1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License, Version 1.0 only 6 * (the "License"). You may not use this file except in compliance 7 * with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or http://www.opensolaris.org/os/licensing. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 /* 23 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 /* 28 * UNIX machine dependent virtual memory support. 29 */ 30 31 #ifndef _VM_DEP_H 32 #define _VM_DEP_H 33 34 #pragma ident "%Z%%M% %I% %E% SMI" 35 36 #ifdef __cplusplus 37 extern "C" { 38 #endif 39 40 #include <sys/clock.h> 41 #include <vm/hat_pte.h> 42 43 /* 44 * WARNING: vm_dep.h is included by files in common. As such, macros 45 * dependent upon PTE36 such as LARGEPAGESIZE cannot be used in this file. 46 */ 47 48 #define GETTICK() tsc_read() 49 50 /* memranges in descending order */ 51 extern pfn_t *memranges; 52 53 #define MEMRANGEHI(mtype) \ 54 ((mtype > 0) ? memranges[mtype - 1] - 1: physmax) 55 #define MEMRANGELO(mtype) (memranges[mtype]) 56 57 #define MTYPE_FREEMEM(mt) \ 58 (mnoderanges[mt].mnr_mt_clpgcnt + \ 59 mnoderanges[mt].mnr_mt_flpgcnt + \ 60 mnoderanges[mt].mnr_mt_lgpgcnt) 61 62 /* 63 * combined memory ranges from mnode and memranges[] to manage single 64 * mnode/mtype dimension in the page lists. 65 */ 66 typedef struct { 67 pfn_t mnr_pfnlo; 68 pfn_t mnr_pfnhi; 69 int mnr_mnode; 70 int mnr_memrange; /* index into memranges[] */ 71 /* maintain page list stats */ 72 pgcnt_t mnr_mt_pgmax; /* mnode/mtype max page cnt */ 73 pgcnt_t mnr_mt_clpgcnt; /* cache list cnt */ 74 pgcnt_t mnr_mt_flpgcnt; /* free list cnt - small pages */ 75 pgcnt_t mnr_mt_lgpgcnt; /* free list cnt - large pages */ 76 #ifdef DEBUG 77 struct mnr_mts { /* mnode/mtype szc stats */ 78 pgcnt_t mnr_mts_pgcnt; 79 int mnr_mts_colors; 80 pgcnt_t *mnr_mtsc_pgcnt; 81 } *mnr_mts; 82 #endif 83 } mnoderange_t; 84 85 #ifdef DEBUG 86 #define PLCNT_SZ(ctrs_sz) { \ 87 int szc, colors; \ 88 ctrs_sz += mnoderangecnt * sizeof (struct mnr_mts) * \ 89 mmu_page_sizes; \ 90 for (szc = 0; szc < mmu_page_sizes; szc++) { \ 91 colors = page_get_pagecolors(szc); \ 92 ctrs_sz += mnoderangecnt * sizeof (pgcnt_t) * colors; \ 93 } \ 94 } 95 96 #define PLCNT_INIT(addr) { \ 97 int mt, szc, colors; \ 98 for (mt = 0; mt < mnoderangecnt; mt++) { \ 99 mnoderanges[mt].mnr_mts = (struct mnr_mts *)addr; \ 100 addr += (sizeof (struct mnr_mts) * mmu_page_sizes); \ 101 for (szc = 0; szc < mmu_page_sizes; szc++) { \ 102 colors = page_get_pagecolors(szc); \ 103 mnoderanges[mt].mnr_mts[szc].mnr_mts_colors = \ 104 colors; \ 105 mnoderanges[mt].mnr_mts[szc].mnr_mtsc_pgcnt = \ 106 (pgcnt_t *)addr; \ 107 addr += (sizeof (pgcnt_t) * colors); \ 108 } \ 109 } \ 110 } 111 #define PLCNT_DO(pp, mtype, szc, cnt, flags) { \ 112 int bin = PP_2_BIN(pp); \ 113 if (flags & PG_CACHE_LIST) \ 114 atomic_add_long(&mnoderanges[mtype]. \ 115 mnr_mt_clpgcnt, cnt); \ 116 else if (szc) \ 117 atomic_add_long(&mnoderanges[mtype]. \ 118 mnr_mt_lgpgcnt, cnt); \ 119 else \ 120 atomic_add_long(&mnoderanges[mtype]. \ 121 mnr_mt_flpgcnt, cnt); \ 122 atomic_add_long(&mnoderanges[mtype].mnr_mts[szc]. \ 123 mnr_mts_pgcnt, cnt); \ 124 atomic_add_long(&mnoderanges[mtype].mnr_mts[szc]. \ 125 mnr_mtsc_pgcnt[bin], cnt); \ 126 } 127 #else 128 #define PLCNT_SZ(ctrs_sz) 129 #define PLCNT_INIT(base) 130 #define PLCNT_DO(pp, mtype, szc, cnt, flags) { \ 131 if (flags & PG_CACHE_LIST) \ 132 atomic_add_long(&mnoderanges[mtype]. \ 133 mnr_mt_clpgcnt, cnt); \ 134 else if (szc) \ 135 atomic_add_long(&mnoderanges[mtype]. \ 136 mnr_mt_lgpgcnt, cnt); \ 137 else \ 138 atomic_add_long(&mnoderanges[mtype]. \ 139 mnr_mt_flpgcnt, cnt); \ 140 } 141 #endif 142 143 #define PLCNT_INCR(pp, mnode, mtype, szc, flags) { \ 144 long cnt = (1 << PAGE_BSZS_SHIFT(szc)); \ 145 ASSERT(mtype == PP_2_MTYPE(pp)); \ 146 if (physmax4g && mtype <= mtype4g) \ 147 atomic_add_long(&freemem4g, cnt); \ 148 PLCNT_DO(pp, mtype, szc, cnt, flags); \ 149 } 150 151 #define PLCNT_DECR(pp, mnode, mtype, szc, flags) { \ 152 long cnt = ((-1) << PAGE_BSZS_SHIFT(szc)); \ 153 ASSERT(mtype == PP_2_MTYPE(pp)); \ 154 if (physmax4g && mtype <= mtype4g) \ 155 atomic_add_long(&freemem4g, cnt); \ 156 PLCNT_DO(pp, mtype, szc, cnt, flags); \ 157 } 158 159 /* 160 * macros to update page list max counts. no-op on x86. 161 */ 162 #define PLCNT_XFER_NORELOC(pp) 163 164 #define PLCNT_MODIFY_MAX(pfn, cnt) mtype_modify_max(pfn, (pgcnt_t)cnt) 165 166 extern mnoderange_t *mnoderanges; 167 extern int mnoderangecnt; 168 extern int mtype4g; 169 170 /* 171 * 4g memory management variables for systems with more than 4g of memory: 172 * 173 * physical memory below 4g is required for 32bit dma devices and, currently, 174 * for kmem memory. On systems with more than 4g of memory, the pool of memory 175 * below 4g can be depleted without any paging activity given that there is 176 * likely to be sufficient memory above 4g. 177 * 178 * physmax4g is set true if the largest pfn is over 4g. The rest of the 179 * 4g memory management code is enabled only when physmax4g is true. 180 * 181 * maxmem4g is the count of the maximum number of pages on the page lists 182 * with physical addresses below 4g. It can be a lot less then 4g given that 183 * BIOS may reserve large chunks of space below 4g for hot plug pci devices, 184 * agp aperture etc. 185 * 186 * freemem4g maintains the count of the number of available pages on the 187 * page lists with physical addresses below 4g. 188 * 189 * DESFREE4G specifies the desired amount of below 4g memory. It defaults to 190 * 6% (desfree4gshift = 4) of maxmem4g. 191 * 192 * RESTRICT4G_ALLOC returns true if freemem4g falls below DESFREE4G 193 * and the amount of physical memory above 4g is greater than freemem4g. 194 * In this case, page_get_* routines will restrict below 4g allocations 195 * for requests that don't specifically require it. 196 */ 197 198 extern int physmax4g; 199 extern pgcnt_t maxmem4g; 200 extern pgcnt_t freemem4g; 201 extern int lotsfree4gshift; 202 extern int desfree4gshift; 203 #define LOTSFREE4G (maxmem4g >> lotsfree4gshift) 204 #define DESFREE4G (maxmem4g >> desfree4gshift) 205 206 #define RESTRICT4G_ALLOC \ 207 (physmax4g && (freemem4g < DESFREE4G) && ((freemem4g << 1) < freemem)) 208 209 /* 210 * 16m memory management: 211 * 212 * reserve some amount of physical memory below 16m for legacy devices. 213 * 214 * RESTRICT16M_ALLOC returns true if an there are sufficient free pages above 215 * 16m or if the 16m pool drops below DESFREE16M. 216 * 217 * In this case, general page allocations via page_get_{free,cache}list 218 * routines will be restricted from allocating from the 16m pool. Allocations 219 * that require specific pfn ranges (page_get_anylist) are not restricted. 220 */ 221 222 #define FREEMEM16M MTYPE_FREEMEM(0) 223 #define DESFREE16M desfree16m 224 #define RESTRICT16M_ALLOC(freemem, pgcnt) \ 225 (freemem != 0 && ((freemem >= (FREEMEM16M)) || \ 226 (FREEMEM16M < (DESFREE16M + pgcnt)))) 227 extern pgcnt_t desfree16m; 228 229 extern int restricted_kmemalloc; 230 extern int memrange_num(pfn_t); 231 extern int pfn_2_mtype(pfn_t); 232 extern int mtype_func(int, int, uint_t); 233 extern void mtype_modify_max(pfn_t, long); 234 extern int mnode_pgcnt(int); 235 236 #define NUM_MEM_RANGES 4 /* memory range types */ 237 238 /* 239 * Per page size free lists. Allocated dynamically. 240 * dimensions [mtype][mmu_page_sizes][colors] 241 * 242 * mtype specifies a physical memory range with a unique mnode. 243 */ 244 245 extern page_t ****page_freelists; 246 247 #define PAGE_FREELISTS(mnode, szc, color, mtype) \ 248 (*(page_freelists[mtype][szc] + (color))) 249 250 /* 251 * For now there is only a single size cache list. Allocated dynamically. 252 * dimensions [mtype][colors] 253 * 254 * mtype specifies a physical memory range with a unique mnode. 255 */ 256 extern page_t ***page_cachelists; 257 258 #define PAGE_CACHELISTS(mnode, color, mtype) \ 259 (*(page_cachelists[mtype] + (color))) 260 261 /* 262 * There are mutexes for both the page freelist 263 * and the page cachelist. We want enough locks to make contention 264 * reasonable, but not too many -- otherwise page_freelist_lock() gets 265 * so expensive that it becomes the bottleneck! 266 */ 267 268 #define NPC_MUTEX 16 269 270 extern kmutex_t *fpc_mutex[NPC_MUTEX]; 271 extern kmutex_t *cpc_mutex[NPC_MUTEX]; 272 273 extern page_t *page_get_mnode_freelist(int, uint_t, int, uchar_t, uint_t); 274 extern page_t *page_get_mnode_cachelist(uint_t, uint_t, int, int); 275 276 /* Find the bin for the given page if it was of size szc */ 277 #define PP_2_BIN_SZC(pp, szc) \ 278 (((pp->p_pagenum) & page_colors_mask) >> \ 279 (hw_page_array[szc].hp_shift - hw_page_array[0].hp_shift)) 280 281 #define PP_2_BIN(pp) (PP_2_BIN_SZC(pp, pp->p_szc)) 282 283 #define PP_2_MEM_NODE(pp) (PFN_2_MEM_NODE(pp->p_pagenum)) 284 #define PP_2_MTYPE(pp) (pfn_2_mtype(pp->p_pagenum)) 285 #define PP_2_SZC(pp) (pp->p_szc) 286 287 #define SZCPAGES(szc) (1 << PAGE_BSZS_SHIFT(szc)) 288 #define PFN_BASE(pfnum, szc) (pfnum & ~(SZCPAGES(szc) - 1)) 289 290 extern struct cpu cpus[]; 291 #define CPU0 cpus 292 293 #if defined(__amd64) 294 295 /* 296 * set the mtype range (called from page_get_{free,cache}list) 297 * - set range to above 4g if the system has more than 4g of memory and the 298 * amount of memory below 4g runs low. If not, set range to above 16m if 299 * 16m threshold is reached otherwise set range to all of memory 300 * starting from the hi pfns. 301 * 302 * page_get_anylist gets its mtype range from the specified ddi_dma_attr_t. 303 */ 304 #define MTYPE_INIT(mtype, vp, vaddr, flags, pgsz) { \ 305 mtype = mnoderangecnt - 1; \ 306 if (RESTRICT4G_ALLOC) { \ 307 VM_STAT_ADD(vmm_vmstats.restrict4gcnt); \ 308 /* here only for > 4g systems */ \ 309 flags |= PGI_MT_RANGE4G; \ 310 } else if (RESTRICT16M_ALLOC(freemem, btop(pgsz))) { \ 311 flags |= PGI_MT_RANGE16M; \ 312 } else { \ 313 VM_STAT_ADD(vmm_vmstats.unrestrict16mcnt); \ 314 flags |= PGI_MT_RANGE0; \ 315 } \ 316 } 317 318 #elif defined(__i386) 319 320 /* 321 * set the mtype range 322 * - kmem requests needs to be below 4g if restricted_kmemalloc is set. 323 * - for non kmem requests, set range to above 4g if the amount of memory 324 * below 4g runs low. 325 */ 326 327 #define MTYPE_INIT(mtype, vp, vaddr, flags, pgsz) { \ 328 if (restricted_kmemalloc && (vp) == &kvp && \ 329 (caddr_t)(vaddr) >= kernelheap && \ 330 (caddr_t)(vaddr) < ekernelheap) { \ 331 ASSERT(physmax4g); \ 332 mtype = mtype4g; \ 333 if (RESTRICT16M_ALLOC(freemem4g - btop(pgsz), \ 334 btop(pgsz))) { \ 335 flags |= PGI_MT_RANGE16M; \ 336 } else { \ 337 VM_STAT_ADD(vmm_vmstats.unrestrict16mcnt); \ 338 flags |= PGI_MT_RANGE0; \ 339 } \ 340 } else { \ 341 mtype = mnoderangecnt - 1; \ 342 if (RESTRICT4G_ALLOC) { \ 343 VM_STAT_ADD(vmm_vmstats.restrict4gcnt); \ 344 /* here only for > 4g systems */ \ 345 flags |= PGI_MT_RANGE4G; \ 346 } else if (RESTRICT16M_ALLOC(freemem, btop(pgsz))) { \ 347 flags |= PGI_MT_RANGE16M; \ 348 } else { \ 349 VM_STAT_ADD(vmm_vmstats.unrestrict16mcnt); \ 350 flags |= PGI_MT_RANGE0; \ 351 } \ 352 } \ 353 } 354 355 #endif /* __i386 */ 356 357 /* 358 * macros to loop through the mtype range (page_get_mnode_{free,cache,any}list, 359 * and page_get_contig_pages) 360 * 361 * MTYPE_START sets the initial mtype. -1 if the mtype range specified does 362 * not contain mnode. 363 * 364 * MTYPE_NEXT sets the next mtype. -1 if there are no more valid 365 * mtype in the range. 366 */ 367 368 #define MTYPE_START(mnode, mtype, flags) \ 369 (mtype = mtype_func(mnode, mtype, flags)) 370 371 #define MTYPE_NEXT(mnode, mtype, flags) { \ 372 if (flags & PGI_MT_RANGE) { \ 373 mtype = mtype_func(mnode, mtype, flags | PGI_MT_NEXT); \ 374 } else { \ 375 mtype = -1; \ 376 } \ 377 } 378 379 /* mtype init for page_get_replacement_page */ 380 381 #define MTYPE_PGR_INIT(mtype, flags, pp, mnode, pgcnt) { \ 382 mtype = mnoderangecnt - 1; \ 383 if (RESTRICT16M_ALLOC(freemem, pgcnt)) { \ 384 flags |= PGI_MT_RANGE16M; \ 385 } else { \ 386 VM_STAT_ADD(vmm_vmstats.unrestrict16mcnt); \ 387 flags |= PGI_MT_RANGE0; \ 388 } \ 389 } 390 391 #define MNODE_PGCNT(mnode) mnode_pgcnt(mnode) 392 393 #define MNODETYPE_2_PFN(mnode, mtype, pfnlo, pfnhi) \ 394 ASSERT(mnoderanges[mtype].mnr_mnode == mnode); \ 395 pfnlo = mnoderanges[mtype].mnr_pfnlo; \ 396 pfnhi = mnoderanges[mtype].mnr_pfnhi; 397 398 #define PC_BIN_MUTEX(mnode, bin, flags) ((flags & PG_FREE_LIST) ? \ 399 &fpc_mutex[(bin) & (NPC_MUTEX - 1)][mnode] : \ 400 &cpc_mutex[(bin) & (NPC_MUTEX - 1)][mnode]) 401 402 #define FPC_MUTEX(mnode, i) (&fpc_mutex[i][mnode]) 403 #define CPC_MUTEX(mnode, i) (&cpc_mutex[i][mnode]) 404 405 #ifdef DEBUG 406 #define CHK_LPG(pp, szc) chk_lpg(pp, szc) 407 extern void chk_lpg(page_t *, uchar_t); 408 #else 409 #define CHK_LPG(pp, szc) 410 #endif 411 412 #define FULL_REGION_CNT(rg_szc) \ 413 (LEVEL_SIZE(rg_szc) >> LEVEL_SHIFT(rg_szc - 1)) 414 415 /* Return the leader for this mapping size */ 416 #define PP_GROUPLEADER(pp, szc) \ 417 (&(pp)[-(int)((pp)->p_pagenum & (SZCPAGES(szc)-1))]) 418 419 /* Return the root page for this page based on p_szc */ 420 #define PP_PAGEROOT(pp) ((pp)->p_szc == 0 ? (pp) : \ 421 PP_GROUPLEADER((pp), (pp)->p_szc)) 422 423 /* 424 * The counter base must be per page_counter element to prevent 425 * races when re-indexing, and the base page size element should 426 * be aligned on a boundary of the given region size. 427 * 428 * We also round up the number of pages spanned by the counters 429 * for a given region to PC_BASE_ALIGN in certain situations to simplify 430 * the coding for some non-performance critical routines. 431 */ 432 433 #define PC_BASE_ALIGN ((pfn_t)1 << PAGE_BSZS_SHIFT(MMU_PAGE_SIZES-1)) 434 #define PC_BASE_ALIGN_MASK (PC_BASE_ALIGN - 1) 435 436 /* 437 * cpu/mmu-dependent vm variables 438 */ 439 extern uint_t mmu_page_sizes; 440 extern uint_t mmu_exported_page_sizes; 441 442 /* For x86, userszc is the same as the kernel's szc */ 443 #define USERSZC_2_SZC(userszc) (userszc) 444 #define SZC_2_USERSZC(szc) (szc) 445 446 /* 447 * for hw_page_map_t, sized to hold the ratio of large page to base 448 * pagesize (1024 max) 449 */ 450 typedef short hpmctr_t; 451 452 /* 453 * get the setsize of the current cpu - assume homogenous for x86 454 */ 455 extern int l2cache_sz, l2cache_linesz, l2cache_assoc; 456 457 #define L2CACHE_ALIGN l2cache_linesz 458 #define L2CACHE_ALIGN_MAX 64 459 #define CPUSETSIZE() \ 460 (l2cache_assoc ? (l2cache_sz / l2cache_assoc) : MMU_PAGESIZE) 461 462 /* 463 * Return the log2(pagesize(szc) / MMU_PAGESIZE) --- or the shift count 464 * for the number of base pages in this pagesize 465 */ 466 #define PAGE_BSZS_SHIFT(szc) (LEVEL_SHIFT(szc) - MMU_PAGESHIFT) 467 468 /* 469 * Internal PG_ flags. 470 */ 471 #define PGI_RELOCONLY 0x010000 /* opposite of PG_NORELOC */ 472 #define PGI_NOCAGE 0x020000 /* cage is disabled */ 473 #define PGI_PGCPHIPRI 0x040000 /* page_get_contig_page pri alloc */ 474 #define PGI_PGCPSZC0 0x080000 /* relocate base pagesize page */ 475 476 /* 477 * PGI range flags - should not overlap PGI flags 478 */ 479 #define PGI_MT_RANGE0 0x1000000 /* mtype range to 0 */ 480 #define PGI_MT_RANGE16M 0x2000000 /* mtype range to 16m */ 481 #define PGI_MT_RANGE4G 0x4000000 /* mtype range to 4g */ 482 #define PGI_MT_NEXT 0x8000000 /* get next mtype */ 483 #define PGI_MT_RANGE (PGI_MT_RANGE0 | PGI_MT_RANGE16M | PGI_MT_RANGE4G) 484 485 /* 486 * hash as and addr to get a bin. 487 */ 488 489 #define AS_2_BIN(as, seg, vp, addr, bin) \ 490 bin = ((((uintptr_t)(addr) >> PAGESHIFT) + ((uintptr_t)(as) >> 4)) \ 491 & page_colors_mask) 492 493 /* 494 * cpu private vm data - accessed thru CPU->cpu_vm_data 495 * vc_pnum_memseg: tracks last memseg visited in page_numtopp_nolock() 496 * vc_pnext_memseg: tracks last memseg visited in page_nextn() 497 * vc_kmptr: orignal unaligned kmem pointer for this vm_cpu_data_t 498 * vc_kmsize: orignal kmem size for this vm_cpu_data_t 499 */ 500 501 typedef struct { 502 struct memseg *vc_pnum_memseg; 503 struct memseg *vc_pnext_memseg; 504 void *vc_kmptr; 505 size_t vc_kmsize; 506 } vm_cpu_data_t; 507 508 /* allocation size to ensure vm_cpu_data_t resides in its own cache line */ 509 #define VM_CPU_DATA_PADSIZE \ 510 (P2ROUNDUP(sizeof (vm_cpu_data_t), L2CACHE_ALIGN_MAX)) 511 512 /* for boot cpu before kmem is initialized */ 513 extern char vm_cpu_data0[]; 514 515 /* 516 * When a bin is empty, and we can't satisfy a color request correctly, 517 * we scan. If we assume that the programs have reasonable spatial 518 * behavior, then it will not be a good idea to use the adjacent color. 519 * Using the adjacent color would result in virtually adjacent addresses 520 * mapping into the same spot in the cache. So, if we stumble across 521 * an empty bin, skip a bunch before looking. After the first skip, 522 * then just look one bin at a time so we don't miss our cache on 523 * every look. Be sure to check every bin. Page_create() will panic 524 * if we miss a page. 525 * 526 * This also explains the `<=' in the for loops in both page_get_freelist() 527 * and page_get_cachelist(). Since we checked the target bin, skipped 528 * a bunch, then continued one a time, we wind up checking the target bin 529 * twice to make sure we get all of them bins. 530 */ 531 #define BIN_STEP 19 532 533 #ifdef VM_STATS 534 struct vmm_vmstats_str { 535 ulong_t pgf_alloc[MMU_PAGE_SIZES]; /* page_get_freelist */ 536 ulong_t pgf_allocok[MMU_PAGE_SIZES]; 537 ulong_t pgf_allocokrem[MMU_PAGE_SIZES]; 538 ulong_t pgf_allocfailed[MMU_PAGE_SIZES]; 539 ulong_t pgf_allocdeferred; 540 ulong_t pgf_allocretry[MMU_PAGE_SIZES]; 541 ulong_t pgc_alloc; /* page_get_cachelist */ 542 ulong_t pgc_allocok; 543 ulong_t pgc_allocokrem; 544 ulong_t pgc_allocokdeferred; 545 ulong_t pgc_allocfailed; 546 ulong_t pgcp_alloc[MMU_PAGE_SIZES]; /* page_get_contig_pages */ 547 ulong_t pgcp_allocfailed[MMU_PAGE_SIZES]; 548 ulong_t pgcp_allocempty[MMU_PAGE_SIZES]; 549 ulong_t pgcp_allocok[MMU_PAGE_SIZES]; 550 ulong_t ptcp[MMU_PAGE_SIZES]; /* page_trylock_contig_pages */ 551 ulong_t ptcpfreethresh[MMU_PAGE_SIZES]; 552 ulong_t ptcpfailexcl[MMU_PAGE_SIZES]; 553 ulong_t ptcpfailszc[MMU_PAGE_SIZES]; 554 ulong_t ptcpfailcage[MMU_PAGE_SIZES]; 555 ulong_t ptcpok[MMU_PAGE_SIZES]; 556 ulong_t pgmf_alloc[MMU_PAGE_SIZES]; /* page_get_mnode_freelist */ 557 ulong_t pgmf_allocfailed[MMU_PAGE_SIZES]; 558 ulong_t pgmf_allocempty[MMU_PAGE_SIZES]; 559 ulong_t pgmf_allocok[MMU_PAGE_SIZES]; 560 ulong_t pgmc_alloc; /* page_get_mnode_cachelist */ 561 ulong_t pgmc_allocfailed; 562 ulong_t pgmc_allocempty; 563 ulong_t pgmc_allocok; 564 ulong_t pladd_free[MMU_PAGE_SIZES]; /* page_list_add/sub */ 565 ulong_t plsub_free[MMU_PAGE_SIZES]; 566 ulong_t pladd_cache; 567 ulong_t plsub_cache; 568 ulong_t plsubpages_szcbig; 569 ulong_t plsubpages_szc0; 570 ulong_t pff_req[MMU_PAGE_SIZES]; /* page_freelist_fill */ 571 ulong_t pff_demote[MMU_PAGE_SIZES]; 572 ulong_t pff_coalok[MMU_PAGE_SIZES]; 573 ulong_t ppr_reloc[MMU_PAGE_SIZES]; /* page_relocate */ 574 ulong_t ppr_relocnoroot[MMU_PAGE_SIZES]; 575 ulong_t ppr_reloc_replnoroot[MMU_PAGE_SIZES]; 576 ulong_t ppr_relocnolock[MMU_PAGE_SIZES]; 577 ulong_t ppr_relocnomem[MMU_PAGE_SIZES]; 578 ulong_t ppr_relocok[MMU_PAGE_SIZES]; 579 ulong_t page_ctrs_coalesce; /* page coalesce counter */ 580 ulong_t page_ctrs_cands_skip; /* candidates useful */ 581 ulong_t page_ctrs_changed; /* ctrs changed after locking */ 582 ulong_t page_ctrs_failed; /* page_freelist_coalesce failed */ 583 ulong_t page_ctrs_coalesce_all; /* page coalesce all counter */ 584 ulong_t page_ctrs_cands_skip_all; /* candidates useful for all func */ 585 ulong_t restrict4gcnt; 586 ulong_t unrestrict16mcnt; /* non-DMA 16m allocs allowed */ 587 }; 588 extern struct vmm_vmstats_str vmm_vmstats; 589 #endif /* VM_STATS */ 590 591 extern size_t page_ctrs_sz(void); 592 extern caddr_t page_ctrs_alloc(caddr_t); 593 extern void page_ctr_sub(int, int, page_t *, int); 594 extern page_t *page_freelist_fill(uchar_t, int, int, int, pfn_t); 595 extern uint_t page_get_pagecolors(uint_t); 596 597 #ifdef __cplusplus 598 } 599 #endif 600 601 #endif /* _VM_DEP_H */ 602