizes][colors] 111 * 112 * mtype specifies a physical memory range with a unique mnode. 113 */ 114 115 extern page_t ****page_freelists; 116 117 #define PAGE_FREELISTS(mnode, szc, color, mtype) \ 118 (*(page_freelists[mtype][szc] + (color))) 119 120 /* 121 * For now there is only a single size cache list. Allocated dynamically. 122 * dimensions [mtype][colors] 123 * 124 * mtype specifies a physical memory range with a unique mnode. 125 */ 126 extern page_t ***page_cachelists; 127 128 #define PAGE_CACHELISTS(mnode, color, mtype) \ 129 (*(page_cachelists[mtype] + (color))) 130 131 /* 132 * There are mutexes for both the page freelist 133 * and the page cachelist. We want enough locks to make contention 134 * reasonable, but not too many -- otherwise page_freelist_lock() gets 135 * so expensive that it becomes the bottleneck! 136 */ 137 138 #define NPC_MUTEX 16 139 140 extern kmutex_t *fpc_mutex[NPC_MUTEX]; 141 extern kmutex_t *cpc_mutex[NPC_MUTEX]; 142 143 extern page_t *page_get_mnode_freelist(int, uint_t, int, uchar_t, uint_t); 144 extern page_t *page_get_mnode_cachelist(uint_t, uint_t, int, int); 145 146 /* mem node iterator is not used on x86 */ 147 #define MEM_NODE_ITERATOR_DECL(it) 148 #define MEM_NODE_ITERATOR_INIT(pfn, mnode, szc, it) 149 150 /* 151 * interleaved_mnodes mode is never set on x86, therefore, 152 * simply return the limits of the given mnode, which then 153 * determines the length of hpm_counters array for the mnode. 154 */ 155 #define HPM_COUNTERS_LIMITS(mnode, physbase, physmax, first) \ 156 { \ 157 (physbase) = mem_node_config[(mnode)].physbase; \ 158 (physmax) = mem_node_config[(mnode)].physmax; \ 159 (first) = (mnode); \ 160 } 161 162 #define PAGE_CTRS_WRITE_LOCK(mnode) \ 163 { \ 164 rw_enter(&page_ctrs_rwlock[(mnode)], RW_WRITER);\ 165 page_freelist_lock(mnode); \ 166 } 167 168 #define PAGE_CTRS_WRITE_UNLOCK(mnode) \ 169 { \ 170 page_freelist_unlock(mnode); \ 171 rw_exit(&page_ctrs_rwlock[(mnode)]); \ 172 } 173 174 /* 175 * macro to call page_ctrs_adjust() when memory is added 176 * during a DR operation. 177 */ 178 #define PAGE_CTRS_ADJUST(pfn, cnt, rv) { \ 179 spgcnt_t _cnt = (spgcnt_t)(cnt); \ 180 int _mn; \ 181 pgcnt_t _np; \ 182 pfn_t _pfn = (pfn); \ 183 pfn_t _endpfn = _pfn + _cnt; \ 184 while (_pfn < _endpfn) { \ 185 _mn = PFN_2_MEM_NODE(_pfn); \ 186 _np = MIN(_endpfn, mem_node_config[_mn].physmax + 1) - _pfn; \ 187 _pfn += _np; \ 188 if ((rv = page_ctrs_adjust(_mn)) != 0) \ 189 break; \ 190 } \ 191 } 192 193 #define PAGE_GET_COLOR_SHIFT(szc, nszc) \ 194 (hw_page_array[(nszc)].hp_shift - hw_page_array[(szc)].hp_shift) 195 196 #define PAGE_CONVERT_COLOR(ncolor, szc, nszc) \ 197 ((ncolor) << PAGE_GET_COLOR_SHIFT((szc), (nszc))) 198 199 #define PFN_2_COLOR(pfn, szc, it) \ 200 (((pfn) & page_colors_mask) >> \ 201 (hw_page_array[szc].hp_shift - hw_page_array[0].hp_shift)) 202 203 #define PNUM_SIZE(szc) \ 204 (hw_page_array[(szc)].hp_pgcnt) 205 #define PNUM_SHIFT(szc) \ 206 (hw_page_array[(szc)].hp_shift - hw_page_array[0].hp_shift) 207 #define PAGE_GET_SHIFT(szc) \ 208 (hw_page_array[(szc)].hp_shift) 209 #define PAGE_GET_PAGECOLORS(szc) \ 210 (hw_page_array[(szc)].hp_colors) 211 212 /* 213 * This macro calculates the next sequential pfn with the specified 214 * color using color equivalency mask 215 */ 216 #define PAGE_NEXT_PFN_FOR_COLOR(pfn, szc, color, ceq_mask, color_mask, it) \ 217 { \ 218 uint_t pfn_shift = PAGE_BSZS_SHIFT(szc); \ 219 pfn_t spfn = pfn >> pfn_shift; \ 220 pfn_t stride = (ceq_mask) + 1; \ 221 ASSERT(((color) & ~(ceq_mask)) == 0); \ 222 ASSERT((((ceq_mask) + 1) & (ceq_mask)) == 0); \ 223 if (((spfn ^ (color)) & (ceq_mask)) == 0) { \ 224 pfn += stride << pfn_shift; \ 225 } else { \ 226 pfn = (spfn & ~(pfn_t)(ceq_mask)) | (color); \ 227 pfn = (pfn > spfn ? pfn : pfn + stride) << pfn_shift; \ 228 } \ 229 } 230 231 /* get the color equivalency mask for the next szc */ 232 #define PAGE_GET_NSZ_MASK(szc, mask) \ 233 ((mask) >> (PAGE_GET_SHIFT((szc) + 1) - PAGE_GET_SHIFT(szc))) 234 235 /* get the color of the next szc */ 236 #define PAGE_GET_NSZ_COLOR(szc, color) \ 237 ((color) >> (PAGE_GET_SHIFT((szc) + 1) - PAGE_GET_SHIFT(szc))) 238 239 /* Find the bin for the given page if it was of size szc */ 240 #define PP_2_BIN_SZC(pp, szc) (PFN_2_COLOR(pp->p_pagenum, szc, NULL)) 241 242 #define PP_2_BIN(pp) (PP_2_BIN_SZC(pp, pp->p_szc)) 243 244 #define PP_2_MEM_NODE(pp) (PFN_2_MEM_NODE(pp->p_pagenum)) 245 #define PP_2_MTYPE(pp) (pfn_2_mtype(pp->p_pagenum)) 246 #define PP_2_SZC(pp) (pp->p_szc) 247 248 #define SZCPAGES(szc) (1 << PAGE_BSZS_SHIFT(szc)) 249 #define PFN_BASE(pfnum, szc) (pfnum & ~(SZCPAGES(szc) - 1)) 250 251 /* 252 * this structure is used for walking free page lists 253 * controls when to split large pages into smaller pages, 254 * and when to coalesce smaller pages into larger pages 255 */ 256 typedef struct page_list_walker { 257 uint_t plw_colors; /* num of colors for szc */ 258 uint_t plw_color_mask; /* colors-1 */ 259 uint_t plw_bin_step; /* next bin: 1 or 2 */ 260 uint_t plw_count; /* loop count */ 261 uint_t plw_bin0; /* starting bin */ 262 uint_t plw_bin_marker; /* bin after initial jump */ 263 uint_t plw_bin_split_prev; /* last bin we tried to split */ 264 uint_t plw_do_split; /* set if OK to split */ 265 uint_t plw_split_next; /* next bin to split */ 266 uint_t plw_ceq_dif; /* number of different color groups */ 267 /* to check */ 268 uint_t plw_ceq_mask[MMU_PAGE_SIZES + 1]; /* color equiv mask */ 269 uint_t plw_bins[MMU_PAGE_SIZES + 1]; /* num of bins */ 270 } page_list_walker_t; 271 272 void page_list_walk_init(uchar_t szc, uint_t flags, uint_t bin, 273 int can_split, int use_ceq, page_list_walker_t *plw); 274 275 uint_t page_list_walk_next_bin(uchar_t szc, uint_t bin, 276 page_list_walker_t *plw); 277 278 extern struct cpu cpus[]; 279 #define CPU0 cpus 280 281 extern int mtype_init(vnode_t *, caddr_t, uint_t *, size_t); 282 #define MTYPE_INIT(mtype, vp, vaddr, flags, pgsz) \ 283 (mtype = mtype_init(vp, vaddr, &(flags), pgsz)) 284 285 /* 286 * macros to loop through the mtype range (page_get_mnode_{free,cache,any}list, 287 * and page_get_contig_pages) 288 * 289 * MTYPE_START sets the initial mtype. -1 if the mtype range specified does 290 * not contain mnode. 291 * 292 * MTYPE_NEXT sets the next mtype. -1 if there are no more valid 293 * mtype in the range. 294 */ 295 296 #define MTYPE_START(mnode, mtype, flags) \ 297 (mtype = mtype_func(mnode, mtype, flags)) 298 299 #define MTYPE_NEXT(mnode, mtype, flags) { \ 300 if (flags & PGI_MT_RANGE) { \ 301 mtype = mtype_func(mnode, mtype, flags | PGI_MT_NEXT); \ 302 } else { \ 303 mtype = -1; \ 304 } \ 305 } 306 307 extern int mtype_pgr_init(int *, page_t *, int, pgcnt_t); 308 #define MTYPE_PGR_INIT(mtype, flags, pp, mnode, pgcnt) \ 309 (mtype = mtype_pgr_init(&flags, pp, mnode, pgcnt)) 310 311 #define MNODE_PGCNT(mnode) mnode_pgcnt(mnode) 312 313 extern void mnodetype_2_pfn(int, int, pfn_t *, pfn_t *); 314 #define MNODETYPE_2_PFN(mnode, mtype, pfnlo, pfnhi) \ 315 mnodetype_2_pfn(mnode, mtype, &pfnlo, &pfnhi) 316 317 #define PC_BIN_MUTEX(mnode, bin, flags) ((flags & PG_FREE_LIST) ? \ 318 &fpc_mutex[(bin) & (NPC_MUTEX - 1)][mnode] : \ 319 &cpc_mutex[(bin) & (NPC_MUTEX - 1)][mnode]) 320 321 #define FPC_MUTEX(mnode, i) (&fpc_mutex[i][mnode]) 322 #define CPC_MUTEX(mnode, i) (&cpc_mutex[i][mnode]) 323 324 #ifdef DEBUG 325 #define CHK_LPG(pp, szc) chk_lpg(pp, szc) 326 extern void chk_lpg(page_t *, uchar_t); 327 #else 328 #define CHK_LPG(pp, szc) 329 #endif 330 331 #define FULL_REGION_CNT(rg_szc) \ 332 (LEVEL_SIZE(rg_szc) >> LEVEL_SHIFT(rg_szc - 1)) 333 334 /* Return the leader for this mapping size */ 335 #define PP_GROUPLEADER(pp, szc) \ 336 (&(pp)[-(int)((pp)->p_pagenum & (SZCPAGES(szc)-1))]) 337 338 /* Return the root page for this page based on p_szc */ 339 #define PP_PAGEROOT(pp) ((pp)->p_szc == 0 ? (pp) : \ 340 PP_GROUPLEADER((pp), (pp)->p_szc)) 341 342 /* 343 * The counter base must be per page_counter element to prevent 344 * races when re-indexing, and the base page size element should 345 * be aligned on a boundary of the given region size. 346 * 347 * We also round up the number of pages spanned by the counters 348 * for a given region to PC_BASE_ALIGN in certain situations to simplify 349 * the coding for some non-performance critical routines. 350 */ 351 352 #define PC_BASE_ALIGN ((pfn_t)1 << PAGE_BSZS_SHIFT(MMU_PAGE_SIZES-1)) 353 #define PC_BASE_ALIGN_MASK (PC_BASE_ALIGN - 1) 354 355 /* 356 * cpu/mmu-dependent vm variables 357 */ 358 extern uint_t mmu_page_sizes; 359 extern uint_t mmu_exported_page_sizes; 360 /* 361 * page sizes that legacy applications can see via getpagesizes(3c). 362 * Used to prevent legacy applications from inadvertantly using the 363 * 'new' large pagesizes (1g and above). 364 */ 365 extern uint_t mmu_legacy_page_sizes; 366 367 /* For x86, userszc is the same as the kernel's szc */ 368 #define USERSZC_2_SZC(userszc) (userszc) 369 #define SZC_2_USERSZC(szc) (szc) 370 371 /* 372 * for hw_page_map_t, sized to hold the ratio of large page to base 373 * pagesize (1024 max) 374 */ 375 typedef short hpmctr_t; 376 377 /* 378 * get the setsize of the current cpu - assume homogenous for x86 379 */ 380 extern int l2cache_sz, l2cache_linesz, l2cache_assoc; 381 382 #define L2CACHE_ALIGN l2cache_linesz 383 #define L2CACHE_ALIGN_MAX 64 384 #define CPUSETSIZE() \ 385 (l2cache_assoc ? (l2cache_sz / l2cache_assoc) : MMU_PAGESIZE) 386 387 /* 388 * Return the log2(pagesize(szc) / MMU_PAGESIZE) --- or the shift count 389 * for the number of base pages in this pagesize 390 */ 391 #define PAGE_BSZS_SHIFT(szc) (LEVEL_SHIFT(szc) - MMU_PAGESHIFT) 392 393 /* 394 * Internal PG_ flags. 395 */ 396 #define PGI_RELOCONLY 0x010000 /* opposite of PG_NORELOC */ 397 #define PGI_NOCAGE 0x020000 /* cage is disabled */ 398 #define PGI_PGCPHIPRI 0x040000 /* page_get_contig_page pri alloc */ 399 #define PGI_PGCPSZC0 0x080000 /* relocate base pagesize page */ 400 401 /* 402 * PGI range flags - should not overlap PGI flags 403 */ 404 #define PGI_MT_RANGE0 0x1000000 /* mtype range to 0 */ 405 #define PGI_MT_RANGE16M 0x2000000 /* mtype range to 16m */ 406 #define PGI_MT_RANGE4G 0x4000000 /* mtype range to 4g */ 407 #define PGI_MT_NEXT 0x8000000 /* get next mtype */ 408 #define PGI_MT_RANGE (PGI_MT_RANGE0 | PGI_MT_RANGE16M | PGI_MT_RANGE4G) 409 410 411 /* 412 * Maximum and default values for user heap, stack, private and shared 413 * anonymous memory, and user text and initialized data. 414 * Used by map_pgsz*() routines. 415 */ 416 extern size_t max_uheap_lpsize; 417 extern size_t default_uheap_lpsize; 418 extern size_t max_ustack_lpsize; 419 extern size_t default_ustack_lpsize; 420 extern size_t max_privmap_lpsize; 421 extern size_t max_uidata_lpsize; 422 extern size_t max_utext_lpsize; 423 extern size_t max_shm_lpsize; 424 extern size_t mcntl0_lpsize; 425 426 /* 427 * Sanity control. Don't use large pages regardless of user 428 * settings if there's less than priv or shm_lpg_min_physmem memory installed. 429 * The units for this variable are 8K pages. 430 */ 431 extern pgcnt_t privm_lpg_min_physmem; 432 extern pgcnt_t shm_lpg_min_physmem; 433 434 /* 435 * hash as and addr to get a bin. 436 */ 437 438 #define AS_2_BIN(as, seg, vp, addr, bin, szc) \ 439 bin = (((((uintptr_t)(addr) >> PAGESHIFT) + ((uintptr_t)(as) >> 4)) \ 440 & page_colors_mask) >> \ 441 (hw_page_array[szc].hp_shift - hw_page_array[0].hp_shift)) 442 443 /* 444 * cpu private vm data - accessed thru CPU->cpu_vm_data 445 * vc_pnum_memseg: tracks last memseg visited in page_numtopp_nolock() 446 * vc_pnext_memseg: tracks last memseg visited in page_nextn() 447 * vc_kmptr: orignal unaligned kmem pointer for this vm_cpu_data_t 448 * vc_kmsize: orignal kmem size for this vm_cpu_data_t 449 */ 450 451 typedef struct { 452 struct memseg *vc_pnum_memseg; 453 struct memseg *vc_pnext_memseg; 454 void *vc_kmptr; 455 size_t vc_kmsize; 456 } vm_cpu_data_t; 457 458 /* allocation size to ensure vm_cpu_data_t resides in its own cache line */ 459 #define VM_CPU_DATA_PADSIZE \ 460 (P2ROUNDUP(sizeof (vm_cpu_data_t), L2CACHE_ALIGN_MAX)) 461 462 /* 463 * When a bin is empty, and we can't satisfy a color request correctly, 464 * we scan. If we assume that the programs have reasonable spatial 465 * behavior, then it will not be a good idea to use the adjacent color. 466 * Using the adjacent color would result in virtually adjacent addresses 467 * mapping into the same spot in the cache. So, if we stumble across 468 * an empty bin, skip a bunch before looking. After the first skip, 469 * then just look one bin at a time so we don't miss our cache on 470 * every look. Be sure to check every bin. Page_create() will panic 471 * if we miss a page. 472 * 473 * This also explains the `<=' in the for loops in both page_get_freelist() 474 * and page_get_cachelist(). Since we checked the target bin, skipped 475 * a bunch, then continued one a time, we wind up checking the target bin 476 * twice to make sure we get all of them bins. 477 */ 478 #define BIN_STEP 19 479 480 #ifdef VM_STATS 481 struct vmm_vmstats_str { 482 ulong_t pgf_alloc[MMU_PAGE_SIZES]; /* page_get_freelist */ 483 ulong_t pgf_allocok[MMU_PAGE_SIZES]; 484 ulong_t pgf_allocokrem[MMU_PAGE_SIZES]; 485 ulong_t pgf_allocfailed[MMU_PAGE_SIZES]; 486 ulong_t pgf_allocdeferred; 487 ulong_t pgf_allocretry[MMU_PAGE_SIZES]; 488 ulong_t pgc_alloc; /* page_get_cachelist */ 489 ulong_t pgc_allocok; 490 ulong_t pgc_allocokrem; 491 ulong_t pgc_allocokdeferred; 492 ulong_t pgc_allocfailed; 493 ulong_t pgcp_alloc[MMU_PAGE_SIZES]; /* page_get_contig_pages */ 494 ulong_t pgcp_allocfailed[MMU_PAGE_SIZES]; 495 ulong_t pgcp_allocempty[MMU_PAGE_SIZES]; 496 ulong_t pgcp_allocok[MMU_PAGE_SIZES]; 497 ulong_t ptcp[MMU_PAGE_SIZES]; /* page_trylock_contig_pages */ 498 ulong_t ptcpfreethresh[MMU_PAGE_SIZES]; 499 ulong_t ptcpfailexcl[MMU_PAGE_SIZES]; 500 ulong_t ptcpfailszc[MMU_PAGE_SIZES]; 501 ulong_t ptcpfailcage[MMU_PAGE_SIZES]; 502 ulong_t ptcpok[MMU_PAGE_SIZES]; 503 ulong_t pgmf_alloc[MMU_PAGE_SIZES]; /* page_get_mnode_freelist */ 504 ulong_t pgmf_allocfailed[MMU_PAGE_SIZES]; 505 ulong_t pgmf_allocempty[MMU_PAGE_SIZES]; 506 ulong_t pgmf_allocok[MMU_PAGE_SIZES]; 507 ulong_t pgmc_alloc; /* page_get_mnode_cachelist */ 508 ulong_t pgmc_allocfailed; 509 ulong_t pgmc_allocempty; 510 ulong_t pgmc_allocok; 511 ulong_t pladd_free[MMU_PAGE_SIZES]; /* page_list_add/sub */ 512 ulong_t plsub_free[MMU_PAGE_SIZES]; 513 ulong_t pladd_cache; 514 ulong_t plsub_cache; 515 ulong_t plsubpages_szcbig; 516 ulong_t plsubpages_szc0; 517 ulong_t pfs_req[MMU_PAGE_SIZES]; /* page_freelist_split */ 518 ulong_t pfs_demote[MMU_PAGE_SIZES]; 519 ulong_t pfc_coalok[MMU_PAGE_SIZES][MAX_MNODE_MRANGES]; 520 ulong_t ppr_reloc[MMU_PAGE_SIZES]; /* page_relocate */ 521 ulong_t ppr_relocnoroot[MMU_PAGE_SIZES]; 522 ulong_t ppr_reloc_replnoroot[MMU_PAGE_SIZES]; 523 ulong_t ppr_relocnolock[MMU_PAGE_SIZES]; 524 ulong_t ppr_relocnomem[MMU_PAGE_SIZES]; 525 ulong_t ppr_relocok[MMU_PAGE_SIZES]; 526 ulong_t ppr_copyfail; 527 /* page coalesce counter */ 528 ulong_t page_ctrs_coalesce[MMU_PAGE_SIZES][MAX_MNODE_MRANGES]; 529 /* candidates useful */ 530 ulong_t page_ctrs_cands_skip[MMU_PAGE_SIZES][MAX_MNODE_MRANGES]; 531 /* ctrs changed after locking */ 532 ulong_t page_ctrs_changed[MMU_PAGE_SIZES][MAX_MNODE_MRANGES]; 533 /* page_freelist_coalesce failed */ 534 ulong_t page_ctrs_failed[MMU_PAGE_SIZES][MAX_MNODE_MRANGES]; 535 ulong_t page_ctrs_coalesce_all; /* page coalesce all counter */ 536 ulong_t page_ctrs_cands_skip_all; /* candidates useful for all func */ 537 ulong_t restrict4gcnt; 538 ulong_t unrestrict16mcnt; /* non-DMA 16m allocs allowed */ 539 ulong_t pgpanicalloc; /* PG_PANIC allocation */ 540 ulong_t pcf_deny[MMU_PAGE_SIZES]; /* page_chk_freelist */ 541 ulong_t pcf_allow[MMU_PAGE_SIZES]; 542 }; 543 extern struct vmm_vmstats_str vmm_vmstats; 544 #endif /* VM_STATS */ 545 546 extern size_t page_ctrs_sz(void); 547 extern caddr_t page_ctrs_alloc(caddr_t); 548 extern void page_ctr_sub(int, int, page_t *, int); 549 extern page_t *page_freelist_split(uchar_t, 550 uint_t, int, int, pfn_t, pfn_t, page_list_walker_t *); 551 extern page_t *page_freelist_coalesce(int, uchar_t, uint_t, uint_t, int, 552 pfn_t); 553 extern void page_freelist_coalesce_all(int); 554 extern uint_t page_get_pagecolors(uint_t); 555 extern void pfnzero(pfn_t, uint_t, uint_t); 556 557 #ifdef __cplusplus 558 } 559 #endif 560 561 #endif /* _VM_DEP_H */ 562