xref: /illumos-gate/usr/src/uts/i86pc/vm/i86_mmu.c (revision 56f33205c9ed776c3c909e07d52e94610a675740)
1ae115bc7Smrj /*
2ae115bc7Smrj  * CDDL HEADER START
3ae115bc7Smrj  *
4ae115bc7Smrj  * The contents of this file are subject to the terms of the
5ae115bc7Smrj  * Common Development and Distribution License (the "License").
6ae115bc7Smrj  * You may not use this file except in compliance with the License.
7ae115bc7Smrj  *
8ae115bc7Smrj  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9ae115bc7Smrj  * or http://www.opensolaris.org/os/licensing.
10ae115bc7Smrj  * See the License for the specific language governing permissions
11ae115bc7Smrj  * and limitations under the License.
12ae115bc7Smrj  *
13ae115bc7Smrj  * When distributing Covered Code, include this CDDL HEADER in each
14ae115bc7Smrj  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15ae115bc7Smrj  * If applicable, add the following below this CDDL HEADER, with the
16ae115bc7Smrj  * fields enclosed by brackets "[]" replaced with your own identifying
17ae115bc7Smrj  * information: Portions Copyright [yyyy] [name of copyright owner]
18ae115bc7Smrj  *
19ae115bc7Smrj  * CDDL HEADER END
20ae115bc7Smrj  */
21ae115bc7Smrj /*
22*56f33205SJonathan Adams  * Copyright 2010 Sun Microsystems, Inc.  All rights reserved.
23ae115bc7Smrj  * Use is subject to license terms.
24ae115bc7Smrj  */
25ae115bc7Smrj 
26ae115bc7Smrj #include <sys/t_lock.h>
27ae115bc7Smrj #include <sys/memlist.h>
28ae115bc7Smrj #include <sys/cpuvar.h>
29ae115bc7Smrj #include <sys/vmem.h>
30ae115bc7Smrj #include <sys/mman.h>
31ae115bc7Smrj #include <sys/vm.h>
32ae115bc7Smrj #include <sys/kmem.h>
33ae115bc7Smrj #include <sys/cmn_err.h>
34ae115bc7Smrj #include <sys/debug.h>
35ae115bc7Smrj #include <sys/vm_machparam.h>
36ae115bc7Smrj #include <sys/tss.h>
37ae115bc7Smrj #include <sys/vnode.h>
38ae115bc7Smrj #include <vm/hat.h>
39ae115bc7Smrj #include <vm/anon.h>
40ae115bc7Smrj #include <vm/as.h>
41ae115bc7Smrj #include <vm/page.h>
42ae115bc7Smrj #include <vm/seg.h>
43ae115bc7Smrj #include <vm/seg_kmem.h>
44ae115bc7Smrj #include <vm/seg_map.h>
45ae115bc7Smrj #include <vm/hat_i86.h>
46ae115bc7Smrj #include <sys/promif.h>
47ae115bc7Smrj #include <sys/x86_archext.h>
48ae115bc7Smrj #include <sys/systm.h>
49ae115bc7Smrj #include <sys/archsystm.h>
50ae115bc7Smrj #include <sys/sunddi.h>
51ae115bc7Smrj #include <sys/ddidmareq.h>
52ae115bc7Smrj #include <sys/controlregs.h>
53ae115bc7Smrj #include <sys/reboot.h>
54ae115bc7Smrj #include <sys/kdi.h>
55ae115bc7Smrj #include <sys/bootconf.h>
56ae115bc7Smrj #include <sys/bootsvcs.h>
57ae115bc7Smrj #include <sys/bootinfo.h>
58ae115bc7Smrj #include <vm/kboot_mmu.h>
59ae115bc7Smrj 
60843e1988Sjohnlev #ifdef __xpv
61843e1988Sjohnlev #include <sys/hypervisor.h>
62843e1988Sjohnlev #endif
63843e1988Sjohnlev 
64ae115bc7Smrj caddr_t
65ae115bc7Smrj i86devmap(pfn_t pf, pgcnt_t pgcnt, uint_t prot)
66ae115bc7Smrj {
67ae115bc7Smrj 	caddr_t addr;
68ae115bc7Smrj 	caddr_t addr1;
69ae115bc7Smrj 	page_t *pp;
70ae115bc7Smrj 
71ae115bc7Smrj 	addr1 = addr = vmem_alloc(heap_arena, mmu_ptob(pgcnt), VM_SLEEP);
72ae115bc7Smrj 
73ae115bc7Smrj 	for (; pgcnt != 0; addr += MMU_PAGESIZE, ++pf, --pgcnt) {
74ae115bc7Smrj 		pp = page_numtopp_nolock(pf);
75ae115bc7Smrj 		if (pp == NULL) {
76ae115bc7Smrj 			hat_devload(kas.a_hat, addr, MMU_PAGESIZE, pf,
77ae115bc7Smrj 			    prot | HAT_NOSYNC, HAT_LOAD_LOCK);
78ae115bc7Smrj 		} else {
79ae115bc7Smrj 			hat_memload(kas.a_hat, addr, pp,
80ae115bc7Smrj 			    prot | HAT_NOSYNC, HAT_LOAD_LOCK);
81ae115bc7Smrj 		}
82ae115bc7Smrj 	}
83ae115bc7Smrj 
84ae115bc7Smrj 	return (addr1);
85ae115bc7Smrj }
86ae115bc7Smrj 
87ae115bc7Smrj /*
88ae115bc7Smrj  * This routine is like page_numtopp, but accepts only free pages, which
89ae115bc7Smrj  * it allocates (unfrees) and returns with the exclusive lock held.
90ae115bc7Smrj  * It is used by machdep.c/dma_init() to find contiguous free pages.
91ae115bc7Smrj  *
92ae115bc7Smrj  * XXX this and some others should probably be in vm_machdep.c
93ae115bc7Smrj  */
94ae115bc7Smrj page_t *
95ae115bc7Smrj page_numtopp_alloc(pfn_t pfnum)
96ae115bc7Smrj {
97ae115bc7Smrj 	page_t *pp;
98ae115bc7Smrj 
99ae115bc7Smrj retry:
100ae115bc7Smrj 	pp = page_numtopp_nolock(pfnum);
101ae115bc7Smrj 	if (pp == NULL) {
102ae115bc7Smrj 		return (NULL);
103ae115bc7Smrj 	}
104ae115bc7Smrj 
105ae115bc7Smrj 	if (!page_trylock(pp, SE_EXCL)) {
106ae115bc7Smrj 		return (NULL);
107ae115bc7Smrj 	}
108ae115bc7Smrj 
109ae115bc7Smrj 	if (page_pptonum(pp) != pfnum) {
110ae115bc7Smrj 		page_unlock(pp);
111ae115bc7Smrj 		goto retry;
112ae115bc7Smrj 	}
113ae115bc7Smrj 
114ae115bc7Smrj 	if (!PP_ISFREE(pp)) {
115ae115bc7Smrj 		page_unlock(pp);
116ae115bc7Smrj 		return (NULL);
117ae115bc7Smrj 	}
118ae115bc7Smrj 	if (pp->p_szc) {
119ae115bc7Smrj 		page_demote_free_pages(pp);
120ae115bc7Smrj 		page_unlock(pp);
121ae115bc7Smrj 		goto retry;
122ae115bc7Smrj 	}
123ae115bc7Smrj 
124ae115bc7Smrj 	/* If associated with a vnode, destroy mappings */
125ae115bc7Smrj 
126ae115bc7Smrj 	if (pp->p_vnode) {
127ae115bc7Smrj 
128ae115bc7Smrj 		page_destroy_free(pp);
129ae115bc7Smrj 
130ae115bc7Smrj 		if (!page_lock(pp, SE_EXCL, (kmutex_t *)NULL, P_NO_RECLAIM)) {
131ae115bc7Smrj 			return (NULL);
132ae115bc7Smrj 		}
133ae115bc7Smrj 
134ae115bc7Smrj 		if (page_pptonum(pp) != pfnum) {
135ae115bc7Smrj 			page_unlock(pp);
136ae115bc7Smrj 			goto retry;
137ae115bc7Smrj 		}
138ae115bc7Smrj 	}
139ae115bc7Smrj 
1401d03c31eSjohnlev 	if (!PP_ISFREE(pp)) {
141ae115bc7Smrj 		page_unlock(pp);
142ae115bc7Smrj 		return (NULL);
143ae115bc7Smrj 	}
144ae115bc7Smrj 
1451d03c31eSjohnlev 	if (!page_reclaim(pp, (kmutex_t *)NULL))
1461d03c31eSjohnlev 		return (NULL);
1471d03c31eSjohnlev 
148ae115bc7Smrj 	return (pp);
149ae115bc7Smrj }
150ae115bc7Smrj 
151ae115bc7Smrj /*
152ae115bc7Smrj  * Flag is not set early in boot. Once it is set we are no longer
153ae115bc7Smrj  * using boot's page tables.
154ae115bc7Smrj  */
155ae115bc7Smrj uint_t khat_running = 0;
156ae115bc7Smrj 
157ae115bc7Smrj /*
158ae115bc7Smrj  * This procedure is callable only while the boot loader is in charge of the
159ae115bc7Smrj  * MMU. It assumes that PA == VA for page table pointers.  It doesn't live in
160ae115bc7Smrj  * kboot_mmu.c since it's used from common code.
161ae115bc7Smrj  */
162ae115bc7Smrj pfn_t
163ae115bc7Smrj va_to_pfn(void *vaddr)
164ae115bc7Smrj {
165ae115bc7Smrj 	uintptr_t	des_va = ALIGN2PAGE(vaddr);
166ae115bc7Smrj 	uintptr_t	va = des_va;
167ae115bc7Smrj 	size_t		len;
168ae115bc7Smrj 	uint_t		prot;
169ae115bc7Smrj 	pfn_t		pfn;
170ae115bc7Smrj 
171ae115bc7Smrj 	if (khat_running)
172ae115bc7Smrj 		panic("va_to_pfn(): called too late\n");
173ae115bc7Smrj 
174ae115bc7Smrj 	if (kbm_probe(&va, &len, &pfn, &prot) == 0)
175ae115bc7Smrj 		return (PFN_INVALID);
176ae115bc7Smrj 	if (va > des_va)
177ae115bc7Smrj 		return (PFN_INVALID);
178ae115bc7Smrj 	if (va < des_va)
179ae115bc7Smrj 		pfn += mmu_btop(des_va - va);
180ae115bc7Smrj 	return (pfn);
181ae115bc7Smrj }
182ae115bc7Smrj 
183ae115bc7Smrj /*
184ae115bc7Smrj  * Initialize a special area in the kernel that always holds some PTEs for
185ae115bc7Smrj  * faster performance. This always holds segmap's PTEs.
186ae115bc7Smrj  * In the 32 bit kernel this maps the kernel heap too.
187ae115bc7Smrj  */
188ae115bc7Smrj void
189ae115bc7Smrj hat_kmap_init(uintptr_t base, size_t len)
190ae115bc7Smrj {
191ae115bc7Smrj 	uintptr_t map_addr;	/* base rounded down to large page size */
192ae115bc7Smrj 	uintptr_t map_eaddr;	/* base + len rounded up */
193ae115bc7Smrj 	size_t map_len;
194ae115bc7Smrj 	caddr_t ptes;		/* mapping area in kernel for kmap ptes */
195ae115bc7Smrj 	size_t window_size;	/* size of mapping area for ptes */
196ae115bc7Smrj 	ulong_t htable_cnt;	/* # of page tables to cover map_len */
197ae115bc7Smrj 	ulong_t i;
198ae115bc7Smrj 	htable_t *ht;
199ae115bc7Smrj 	uintptr_t va;
200ae115bc7Smrj 
201ae115bc7Smrj 	/*
202ae115bc7Smrj 	 * We have to map in an area that matches an entire page table.
203843e1988Sjohnlev 	 * The PTEs are large page aligned to avoid spurious pagefaults
204843e1988Sjohnlev 	 * on the hypervisor.
205ae115bc7Smrj 	 */
206ae115bc7Smrj 	map_addr = base & LEVEL_MASK(1);
207ae115bc7Smrj 	map_eaddr = (base + len + LEVEL_SIZE(1) - 1) & LEVEL_MASK(1);
208ae115bc7Smrj 	map_len = map_eaddr - map_addr;
209ae115bc7Smrj 	window_size = mmu_btop(map_len) * mmu.pte_size;
210ae115bc7Smrj 	window_size = (window_size + LEVEL_SIZE(1)) & LEVEL_MASK(1);
211ae115bc7Smrj 	htable_cnt = map_len >> LEVEL_SHIFT(1);
212ae115bc7Smrj 
213ae115bc7Smrj 	/*
214ae115bc7Smrj 	 * allocate vmem for the kmap_ptes
215ae115bc7Smrj 	 */
216ae115bc7Smrj 	ptes = vmem_xalloc(heap_arena, window_size, LEVEL_SIZE(1), 0,
217ae115bc7Smrj 	    0, NULL, NULL, VM_SLEEP);
218ae115bc7Smrj 	mmu.kmap_htables =
219ae115bc7Smrj 	    kmem_alloc(htable_cnt * sizeof (htable_t *), KM_SLEEP);
220ae115bc7Smrj 
221ae115bc7Smrj 	/*
222ae115bc7Smrj 	 * Map the page tables that cover kmap into the allocated range.
223ae115bc7Smrj 	 * Note we don't ever htable_release() the kmap page tables - they
224ae115bc7Smrj 	 * can't ever be stolen, freed, etc.
225ae115bc7Smrj 	 */
226ae115bc7Smrj 	for (va = map_addr, i = 0; i < htable_cnt; va += LEVEL_SIZE(1), ++i) {
227ae115bc7Smrj 		ht = htable_create(kas.a_hat, va, 0, NULL);
228ae115bc7Smrj 		if (ht == NULL)
229ae115bc7Smrj 			panic("hat_kmap_init: ht == NULL");
230ae115bc7Smrj 		mmu.kmap_htables[i] = ht;
231ae115bc7Smrj 
232ae115bc7Smrj 		hat_devload(kas.a_hat, ptes + i * MMU_PAGESIZE,
233ae115bc7Smrj 		    MMU_PAGESIZE, ht->ht_pfn,
234843e1988Sjohnlev #ifdef __xpv
235843e1988Sjohnlev 		    PROT_READ | HAT_NOSYNC | HAT_UNORDERED_OK,
236843e1988Sjohnlev #else
237ae115bc7Smrj 		    PROT_READ | PROT_WRITE | HAT_NOSYNC | HAT_UNORDERED_OK,
238843e1988Sjohnlev #endif
239ae115bc7Smrj 		    HAT_LOAD | HAT_LOAD_NOCONSIST);
240ae115bc7Smrj 	}
241ae115bc7Smrj 
242ae115bc7Smrj 	/*
243ae115bc7Smrj 	 * set information in mmu to activate handling of kmap
244ae115bc7Smrj 	 */
245ae115bc7Smrj 	mmu.kmap_addr = map_addr;
246ae115bc7Smrj 	mmu.kmap_eaddr = map_eaddr;
247ae115bc7Smrj 	mmu.kmap_ptes = (x86pte_t *)ptes;
248ae115bc7Smrj }
249ae115bc7Smrj 
250ae115bc7Smrj extern caddr_t	kpm_vbase;
251ae115bc7Smrj extern size_t	kpm_size;
252ae115bc7Smrj 
253843e1988Sjohnlev #ifdef __xpv
254843e1988Sjohnlev /*
255843e1988Sjohnlev  * Create the initial segkpm mappings for the hypervisor. To avoid having
256843e1988Sjohnlev  * to deal with page tables being read only, we make all mappings
257843e1988Sjohnlev  * read only at first.
258843e1988Sjohnlev  */
259843e1988Sjohnlev static void
260843e1988Sjohnlev xen_kpm_create(paddr_t paddr, level_t lvl)
261843e1988Sjohnlev {
262843e1988Sjohnlev 	ulong_t pg_off;
263843e1988Sjohnlev 
264843e1988Sjohnlev 	for (pg_off = 0; pg_off < LEVEL_SIZE(lvl); pg_off += MMU_PAGESIZE) {
265843e1988Sjohnlev 		kbm_map((uintptr_t)kpm_vbase + paddr, (paddr_t)0, 0, 1);
266843e1988Sjohnlev 		kbm_read_only((uintptr_t)kpm_vbase + paddr + pg_off,
267843e1988Sjohnlev 		    paddr + pg_off);
268843e1988Sjohnlev 	}
269843e1988Sjohnlev }
270843e1988Sjohnlev 
271843e1988Sjohnlev /*
272843e1988Sjohnlev  * Try to make all kpm mappings writable. Failures are ok, as those
273843e1988Sjohnlev  * are just pagetable, GDT, etc. pages.
274843e1988Sjohnlev  */
275843e1988Sjohnlev static void
276843e1988Sjohnlev xen_kpm_finish_init(void)
277843e1988Sjohnlev {
278843e1988Sjohnlev 	pfn_t gdtpfn = mmu_btop(CPU->cpu_m.mcpu_gdtpa);
279843e1988Sjohnlev 	pfn_t pfn;
280843e1988Sjohnlev 	page_t *pp;
281843e1988Sjohnlev 
282843e1988Sjohnlev 	for (pfn = 0; pfn < mfn_count; ++pfn) {
283843e1988Sjohnlev 		/*
284843e1988Sjohnlev 		 * skip gdt
285843e1988Sjohnlev 		 */
286843e1988Sjohnlev 		if (pfn == gdtpfn)
287843e1988Sjohnlev 			continue;
288843e1988Sjohnlev 
289843e1988Sjohnlev 		/*
290843e1988Sjohnlev 		 * p_index is a hint that this is a pagetable
291843e1988Sjohnlev 		 */
292843e1988Sjohnlev 		pp = page_numtopp_nolock(pfn);
293843e1988Sjohnlev 		if (pp && pp->p_index) {
294843e1988Sjohnlev 			pp->p_index = 0;
295843e1988Sjohnlev 			continue;
296843e1988Sjohnlev 		}
297843e1988Sjohnlev 		(void) xen_kpm_page(pfn, PT_VALID | PT_WRITABLE);
298843e1988Sjohnlev 	}
299843e1988Sjohnlev }
300843e1988Sjohnlev #endif
301843e1988Sjohnlev 
302ae115bc7Smrj /*
303ae115bc7Smrj  * Routine to pre-allocate data structures for hat_kern_setup(). It computes
304ae115bc7Smrj  * how many pagetables it needs by walking the boot loader's page tables.
305ae115bc7Smrj  */
306ae115bc7Smrj /*ARGSUSED*/
307ae115bc7Smrj void
308ae115bc7Smrj hat_kern_alloc(
309ae115bc7Smrj 	caddr_t	segmap_base,
310ae115bc7Smrj 	size_t	segmap_size,
311ae115bc7Smrj 	caddr_t	ekernelheap)
312ae115bc7Smrj {
313ae115bc7Smrj 	uintptr_t	last_va = (uintptr_t)-1;	/* catch 1st time */
314ae115bc7Smrj 	uintptr_t	va = 0;
315ae115bc7Smrj 	size_t		size;
316ae115bc7Smrj 	pfn_t		pfn;
317ae115bc7Smrj 	uint_t		prot;
318ae115bc7Smrj 	uint_t		table_cnt = 1;
319ae115bc7Smrj 	uint_t		mapping_cnt;
320ae115bc7Smrj 	level_t		start_level;
321ae115bc7Smrj 	level_t		l;
322ae115bc7Smrj 	struct memlist	*pmem;
323ae115bc7Smrj 	level_t		lpagel = mmu.max_page_level;
324ae115bc7Smrj 	uint64_t	paddr;
325ae115bc7Smrj 	int64_t		psize;
326843e1988Sjohnlev 	int		nwindows;
327ae115bc7Smrj 
328ae115bc7Smrj 	if (kpm_size > 0) {
329ae115bc7Smrj 		/*
330843e1988Sjohnlev 		 * Create the kpm page tables.  When running on the
331843e1988Sjohnlev 		 * hypervisor these are made read/only at first.
332843e1988Sjohnlev 		 * Later we'll add write permission where possible.
333ae115bc7Smrj 		 */
334*56f33205SJonathan Adams 		for (pmem = phys_install; pmem; pmem = pmem->ml_next) {
335*56f33205SJonathan Adams 			paddr = pmem->ml_address;
336*56f33205SJonathan Adams 			psize = pmem->ml_size;
337ae115bc7Smrj 			while (psize >= MMU_PAGESIZE) {
33802bc52beSkchow 				/* find the largest page size */
33902bc52beSkchow 				for (l = lpagel; l > 0; l--) {
34002bc52beSkchow 					if ((paddr & LEVEL_OFFSET(l)) == 0 &&
34102bc52beSkchow 					    psize > LEVEL_SIZE(l))
34202bc52beSkchow 						break;
34302bc52beSkchow 				}
34402bc52beSkchow 
345843e1988Sjohnlev #if defined(__xpv)
346843e1988Sjohnlev 				/*
347843e1988Sjohnlev 				 * Create read/only mappings to avoid
348843e1988Sjohnlev 				 * conflicting with pagetable usage
349843e1988Sjohnlev 				 */
350843e1988Sjohnlev 				xen_kpm_create(paddr, l);
351843e1988Sjohnlev #else
352ae115bc7Smrj 				kbm_map((uintptr_t)kpm_vbase + paddr, paddr,
353ae115bc7Smrj 				    l, 1);
354843e1988Sjohnlev #endif
355ae115bc7Smrj 				paddr += LEVEL_SIZE(l);
356ae115bc7Smrj 				psize -= LEVEL_SIZE(l);
357ae115bc7Smrj 			}
358ae115bc7Smrj 		}
359843e1988Sjohnlev 	}
360843e1988Sjohnlev 
361843e1988Sjohnlev 	/*
362843e1988Sjohnlev 	 * If this machine doesn't have a kpm segment, we need to allocate
363843e1988Sjohnlev 	 * a small number of 'windows' which can be used to map pagetables.
364843e1988Sjohnlev 	 */
365843e1988Sjohnlev 	nwindows = (kpm_size == 0) ? 2 * NCPU : 0;
366843e1988Sjohnlev 
367843e1988Sjohnlev #if defined(__xpv)
368843e1988Sjohnlev 	/*
369843e1988Sjohnlev 	 * On a hypervisor, these windows are also used by the xpv_panic
370843e1988Sjohnlev 	 * code, where we need one window for each level of the pagetable
371843e1988Sjohnlev 	 * hierarchy.
372843e1988Sjohnlev 	 */
373843e1988Sjohnlev 	nwindows = MAX(nwindows, mmu.max_level);
374843e1988Sjohnlev #endif
375843e1988Sjohnlev 
376843e1988Sjohnlev 	if (nwindows != 0) {
377ae115bc7Smrj 		/*
378ae115bc7Smrj 		 * Create the page windows and 1 page of VA in
379ae115bc7Smrj 		 * which we map the PTEs of those windows.
380ae115bc7Smrj 		 */
381843e1988Sjohnlev 		mmu.pwin_base = vmem_xalloc(heap_arena, nwindows * MMU_PAGESIZE,
382ae115bc7Smrj 		    LEVEL_SIZE(1), 0, 0, NULL, NULL, VM_SLEEP);
383843e1988Sjohnlev 		ASSERT(nwindows <= MMU_PAGESIZE / mmu.pte_size);
384ae115bc7Smrj 		mmu.pwin_pte_va = vmem_xalloc(heap_arena, MMU_PAGESIZE,
385ae115bc7Smrj 		    MMU_PAGESIZE, 0, 0, NULL, NULL, VM_SLEEP);
386ae115bc7Smrj 
387ae115bc7Smrj 		/*
388ae115bc7Smrj 		 * Find/Create the page table window mappings.
389ae115bc7Smrj 		 */
390ae115bc7Smrj 		paddr = 0;
391ae115bc7Smrj 		(void) find_pte((uintptr_t)mmu.pwin_base, &paddr, 0, 0);
392ae115bc7Smrj 		ASSERT(paddr != 0);
393ae115bc7Smrj 		ASSERT((paddr & MMU_PAGEOFFSET) == 0);
394ae115bc7Smrj 		mmu.pwin_pte_pa = paddr;
395843e1988Sjohnlev #ifdef __xpv
396843e1988Sjohnlev 		(void) find_pte((uintptr_t)mmu.pwin_pte_va, NULL, 0, 0);
397843e1988Sjohnlev 		kbm_read_only((uintptr_t)mmu.pwin_pte_va, mmu.pwin_pte_pa);
398843e1988Sjohnlev #else
399ae115bc7Smrj 		kbm_map((uintptr_t)mmu.pwin_pte_va, mmu.pwin_pte_pa, 0, 1);
400843e1988Sjohnlev #endif
401ae115bc7Smrj 	}
402ae115bc7Smrj 
403ae115bc7Smrj 	/*
404ae115bc7Smrj 	 * Walk the boot loader's page tables and figure out
405ae115bc7Smrj 	 * how many tables and page mappings there will be.
406ae115bc7Smrj 	 */
407ae115bc7Smrj 	while (kbm_probe(&va, &size, &pfn, &prot) != 0) {
408ae115bc7Smrj 		/*
409ae115bc7Smrj 		 * At each level, if the last_va falls into a new htable,
410ae115bc7Smrj 		 * increment table_cnt. We can stop at the 1st level where
411ae115bc7Smrj 		 * they are in the same htable.
412ae115bc7Smrj 		 */
413ae115bc7Smrj 		start_level = 0;
41402bc52beSkchow 		while (start_level <= mmu.max_page_level) {
41502bc52beSkchow 			if (size == LEVEL_SIZE(start_level))
41602bc52beSkchow 				break;
41702bc52beSkchow 			start_level++;
41802bc52beSkchow 		}
419ae115bc7Smrj 
420ae115bc7Smrj 		for (l = start_level; l < mmu.max_level; ++l) {
421ae115bc7Smrj 			if (va >> LEVEL_SHIFT(l + 1) ==
422ae115bc7Smrj 			    last_va >> LEVEL_SHIFT(l + 1))
423ae115bc7Smrj 				break;
424ae115bc7Smrj 			++table_cnt;
425ae115bc7Smrj 		}
426ae115bc7Smrj 		last_va = va;
42702bc52beSkchow 		l = (start_level == 0) ? 1 : start_level;
42802bc52beSkchow 		va = (va & LEVEL_MASK(l)) + LEVEL_SIZE(l);
429ae115bc7Smrj 	}
430ae115bc7Smrj 
431ae115bc7Smrj 	/*
432ae115bc7Smrj 	 * Besides the boot loader mappings, we're going to fill in
433ae115bc7Smrj 	 * the entire top level page table for the kernel. Make sure there's
434ae115bc7Smrj 	 * enough reserve for that too.
435ae115bc7Smrj 	 */
436ae115bc7Smrj 	table_cnt += mmu.top_level_count - ((kernelbase >>
437ae115bc7Smrj 	    LEVEL_SHIFT(mmu.max_level)) & (mmu.top_level_count - 1));
438ae115bc7Smrj 
439ae115bc7Smrj #if defined(__i386)
440ae115bc7Smrj 	/*
441ae115bc7Smrj 	 * The 32 bit PAE hat allocates tables one level below the top when
442ae115bc7Smrj 	 * kernelbase isn't 1 Gig aligned. We'll just be sloppy and allocate
443ae115bc7Smrj 	 * a bunch more to the reserve. Any unused will be returned later.
444ae115bc7Smrj 	 * Note we've already counted these mappings, just not the extra
445ae115bc7Smrj 	 * pagetables.
446ae115bc7Smrj 	 */
447ae115bc7Smrj 	if (mmu.pae_hat != 0 && (kernelbase & LEVEL_OFFSET(mmu.max_level)) != 0)
448ae115bc7Smrj 		table_cnt += mmu.ptes_per_table -
449ae115bc7Smrj 		    ((kernelbase & LEVEL_OFFSET(mmu.max_level)) >>
450ae115bc7Smrj 		    LEVEL_SHIFT(mmu.max_level - 1));
451ae115bc7Smrj #endif
452ae115bc7Smrj 
453ae115bc7Smrj 	/*
454ae115bc7Smrj 	 * Add 1/4 more into table_cnt for extra slop.  The unused
455ae115bc7Smrj 	 * slop is freed back when we htable_adjust_reserve() later.
456ae115bc7Smrj 	 */
457ae115bc7Smrj 	table_cnt += table_cnt >> 2;
458ae115bc7Smrj 
459ae115bc7Smrj 	/*
460ae115bc7Smrj 	 * We only need mapping entries (hments) for shared pages.
461ae115bc7Smrj 	 * This should be far, far fewer than the total possible,
462ae115bc7Smrj 	 * We'll allocate enough for 1/16 of all possible PTEs.
463ae115bc7Smrj 	 */
464ae115bc7Smrj 	mapping_cnt = (table_cnt * mmu.ptes_per_table) >> 4;
465ae115bc7Smrj 
466ae115bc7Smrj 	/*
467ae115bc7Smrj 	 * Now create the initial htable/hment reserves
468ae115bc7Smrj 	 */
469ae115bc7Smrj 	htable_initial_reserve(table_cnt);
470ae115bc7Smrj 	hment_reserve(mapping_cnt);
471ae115bc7Smrj 	x86pte_cpu_init(CPU);
472ae115bc7Smrj }
473ae115bc7Smrj 
474ae115bc7Smrj 
475ae115bc7Smrj /*
476ae115bc7Smrj  * This routine handles the work of creating the kernel's initial mappings
477ae115bc7Smrj  * by deciphering the mappings in the page tables created by the boot program.
478ae115bc7Smrj  *
479ae115bc7Smrj  * We maintain large page mappings, but only to a level 1 pagesize.
480ae115bc7Smrj  * The boot loader can only add new mappings once this function starts.
481ae115bc7Smrj  * In particular it can not change the pagesize used for any existing
482ae115bc7Smrj  * mappings or this code breaks!
483ae115bc7Smrj  */
484ae115bc7Smrj 
485ae115bc7Smrj void
486ae115bc7Smrj hat_kern_setup(void)
487ae115bc7Smrj {
488ae115bc7Smrj 	/*
489ae115bc7Smrj 	 * Attach htables to the existing pagetables
490ae115bc7Smrj 	 */
491843e1988Sjohnlev 	/* BEGIN CSTYLED */
492ae115bc7Smrj 	htable_attach(kas.a_hat, 0, mmu.max_level, NULL,
493843e1988Sjohnlev #ifdef __xpv
494843e1988Sjohnlev 	    mmu_btop(xen_info->pt_base - ONE_GIG));
495843e1988Sjohnlev #else
496ae115bc7Smrj 	    mmu_btop(getcr3()));
497843e1988Sjohnlev #endif
498843e1988Sjohnlev 	/* END CSTYLED */
499ae115bc7Smrj 
500843e1988Sjohnlev #if defined(__i386) && !defined(__xpv)
5010cfdb603Sjosephb 	CPU->cpu_tss->tss_cr3 = dftss0->tss_cr3 = getcr3();
502ae115bc7Smrj #endif /* __i386 */
503ae115bc7Smrj 
504843e1988Sjohnlev #if defined(__xpv) && defined(__amd64)
505843e1988Sjohnlev 	/*
506843e1988Sjohnlev 	 * Try to make the kpm mappings r/w. Failures here are OK, as
507843e1988Sjohnlev 	 * it's probably just a pagetable
508843e1988Sjohnlev 	 */
509843e1988Sjohnlev 	xen_kpm_finish_init();
510843e1988Sjohnlev #endif
511843e1988Sjohnlev 
512ae115bc7Smrj 	/*
513ae115bc7Smrj 	 * The kernel HAT is now officially open for business.
514ae115bc7Smrj 	 */
515ae115bc7Smrj 	khat_running = 1;
516ae115bc7Smrj 
517ae115bc7Smrj 	CPUSET_ATOMIC_ADD(kas.a_hat->hat_cpus, CPU->cpu_id);
518ae115bc7Smrj 	CPU->cpu_current_hat = kas.a_hat;
519ae115bc7Smrj }
520