1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2004, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2014 by Delphix. All rights reserved. 25 * Copyright 2018 Joyent, Inc. 26 */ 27 28 #include <sys/types.h> 29 #include <sys/sysmacros.h> 30 #include <sys/kmem.h> 31 #include <sys/atomic.h> 32 #include <sys/bitmap.h> 33 #include <sys/machparam.h> 34 #include <sys/machsystm.h> 35 #include <sys/mman.h> 36 #include <sys/systm.h> 37 #include <sys/cpuvar.h> 38 #include <sys/thread.h> 39 #include <sys/proc.h> 40 #include <sys/cpu.h> 41 #include <sys/kmem.h> 42 #include <sys/disp.h> 43 #include <sys/vmem.h> 44 #include <sys/vmsystm.h> 45 #include <sys/promif.h> 46 #include <sys/var.h> 47 #include <sys/x86_archext.h> 48 #include <sys/archsystm.h> 49 #include <sys/bootconf.h> 50 #include <sys/dumphdr.h> 51 #include <vm/seg_kmem.h> 52 #include <vm/seg_kpm.h> 53 #include <vm/hat.h> 54 #include <vm/hat_i86.h> 55 #include <sys/cmn_err.h> 56 #include <sys/panic.h> 57 58 #ifdef __xpv 59 #include <sys/hypervisor.h> 60 #include <sys/xpv_panic.h> 61 #endif 62 63 #include <sys/bootinfo.h> 64 #include <vm/kboot_mmu.h> 65 66 static void x86pte_zero(htable_t *dest, uint_t entry, uint_t count); 67 68 kmem_cache_t *htable_cache; 69 70 /* 71 * The variable htable_reserve_amount, rather than HTABLE_RESERVE_AMOUNT, 72 * is used in order to facilitate testing of the htable_steal() code. 73 * By resetting htable_reserve_amount to a lower value, we can force 74 * stealing to occur. The reserve amount is a guess to get us through boot. 75 */ 76 #define HTABLE_RESERVE_AMOUNT (200) 77 uint_t htable_reserve_amount = HTABLE_RESERVE_AMOUNT; 78 kmutex_t htable_reserve_mutex; 79 uint_t htable_reserve_cnt; 80 htable_t *htable_reserve_pool; 81 82 /* 83 * Used to hand test htable_steal(). 84 */ 85 #ifdef DEBUG 86 ulong_t force_steal = 0; 87 ulong_t ptable_cnt = 0; 88 #endif 89 90 /* 91 * This variable is so that we can tune this via /etc/system 92 * Any value works, but a power of two <= mmu.ptes_per_table is best. 93 */ 94 uint_t htable_steal_passes = 8; 95 96 /* 97 * mutex stuff for access to htable hash 98 */ 99 #define NUM_HTABLE_MUTEX 128 100 kmutex_t htable_mutex[NUM_HTABLE_MUTEX]; 101 #define HTABLE_MUTEX_HASH(h) ((h) & (NUM_HTABLE_MUTEX - 1)) 102 103 #define HTABLE_ENTER(h) mutex_enter(&htable_mutex[HTABLE_MUTEX_HASH(h)]); 104 #define HTABLE_EXIT(h) mutex_exit(&htable_mutex[HTABLE_MUTEX_HASH(h)]); 105 106 /* 107 * forward declarations 108 */ 109 static void link_ptp(htable_t *higher, htable_t *new, uintptr_t vaddr); 110 static void unlink_ptp(htable_t *higher, htable_t *old, uintptr_t vaddr); 111 static void htable_free(htable_t *ht); 112 static x86pte_t *x86pte_access_pagetable(htable_t *ht, uint_t index); 113 static void x86pte_release_pagetable(htable_t *ht); 114 static x86pte_t x86pte_cas(htable_t *ht, uint_t entry, x86pte_t old, 115 x86pte_t new); 116 117 /* 118 * A counter to track if we are stealing or reaping htables. When non-zero 119 * htable_free() will directly free htables (either to the reserve or kmem) 120 * instead of putting them in a hat's htable cache. 121 */ 122 uint32_t htable_dont_cache = 0; 123 124 /* 125 * Track the number of active pagetables, so we can know how many to reap 126 */ 127 static uint32_t active_ptables = 0; 128 129 #ifdef __xpv 130 /* 131 * Deal with hypervisor complications. 132 */ 133 void 134 xen_flush_va(caddr_t va) 135 { 136 struct mmuext_op t; 137 uint_t count; 138 139 if (IN_XPV_PANIC()) { 140 mmu_flush_tlb_page((uintptr_t)va); 141 } else { 142 t.cmd = MMUEXT_INVLPG_LOCAL; 143 t.arg1.linear_addr = (uintptr_t)va; 144 if (HYPERVISOR_mmuext_op(&t, 1, &count, DOMID_SELF) < 0) 145 panic("HYPERVISOR_mmuext_op() failed"); 146 ASSERT(count == 1); 147 } 148 } 149 150 void 151 xen_gflush_va(caddr_t va, cpuset_t cpus) 152 { 153 struct mmuext_op t; 154 uint_t count; 155 156 if (IN_XPV_PANIC()) { 157 mmu_flush_tlb_page((uintptr_t)va); 158 return; 159 } 160 161 t.cmd = MMUEXT_INVLPG_MULTI; 162 t.arg1.linear_addr = (uintptr_t)va; 163 /*LINTED: constant in conditional context*/ 164 set_xen_guest_handle(t.arg2.vcpumask, &cpus); 165 if (HYPERVISOR_mmuext_op(&t, 1, &count, DOMID_SELF) < 0) 166 panic("HYPERVISOR_mmuext_op() failed"); 167 ASSERT(count == 1); 168 } 169 170 void 171 xen_flush_tlb() 172 { 173 struct mmuext_op t; 174 uint_t count; 175 176 if (IN_XPV_PANIC()) { 177 xpv_panic_reload_cr3(); 178 } else { 179 t.cmd = MMUEXT_TLB_FLUSH_LOCAL; 180 if (HYPERVISOR_mmuext_op(&t, 1, &count, DOMID_SELF) < 0) 181 panic("HYPERVISOR_mmuext_op() failed"); 182 ASSERT(count == 1); 183 } 184 } 185 186 void 187 xen_gflush_tlb(cpuset_t cpus) 188 { 189 struct mmuext_op t; 190 uint_t count; 191 192 ASSERT(!IN_XPV_PANIC()); 193 t.cmd = MMUEXT_TLB_FLUSH_MULTI; 194 /*LINTED: constant in conditional context*/ 195 set_xen_guest_handle(t.arg2.vcpumask, &cpus); 196 if (HYPERVISOR_mmuext_op(&t, 1, &count, DOMID_SELF) < 0) 197 panic("HYPERVISOR_mmuext_op() failed"); 198 ASSERT(count == 1); 199 } 200 201 /* 202 * Install/Adjust a kpm mapping under the hypervisor. 203 * Value of "how" should be: 204 * PT_WRITABLE | PT_VALID - regular kpm mapping 205 * PT_VALID - make mapping read-only 206 * 0 - remove mapping 207 * 208 * returns 0 on success. non-zero for failure. 209 */ 210 int 211 xen_kpm_page(pfn_t pfn, uint_t how) 212 { 213 paddr_t pa = mmu_ptob((paddr_t)pfn); 214 x86pte_t pte = PT_NOCONSIST | PT_REF | PT_MOD; 215 216 if (kpm_vbase == NULL) 217 return (0); 218 219 if (how) 220 pte |= pa_to_ma(pa) | how; 221 else 222 pte = 0; 223 return (HYPERVISOR_update_va_mapping((uintptr_t)kpm_vbase + pa, 224 pte, UVMF_INVLPG | UVMF_ALL)); 225 } 226 227 void 228 xen_pin(pfn_t pfn, level_t lvl) 229 { 230 struct mmuext_op t; 231 uint_t count; 232 233 t.cmd = MMUEXT_PIN_L1_TABLE + lvl; 234 t.arg1.mfn = pfn_to_mfn(pfn); 235 if (HYPERVISOR_mmuext_op(&t, 1, &count, DOMID_SELF) < 0) 236 panic("HYPERVISOR_mmuext_op() failed"); 237 ASSERT(count == 1); 238 } 239 240 void 241 xen_unpin(pfn_t pfn) 242 { 243 struct mmuext_op t; 244 uint_t count; 245 246 t.cmd = MMUEXT_UNPIN_TABLE; 247 t.arg1.mfn = pfn_to_mfn(pfn); 248 if (HYPERVISOR_mmuext_op(&t, 1, &count, DOMID_SELF) < 0) 249 panic("HYPERVISOR_mmuext_op() failed"); 250 ASSERT(count == 1); 251 } 252 253 static void 254 xen_map(uint64_t pte, caddr_t va) 255 { 256 if (HYPERVISOR_update_va_mapping((uintptr_t)va, pte, 257 UVMF_INVLPG | UVMF_LOCAL)) 258 panic("HYPERVISOR_update_va_mapping() failed"); 259 } 260 #endif /* __xpv */ 261 262 /* 263 * Allocate a memory page for a hardware page table. 264 * 265 * A wrapper around page_get_physical(), with some extra checks. 266 */ 267 static pfn_t 268 ptable_alloc(uintptr_t seed) 269 { 270 pfn_t pfn; 271 page_t *pp; 272 273 pfn = PFN_INVALID; 274 275 /* 276 * The first check is to see if there is memory in the system. If we 277 * drop to throttlefree, then fail the ptable_alloc() and let the 278 * stealing code kick in. Note that we have to do this test here, 279 * since the test in page_create_throttle() would let the NOSLEEP 280 * allocation go through and deplete the page reserves. 281 * 282 * The !NOMEMWAIT() lets pageout, fsflush, etc. skip this check. 283 */ 284 if (!NOMEMWAIT() && freemem <= throttlefree + 1) 285 return (PFN_INVALID); 286 287 #ifdef DEBUG 288 /* 289 * This code makes htable_steal() easier to test. By setting 290 * force_steal we force pagetable allocations to fall 291 * into the stealing code. Roughly 1 in ever "force_steal" 292 * page table allocations will fail. 293 */ 294 if (proc_pageout != NULL && force_steal > 1 && 295 ++ptable_cnt > force_steal) { 296 ptable_cnt = 0; 297 return (PFN_INVALID); 298 } 299 #endif /* DEBUG */ 300 301 pp = page_get_physical(seed); 302 if (pp == NULL) 303 return (PFN_INVALID); 304 ASSERT(PAGE_SHARED(pp)); 305 pfn = pp->p_pagenum; 306 if (pfn == PFN_INVALID) 307 panic("ptable_alloc(): Invalid PFN!!"); 308 atomic_inc_32(&active_ptables); 309 HATSTAT_INC(hs_ptable_allocs); 310 return (pfn); 311 } 312 313 /* 314 * Free an htable's associated page table page. See the comments 315 * for ptable_alloc(). 316 */ 317 static void 318 ptable_free(pfn_t pfn) 319 { 320 page_t *pp = page_numtopp_nolock(pfn); 321 322 /* 323 * need to destroy the page used for the pagetable 324 */ 325 ASSERT(pfn != PFN_INVALID); 326 HATSTAT_INC(hs_ptable_frees); 327 atomic_dec_32(&active_ptables); 328 if (pp == NULL) 329 panic("ptable_free(): no page for pfn!"); 330 ASSERT(PAGE_SHARED(pp)); 331 ASSERT(pfn == pp->p_pagenum); 332 ASSERT(!IN_XPV_PANIC()); 333 334 /* 335 * Get an exclusive lock, might have to wait for a kmem reader. 336 */ 337 if (!page_tryupgrade(pp)) { 338 u_offset_t off = pp->p_offset; 339 page_unlock(pp); 340 pp = page_lookup(&kvp, off, SE_EXCL); 341 if (pp == NULL) 342 panic("page not found"); 343 } 344 #ifdef __xpv 345 if (kpm_vbase && xen_kpm_page(pfn, PT_VALID | PT_WRITABLE) < 0) 346 panic("failure making kpm r/w pfn=0x%lx", pfn); 347 #endif 348 page_hashout(pp, NULL); 349 page_free(pp, 1); 350 page_unresv(1); 351 } 352 353 /* 354 * Put one htable on the reserve list. 355 */ 356 static void 357 htable_put_reserve(htable_t *ht) 358 { 359 ht->ht_hat = NULL; /* no longer tied to a hat */ 360 ASSERT(ht->ht_pfn == PFN_INVALID); 361 HATSTAT_INC(hs_htable_rputs); 362 mutex_enter(&htable_reserve_mutex); 363 ht->ht_next = htable_reserve_pool; 364 htable_reserve_pool = ht; 365 ++htable_reserve_cnt; 366 mutex_exit(&htable_reserve_mutex); 367 } 368 369 /* 370 * Take one htable from the reserve. 371 */ 372 static htable_t * 373 htable_get_reserve(void) 374 { 375 htable_t *ht = NULL; 376 377 mutex_enter(&htable_reserve_mutex); 378 if (htable_reserve_cnt != 0) { 379 ht = htable_reserve_pool; 380 ASSERT(ht != NULL); 381 ASSERT(ht->ht_pfn == PFN_INVALID); 382 htable_reserve_pool = ht->ht_next; 383 --htable_reserve_cnt; 384 HATSTAT_INC(hs_htable_rgets); 385 } 386 mutex_exit(&htable_reserve_mutex); 387 return (ht); 388 } 389 390 /* 391 * Allocate initial htables and put them on the reserve list 392 */ 393 void 394 htable_initial_reserve(uint_t count) 395 { 396 htable_t *ht; 397 398 count += HTABLE_RESERVE_AMOUNT; 399 while (count > 0) { 400 ht = kmem_cache_alloc(htable_cache, KM_NOSLEEP); 401 ASSERT(ht != NULL); 402 403 ASSERT(use_boot_reserve); 404 ht->ht_pfn = PFN_INVALID; 405 htable_put_reserve(ht); 406 --count; 407 } 408 } 409 410 /* 411 * Readjust the reserves after a thread finishes using them. 412 */ 413 void 414 htable_adjust_reserve() 415 { 416 htable_t *ht; 417 418 /* 419 * Free any excess htables in the reserve list 420 */ 421 while (htable_reserve_cnt > htable_reserve_amount && 422 !USE_HAT_RESERVES()) { 423 ht = htable_get_reserve(); 424 if (ht == NULL) 425 return; 426 ASSERT(ht->ht_pfn == PFN_INVALID); 427 kmem_cache_free(htable_cache, ht); 428 } 429 } 430 431 /* 432 * Search the active htables for one to steal. Start at a different hash 433 * bucket every time to help spread the pain of stealing 434 */ 435 static void 436 htable_steal_active(hat_t *hat, uint_t cnt, uint_t threshold, 437 uint_t *stolen, htable_t **list) 438 { 439 static uint_t h_seed = 0; 440 htable_t *higher, *ht; 441 uint_t h, e, h_start; 442 uintptr_t va; 443 x86pte_t pte; 444 445 h = h_start = h_seed++ % hat->hat_num_hash; 446 do { 447 higher = NULL; 448 HTABLE_ENTER(h); 449 for (ht = hat->hat_ht_hash[h]; ht; ht = ht->ht_next) { 450 451 /* 452 * Can we rule out reaping? 453 */ 454 if (ht->ht_busy != 0 || 455 (ht->ht_flags & HTABLE_SHARED_PFN) || 456 ht->ht_level > 0 || ht->ht_valid_cnt > threshold || 457 ht->ht_lock_cnt != 0) 458 continue; 459 460 /* 461 * Increment busy so the htable can't disappear. We 462 * drop the htable mutex to avoid deadlocks with 463 * hat_pageunload() and the hment mutex while we 464 * call hat_pte_unmap() 465 */ 466 ++ht->ht_busy; 467 HTABLE_EXIT(h); 468 469 /* 470 * Try stealing. 471 * - unload and invalidate all PTEs 472 */ 473 for (e = 0, va = ht->ht_vaddr; 474 e < HTABLE_NUM_PTES(ht) && ht->ht_valid_cnt > 0 && 475 ht->ht_busy == 1 && ht->ht_lock_cnt == 0; 476 ++e, va += MMU_PAGESIZE) { 477 pte = x86pte_get(ht, e); 478 if (!PTE_ISVALID(pte)) 479 continue; 480 hat_pte_unmap(ht, e, HAT_UNLOAD, pte, NULL, 481 B_TRUE); 482 } 483 484 /* 485 * Reacquire htable lock. If we didn't remove all 486 * mappings in the table, or another thread added a new 487 * mapping behind us, give up on this table. 488 */ 489 HTABLE_ENTER(h); 490 if (ht->ht_busy != 1 || ht->ht_valid_cnt != 0 || 491 ht->ht_lock_cnt != 0) { 492 --ht->ht_busy; 493 continue; 494 } 495 496 /* 497 * Steal it and unlink the page table. 498 */ 499 higher = ht->ht_parent; 500 unlink_ptp(higher, ht, ht->ht_vaddr); 501 502 /* 503 * remove from the hash list 504 */ 505 if (ht->ht_next) 506 ht->ht_next->ht_prev = ht->ht_prev; 507 508 if (ht->ht_prev) { 509 ht->ht_prev->ht_next = ht->ht_next; 510 } else { 511 ASSERT(hat->hat_ht_hash[h] == ht); 512 hat->hat_ht_hash[h] = ht->ht_next; 513 } 514 515 /* 516 * Break to outer loop to release the 517 * higher (ht_parent) pagetable. This 518 * spreads out the pain caused by 519 * pagefaults. 520 */ 521 ht->ht_next = *list; 522 *list = ht; 523 ++*stolen; 524 break; 525 } 526 HTABLE_EXIT(h); 527 if (higher != NULL) 528 htable_release(higher); 529 if (++h == hat->hat_num_hash) 530 h = 0; 531 } while (*stolen < cnt && h != h_start); 532 } 533 534 /* 535 * Move hat to the end of the kas list 536 */ 537 static void 538 move_victim(hat_t *hat) 539 { 540 ASSERT(MUTEX_HELD(&hat_list_lock)); 541 542 /* unlink victim hat */ 543 if (hat->hat_prev) 544 hat->hat_prev->hat_next = hat->hat_next; 545 else 546 kas.a_hat->hat_next = hat->hat_next; 547 548 if (hat->hat_next) 549 hat->hat_next->hat_prev = hat->hat_prev; 550 else 551 kas.a_hat->hat_prev = hat->hat_prev; 552 /* relink at end of hat list */ 553 hat->hat_next = NULL; 554 hat->hat_prev = kas.a_hat->hat_prev; 555 if (hat->hat_prev) 556 hat->hat_prev->hat_next = hat; 557 else 558 kas.a_hat->hat_next = hat; 559 560 kas.a_hat->hat_prev = hat; 561 } 562 563 /* 564 * This routine steals htables from user processes. Called by htable_reap 565 * (reap=TRUE) or htable_alloc (reap=FALSE). 566 */ 567 static htable_t * 568 htable_steal(uint_t cnt, boolean_t reap) 569 { 570 hat_t *hat = kas.a_hat; /* list starts with khat */ 571 htable_t *list = NULL; 572 htable_t *ht; 573 uint_t stolen = 0; 574 uint_t pass, passes; 575 uint_t threshold; 576 577 /* 578 * Limit htable_steal_passes to something reasonable 579 */ 580 if (htable_steal_passes == 0) 581 htable_steal_passes = 1; 582 if (htable_steal_passes > mmu.ptes_per_table) 583 htable_steal_passes = mmu.ptes_per_table; 584 585 /* 586 * If we're stealing merely as part of kmem reaping (versus stealing 587 * to assure forward progress), we don't want to actually steal any 588 * active htables. (Stealing active htables merely to give memory 589 * back to the system can inadvertently kick off an htable crime wave 590 * as active processes repeatedly steal htables from one another, 591 * plummeting the system into a kind of HAT lawlessness that can 592 * become so violent as to impede the one thing that can end it: the 593 * freeing of memory via ARC reclaim and other means.) So if we're 594 * reaping, we limit ourselves to the first pass that steals cached 595 * htables that aren't in use -- which gives memory back, but averts 596 * the entire breakdown of social order. 597 */ 598 passes = reap ? 0 : htable_steal_passes; 599 600 /* 601 * Loop through all user hats. The 1st pass takes cached htables that 602 * aren't in use. The later passes steal by removing mappings, too. 603 */ 604 atomic_inc_32(&htable_dont_cache); 605 for (pass = 0; pass <= passes && stolen < cnt; ++pass) { 606 threshold = pass * mmu.ptes_per_table / htable_steal_passes; 607 608 mutex_enter(&hat_list_lock); 609 610 /* skip the first hat (kernel) */ 611 hat = kas.a_hat->hat_next; 612 for (;;) { 613 /* 614 * Skip any hat that is already being stolen from. 615 * 616 * We skip SHARED hats, as these are dummy 617 * hats that host ISM shared page tables. 618 * 619 * We also skip if HAT_FREEING because hat_pte_unmap() 620 * won't zero out the PTE's. That would lead to hitting 621 * stale PTEs either here or under hat_unload() when we 622 * steal and unload the same page table in competing 623 * threads. 624 * 625 * We skip HATs that belong to CPUs, to make our lives 626 * simpler. 627 */ 628 while (hat != NULL && (hat->hat_flags & 629 (HAT_VICTIM | HAT_SHARED | HAT_FREEING | 630 HAT_PCP)) != 0) { 631 hat = hat->hat_next; 632 } 633 634 if (hat == NULL) 635 break; 636 637 /* 638 * Mark the HAT as a stealing victim so that it is 639 * not freed from under us, e.g. in as_free() 640 */ 641 hat->hat_flags |= HAT_VICTIM; 642 mutex_exit(&hat_list_lock); 643 644 /* 645 * Take any htables from the hat's cached "free" list. 646 */ 647 hat_enter(hat); 648 while ((ht = hat->hat_ht_cached) != NULL && 649 stolen < cnt) { 650 hat->hat_ht_cached = ht->ht_next; 651 ht->ht_next = list; 652 list = ht; 653 ++stolen; 654 } 655 hat_exit(hat); 656 657 /* 658 * Don't steal active htables on first pass. 659 */ 660 if (pass != 0 && (stolen < cnt)) 661 htable_steal_active(hat, cnt, threshold, 662 &stolen, &list); 663 664 /* 665 * do synchronous teardown for the reap case so that 666 * we can forget hat; at this time, hat is 667 * guaranteed to be around because HAT_VICTIM is set 668 * (see htable_free() for similar code) 669 */ 670 for (ht = list; (ht) && (reap); ht = ht->ht_next) { 671 if (ht->ht_hat == NULL) 672 continue; 673 ASSERT(ht->ht_hat == hat); 674 #if defined(__xpv) && defined(__amd64) 675 ASSERT(!(ht->ht_flags & HTABLE_COPIED)); 676 if (ht->ht_level == mmu.max_level) { 677 ptable_free(hat->hat_user_ptable); 678 hat->hat_user_ptable = PFN_INVALID; 679 } 680 #endif 681 /* 682 * forget the hat 683 */ 684 ht->ht_hat = NULL; 685 } 686 687 mutex_enter(&hat_list_lock); 688 689 /* 690 * Are we finished? 691 */ 692 if (stolen == cnt) { 693 /* 694 * Try to spread the pain of stealing, 695 * move victim HAT to the end of the HAT list. 696 */ 697 if (pass >= 1 && cnt == 1 && 698 kas.a_hat->hat_prev != hat) 699 move_victim(hat); 700 /* 701 * We are finished 702 */ 703 } 704 705 /* 706 * Clear the victim flag, hat can go away now (once 707 * the lock is dropped) 708 */ 709 if (hat->hat_flags & HAT_VICTIM) { 710 ASSERT(hat != kas.a_hat); 711 hat->hat_flags &= ~HAT_VICTIM; 712 cv_broadcast(&hat_list_cv); 713 } 714 715 /* move on to the next hat */ 716 hat = hat->hat_next; 717 } 718 719 mutex_exit(&hat_list_lock); 720 721 } 722 ASSERT(!MUTEX_HELD(&hat_list_lock)); 723 724 atomic_dec_32(&htable_dont_cache); 725 return (list); 726 } 727 728 /* 729 * This is invoked from kmem when the system is low on memory. We try 730 * to free hments, htables, and ptables to improve the memory situation. 731 */ 732 /*ARGSUSED*/ 733 static void 734 htable_reap(void *handle) 735 { 736 uint_t reap_cnt; 737 htable_t *list; 738 htable_t *ht; 739 740 HATSTAT_INC(hs_reap_attempts); 741 if (!can_steal_post_boot) 742 return; 743 744 /* 745 * Try to reap 5% of the page tables bounded by a maximum of 746 * 5% of physmem and a minimum of 10. 747 */ 748 reap_cnt = MAX(MIN(physmem / 20, active_ptables / 20), 10); 749 750 /* 751 * Note: htable_dont_cache should be set at the time of 752 * invoking htable_free() 753 */ 754 atomic_inc_32(&htable_dont_cache); 755 /* 756 * Let htable_steal() do the work, we just call htable_free() 757 */ 758 XPV_DISALLOW_MIGRATE(); 759 list = htable_steal(reap_cnt, B_TRUE); 760 XPV_ALLOW_MIGRATE(); 761 while ((ht = list) != NULL) { 762 list = ht->ht_next; 763 HATSTAT_INC(hs_reaped); 764 htable_free(ht); 765 } 766 atomic_dec_32(&htable_dont_cache); 767 768 /* 769 * Free up excess reserves 770 */ 771 htable_adjust_reserve(); 772 hment_adjust_reserve(); 773 } 774 775 /* 776 * Allocate an htable, stealing one or using the reserve if necessary 777 */ 778 static htable_t * 779 htable_alloc( 780 hat_t *hat, 781 uintptr_t vaddr, 782 level_t level, 783 htable_t *shared) 784 { 785 htable_t *ht = NULL; 786 uint_t is_copied; 787 uint_t is_bare = 0; 788 uint_t need_to_zero = 1; 789 int kmflags = (can_steal_post_boot ? KM_NOSLEEP : KM_SLEEP); 790 791 if (level < 0 || level > TOP_LEVEL(hat)) 792 panic("htable_alloc(): level %d out of range\n", level); 793 794 is_copied = (hat->hat_flags & HAT_COPIED) && 795 level == hat->hat_max_level; 796 if (is_copied || shared != NULL) 797 is_bare = 1; 798 799 /* 800 * First reuse a cached htable from the hat_ht_cached field, this 801 * avoids unnecessary trips through kmem/page allocators. 802 */ 803 if (hat->hat_ht_cached != NULL && !is_bare) { 804 hat_enter(hat); 805 ht = hat->hat_ht_cached; 806 if (ht != NULL) { 807 hat->hat_ht_cached = ht->ht_next; 808 need_to_zero = 0; 809 /* XX64 ASSERT() they're all zero somehow */ 810 ASSERT(ht->ht_pfn != PFN_INVALID); 811 } 812 hat_exit(hat); 813 } 814 815 if (ht == NULL) { 816 /* 817 * Allocate an htable, possibly refilling the reserves. 818 */ 819 if (USE_HAT_RESERVES()) { 820 ht = htable_get_reserve(); 821 } else { 822 /* 823 * Donate successful htable allocations to the reserve. 824 */ 825 for (;;) { 826 ht = kmem_cache_alloc(htable_cache, kmflags); 827 if (ht == NULL) 828 break; 829 ht->ht_pfn = PFN_INVALID; 830 if (USE_HAT_RESERVES() || 831 htable_reserve_cnt >= htable_reserve_amount) 832 break; 833 htable_put_reserve(ht); 834 } 835 } 836 837 /* 838 * allocate a page for the hardware page table if needed 839 */ 840 if (ht != NULL && !is_bare) { 841 ht->ht_hat = hat; 842 ht->ht_pfn = ptable_alloc((uintptr_t)ht); 843 if (ht->ht_pfn == PFN_INVALID) { 844 if (USE_HAT_RESERVES()) 845 htable_put_reserve(ht); 846 else 847 kmem_cache_free(htable_cache, ht); 848 ht = NULL; 849 } 850 } 851 } 852 853 /* 854 * If allocations failed, kick off a kmem_reap() and resort to 855 * htable steal(). We may spin here if the system is very low on 856 * memory. If the kernel itself has consumed all memory and kmem_reap() 857 * can't free up anything, then we'll really get stuck here. 858 * That should only happen in a system where the administrator has 859 * misconfigured VM parameters via /etc/system. 860 */ 861 while (ht == NULL && can_steal_post_boot) { 862 kmem_reap(); 863 ht = htable_steal(1, B_FALSE); 864 HATSTAT_INC(hs_steals); 865 866 /* 867 * If we stole for a bare htable, release the pagetable page. 868 */ 869 if (ht != NULL) { 870 if (is_bare) { 871 ptable_free(ht->ht_pfn); 872 ht->ht_pfn = PFN_INVALID; 873 #if defined(__xpv) && defined(__amd64) 874 /* 875 * make stolen page table writable again in kpm 876 */ 877 } else if (kpm_vbase && xen_kpm_page(ht->ht_pfn, 878 PT_VALID | PT_WRITABLE) < 0) { 879 panic("failure making kpm r/w pfn=0x%lx", 880 ht->ht_pfn); 881 #endif 882 } 883 } 884 } 885 886 /* 887 * All attempts to allocate or steal failed. This should only happen 888 * if we run out of memory during boot, due perhaps to a huge 889 * boot_archive. At this point there's no way to continue. 890 */ 891 if (ht == NULL) 892 panic("htable_alloc(): couldn't steal\n"); 893 894 #if defined(__amd64) && defined(__xpv) 895 /* 896 * Under the 64-bit hypervisor, we have 2 top level page tables. 897 * If this allocation fails, we'll resort to stealing. 898 * We use the stolen page indirectly, by freeing the 899 * stolen htable first. 900 */ 901 if (level == mmu.max_level) { 902 for (;;) { 903 htable_t *stolen; 904 905 hat->hat_user_ptable = ptable_alloc((uintptr_t)ht + 1); 906 if (hat->hat_user_ptable != PFN_INVALID) 907 break; 908 stolen = htable_steal(1, B_FALSE); 909 if (stolen == NULL) 910 panic("2nd steal ptable failed\n"); 911 htable_free(stolen); 912 } 913 block_zero_no_xmm(kpm_vbase + pfn_to_pa(hat->hat_user_ptable), 914 MMU_PAGESIZE); 915 } 916 #endif 917 918 /* 919 * Shared page tables have all entries locked and entries may not 920 * be added or deleted. 921 */ 922 ht->ht_flags = 0; 923 if (shared != NULL) { 924 ASSERT(shared->ht_valid_cnt > 0); 925 ht->ht_flags |= HTABLE_SHARED_PFN; 926 ht->ht_pfn = shared->ht_pfn; 927 ht->ht_lock_cnt = 0; 928 ht->ht_valid_cnt = 0; /* updated in hat_share() */ 929 ht->ht_shares = shared; 930 need_to_zero = 0; 931 } else { 932 ht->ht_shares = NULL; 933 ht->ht_lock_cnt = 0; 934 ht->ht_valid_cnt = 0; 935 } 936 937 /* 938 * setup flags, etc. for copied page tables. 939 */ 940 if (is_copied) { 941 ht->ht_flags |= HTABLE_COPIED; 942 ASSERT(ht->ht_pfn == PFN_INVALID); 943 need_to_zero = 0; 944 } 945 946 /* 947 * fill in the htable 948 */ 949 ht->ht_hat = hat; 950 ht->ht_parent = NULL; 951 ht->ht_vaddr = vaddr; 952 ht->ht_level = level; 953 ht->ht_busy = 1; 954 ht->ht_next = NULL; 955 ht->ht_prev = NULL; 956 957 /* 958 * Zero out any freshly allocated page table 959 */ 960 if (need_to_zero) 961 x86pte_zero(ht, 0, mmu.ptes_per_table); 962 963 #if defined(__amd64) && defined(__xpv) 964 if (!is_bare && kpm_vbase) { 965 (void) xen_kpm_page(ht->ht_pfn, PT_VALID); 966 if (level == mmu.max_level) 967 (void) xen_kpm_page(hat->hat_user_ptable, PT_VALID); 968 } 969 #endif 970 971 return (ht); 972 } 973 974 /* 975 * Free up an htable, either to a hat's cached list, the reserves or 976 * back to kmem. 977 */ 978 static void 979 htable_free(htable_t *ht) 980 { 981 hat_t *hat = ht->ht_hat; 982 983 /* 984 * If the process isn't exiting, cache the free htable in the hat 985 * structure. We always do this for the boot time reserve. We don't 986 * do this if the hat is exiting or we are stealing/reaping htables. 987 */ 988 if (hat != NULL && 989 !(ht->ht_flags & HTABLE_SHARED_PFN) && 990 (use_boot_reserve || 991 (!(hat->hat_flags & HAT_FREEING) && !htable_dont_cache))) { 992 ASSERT((ht->ht_flags & HTABLE_COPIED) == 0); 993 ASSERT(ht->ht_pfn != PFN_INVALID); 994 hat_enter(hat); 995 ht->ht_next = hat->hat_ht_cached; 996 hat->hat_ht_cached = ht; 997 hat_exit(hat); 998 return; 999 } 1000 1001 /* 1002 * If we have a hardware page table, free it. 1003 * We don't free page tables that are accessed by sharing. 1004 */ 1005 if (ht->ht_flags & HTABLE_SHARED_PFN) { 1006 ASSERT(ht->ht_pfn != PFN_INVALID); 1007 } else if (!(ht->ht_flags & HTABLE_COPIED)) { 1008 ptable_free(ht->ht_pfn); 1009 #if defined(__amd64) && defined(__xpv) 1010 if (ht->ht_level == mmu.max_level && hat != NULL) { 1011 ptable_free(hat->hat_user_ptable); 1012 hat->hat_user_ptable = PFN_INVALID; 1013 } 1014 #endif 1015 } 1016 ht->ht_pfn = PFN_INVALID; 1017 1018 /* 1019 * Free it or put into reserves. 1020 */ 1021 if (USE_HAT_RESERVES() || htable_reserve_cnt < htable_reserve_amount) { 1022 htable_put_reserve(ht); 1023 } else { 1024 kmem_cache_free(htable_cache, ht); 1025 htable_adjust_reserve(); 1026 } 1027 } 1028 1029 1030 /* 1031 * This is called when a hat is being destroyed or swapped out. We reap all 1032 * the remaining htables in the hat cache. If destroying all left over 1033 * htables are also destroyed. 1034 * 1035 * We also don't need to invalidate any of the PTPs nor do any demapping. 1036 */ 1037 void 1038 htable_purge_hat(hat_t *hat) 1039 { 1040 htable_t *ht; 1041 int h; 1042 1043 /* 1044 * Purge the htable cache if just reaping. 1045 */ 1046 if (!(hat->hat_flags & HAT_FREEING)) { 1047 atomic_inc_32(&htable_dont_cache); 1048 for (;;) { 1049 hat_enter(hat); 1050 ht = hat->hat_ht_cached; 1051 if (ht == NULL) { 1052 hat_exit(hat); 1053 break; 1054 } 1055 hat->hat_ht_cached = ht->ht_next; 1056 hat_exit(hat); 1057 htable_free(ht); 1058 } 1059 atomic_dec_32(&htable_dont_cache); 1060 return; 1061 } 1062 1063 /* 1064 * if freeing, no locking is needed 1065 */ 1066 while ((ht = hat->hat_ht_cached) != NULL) { 1067 hat->hat_ht_cached = ht->ht_next; 1068 htable_free(ht); 1069 } 1070 1071 /* 1072 * walk thru the htable hash table and free all the htables in it. 1073 */ 1074 for (h = 0; h < hat->hat_num_hash; ++h) { 1075 while ((ht = hat->hat_ht_hash[h]) != NULL) { 1076 if (ht->ht_next) 1077 ht->ht_next->ht_prev = ht->ht_prev; 1078 1079 if (ht->ht_prev) { 1080 ht->ht_prev->ht_next = ht->ht_next; 1081 } else { 1082 ASSERT(hat->hat_ht_hash[h] == ht); 1083 hat->hat_ht_hash[h] = ht->ht_next; 1084 } 1085 htable_free(ht); 1086 } 1087 } 1088 } 1089 1090 /* 1091 * Unlink an entry for a table at vaddr and level out of the existing table 1092 * one level higher. We are always holding the HASH_ENTER() when doing this. 1093 */ 1094 static void 1095 unlink_ptp(htable_t *higher, htable_t *old, uintptr_t vaddr) 1096 { 1097 uint_t entry = htable_va2entry(vaddr, higher); 1098 x86pte_t expect = MAKEPTP(old->ht_pfn, old->ht_level); 1099 x86pte_t found; 1100 hat_t *hat = old->ht_hat; 1101 1102 ASSERT(higher->ht_busy > 0); 1103 ASSERT(higher->ht_valid_cnt > 0); 1104 ASSERT(old->ht_valid_cnt == 0); 1105 found = x86pte_cas(higher, entry, expect, 0); 1106 #ifdef __xpv 1107 /* 1108 * This is weird, but Xen apparently automatically unlinks empty 1109 * pagetables from the upper page table. So allow PTP to be 0 already. 1110 */ 1111 if (found != expect && found != 0) 1112 #else 1113 if (found != expect) 1114 #endif 1115 panic("Bad PTP found=" FMT_PTE ", expected=" FMT_PTE, 1116 found, expect); 1117 1118 /* 1119 * When a top level PTE changes for a copied htable, we must trigger a 1120 * hat_pcp_update() on all HAT CPUs. 1121 * 1122 * If we don't need do do that, then we still have to INVLPG against an 1123 * address covered by the inner page table, as the latest processors 1124 * have TLB-like caches for non-leaf page table entries. 1125 */ 1126 if (!(hat->hat_flags & HAT_FREEING)) { 1127 hat_tlb_inval(hat, (higher->ht_flags & HTABLE_COPIED) ? 1128 DEMAP_ALL_ADDR : old->ht_vaddr); 1129 } 1130 1131 HTABLE_DEC(higher->ht_valid_cnt); 1132 } 1133 1134 /* 1135 * Link an entry for a new table at vaddr and level into the existing table 1136 * one level higher. We are always holding the HASH_ENTER() when doing this. 1137 */ 1138 static void 1139 link_ptp(htable_t *higher, htable_t *new, uintptr_t vaddr) 1140 { 1141 uint_t entry = htable_va2entry(vaddr, higher); 1142 x86pte_t newptp = MAKEPTP(new->ht_pfn, new->ht_level); 1143 x86pte_t found; 1144 1145 ASSERT(higher->ht_busy > 0); 1146 1147 ASSERT(new->ht_level != mmu.max_level); 1148 1149 HTABLE_INC(higher->ht_valid_cnt); 1150 1151 found = x86pte_cas(higher, entry, 0, newptp); 1152 if ((found & ~PT_REF) != 0) 1153 panic("HAT: ptp not 0, found=" FMT_PTE, found); 1154 1155 /* 1156 * When a top level PTE changes for a copied htable, we must trigger a 1157 * hat_pcp_update() on all HAT CPUs. 1158 * 1159 * We also need to do this for the kernel hat on PAE 32 bit kernel. 1160 */ 1161 if ( 1162 #ifdef __i386 1163 (higher->ht_hat == kas.a_hat && 1164 higher->ht_level == higher->ht_hat->hat_max_level) || 1165 #endif 1166 (higher->ht_flags & HTABLE_COPIED)) 1167 hat_tlb_inval(higher->ht_hat, DEMAP_ALL_ADDR); 1168 } 1169 1170 /* 1171 * Release of hold on an htable. If this is the last use and the pagetable 1172 * is empty we may want to free it, then recursively look at the pagetable 1173 * above it. The recursion is handled by the outer while() loop. 1174 * 1175 * On the metal, during process exit, we don't bother unlinking the tables from 1176 * upper level pagetables. They are instead handled in bulk by hat_free_end(). 1177 * We can't do this on the hypervisor as we need the page table to be 1178 * implicitly unpinnned before it goes to the free page lists. This can't 1179 * happen unless we fully unlink it from the page table hierarchy. 1180 */ 1181 void 1182 htable_release(htable_t *ht) 1183 { 1184 uint_t hashval; 1185 htable_t *shared; 1186 htable_t *higher; 1187 hat_t *hat; 1188 uintptr_t va; 1189 level_t level; 1190 1191 while (ht != NULL) { 1192 shared = NULL; 1193 for (;;) { 1194 hat = ht->ht_hat; 1195 va = ht->ht_vaddr; 1196 level = ht->ht_level; 1197 hashval = HTABLE_HASH(hat, va, level); 1198 1199 /* 1200 * The common case is that this isn't the last use of 1201 * an htable so we don't want to free the htable. 1202 */ 1203 HTABLE_ENTER(hashval); 1204 ASSERT(ht->ht_valid_cnt >= 0); 1205 ASSERT(ht->ht_busy > 0); 1206 if (ht->ht_valid_cnt > 0) 1207 break; 1208 if (ht->ht_busy > 1) 1209 break; 1210 ASSERT(ht->ht_lock_cnt == 0); 1211 1212 #if !defined(__xpv) 1213 /* 1214 * we always release empty shared htables 1215 */ 1216 if (!(ht->ht_flags & HTABLE_SHARED_PFN)) { 1217 1218 /* 1219 * don't release if in address space tear down 1220 */ 1221 if (hat->hat_flags & HAT_FREEING) 1222 break; 1223 1224 /* 1225 * At and above max_page_level, free if it's for 1226 * a boot-time kernel mapping below kernelbase. 1227 */ 1228 if (level >= mmu.max_page_level && 1229 (hat != kas.a_hat || va >= kernelbase)) 1230 break; 1231 } 1232 #endif /* __xpv */ 1233 1234 /* 1235 * Remember if we destroy an htable that shares its PFN 1236 * from elsewhere. 1237 */ 1238 if (ht->ht_flags & HTABLE_SHARED_PFN) { 1239 ASSERT(shared == NULL); 1240 shared = ht->ht_shares; 1241 HATSTAT_INC(hs_htable_unshared); 1242 } 1243 1244 /* 1245 * Handle release of a table and freeing the htable_t. 1246 * Unlink it from the table higher (ie. ht_parent). 1247 */ 1248 higher = ht->ht_parent; 1249 ASSERT(higher != NULL); 1250 1251 /* 1252 * Unlink the pagetable. 1253 */ 1254 unlink_ptp(higher, ht, va); 1255 1256 /* 1257 * remove this htable from its hash list 1258 */ 1259 if (ht->ht_next) 1260 ht->ht_next->ht_prev = ht->ht_prev; 1261 1262 if (ht->ht_prev) { 1263 ht->ht_prev->ht_next = ht->ht_next; 1264 } else { 1265 ASSERT(hat->hat_ht_hash[hashval] == ht); 1266 hat->hat_ht_hash[hashval] = ht->ht_next; 1267 } 1268 HTABLE_EXIT(hashval); 1269 htable_free(ht); 1270 ht = higher; 1271 } 1272 1273 ASSERT(ht->ht_busy >= 1); 1274 --ht->ht_busy; 1275 HTABLE_EXIT(hashval); 1276 1277 /* 1278 * If we released a shared htable, do a release on the htable 1279 * from which it shared 1280 */ 1281 ht = shared; 1282 } 1283 } 1284 1285 /* 1286 * Find the htable for the pagetable at the given level for the given address. 1287 * If found acquires a hold that eventually needs to be htable_release()d 1288 */ 1289 htable_t * 1290 htable_lookup(hat_t *hat, uintptr_t vaddr, level_t level) 1291 { 1292 uintptr_t base; 1293 uint_t hashval; 1294 htable_t *ht = NULL; 1295 1296 ASSERT(level >= 0); 1297 ASSERT(level <= TOP_LEVEL(hat)); 1298 1299 if (level == TOP_LEVEL(hat)) { 1300 #if defined(__amd64) 1301 /* 1302 * 32 bit address spaces on 64 bit kernels need to check 1303 * for overflow of the 32 bit address space 1304 */ 1305 if ((hat->hat_flags & HAT_COPIED_32) && 1306 vaddr >= ((uint64_t)1 << 32)) 1307 return (NULL); 1308 #endif 1309 base = 0; 1310 } else { 1311 base = vaddr & LEVEL_MASK(level + 1); 1312 } 1313 1314 hashval = HTABLE_HASH(hat, base, level); 1315 HTABLE_ENTER(hashval); 1316 for (ht = hat->hat_ht_hash[hashval]; ht; ht = ht->ht_next) { 1317 if (ht->ht_hat == hat && 1318 ht->ht_vaddr == base && 1319 ht->ht_level == level) 1320 break; 1321 } 1322 if (ht) 1323 ++ht->ht_busy; 1324 1325 HTABLE_EXIT(hashval); 1326 return (ht); 1327 } 1328 1329 /* 1330 * Acquires a hold on a known htable (from a locked hment entry). 1331 */ 1332 void 1333 htable_acquire(htable_t *ht) 1334 { 1335 hat_t *hat = ht->ht_hat; 1336 level_t level = ht->ht_level; 1337 uintptr_t base = ht->ht_vaddr; 1338 uint_t hashval = HTABLE_HASH(hat, base, level); 1339 1340 HTABLE_ENTER(hashval); 1341 #ifdef DEBUG 1342 /* 1343 * make sure the htable is there 1344 */ 1345 { 1346 htable_t *h; 1347 1348 for (h = hat->hat_ht_hash[hashval]; 1349 h && h != ht; 1350 h = h->ht_next) 1351 ; 1352 ASSERT(h == ht); 1353 } 1354 #endif /* DEBUG */ 1355 ++ht->ht_busy; 1356 HTABLE_EXIT(hashval); 1357 } 1358 1359 /* 1360 * Find the htable for the pagetable at the given level for the given address. 1361 * If found acquires a hold that eventually needs to be htable_release()d 1362 * If not found the table is created. 1363 * 1364 * Since we can't hold a hash table mutex during allocation, we have to 1365 * drop it and redo the search on a create. Then we may have to free the newly 1366 * allocated htable if another thread raced in and created it ahead of us. 1367 */ 1368 htable_t * 1369 htable_create( 1370 hat_t *hat, 1371 uintptr_t vaddr, 1372 level_t level, 1373 htable_t *shared) 1374 { 1375 uint_t h; 1376 level_t l; 1377 uintptr_t base; 1378 htable_t *ht; 1379 htable_t *higher = NULL; 1380 htable_t *new = NULL; 1381 1382 if (level < 0 || level > TOP_LEVEL(hat)) 1383 panic("htable_create(): level %d out of range\n", level); 1384 1385 ht = NULL; 1386 /* 1387 * Create the page tables in top down order. 1388 */ 1389 for (l = TOP_LEVEL(hat); l >= level; --l) { 1390 new = NULL; 1391 if (l == TOP_LEVEL(hat)) 1392 base = 0; 1393 else 1394 base = vaddr & LEVEL_MASK(l + 1); 1395 1396 h = HTABLE_HASH(hat, base, l); 1397 try_again: 1398 /* 1399 * look up the htable at this level 1400 */ 1401 HTABLE_ENTER(h); 1402 if (l == TOP_LEVEL(hat)) { 1403 ht = hat->hat_htable; 1404 } else { 1405 for (ht = hat->hat_ht_hash[h]; ht; ht = ht->ht_next) { 1406 ASSERT(ht->ht_hat == hat); 1407 if (ht->ht_vaddr == base && 1408 ht->ht_level == l) 1409 break; 1410 } 1411 } 1412 1413 /* 1414 * if we found the htable, increment its busy cnt 1415 * and if we had allocated a new htable, free it. 1416 */ 1417 if (ht != NULL) { 1418 /* 1419 * If we find a pre-existing shared table, it must 1420 * share from the same place. 1421 */ 1422 if (l == level && shared && ht->ht_shares && 1423 ht->ht_shares != shared) { 1424 panic("htable shared from wrong place " 1425 "found htable=%p shared=%p", 1426 (void *)ht, (void *)shared); 1427 } 1428 ++ht->ht_busy; 1429 HTABLE_EXIT(h); 1430 if (new) 1431 htable_free(new); 1432 if (higher != NULL) 1433 htable_release(higher); 1434 higher = ht; 1435 1436 /* 1437 * if we didn't find it on the first search 1438 * allocate a new one and search again 1439 */ 1440 } else if (new == NULL) { 1441 HTABLE_EXIT(h); 1442 new = htable_alloc(hat, base, l, 1443 l == level ? shared : NULL); 1444 goto try_again; 1445 1446 /* 1447 * 2nd search and still not there, use "new" table 1448 * Link new table into higher, when not at top level. 1449 */ 1450 } else { 1451 ht = new; 1452 if (higher != NULL) { 1453 link_ptp(higher, ht, base); 1454 ht->ht_parent = higher; 1455 } 1456 ht->ht_next = hat->hat_ht_hash[h]; 1457 ASSERT(ht->ht_prev == NULL); 1458 if (hat->hat_ht_hash[h]) 1459 hat->hat_ht_hash[h]->ht_prev = ht; 1460 hat->hat_ht_hash[h] = ht; 1461 HTABLE_EXIT(h); 1462 1463 /* 1464 * Note we don't do htable_release(higher). 1465 * That happens recursively when "new" is removed by 1466 * htable_release() or htable_steal(). 1467 */ 1468 higher = ht; 1469 1470 /* 1471 * If we just created a new shared page table we 1472 * increment the shared htable's busy count, so that 1473 * it can't be the victim of a steal even if it's empty. 1474 */ 1475 if (l == level && shared) { 1476 (void) htable_lookup(shared->ht_hat, 1477 shared->ht_vaddr, shared->ht_level); 1478 HATSTAT_INC(hs_htable_shared); 1479 } 1480 } 1481 } 1482 1483 return (ht); 1484 } 1485 1486 /* 1487 * Inherit initial pagetables from the boot program. On the 64-bit 1488 * hypervisor we also temporarily mark the p_index field of page table 1489 * pages, so we know not to try making them writable in seg_kpm. 1490 */ 1491 void 1492 htable_attach( 1493 hat_t *hat, 1494 uintptr_t base, 1495 level_t level, 1496 htable_t *parent, 1497 pfn_t pfn) 1498 { 1499 htable_t *ht; 1500 uint_t h; 1501 uint_t i; 1502 x86pte_t pte; 1503 x86pte_t *ptep; 1504 page_t *pp; 1505 extern page_t *boot_claim_page(pfn_t); 1506 1507 ht = htable_get_reserve(); 1508 if (level == mmu.max_level) 1509 kas.a_hat->hat_htable = ht; 1510 ht->ht_hat = hat; 1511 ht->ht_parent = parent; 1512 ht->ht_vaddr = base; 1513 ht->ht_level = level; 1514 ht->ht_busy = 1; 1515 ht->ht_next = NULL; 1516 ht->ht_prev = NULL; 1517 ht->ht_flags = 0; 1518 ht->ht_pfn = pfn; 1519 ht->ht_lock_cnt = 0; 1520 ht->ht_valid_cnt = 0; 1521 if (parent != NULL) 1522 ++parent->ht_busy; 1523 1524 h = HTABLE_HASH(hat, base, level); 1525 HTABLE_ENTER(h); 1526 ht->ht_next = hat->hat_ht_hash[h]; 1527 ASSERT(ht->ht_prev == NULL); 1528 if (hat->hat_ht_hash[h]) 1529 hat->hat_ht_hash[h]->ht_prev = ht; 1530 hat->hat_ht_hash[h] = ht; 1531 HTABLE_EXIT(h); 1532 1533 /* 1534 * make sure the page table physical page is not FREE 1535 */ 1536 if (page_resv(1, KM_NOSLEEP) == 0) 1537 panic("page_resv() failed in ptable alloc"); 1538 1539 pp = boot_claim_page(pfn); 1540 ASSERT(pp != NULL); 1541 1542 /* 1543 * Page table pages that were allocated by dboot or 1544 * in very early startup didn't go through boot_mapin() 1545 * and so won't have vnode/offsets. Fix that here. 1546 */ 1547 if (pp->p_vnode == NULL) { 1548 /* match offset calculation in page_get_physical() */ 1549 u_offset_t offset = (uintptr_t)ht; 1550 if (offset > kernelbase) 1551 offset -= kernelbase; 1552 offset <<= MMU_PAGESHIFT; 1553 #if defined(__amd64) 1554 offset += mmu.hole_start; /* something in VA hole */ 1555 #else 1556 offset += 1ULL << 40; /* something > 4 Gig */ 1557 #endif 1558 ASSERT(page_exists(&kvp, offset) == NULL); 1559 (void) page_hashin(pp, &kvp, offset, NULL); 1560 } 1561 page_downgrade(pp); 1562 #if defined(__xpv) && defined(__amd64) 1563 /* 1564 * Record in the page_t that is a pagetable for segkpm setup. 1565 */ 1566 if (kpm_vbase) 1567 pp->p_index = 1; 1568 #endif 1569 1570 /* 1571 * Count valid mappings and recursively attach lower level pagetables. 1572 */ 1573 ptep = kbm_remap_window(pfn_to_pa(pfn), 0); 1574 for (i = 0; i < HTABLE_NUM_PTES(ht); ++i) { 1575 if (mmu.pae_hat) 1576 pte = ptep[i]; 1577 else 1578 pte = ((x86pte32_t *)ptep)[i]; 1579 if (!IN_HYPERVISOR_VA(base) && PTE_ISVALID(pte)) { 1580 ++ht->ht_valid_cnt; 1581 if (!PTE_ISPAGE(pte, level)) { 1582 htable_attach(hat, base, level - 1, 1583 ht, PTE2PFN(pte, level)); 1584 ptep = kbm_remap_window(pfn_to_pa(pfn), 0); 1585 } 1586 } 1587 base += LEVEL_SIZE(level); 1588 if (base == mmu.hole_start) 1589 base = (mmu.hole_end + MMU_PAGEOFFSET) & MMU_PAGEMASK; 1590 } 1591 1592 /* 1593 * As long as all the mappings we had were below kernel base 1594 * we can release the htable. 1595 */ 1596 if (base < kernelbase) 1597 htable_release(ht); 1598 } 1599 1600 /* 1601 * Walk through a given htable looking for the first valid entry. This 1602 * routine takes both a starting and ending address. The starting address 1603 * is required to be within the htable provided by the caller, but there is 1604 * no such restriction on the ending address. 1605 * 1606 * If the routine finds a valid entry in the htable (at or beyond the 1607 * starting address), the PTE (and its address) will be returned. 1608 * This PTE may correspond to either a page or a pagetable - it is the 1609 * caller's responsibility to determine which. If no valid entry is 1610 * found, 0 (and invalid PTE) and the next unexamined address will be 1611 * returned. 1612 * 1613 * The loop has been carefully coded for optimization. 1614 */ 1615 static x86pte_t 1616 htable_scan(htable_t *ht, uintptr_t *vap, uintptr_t eaddr) 1617 { 1618 uint_t e; 1619 x86pte_t found_pte = (x86pte_t)0; 1620 caddr_t pte_ptr; 1621 caddr_t end_pte_ptr; 1622 int l = ht->ht_level; 1623 uintptr_t va = *vap & LEVEL_MASK(l); 1624 size_t pgsize = LEVEL_SIZE(l); 1625 1626 ASSERT(va >= ht->ht_vaddr); 1627 ASSERT(va <= HTABLE_LAST_PAGE(ht)); 1628 1629 /* 1630 * Compute the starting index and ending virtual address 1631 */ 1632 e = htable_va2entry(va, ht); 1633 1634 /* 1635 * The following page table scan code knows that the valid 1636 * bit of a PTE is in the lowest byte AND that x86 is little endian!! 1637 */ 1638 pte_ptr = (caddr_t)x86pte_access_pagetable(ht, 0); 1639 end_pte_ptr = (caddr_t)PT_INDEX_PTR(pte_ptr, HTABLE_NUM_PTES(ht)); 1640 pte_ptr = (caddr_t)PT_INDEX_PTR((x86pte_t *)pte_ptr, e); 1641 while (!PTE_ISVALID(*pte_ptr)) { 1642 va += pgsize; 1643 if (va >= eaddr) 1644 break; 1645 pte_ptr += mmu.pte_size; 1646 ASSERT(pte_ptr <= end_pte_ptr); 1647 if (pte_ptr == end_pte_ptr) 1648 break; 1649 } 1650 1651 /* 1652 * if we found a valid PTE, load the entire PTE 1653 */ 1654 if (va < eaddr && pte_ptr != end_pte_ptr) 1655 found_pte = GET_PTE((x86pte_t *)pte_ptr); 1656 x86pte_release_pagetable(ht); 1657 1658 #if defined(__amd64) 1659 /* 1660 * deal with VA hole on amd64 1661 */ 1662 if (l == mmu.max_level && va >= mmu.hole_start && va <= mmu.hole_end) 1663 va = mmu.hole_end + va - mmu.hole_start; 1664 #endif /* __amd64 */ 1665 1666 *vap = va; 1667 return (found_pte); 1668 } 1669 1670 /* 1671 * Find the address and htable for the first populated translation at or 1672 * above the given virtual address. The caller may also specify an upper 1673 * limit to the address range to search. Uses level information to quickly 1674 * skip unpopulated sections of virtual address spaces. 1675 * 1676 * If not found returns NULL. When found, returns the htable and virt addr 1677 * and has a hold on the htable. 1678 */ 1679 x86pte_t 1680 htable_walk( 1681 struct hat *hat, 1682 htable_t **htp, 1683 uintptr_t *vaddr, 1684 uintptr_t eaddr) 1685 { 1686 uintptr_t va = *vaddr; 1687 htable_t *ht; 1688 htable_t *prev = *htp; 1689 level_t l; 1690 level_t max_mapped_level; 1691 x86pte_t pte; 1692 1693 ASSERT(eaddr > va); 1694 1695 /* 1696 * If this is a user address, then we know we need not look beyond 1697 * kernelbase. 1698 */ 1699 ASSERT(hat == kas.a_hat || eaddr <= kernelbase || 1700 eaddr == HTABLE_WALK_TO_END); 1701 if (hat != kas.a_hat && eaddr == HTABLE_WALK_TO_END) 1702 eaddr = kernelbase; 1703 1704 /* 1705 * If we're coming in with a previous page table, search it first 1706 * without doing an htable_lookup(), this should be frequent. 1707 */ 1708 if (prev) { 1709 ASSERT(prev->ht_busy > 0); 1710 ASSERT(prev->ht_vaddr <= va); 1711 l = prev->ht_level; 1712 if (va <= HTABLE_LAST_PAGE(prev)) { 1713 pte = htable_scan(prev, &va, eaddr); 1714 1715 if (PTE_ISPAGE(pte, l)) { 1716 *vaddr = va; 1717 *htp = prev; 1718 return (pte); 1719 } 1720 } 1721 1722 /* 1723 * We found nothing in the htable provided by the caller, 1724 * so fall through and do the full search 1725 */ 1726 htable_release(prev); 1727 } 1728 1729 /* 1730 * Find the level of the largest pagesize used by this HAT. 1731 */ 1732 if (hat->hat_ism_pgcnt > 0) { 1733 max_mapped_level = mmu.umax_page_level; 1734 } else { 1735 max_mapped_level = 0; 1736 for (l = 1; l <= mmu.max_page_level; ++l) 1737 if (hat->hat_pages_mapped[l] != 0) 1738 max_mapped_level = l; 1739 } 1740 1741 while (va < eaddr && va >= *vaddr) { 1742 /* 1743 * Find lowest table with any entry for given address. 1744 */ 1745 for (l = 0; l <= TOP_LEVEL(hat); ++l) { 1746 ht = htable_lookup(hat, va, l); 1747 if (ht != NULL) { 1748 pte = htable_scan(ht, &va, eaddr); 1749 if (PTE_ISPAGE(pte, l)) { 1750 VERIFY(!IN_VA_HOLE(va)); 1751 *vaddr = va; 1752 *htp = ht; 1753 return (pte); 1754 } 1755 htable_release(ht); 1756 break; 1757 } 1758 1759 /* 1760 * No htable at this level for the address. If there 1761 * is no larger page size that could cover it, we can 1762 * skip right to the start of the next page table. 1763 */ 1764 ASSERT(l < TOP_LEVEL(hat)); 1765 if (l >= max_mapped_level) { 1766 va = NEXT_ENTRY_VA(va, l + 1); 1767 if (va >= eaddr) 1768 break; 1769 } 1770 } 1771 } 1772 1773 *vaddr = 0; 1774 *htp = NULL; 1775 return (0); 1776 } 1777 1778 /* 1779 * Find the htable and page table entry index of the given virtual address 1780 * with pagesize at or below given level. 1781 * If not found returns NULL. When found, returns the htable, sets 1782 * entry, and has a hold on the htable. 1783 */ 1784 htable_t * 1785 htable_getpte( 1786 struct hat *hat, 1787 uintptr_t vaddr, 1788 uint_t *entry, 1789 x86pte_t *pte, 1790 level_t level) 1791 { 1792 htable_t *ht; 1793 level_t l; 1794 uint_t e; 1795 1796 ASSERT(level <= mmu.max_page_level); 1797 1798 for (l = 0; l <= level; ++l) { 1799 ht = htable_lookup(hat, vaddr, l); 1800 if (ht == NULL) 1801 continue; 1802 e = htable_va2entry(vaddr, ht); 1803 if (entry != NULL) 1804 *entry = e; 1805 if (pte != NULL) 1806 *pte = x86pte_get(ht, e); 1807 return (ht); 1808 } 1809 return (NULL); 1810 } 1811 1812 /* 1813 * Find the htable and page table entry index of the given virtual address. 1814 * There must be a valid page mapped at the given address. 1815 * If not found returns NULL. When found, returns the htable, sets 1816 * entry, and has a hold on the htable. 1817 */ 1818 htable_t * 1819 htable_getpage(struct hat *hat, uintptr_t vaddr, uint_t *entry) 1820 { 1821 htable_t *ht; 1822 uint_t e; 1823 x86pte_t pte; 1824 1825 ht = htable_getpte(hat, vaddr, &e, &pte, mmu.max_page_level); 1826 if (ht == NULL) 1827 return (NULL); 1828 1829 if (entry) 1830 *entry = e; 1831 1832 if (PTE_ISPAGE(pte, ht->ht_level)) 1833 return (ht); 1834 htable_release(ht); 1835 return (NULL); 1836 } 1837 1838 1839 void 1840 htable_init() 1841 { 1842 /* 1843 * To save on kernel VA usage, we avoid debug information in 32 bit 1844 * kernels. 1845 */ 1846 #if defined(__amd64) 1847 int kmem_flags = KMC_NOHASH; 1848 #elif defined(__i386) 1849 int kmem_flags = KMC_NOHASH | KMC_NODEBUG; 1850 #endif 1851 1852 /* 1853 * initialize kmem caches 1854 */ 1855 htable_cache = kmem_cache_create("htable_t", 1856 sizeof (htable_t), 0, NULL, NULL, 1857 htable_reap, NULL, hat_memload_arena, kmem_flags); 1858 } 1859 1860 /* 1861 * get the pte index for the virtual address in the given htable's pagetable 1862 */ 1863 uint_t 1864 htable_va2entry(uintptr_t va, htable_t *ht) 1865 { 1866 level_t l = ht->ht_level; 1867 1868 ASSERT(va >= ht->ht_vaddr); 1869 ASSERT(va <= HTABLE_LAST_PAGE(ht)); 1870 return ((va >> LEVEL_SHIFT(l)) & (HTABLE_NUM_PTES(ht) - 1)); 1871 } 1872 1873 /* 1874 * Given an htable and the index of a pte in it, return the virtual address 1875 * of the page. 1876 */ 1877 uintptr_t 1878 htable_e2va(htable_t *ht, uint_t entry) 1879 { 1880 level_t l = ht->ht_level; 1881 uintptr_t va; 1882 1883 ASSERT(entry < HTABLE_NUM_PTES(ht)); 1884 va = ht->ht_vaddr + ((uintptr_t)entry << LEVEL_SHIFT(l)); 1885 1886 /* 1887 * Need to skip over any VA hole in top level table 1888 */ 1889 #if defined(__amd64) 1890 if (ht->ht_level == mmu.max_level && va >= mmu.hole_start) 1891 va += ((mmu.hole_end - mmu.hole_start) + 1); 1892 #endif 1893 1894 return (va); 1895 } 1896 1897 /* 1898 * The code uses compare and swap instructions to read/write PTE's to 1899 * avoid atomicity problems, since PTEs can be 8 bytes on 32 bit systems. 1900 * will naturally be atomic. 1901 * 1902 * The combination of using kpreempt_disable()/_enable() and the hci_mutex 1903 * are used to ensure that an interrupt won't overwrite a temporary mapping 1904 * while it's in use. If an interrupt thread tries to access a PTE, it will 1905 * yield briefly back to the pinned thread which holds the cpu's hci_mutex. 1906 */ 1907 void 1908 x86pte_cpu_init(cpu_t *cpu) 1909 { 1910 struct hat_cpu_info *hci; 1911 1912 hci = kmem_zalloc(sizeof (*hci), KM_SLEEP); 1913 mutex_init(&hci->hci_mutex, NULL, MUTEX_DEFAULT, NULL); 1914 cpu->cpu_hat_info = hci; 1915 } 1916 1917 void 1918 x86pte_cpu_fini(cpu_t *cpu) 1919 { 1920 struct hat_cpu_info *hci = cpu->cpu_hat_info; 1921 1922 kmem_free(hci, sizeof (*hci)); 1923 cpu->cpu_hat_info = NULL; 1924 } 1925 1926 #ifdef __i386 1927 /* 1928 * On 32 bit kernels, loading a 64 bit PTE is a little tricky 1929 */ 1930 x86pte_t 1931 get_pte64(x86pte_t *ptr) 1932 { 1933 volatile uint32_t *p = (uint32_t *)ptr; 1934 x86pte_t t; 1935 1936 ASSERT(mmu.pae_hat != 0); 1937 for (;;) { 1938 t = p[0]; 1939 t |= (uint64_t)p[1] << 32; 1940 if ((t & 0xffffffff) == p[0]) 1941 return (t); 1942 } 1943 } 1944 #endif /* __i386 */ 1945 1946 /* 1947 * Disable preemption and establish a mapping to the pagetable with the 1948 * given pfn. This is optimized for there case where it's the same 1949 * pfn as we last used referenced from this CPU. 1950 */ 1951 static x86pte_t * 1952 x86pte_access_pagetable(htable_t *ht, uint_t index) 1953 { 1954 /* 1955 * HTABLE_COPIED pagetables are contained in the hat_t 1956 */ 1957 if (ht->ht_flags & HTABLE_COPIED) { 1958 ASSERT3U(index, <, ht->ht_hat->hat_num_copied); 1959 return (PT_INDEX_PTR(ht->ht_hat->hat_copied_ptes, index)); 1960 } 1961 return (x86pte_mapin(ht->ht_pfn, index, ht)); 1962 } 1963 1964 /* 1965 * map the given pfn into the page table window. 1966 */ 1967 /*ARGSUSED*/ 1968 x86pte_t * 1969 x86pte_mapin(pfn_t pfn, uint_t index, htable_t *ht) 1970 { 1971 x86pte_t *pteptr; 1972 x86pte_t pte = 0; 1973 x86pte_t newpte; 1974 int x; 1975 1976 ASSERT(pfn != PFN_INVALID); 1977 1978 if (!khat_running) { 1979 caddr_t va = kbm_remap_window(pfn_to_pa(pfn), 1); 1980 return (PT_INDEX_PTR(va, index)); 1981 } 1982 1983 /* 1984 * If kpm is available, use it. 1985 */ 1986 if (kpm_vbase) 1987 return (PT_INDEX_PTR(hat_kpm_pfn2va(pfn), index)); 1988 1989 /* 1990 * Disable preemption and grab the CPU's hci_mutex 1991 */ 1992 kpreempt_disable(); 1993 1994 ASSERT(CPU->cpu_hat_info != NULL); 1995 ASSERT(!(getcr4() & CR4_PCIDE)); 1996 1997 mutex_enter(&CPU->cpu_hat_info->hci_mutex); 1998 x = PWIN_TABLE(CPU->cpu_id); 1999 pteptr = (x86pte_t *)PWIN_PTE_VA(x); 2000 #ifndef __xpv 2001 if (mmu.pae_hat) 2002 pte = *pteptr; 2003 else 2004 pte = *(x86pte32_t *)pteptr; 2005 #endif 2006 2007 newpte = MAKEPTE(pfn, 0) | mmu.pt_global | mmu.pt_nx; 2008 2009 /* 2010 * For hardware we can use a writable mapping. 2011 */ 2012 #ifdef __xpv 2013 if (IN_XPV_PANIC()) 2014 #endif 2015 newpte |= PT_WRITABLE; 2016 2017 if (!PTE_EQUIV(newpte, pte)) { 2018 2019 #ifdef __xpv 2020 if (!IN_XPV_PANIC()) { 2021 xen_map(newpte, PWIN_VA(x)); 2022 } else 2023 #endif 2024 { 2025 XPV_ALLOW_PAGETABLE_UPDATES(); 2026 if (mmu.pae_hat) 2027 *pteptr = newpte; 2028 else 2029 *(x86pte32_t *)pteptr = newpte; 2030 XPV_DISALLOW_PAGETABLE_UPDATES(); 2031 mmu_flush_tlb_kpage((uintptr_t)PWIN_VA(x)); 2032 } 2033 } 2034 return (PT_INDEX_PTR(PWIN_VA(x), index)); 2035 } 2036 2037 /* 2038 * Release access to a page table. 2039 */ 2040 static void 2041 x86pte_release_pagetable(htable_t *ht) 2042 { 2043 if (ht->ht_flags & HTABLE_COPIED) 2044 return; 2045 2046 x86pte_mapout(); 2047 } 2048 2049 void 2050 x86pte_mapout(void) 2051 { 2052 if (kpm_vbase != NULL || !khat_running) 2053 return; 2054 2055 /* 2056 * Drop the CPU's hci_mutex and restore preemption. 2057 */ 2058 #ifdef __xpv 2059 if (!IN_XPV_PANIC()) { 2060 uintptr_t va; 2061 2062 /* 2063 * We need to always clear the mapping in case a page 2064 * that was once a page table page is ballooned out. 2065 */ 2066 va = (uintptr_t)PWIN_VA(PWIN_TABLE(CPU->cpu_id)); 2067 (void) HYPERVISOR_update_va_mapping(va, 0, 2068 UVMF_INVLPG | UVMF_LOCAL); 2069 } 2070 #endif 2071 mutex_exit(&CPU->cpu_hat_info->hci_mutex); 2072 kpreempt_enable(); 2073 } 2074 2075 /* 2076 * Atomic retrieval of a pagetable entry 2077 */ 2078 x86pte_t 2079 x86pte_get(htable_t *ht, uint_t entry) 2080 { 2081 x86pte_t pte; 2082 x86pte_t *ptep; 2083 2084 /* 2085 * Be careful that loading PAE entries in 32 bit kernel is atomic. 2086 */ 2087 ASSERT(entry < mmu.ptes_per_table); 2088 ptep = x86pte_access_pagetable(ht, entry); 2089 pte = GET_PTE(ptep); 2090 x86pte_release_pagetable(ht); 2091 return (pte); 2092 } 2093 2094 /* 2095 * Atomic unconditional set of a page table entry, it returns the previous 2096 * value. For pre-existing mappings if the PFN changes, then we don't care 2097 * about the old pte's REF / MOD bits. If the PFN remains the same, we leave 2098 * the MOD/REF bits unchanged. 2099 * 2100 * If asked to overwrite a link to a lower page table with a large page 2101 * mapping, this routine returns the special value of LPAGE_ERROR. This 2102 * allows the upper HAT layers to retry with a smaller mapping size. 2103 */ 2104 x86pte_t 2105 x86pte_set(htable_t *ht, uint_t entry, x86pte_t new, void *ptr) 2106 { 2107 x86pte_t old; 2108 x86pte_t prev; 2109 x86pte_t *ptep; 2110 level_t l = ht->ht_level; 2111 x86pte_t pfn_mask = (l != 0) ? PT_PADDR_LGPG : PT_PADDR; 2112 x86pte_t n; 2113 uintptr_t addr = htable_e2va(ht, entry); 2114 hat_t *hat = ht->ht_hat; 2115 2116 ASSERT(new != 0); /* don't use to invalidate a PTE, see x86pte_update */ 2117 ASSERT(!(ht->ht_flags & HTABLE_SHARED_PFN)); 2118 if (ptr == NULL) 2119 ptep = x86pte_access_pagetable(ht, entry); 2120 else 2121 ptep = ptr; 2122 2123 /* 2124 * Install the new PTE. If remapping the same PFN, then 2125 * copy existing REF/MOD bits to new mapping. 2126 */ 2127 do { 2128 prev = GET_PTE(ptep); 2129 n = new; 2130 if (PTE_ISVALID(n) && (prev & pfn_mask) == (new & pfn_mask)) 2131 n |= prev & (PT_REF | PT_MOD); 2132 2133 /* 2134 * Another thread may have installed this mapping already, 2135 * flush the local TLB and be done. 2136 */ 2137 if (prev == n) { 2138 old = new; 2139 #ifdef __xpv 2140 if (!IN_XPV_PANIC()) 2141 xen_flush_va((caddr_t)addr); 2142 else 2143 #endif 2144 mmu_flush_tlb_page(addr); 2145 goto done; 2146 } 2147 2148 /* 2149 * Detect if we have a collision of installing a large 2150 * page mapping where there already is a lower page table. 2151 */ 2152 if (l > 0 && (prev & PT_VALID) && !(prev & PT_PAGESIZE)) { 2153 old = LPAGE_ERROR; 2154 goto done; 2155 } 2156 2157 XPV_ALLOW_PAGETABLE_UPDATES(); 2158 old = CAS_PTE(ptep, prev, n); 2159 XPV_DISALLOW_PAGETABLE_UPDATES(); 2160 } while (old != prev); 2161 2162 /* 2163 * Do a TLB demap if needed, ie. the old pte was valid. 2164 * 2165 * Note that a stale TLB writeback to the PTE here either can't happen 2166 * or doesn't matter. The PFN can only change for NOSYNC|NOCONSIST 2167 * mappings, but they were created with REF and MOD already set, so 2168 * no stale writeback will happen. 2169 * 2170 * Segmap is the only place where remaps happen on the same pfn and for 2171 * that we want to preserve the stale REF/MOD bits. 2172 */ 2173 if (old & PT_REF) 2174 hat_tlb_inval(hat, addr); 2175 2176 done: 2177 if (ptr == NULL) 2178 x86pte_release_pagetable(ht); 2179 return (old); 2180 } 2181 2182 /* 2183 * Atomic compare and swap of a page table entry. No TLB invalidates are done. 2184 * This is used for links between pagetables of different levels. 2185 * Note we always create these links with dirty/access set, so they should 2186 * never change. 2187 */ 2188 x86pte_t 2189 x86pte_cas(htable_t *ht, uint_t entry, x86pte_t old, x86pte_t new) 2190 { 2191 x86pte_t pte; 2192 x86pte_t *ptep; 2193 #ifdef __xpv 2194 /* 2195 * We can't use writable pagetables for upper level tables, so fake it. 2196 */ 2197 mmu_update_t t[2]; 2198 int cnt = 1; 2199 int count; 2200 maddr_t ma; 2201 2202 if (!IN_XPV_PANIC()) { 2203 ASSERT(!(ht->ht_flags & HTABLE_COPIED)); 2204 ma = pa_to_ma(PT_INDEX_PHYSADDR(pfn_to_pa(ht->ht_pfn), entry)); 2205 t[0].ptr = ma | MMU_NORMAL_PT_UPDATE; 2206 t[0].val = new; 2207 2208 #if defined(__amd64) 2209 /* 2210 * On the 64-bit hypervisor we need to maintain the user mode 2211 * top page table too. 2212 */ 2213 if (ht->ht_level == mmu.max_level && ht->ht_hat != kas.a_hat) { 2214 ma = pa_to_ma(PT_INDEX_PHYSADDR(pfn_to_pa( 2215 ht->ht_hat->hat_user_ptable), entry)); 2216 t[1].ptr = ma | MMU_NORMAL_PT_UPDATE; 2217 t[1].val = new; 2218 ++cnt; 2219 } 2220 #endif /* __amd64 */ 2221 2222 if (HYPERVISOR_mmu_update(t, cnt, &count, DOMID_SELF)) 2223 panic("HYPERVISOR_mmu_update() failed"); 2224 ASSERT(count == cnt); 2225 return (old); 2226 } 2227 #endif 2228 ptep = x86pte_access_pagetable(ht, entry); 2229 XPV_ALLOW_PAGETABLE_UPDATES(); 2230 pte = CAS_PTE(ptep, old, new); 2231 XPV_DISALLOW_PAGETABLE_UPDATES(); 2232 x86pte_release_pagetable(ht); 2233 return (pte); 2234 } 2235 2236 /* 2237 * Invalidate a page table entry as long as it currently maps something that 2238 * matches the value determined by expect. 2239 * 2240 * If tlb is set, also invalidates any TLB entries. 2241 * 2242 * Returns the previous value of the PTE. 2243 */ 2244 x86pte_t 2245 x86pte_inval( 2246 htable_t *ht, 2247 uint_t entry, 2248 x86pte_t expect, 2249 x86pte_t *pte_ptr, 2250 boolean_t tlb) 2251 { 2252 x86pte_t *ptep; 2253 x86pte_t oldpte; 2254 x86pte_t found; 2255 2256 ASSERT(!(ht->ht_flags & HTABLE_SHARED_PFN)); 2257 ASSERT(ht->ht_level <= mmu.max_page_level); 2258 2259 if (pte_ptr != NULL) 2260 ptep = pte_ptr; 2261 else 2262 ptep = x86pte_access_pagetable(ht, entry); 2263 2264 #if defined(__xpv) 2265 /* 2266 * If exit()ing just use HYPERVISOR_mmu_update(), as we can't be racing 2267 * with anything else. 2268 */ 2269 if ((ht->ht_hat->hat_flags & HAT_FREEING) && !IN_XPV_PANIC()) { 2270 int count; 2271 mmu_update_t t[1]; 2272 maddr_t ma; 2273 2274 oldpte = GET_PTE(ptep); 2275 if (expect != 0 && (oldpte & PT_PADDR) != (expect & PT_PADDR)) 2276 goto done; 2277 ma = pa_to_ma(PT_INDEX_PHYSADDR(pfn_to_pa(ht->ht_pfn), entry)); 2278 t[0].ptr = ma | MMU_NORMAL_PT_UPDATE; 2279 t[0].val = 0; 2280 if (HYPERVISOR_mmu_update(t, 1, &count, DOMID_SELF)) 2281 panic("HYPERVISOR_mmu_update() failed"); 2282 ASSERT(count == 1); 2283 goto done; 2284 } 2285 #endif /* __xpv */ 2286 2287 /* 2288 * Note that the loop is needed to handle changes due to h/w updating 2289 * of PT_MOD/PT_REF. 2290 */ 2291 do { 2292 oldpte = GET_PTE(ptep); 2293 if (expect != 0 && (oldpte & PT_PADDR) != (expect & PT_PADDR)) 2294 goto done; 2295 XPV_ALLOW_PAGETABLE_UPDATES(); 2296 found = CAS_PTE(ptep, oldpte, 0); 2297 XPV_DISALLOW_PAGETABLE_UPDATES(); 2298 } while (found != oldpte); 2299 if (tlb && (oldpte & (PT_REF | PT_MOD))) 2300 hat_tlb_inval(ht->ht_hat, htable_e2va(ht, entry)); 2301 2302 done: 2303 if (pte_ptr == NULL) 2304 x86pte_release_pagetable(ht); 2305 return (oldpte); 2306 } 2307 2308 /* 2309 * Change a page table entry af it currently matches the value in expect. 2310 */ 2311 x86pte_t 2312 x86pte_update( 2313 htable_t *ht, 2314 uint_t entry, 2315 x86pte_t expect, 2316 x86pte_t new) 2317 { 2318 x86pte_t *ptep; 2319 x86pte_t found; 2320 2321 ASSERT(new != 0); 2322 ASSERT(!(ht->ht_flags & HTABLE_SHARED_PFN)); 2323 ASSERT(ht->ht_level <= mmu.max_page_level); 2324 2325 ptep = x86pte_access_pagetable(ht, entry); 2326 XPV_ALLOW_PAGETABLE_UPDATES(); 2327 found = CAS_PTE(ptep, expect, new); 2328 XPV_DISALLOW_PAGETABLE_UPDATES(); 2329 if (found == expect) { 2330 hat_tlb_inval(ht->ht_hat, htable_e2va(ht, entry)); 2331 2332 /* 2333 * When removing write permission *and* clearing the 2334 * MOD bit, check if a write happened via a stale 2335 * TLB entry before the TLB shootdown finished. 2336 * 2337 * If it did happen, simply re-enable write permission and 2338 * act like the original CAS failed. 2339 */ 2340 if ((expect & (PT_WRITABLE | PT_MOD)) == PT_WRITABLE && 2341 (new & (PT_WRITABLE | PT_MOD)) == 0 && 2342 (GET_PTE(ptep) & PT_MOD) != 0) { 2343 do { 2344 found = GET_PTE(ptep); 2345 XPV_ALLOW_PAGETABLE_UPDATES(); 2346 found = 2347 CAS_PTE(ptep, found, found | PT_WRITABLE); 2348 XPV_DISALLOW_PAGETABLE_UPDATES(); 2349 } while ((found & PT_WRITABLE) == 0); 2350 } 2351 } 2352 x86pte_release_pagetable(ht); 2353 return (found); 2354 } 2355 2356 #ifndef __xpv 2357 /* 2358 * Copy page tables - this is just a little more complicated than the 2359 * previous routines. Note that it's also not atomic! It also is never 2360 * used for HTABLE_COPIED pagetables. 2361 */ 2362 void 2363 x86pte_copy(htable_t *src, htable_t *dest, uint_t entry, uint_t count) 2364 { 2365 caddr_t src_va; 2366 caddr_t dst_va; 2367 size_t size; 2368 x86pte_t *pteptr; 2369 x86pte_t pte; 2370 2371 ASSERT(khat_running); 2372 ASSERT(!(dest->ht_flags & HTABLE_COPIED)); 2373 ASSERT(!(src->ht_flags & HTABLE_COPIED)); 2374 ASSERT(!(src->ht_flags & HTABLE_SHARED_PFN)); 2375 ASSERT(!(dest->ht_flags & HTABLE_SHARED_PFN)); 2376 2377 /* 2378 * Acquire access to the CPU pagetable windows for the dest and source. 2379 */ 2380 dst_va = (caddr_t)x86pte_access_pagetable(dest, entry); 2381 if (kpm_vbase) { 2382 src_va = (caddr_t) 2383 PT_INDEX_PTR(hat_kpm_pfn2va(src->ht_pfn), entry); 2384 } else { 2385 uint_t x = PWIN_SRC(CPU->cpu_id); 2386 2387 ASSERT(!(getcr4() & CR4_PCIDE)); 2388 2389 /* 2390 * Finish defining the src pagetable mapping 2391 */ 2392 src_va = (caddr_t)PT_INDEX_PTR(PWIN_VA(x), entry); 2393 pte = MAKEPTE(src->ht_pfn, 0) | mmu.pt_global | mmu.pt_nx; 2394 pteptr = (x86pte_t *)PWIN_PTE_VA(x); 2395 if (mmu.pae_hat) 2396 *pteptr = pte; 2397 else 2398 *(x86pte32_t *)pteptr = pte; 2399 mmu_flush_tlb_kpage((uintptr_t)PWIN_VA(x)); 2400 } 2401 2402 /* 2403 * now do the copy 2404 */ 2405 size = count << mmu.pte_size_shift; 2406 bcopy(src_va, dst_va, size); 2407 2408 x86pte_release_pagetable(dest); 2409 } 2410 2411 #else /* __xpv */ 2412 2413 /* 2414 * The hypervisor only supports writable pagetables at level 0, so we have 2415 * to install these 1 by 1 the slow way. 2416 */ 2417 void 2418 x86pte_copy(htable_t *src, htable_t *dest, uint_t entry, uint_t count) 2419 { 2420 caddr_t src_va; 2421 x86pte_t pte; 2422 2423 ASSERT(!IN_XPV_PANIC()); 2424 src_va = (caddr_t)x86pte_access_pagetable(src, entry); 2425 while (count) { 2426 if (mmu.pae_hat) 2427 pte = *(x86pte_t *)src_va; 2428 else 2429 pte = *(x86pte32_t *)src_va; 2430 if (pte != 0) { 2431 set_pteval(pfn_to_pa(dest->ht_pfn), entry, 2432 dest->ht_level, pte); 2433 #ifdef __amd64 2434 if (dest->ht_level == mmu.max_level && 2435 htable_e2va(dest, entry) < HYPERVISOR_VIRT_END) 2436 set_pteval( 2437 pfn_to_pa(dest->ht_hat->hat_user_ptable), 2438 entry, dest->ht_level, pte); 2439 #endif 2440 } 2441 --count; 2442 ++entry; 2443 src_va += mmu.pte_size; 2444 } 2445 x86pte_release_pagetable(src); 2446 } 2447 #endif /* __xpv */ 2448 2449 /* 2450 * Zero page table entries - Note this doesn't use atomic stores! 2451 */ 2452 static void 2453 x86pte_zero(htable_t *dest, uint_t entry, uint_t count) 2454 { 2455 caddr_t dst_va; 2456 size_t size; 2457 #ifdef __xpv 2458 int x; 2459 x86pte_t newpte; 2460 #endif 2461 2462 /* 2463 * Map in the page table to be zeroed. 2464 */ 2465 ASSERT(!(dest->ht_flags & HTABLE_SHARED_PFN)); 2466 ASSERT(!(dest->ht_flags & HTABLE_COPIED)); 2467 2468 /* 2469 * On the hypervisor we don't use x86pte_access_pagetable() since 2470 * in this case the page is not pinned yet. 2471 */ 2472 #ifdef __xpv 2473 if (kpm_vbase == NULL) { 2474 kpreempt_disable(); 2475 ASSERT(CPU->cpu_hat_info != NULL); 2476 mutex_enter(&CPU->cpu_hat_info->hci_mutex); 2477 x = PWIN_TABLE(CPU->cpu_id); 2478 newpte = MAKEPTE(dest->ht_pfn, 0) | PT_WRITABLE; 2479 xen_map(newpte, PWIN_VA(x)); 2480 dst_va = (caddr_t)PT_INDEX_PTR(PWIN_VA(x), entry); 2481 } else 2482 #endif 2483 dst_va = (caddr_t)x86pte_access_pagetable(dest, entry); 2484 2485 size = count << mmu.pte_size_shift; 2486 ASSERT(size > BLOCKZEROALIGN); 2487 #ifdef __i386 2488 if (!is_x86_feature(x86_featureset, X86FSET_SSE2)) 2489 bzero(dst_va, size); 2490 else 2491 #endif 2492 block_zero_no_xmm(dst_va, size); 2493 2494 #ifdef __xpv 2495 if (kpm_vbase == NULL) { 2496 xen_map(0, PWIN_VA(x)); 2497 mutex_exit(&CPU->cpu_hat_info->hci_mutex); 2498 kpreempt_enable(); 2499 } else 2500 #endif 2501 x86pte_release_pagetable(dest); 2502 } 2503 2504 /* 2505 * Called to ensure that all pagetables are in the system dump 2506 */ 2507 void 2508 hat_dump(void) 2509 { 2510 hat_t *hat; 2511 uint_t h; 2512 htable_t *ht; 2513 2514 /* 2515 * Dump all page tables 2516 */ 2517 for (hat = kas.a_hat; hat != NULL; hat = hat->hat_next) { 2518 for (h = 0; h < hat->hat_num_hash; ++h) { 2519 for (ht = hat->hat_ht_hash[h]; ht; ht = ht->ht_next) { 2520 if ((ht->ht_flags & HTABLE_COPIED) == 0) 2521 dump_page(ht->ht_pfn); 2522 } 2523 } 2524 } 2525 } 2526