1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2004, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2014 by Delphix. All rights reserved. 25 * Copyright 2018 Joyent, Inc. 26 */ 27 28 #include <sys/types.h> 29 #include <sys/sysmacros.h> 30 #include <sys/kmem.h> 31 #include <sys/atomic.h> 32 #include <sys/bitmap.h> 33 #include <sys/machparam.h> 34 #include <sys/machsystm.h> 35 #include <sys/mman.h> 36 #include <sys/systm.h> 37 #include <sys/cpuvar.h> 38 #include <sys/thread.h> 39 #include <sys/proc.h> 40 #include <sys/cpu.h> 41 #include <sys/kmem.h> 42 #include <sys/disp.h> 43 #include <sys/vmem.h> 44 #include <sys/vmsystm.h> 45 #include <sys/promif.h> 46 #include <sys/var.h> 47 #include <sys/x86_archext.h> 48 #include <sys/archsystm.h> 49 #include <sys/bootconf.h> 50 #include <sys/dumphdr.h> 51 #include <vm/seg_kmem.h> 52 #include <vm/seg_kpm.h> 53 #include <vm/hat.h> 54 #include <vm/hat_i86.h> 55 #include <sys/cmn_err.h> 56 #include <sys/panic.h> 57 58 #ifdef __xpv 59 #include <sys/hypervisor.h> 60 #include <sys/xpv_panic.h> 61 #endif 62 63 #include <sys/bootinfo.h> 64 #include <vm/kboot_mmu.h> 65 66 static void x86pte_zero(htable_t *dest, uint_t entry, uint_t count); 67 68 kmem_cache_t *htable_cache; 69 70 /* 71 * The variable htable_reserve_amount, rather than HTABLE_RESERVE_AMOUNT, 72 * is used in order to facilitate testing of the htable_steal() code. 73 * By resetting htable_reserve_amount to a lower value, we can force 74 * stealing to occur. The reserve amount is a guess to get us through boot. 75 */ 76 #define HTABLE_RESERVE_AMOUNT (200) 77 uint_t htable_reserve_amount = HTABLE_RESERVE_AMOUNT; 78 kmutex_t htable_reserve_mutex; 79 uint_t htable_reserve_cnt; 80 htable_t *htable_reserve_pool; 81 82 /* 83 * Used to hand test htable_steal(). 84 */ 85 #ifdef DEBUG 86 ulong_t force_steal = 0; 87 ulong_t ptable_cnt = 0; 88 #endif 89 90 /* 91 * This variable is so that we can tune this via /etc/system 92 * Any value works, but a power of two <= mmu.ptes_per_table is best. 93 */ 94 uint_t htable_steal_passes = 8; 95 96 /* 97 * mutex stuff for access to htable hash 98 */ 99 #define NUM_HTABLE_MUTEX 128 100 kmutex_t htable_mutex[NUM_HTABLE_MUTEX]; 101 #define HTABLE_MUTEX_HASH(h) ((h) & (NUM_HTABLE_MUTEX - 1)) 102 103 #define HTABLE_ENTER(h) mutex_enter(&htable_mutex[HTABLE_MUTEX_HASH(h)]); 104 #define HTABLE_EXIT(h) mutex_exit(&htable_mutex[HTABLE_MUTEX_HASH(h)]); 105 106 /* 107 * forward declarations 108 */ 109 static void link_ptp(htable_t *higher, htable_t *new, uintptr_t vaddr); 110 static void unlink_ptp(htable_t *higher, htable_t *old, uintptr_t vaddr); 111 static void htable_free(htable_t *ht); 112 static x86pte_t *x86pte_access_pagetable(htable_t *ht, uint_t index); 113 static void x86pte_release_pagetable(htable_t *ht); 114 static x86pte_t x86pte_cas(htable_t *ht, uint_t entry, x86pte_t old, 115 x86pte_t new); 116 117 /* 118 * A counter to track if we are stealing or reaping htables. When non-zero 119 * htable_free() will directly free htables (either to the reserve or kmem) 120 * instead of putting them in a hat's htable cache. 121 */ 122 uint32_t htable_dont_cache = 0; 123 124 /* 125 * Track the number of active pagetables, so we can know how many to reap 126 */ 127 static uint32_t active_ptables = 0; 128 129 #ifdef __xpv 130 /* 131 * Deal with hypervisor complications. 132 */ 133 void 134 xen_flush_va(caddr_t va) 135 { 136 struct mmuext_op t; 137 uint_t count; 138 139 if (IN_XPV_PANIC()) { 140 mmu_flush_tlb_page((uintptr_t)va); 141 } else { 142 t.cmd = MMUEXT_INVLPG_LOCAL; 143 t.arg1.linear_addr = (uintptr_t)va; 144 if (HYPERVISOR_mmuext_op(&t, 1, &count, DOMID_SELF) < 0) 145 panic("HYPERVISOR_mmuext_op() failed"); 146 ASSERT(count == 1); 147 } 148 } 149 150 void 151 xen_gflush_va(caddr_t va, cpuset_t cpus) 152 { 153 struct mmuext_op t; 154 uint_t count; 155 156 if (IN_XPV_PANIC()) { 157 mmu_flush_tlb_page((uintptr_t)va); 158 return; 159 } 160 161 t.cmd = MMUEXT_INVLPG_MULTI; 162 t.arg1.linear_addr = (uintptr_t)va; 163 /*LINTED: constant in conditional context*/ 164 set_xen_guest_handle(t.arg2.vcpumask, &cpus); 165 if (HYPERVISOR_mmuext_op(&t, 1, &count, DOMID_SELF) < 0) 166 panic("HYPERVISOR_mmuext_op() failed"); 167 ASSERT(count == 1); 168 } 169 170 void 171 xen_flush_tlb() 172 { 173 struct mmuext_op t; 174 uint_t count; 175 176 if (IN_XPV_PANIC()) { 177 xpv_panic_reload_cr3(); 178 } else { 179 t.cmd = MMUEXT_TLB_FLUSH_LOCAL; 180 if (HYPERVISOR_mmuext_op(&t, 1, &count, DOMID_SELF) < 0) 181 panic("HYPERVISOR_mmuext_op() failed"); 182 ASSERT(count == 1); 183 } 184 } 185 186 void 187 xen_gflush_tlb(cpuset_t cpus) 188 { 189 struct mmuext_op t; 190 uint_t count; 191 192 ASSERT(!IN_XPV_PANIC()); 193 t.cmd = MMUEXT_TLB_FLUSH_MULTI; 194 /*LINTED: constant in conditional context*/ 195 set_xen_guest_handle(t.arg2.vcpumask, &cpus); 196 if (HYPERVISOR_mmuext_op(&t, 1, &count, DOMID_SELF) < 0) 197 panic("HYPERVISOR_mmuext_op() failed"); 198 ASSERT(count == 1); 199 } 200 201 /* 202 * Install/Adjust a kpm mapping under the hypervisor. 203 * Value of "how" should be: 204 * PT_WRITABLE | PT_VALID - regular kpm mapping 205 * PT_VALID - make mapping read-only 206 * 0 - remove mapping 207 * 208 * returns 0 on success. non-zero for failure. 209 */ 210 int 211 xen_kpm_page(pfn_t pfn, uint_t how) 212 { 213 paddr_t pa = mmu_ptob((paddr_t)pfn); 214 x86pte_t pte = PT_NOCONSIST | PT_REF | PT_MOD; 215 216 if (kpm_vbase == NULL) 217 return (0); 218 219 if (how) 220 pte |= pa_to_ma(pa) | how; 221 else 222 pte = 0; 223 return (HYPERVISOR_update_va_mapping((uintptr_t)kpm_vbase + pa, 224 pte, UVMF_INVLPG | UVMF_ALL)); 225 } 226 227 void 228 xen_pin(pfn_t pfn, level_t lvl) 229 { 230 struct mmuext_op t; 231 uint_t count; 232 233 t.cmd = MMUEXT_PIN_L1_TABLE + lvl; 234 t.arg1.mfn = pfn_to_mfn(pfn); 235 if (HYPERVISOR_mmuext_op(&t, 1, &count, DOMID_SELF) < 0) 236 panic("HYPERVISOR_mmuext_op() failed"); 237 ASSERT(count == 1); 238 } 239 240 void 241 xen_unpin(pfn_t pfn) 242 { 243 struct mmuext_op t; 244 uint_t count; 245 246 t.cmd = MMUEXT_UNPIN_TABLE; 247 t.arg1.mfn = pfn_to_mfn(pfn); 248 if (HYPERVISOR_mmuext_op(&t, 1, &count, DOMID_SELF) < 0) 249 panic("HYPERVISOR_mmuext_op() failed"); 250 ASSERT(count == 1); 251 } 252 253 static void 254 xen_map(uint64_t pte, caddr_t va) 255 { 256 if (HYPERVISOR_update_va_mapping((uintptr_t)va, pte, 257 UVMF_INVLPG | UVMF_LOCAL)) 258 panic("HYPERVISOR_update_va_mapping() failed"); 259 } 260 #endif /* __xpv */ 261 262 /* 263 * Allocate a memory page for a hardware page table. 264 * 265 * A wrapper around page_get_physical(), with some extra checks. 266 */ 267 static pfn_t 268 ptable_alloc(uintptr_t seed) 269 { 270 pfn_t pfn; 271 page_t *pp; 272 273 pfn = PFN_INVALID; 274 275 /* 276 * The first check is to see if there is memory in the system. If we 277 * drop to throttlefree, then fail the ptable_alloc() and let the 278 * stealing code kick in. Note that we have to do this test here, 279 * since the test in page_create_throttle() would let the NOSLEEP 280 * allocation go through and deplete the page reserves. 281 * 282 * The !NOMEMWAIT() lets pageout, fsflush, etc. skip this check. 283 */ 284 if (!NOMEMWAIT() && freemem <= throttlefree + 1) 285 return (PFN_INVALID); 286 287 #ifdef DEBUG 288 /* 289 * This code makes htable_steal() easier to test. By setting 290 * force_steal we force pagetable allocations to fall 291 * into the stealing code. Roughly 1 in ever "force_steal" 292 * page table allocations will fail. 293 */ 294 if (proc_pageout != NULL && force_steal > 1 && 295 ++ptable_cnt > force_steal) { 296 ptable_cnt = 0; 297 return (PFN_INVALID); 298 } 299 #endif /* DEBUG */ 300 301 pp = page_get_physical(seed); 302 if (pp == NULL) 303 return (PFN_INVALID); 304 ASSERT(PAGE_SHARED(pp)); 305 pfn = pp->p_pagenum; 306 if (pfn == PFN_INVALID) 307 panic("ptable_alloc(): Invalid PFN!!"); 308 atomic_inc_32(&active_ptables); 309 HATSTAT_INC(hs_ptable_allocs); 310 return (pfn); 311 } 312 313 /* 314 * Free an htable's associated page table page. See the comments 315 * for ptable_alloc(). 316 */ 317 static void 318 ptable_free(pfn_t pfn) 319 { 320 page_t *pp = page_numtopp_nolock(pfn); 321 322 /* 323 * need to destroy the page used for the pagetable 324 */ 325 ASSERT(pfn != PFN_INVALID); 326 HATSTAT_INC(hs_ptable_frees); 327 atomic_dec_32(&active_ptables); 328 if (pp == NULL) 329 panic("ptable_free(): no page for pfn!"); 330 ASSERT(PAGE_SHARED(pp)); 331 ASSERT(pfn == pp->p_pagenum); 332 ASSERT(!IN_XPV_PANIC()); 333 334 /* 335 * Get an exclusive lock, might have to wait for a kmem reader. 336 */ 337 if (!page_tryupgrade(pp)) { 338 u_offset_t off = pp->p_offset; 339 page_unlock(pp); 340 pp = page_lookup(&kvp, off, SE_EXCL); 341 if (pp == NULL) 342 panic("page not found"); 343 } 344 #ifdef __xpv 345 if (kpm_vbase && xen_kpm_page(pfn, PT_VALID | PT_WRITABLE) < 0) 346 panic("failure making kpm r/w pfn=0x%lx", pfn); 347 #endif 348 page_hashout(pp, NULL); 349 page_free(pp, 1); 350 page_unresv(1); 351 } 352 353 /* 354 * Put one htable on the reserve list. 355 */ 356 static void 357 htable_put_reserve(htable_t *ht) 358 { 359 ht->ht_hat = NULL; /* no longer tied to a hat */ 360 ASSERT(ht->ht_pfn == PFN_INVALID); 361 HATSTAT_INC(hs_htable_rputs); 362 mutex_enter(&htable_reserve_mutex); 363 ht->ht_next = htable_reserve_pool; 364 htable_reserve_pool = ht; 365 ++htable_reserve_cnt; 366 mutex_exit(&htable_reserve_mutex); 367 } 368 369 /* 370 * Take one htable from the reserve. 371 */ 372 static htable_t * 373 htable_get_reserve(void) 374 { 375 htable_t *ht = NULL; 376 377 mutex_enter(&htable_reserve_mutex); 378 if (htable_reserve_cnt != 0) { 379 ht = htable_reserve_pool; 380 ASSERT(ht != NULL); 381 ASSERT(ht->ht_pfn == PFN_INVALID); 382 htable_reserve_pool = ht->ht_next; 383 --htable_reserve_cnt; 384 HATSTAT_INC(hs_htable_rgets); 385 } 386 mutex_exit(&htable_reserve_mutex); 387 return (ht); 388 } 389 390 /* 391 * Allocate initial htables and put them on the reserve list 392 */ 393 void 394 htable_initial_reserve(uint_t count) 395 { 396 htable_t *ht; 397 398 count += HTABLE_RESERVE_AMOUNT; 399 while (count > 0) { 400 ht = kmem_cache_alloc(htable_cache, KM_NOSLEEP); 401 ASSERT(ht != NULL); 402 403 ASSERT(use_boot_reserve); 404 ht->ht_pfn = PFN_INVALID; 405 htable_put_reserve(ht); 406 --count; 407 } 408 } 409 410 /* 411 * Readjust the reserves after a thread finishes using them. 412 */ 413 void 414 htable_adjust_reserve() 415 { 416 htable_t *ht; 417 418 /* 419 * Free any excess htables in the reserve list 420 */ 421 while (htable_reserve_cnt > htable_reserve_amount && 422 !USE_HAT_RESERVES()) { 423 ht = htable_get_reserve(); 424 if (ht == NULL) 425 return; 426 ASSERT(ht->ht_pfn == PFN_INVALID); 427 kmem_cache_free(htable_cache, ht); 428 } 429 } 430 431 /* 432 * Search the active htables for one to steal. Start at a different hash 433 * bucket every time to help spread the pain of stealing 434 */ 435 static void 436 htable_steal_active(hat_t *hat, uint_t cnt, uint_t threshold, 437 uint_t *stolen, htable_t **list) 438 { 439 static uint_t h_seed = 0; 440 htable_t *higher, *ht; 441 uint_t h, e, h_start; 442 uintptr_t va; 443 x86pte_t pte; 444 445 h = h_start = h_seed++ % hat->hat_num_hash; 446 do { 447 higher = NULL; 448 HTABLE_ENTER(h); 449 for (ht = hat->hat_ht_hash[h]; ht; ht = ht->ht_next) { 450 451 /* 452 * Can we rule out reaping? 453 */ 454 if (ht->ht_busy != 0 || 455 (ht->ht_flags & HTABLE_SHARED_PFN) || 456 ht->ht_level > 0 || ht->ht_valid_cnt > threshold || 457 ht->ht_lock_cnt != 0) 458 continue; 459 460 /* 461 * Increment busy so the htable can't disappear. We 462 * drop the htable mutex to avoid deadlocks with 463 * hat_pageunload() and the hment mutex while we 464 * call hat_pte_unmap() 465 */ 466 ++ht->ht_busy; 467 HTABLE_EXIT(h); 468 469 /* 470 * Try stealing. 471 * - unload and invalidate all PTEs 472 */ 473 for (e = 0, va = ht->ht_vaddr; 474 e < HTABLE_NUM_PTES(ht) && ht->ht_valid_cnt > 0 && 475 ht->ht_busy == 1 && ht->ht_lock_cnt == 0; 476 ++e, va += MMU_PAGESIZE) { 477 pte = x86pte_get(ht, e); 478 if (!PTE_ISVALID(pte)) 479 continue; 480 hat_pte_unmap(ht, e, HAT_UNLOAD, pte, NULL, 481 B_TRUE); 482 } 483 484 /* 485 * Reacquire htable lock. If we didn't remove all 486 * mappings in the table, or another thread added a new 487 * mapping behind us, give up on this table. 488 */ 489 HTABLE_ENTER(h); 490 if (ht->ht_busy != 1 || ht->ht_valid_cnt != 0 || 491 ht->ht_lock_cnt != 0) { 492 --ht->ht_busy; 493 continue; 494 } 495 496 /* 497 * Steal it and unlink the page table. 498 */ 499 higher = ht->ht_parent; 500 unlink_ptp(higher, ht, ht->ht_vaddr); 501 502 /* 503 * remove from the hash list 504 */ 505 if (ht->ht_next) 506 ht->ht_next->ht_prev = ht->ht_prev; 507 508 if (ht->ht_prev) { 509 ht->ht_prev->ht_next = ht->ht_next; 510 } else { 511 ASSERT(hat->hat_ht_hash[h] == ht); 512 hat->hat_ht_hash[h] = ht->ht_next; 513 } 514 515 /* 516 * Break to outer loop to release the 517 * higher (ht_parent) pagetable. This 518 * spreads out the pain caused by 519 * pagefaults. 520 */ 521 ht->ht_next = *list; 522 *list = ht; 523 ++*stolen; 524 break; 525 } 526 HTABLE_EXIT(h); 527 if (higher != NULL) 528 htable_release(higher); 529 if (++h == hat->hat_num_hash) 530 h = 0; 531 } while (*stolen < cnt && h != h_start); 532 } 533 534 /* 535 * Move hat to the end of the kas list 536 */ 537 static void 538 move_victim(hat_t *hat) 539 { 540 ASSERT(MUTEX_HELD(&hat_list_lock)); 541 542 /* unlink victim hat */ 543 if (hat->hat_prev) 544 hat->hat_prev->hat_next = hat->hat_next; 545 else 546 kas.a_hat->hat_next = hat->hat_next; 547 548 if (hat->hat_next) 549 hat->hat_next->hat_prev = hat->hat_prev; 550 else 551 kas.a_hat->hat_prev = hat->hat_prev; 552 /* relink at end of hat list */ 553 hat->hat_next = NULL; 554 hat->hat_prev = kas.a_hat->hat_prev; 555 if (hat->hat_prev) 556 hat->hat_prev->hat_next = hat; 557 else 558 kas.a_hat->hat_next = hat; 559 560 kas.a_hat->hat_prev = hat; 561 } 562 563 /* 564 * This routine steals htables from user processes. Called by htable_reap 565 * (reap=TRUE) or htable_alloc (reap=FALSE). 566 */ 567 static htable_t * 568 htable_steal(uint_t cnt, boolean_t reap) 569 { 570 hat_t *hat = kas.a_hat; /* list starts with khat */ 571 htable_t *list = NULL; 572 htable_t *ht; 573 uint_t stolen = 0; 574 uint_t pass, passes; 575 uint_t threshold; 576 577 /* 578 * Limit htable_steal_passes to something reasonable 579 */ 580 if (htable_steal_passes == 0) 581 htable_steal_passes = 1; 582 if (htable_steal_passes > mmu.ptes_per_table) 583 htable_steal_passes = mmu.ptes_per_table; 584 585 /* 586 * If we're stealing merely as part of kmem reaping (versus stealing 587 * to assure forward progress), we don't want to actually steal any 588 * active htables. (Stealing active htables merely to give memory 589 * back to the system can inadvertently kick off an htable crime wave 590 * as active processes repeatedly steal htables from one another, 591 * plummeting the system into a kind of HAT lawlessness that can 592 * become so violent as to impede the one thing that can end it: the 593 * freeing of memory via ARC reclaim and other means.) So if we're 594 * reaping, we limit ourselves to the first pass that steals cached 595 * htables that aren't in use -- which gives memory back, but averts 596 * the entire breakdown of social order. 597 */ 598 passes = reap ? 0 : htable_steal_passes; 599 600 /* 601 * Loop through all user hats. The 1st pass takes cached htables that 602 * aren't in use. The later passes steal by removing mappings, too. 603 */ 604 atomic_inc_32(&htable_dont_cache); 605 for (pass = 0; pass <= passes && stolen < cnt; ++pass) { 606 threshold = pass * mmu.ptes_per_table / htable_steal_passes; 607 608 mutex_enter(&hat_list_lock); 609 610 /* skip the first hat (kernel) */ 611 hat = kas.a_hat->hat_next; 612 for (;;) { 613 /* 614 * Skip any hat that is already being stolen from. 615 * 616 * We skip SHARED hats, as these are dummy 617 * hats that host ISM shared page tables. 618 * 619 * We also skip if HAT_FREEING because hat_pte_unmap() 620 * won't zero out the PTE's. That would lead to hitting 621 * stale PTEs either here or under hat_unload() when we 622 * steal and unload the same page table in competing 623 * threads. 624 * 625 * We skip HATs that belong to CPUs, to make our lives 626 * simpler. 627 */ 628 while (hat != NULL && (hat->hat_flags & 629 (HAT_VICTIM | HAT_SHARED | HAT_FREEING | 630 HAT_PCP)) != 0) { 631 hat = hat->hat_next; 632 } 633 634 if (hat == NULL) 635 break; 636 637 /* 638 * Mark the HAT as a stealing victim so that it is 639 * not freed from under us, e.g. in as_free() 640 */ 641 hat->hat_flags |= HAT_VICTIM; 642 mutex_exit(&hat_list_lock); 643 644 /* 645 * Take any htables from the hat's cached "free" list. 646 */ 647 hat_enter(hat); 648 while ((ht = hat->hat_ht_cached) != NULL && 649 stolen < cnt) { 650 hat->hat_ht_cached = ht->ht_next; 651 ht->ht_next = list; 652 list = ht; 653 ++stolen; 654 } 655 hat_exit(hat); 656 657 /* 658 * Don't steal active htables on first pass. 659 */ 660 if (pass != 0 && (stolen < cnt)) 661 htable_steal_active(hat, cnt, threshold, 662 &stolen, &list); 663 664 /* 665 * do synchronous teardown for the reap case so that 666 * we can forget hat; at this time, hat is 667 * guaranteed to be around because HAT_VICTIM is set 668 * (see htable_free() for similar code) 669 */ 670 for (ht = list; (ht) && (reap); ht = ht->ht_next) { 671 if (ht->ht_hat == NULL) 672 continue; 673 ASSERT(ht->ht_hat == hat); 674 #if defined(__xpv) 675 ASSERT(!(ht->ht_flags & HTABLE_COPIED)); 676 if (ht->ht_level == mmu.max_level) { 677 ptable_free(hat->hat_user_ptable); 678 hat->hat_user_ptable = PFN_INVALID; 679 } 680 #endif 681 /* 682 * forget the hat 683 */ 684 ht->ht_hat = NULL; 685 } 686 687 mutex_enter(&hat_list_lock); 688 689 /* 690 * Are we finished? 691 */ 692 if (stolen == cnt) { 693 /* 694 * Try to spread the pain of stealing, 695 * move victim HAT to the end of the HAT list. 696 */ 697 if (pass >= 1 && cnt == 1 && 698 kas.a_hat->hat_prev != hat) 699 move_victim(hat); 700 /* 701 * We are finished 702 */ 703 } 704 705 /* 706 * Clear the victim flag, hat can go away now (once 707 * the lock is dropped) 708 */ 709 if (hat->hat_flags & HAT_VICTIM) { 710 ASSERT(hat != kas.a_hat); 711 hat->hat_flags &= ~HAT_VICTIM; 712 cv_broadcast(&hat_list_cv); 713 } 714 715 /* move on to the next hat */ 716 hat = hat->hat_next; 717 } 718 719 mutex_exit(&hat_list_lock); 720 721 } 722 ASSERT(!MUTEX_HELD(&hat_list_lock)); 723 724 atomic_dec_32(&htable_dont_cache); 725 return (list); 726 } 727 728 /* 729 * This is invoked from kmem when the system is low on memory. We try 730 * to free hments, htables, and ptables to improve the memory situation. 731 */ 732 /*ARGSUSED*/ 733 static void 734 htable_reap(void *handle) 735 { 736 uint_t reap_cnt; 737 htable_t *list; 738 htable_t *ht; 739 740 HATSTAT_INC(hs_reap_attempts); 741 if (!can_steal_post_boot) 742 return; 743 744 /* 745 * Try to reap 5% of the page tables bounded by a maximum of 746 * 5% of physmem and a minimum of 10. 747 */ 748 reap_cnt = MAX(MIN(physmem / 20, active_ptables / 20), 10); 749 750 /* 751 * Note: htable_dont_cache should be set at the time of 752 * invoking htable_free() 753 */ 754 atomic_inc_32(&htable_dont_cache); 755 /* 756 * Let htable_steal() do the work, we just call htable_free() 757 */ 758 XPV_DISALLOW_MIGRATE(); 759 list = htable_steal(reap_cnt, B_TRUE); 760 XPV_ALLOW_MIGRATE(); 761 while ((ht = list) != NULL) { 762 list = ht->ht_next; 763 HATSTAT_INC(hs_reaped); 764 htable_free(ht); 765 } 766 atomic_dec_32(&htable_dont_cache); 767 768 /* 769 * Free up excess reserves 770 */ 771 htable_adjust_reserve(); 772 hment_adjust_reserve(); 773 } 774 775 /* 776 * Allocate an htable, stealing one or using the reserve if necessary 777 */ 778 static htable_t * 779 htable_alloc( 780 hat_t *hat, 781 uintptr_t vaddr, 782 level_t level, 783 htable_t *shared) 784 { 785 htable_t *ht = NULL; 786 uint_t is_copied; 787 uint_t is_bare = 0; 788 uint_t need_to_zero = 1; 789 int kmflags = (can_steal_post_boot ? KM_NOSLEEP : KM_SLEEP); 790 791 if (level < 0 || level > TOP_LEVEL(hat)) 792 panic("htable_alloc(): level %d out of range\n", level); 793 794 is_copied = (hat->hat_flags & HAT_COPIED) && 795 level == hat->hat_max_level; 796 if (is_copied || shared != NULL) 797 is_bare = 1; 798 799 /* 800 * First reuse a cached htable from the hat_ht_cached field, this 801 * avoids unnecessary trips through kmem/page allocators. 802 */ 803 if (hat->hat_ht_cached != NULL && !is_bare) { 804 hat_enter(hat); 805 ht = hat->hat_ht_cached; 806 if (ht != NULL) { 807 hat->hat_ht_cached = ht->ht_next; 808 need_to_zero = 0; 809 /* XX64 ASSERT() they're all zero somehow */ 810 ASSERT(ht->ht_pfn != PFN_INVALID); 811 } 812 hat_exit(hat); 813 } 814 815 if (ht == NULL) { 816 /* 817 * Allocate an htable, possibly refilling the reserves. 818 */ 819 if (USE_HAT_RESERVES()) { 820 ht = htable_get_reserve(); 821 } else { 822 /* 823 * Donate successful htable allocations to the reserve. 824 */ 825 for (;;) { 826 ht = kmem_cache_alloc(htable_cache, kmflags); 827 if (ht == NULL) 828 break; 829 ht->ht_pfn = PFN_INVALID; 830 if (USE_HAT_RESERVES() || 831 htable_reserve_cnt >= htable_reserve_amount) 832 break; 833 htable_put_reserve(ht); 834 } 835 } 836 837 /* 838 * allocate a page for the hardware page table if needed 839 */ 840 if (ht != NULL && !is_bare) { 841 ht->ht_hat = hat; 842 ht->ht_pfn = ptable_alloc((uintptr_t)ht); 843 if (ht->ht_pfn == PFN_INVALID) { 844 if (USE_HAT_RESERVES()) 845 htable_put_reserve(ht); 846 else 847 kmem_cache_free(htable_cache, ht); 848 ht = NULL; 849 } 850 } 851 } 852 853 /* 854 * If allocations failed, kick off a kmem_reap() and resort to 855 * htable steal(). We may spin here if the system is very low on 856 * memory. If the kernel itself has consumed all memory and kmem_reap() 857 * can't free up anything, then we'll really get stuck here. 858 * That should only happen in a system where the administrator has 859 * misconfigured VM parameters via /etc/system. 860 */ 861 while (ht == NULL && can_steal_post_boot) { 862 kmem_reap(); 863 ht = htable_steal(1, B_FALSE); 864 HATSTAT_INC(hs_steals); 865 866 /* 867 * If we stole for a bare htable, release the pagetable page. 868 */ 869 if (ht != NULL) { 870 if (is_bare) { 871 ptable_free(ht->ht_pfn); 872 ht->ht_pfn = PFN_INVALID; 873 #if defined(__xpv) 874 /* 875 * make stolen page table writable again in kpm 876 */ 877 } else if (kpm_vbase && xen_kpm_page(ht->ht_pfn, 878 PT_VALID | PT_WRITABLE) < 0) { 879 panic("failure making kpm r/w pfn=0x%lx", 880 ht->ht_pfn); 881 #endif 882 } 883 } 884 } 885 886 /* 887 * All attempts to allocate or steal failed. This should only happen 888 * if we run out of memory during boot, due perhaps to a huge 889 * boot_archive. At this point there's no way to continue. 890 */ 891 if (ht == NULL) 892 panic("htable_alloc(): couldn't steal\n"); 893 894 #if defined(__xpv) 895 /* 896 * Under the 64-bit hypervisor, we have 2 top level page tables. 897 * If this allocation fails, we'll resort to stealing. 898 * We use the stolen page indirectly, by freeing the 899 * stolen htable first. 900 */ 901 if (level == mmu.max_level) { 902 for (;;) { 903 htable_t *stolen; 904 905 hat->hat_user_ptable = ptable_alloc((uintptr_t)ht + 1); 906 if (hat->hat_user_ptable != PFN_INVALID) 907 break; 908 stolen = htable_steal(1, B_FALSE); 909 if (stolen == NULL) 910 panic("2nd steal ptable failed\n"); 911 htable_free(stolen); 912 } 913 block_zero_no_xmm(kpm_vbase + pfn_to_pa(hat->hat_user_ptable), 914 MMU_PAGESIZE); 915 } 916 #endif 917 918 /* 919 * Shared page tables have all entries locked and entries may not 920 * be added or deleted. 921 */ 922 ht->ht_flags = 0; 923 if (shared != NULL) { 924 ASSERT(shared->ht_valid_cnt > 0); 925 ht->ht_flags |= HTABLE_SHARED_PFN; 926 ht->ht_pfn = shared->ht_pfn; 927 ht->ht_lock_cnt = 0; 928 ht->ht_valid_cnt = 0; /* updated in hat_share() */ 929 ht->ht_shares = shared; 930 need_to_zero = 0; 931 } else { 932 ht->ht_shares = NULL; 933 ht->ht_lock_cnt = 0; 934 ht->ht_valid_cnt = 0; 935 } 936 937 /* 938 * setup flags, etc. for copied page tables. 939 */ 940 if (is_copied) { 941 ht->ht_flags |= HTABLE_COPIED; 942 ASSERT(ht->ht_pfn == PFN_INVALID); 943 need_to_zero = 0; 944 } 945 946 /* 947 * fill in the htable 948 */ 949 ht->ht_hat = hat; 950 ht->ht_parent = NULL; 951 ht->ht_vaddr = vaddr; 952 ht->ht_level = level; 953 ht->ht_busy = 1; 954 ht->ht_next = NULL; 955 ht->ht_prev = NULL; 956 957 /* 958 * Zero out any freshly allocated page table 959 */ 960 if (need_to_zero) 961 x86pte_zero(ht, 0, mmu.ptes_per_table); 962 963 #if defined(__xpv) 964 if (!is_bare && kpm_vbase) { 965 (void) xen_kpm_page(ht->ht_pfn, PT_VALID); 966 if (level == mmu.max_level) 967 (void) xen_kpm_page(hat->hat_user_ptable, PT_VALID); 968 } 969 #endif 970 971 return (ht); 972 } 973 974 /* 975 * Free up an htable, either to a hat's cached list, the reserves or 976 * back to kmem. 977 */ 978 static void 979 htable_free(htable_t *ht) 980 { 981 hat_t *hat = ht->ht_hat; 982 983 /* 984 * If the process isn't exiting, cache the free htable in the hat 985 * structure. We always do this for the boot time reserve. We don't 986 * do this if the hat is exiting or we are stealing/reaping htables. 987 */ 988 if (hat != NULL && 989 !(ht->ht_flags & HTABLE_SHARED_PFN) && 990 (use_boot_reserve || 991 (!(hat->hat_flags & HAT_FREEING) && !htable_dont_cache))) { 992 ASSERT((ht->ht_flags & HTABLE_COPIED) == 0); 993 ASSERT(ht->ht_pfn != PFN_INVALID); 994 hat_enter(hat); 995 ht->ht_next = hat->hat_ht_cached; 996 hat->hat_ht_cached = ht; 997 hat_exit(hat); 998 return; 999 } 1000 1001 /* 1002 * If we have a hardware page table, free it. 1003 * We don't free page tables that are accessed by sharing. 1004 */ 1005 if (ht->ht_flags & HTABLE_SHARED_PFN) { 1006 ASSERT(ht->ht_pfn != PFN_INVALID); 1007 } else if (!(ht->ht_flags & HTABLE_COPIED)) { 1008 ptable_free(ht->ht_pfn); 1009 #if defined(__xpv) 1010 if (ht->ht_level == mmu.max_level && hat != NULL) { 1011 ptable_free(hat->hat_user_ptable); 1012 hat->hat_user_ptable = PFN_INVALID; 1013 } 1014 #endif 1015 } 1016 ht->ht_pfn = PFN_INVALID; 1017 1018 /* 1019 * Free it or put into reserves. 1020 */ 1021 if (USE_HAT_RESERVES() || htable_reserve_cnt < htable_reserve_amount) { 1022 htable_put_reserve(ht); 1023 } else { 1024 kmem_cache_free(htable_cache, ht); 1025 htable_adjust_reserve(); 1026 } 1027 } 1028 1029 1030 /* 1031 * This is called when a hat is being destroyed or swapped out. We reap all 1032 * the remaining htables in the hat cache. If destroying all left over 1033 * htables are also destroyed. 1034 * 1035 * We also don't need to invalidate any of the PTPs nor do any demapping. 1036 */ 1037 void 1038 htable_purge_hat(hat_t *hat) 1039 { 1040 htable_t *ht; 1041 int h; 1042 1043 /* 1044 * Purge the htable cache if just reaping. 1045 */ 1046 if (!(hat->hat_flags & HAT_FREEING)) { 1047 atomic_inc_32(&htable_dont_cache); 1048 for (;;) { 1049 hat_enter(hat); 1050 ht = hat->hat_ht_cached; 1051 if (ht == NULL) { 1052 hat_exit(hat); 1053 break; 1054 } 1055 hat->hat_ht_cached = ht->ht_next; 1056 hat_exit(hat); 1057 htable_free(ht); 1058 } 1059 atomic_dec_32(&htable_dont_cache); 1060 return; 1061 } 1062 1063 /* 1064 * if freeing, no locking is needed 1065 */ 1066 while ((ht = hat->hat_ht_cached) != NULL) { 1067 hat->hat_ht_cached = ht->ht_next; 1068 htable_free(ht); 1069 } 1070 1071 /* 1072 * walk thru the htable hash table and free all the htables in it. 1073 */ 1074 for (h = 0; h < hat->hat_num_hash; ++h) { 1075 while ((ht = hat->hat_ht_hash[h]) != NULL) { 1076 if (ht->ht_next) 1077 ht->ht_next->ht_prev = ht->ht_prev; 1078 1079 if (ht->ht_prev) { 1080 ht->ht_prev->ht_next = ht->ht_next; 1081 } else { 1082 ASSERT(hat->hat_ht_hash[h] == ht); 1083 hat->hat_ht_hash[h] = ht->ht_next; 1084 } 1085 htable_free(ht); 1086 } 1087 } 1088 } 1089 1090 /* 1091 * Unlink an entry for a table at vaddr and level out of the existing table 1092 * one level higher. We are always holding the HASH_ENTER() when doing this. 1093 */ 1094 static void 1095 unlink_ptp(htable_t *higher, htable_t *old, uintptr_t vaddr) 1096 { 1097 uint_t entry = htable_va2entry(vaddr, higher); 1098 x86pte_t expect = MAKEPTP(old->ht_pfn, old->ht_level); 1099 x86pte_t found; 1100 hat_t *hat = old->ht_hat; 1101 1102 ASSERT(higher->ht_busy > 0); 1103 ASSERT(higher->ht_valid_cnt > 0); 1104 ASSERT(old->ht_valid_cnt == 0); 1105 found = x86pte_cas(higher, entry, expect, 0); 1106 #ifdef __xpv 1107 /* 1108 * This is weird, but Xen apparently automatically unlinks empty 1109 * pagetables from the upper page table. So allow PTP to be 0 already. 1110 */ 1111 if (found != expect && found != 0) 1112 #else 1113 if (found != expect) 1114 #endif 1115 panic("Bad PTP found=" FMT_PTE ", expected=" FMT_PTE, 1116 found, expect); 1117 1118 /* 1119 * When a top level PTE changes for a copied htable, we must trigger a 1120 * hat_pcp_update() on all HAT CPUs. 1121 * 1122 * If we don't need do do that, then we still have to INVLPG against an 1123 * address covered by the inner page table, as the latest processors 1124 * have TLB-like caches for non-leaf page table entries. 1125 */ 1126 if (!(hat->hat_flags & HAT_FREEING)) { 1127 hat_tlb_inval(hat, (higher->ht_flags & HTABLE_COPIED) ? 1128 DEMAP_ALL_ADDR : old->ht_vaddr); 1129 } 1130 1131 HTABLE_DEC(higher->ht_valid_cnt); 1132 } 1133 1134 /* 1135 * Link an entry for a new table at vaddr and level into the existing table 1136 * one level higher. We are always holding the HASH_ENTER() when doing this. 1137 */ 1138 static void 1139 link_ptp(htable_t *higher, htable_t *new, uintptr_t vaddr) 1140 { 1141 uint_t entry = htable_va2entry(vaddr, higher); 1142 x86pte_t newptp = MAKEPTP(new->ht_pfn, new->ht_level); 1143 x86pte_t found; 1144 1145 ASSERT(higher->ht_busy > 0); 1146 1147 ASSERT(new->ht_level != mmu.max_level); 1148 1149 HTABLE_INC(higher->ht_valid_cnt); 1150 1151 found = x86pte_cas(higher, entry, 0, newptp); 1152 if ((found & ~PT_REF) != 0) 1153 panic("HAT: ptp not 0, found=" FMT_PTE, found); 1154 1155 /* 1156 * When a top level PTE changes for a copied htable, we must trigger a 1157 * hat_pcp_update() on all HAT CPUs. 1158 * 1159 * We also need to do this for the kernel hat on PAE 32 bit kernel. 1160 */ 1161 if ((higher->ht_flags & HTABLE_COPIED) != 0) 1162 hat_tlb_inval(higher->ht_hat, DEMAP_ALL_ADDR); 1163 } 1164 1165 /* 1166 * Release of hold on an htable. If this is the last use and the pagetable 1167 * is empty we may want to free it, then recursively look at the pagetable 1168 * above it. The recursion is handled by the outer while() loop. 1169 * 1170 * On the metal, during process exit, we don't bother unlinking the tables from 1171 * upper level pagetables. They are instead handled in bulk by hat_free_end(). 1172 * We can't do this on the hypervisor as we need the page table to be 1173 * implicitly unpinnned before it goes to the free page lists. This can't 1174 * happen unless we fully unlink it from the page table hierarchy. 1175 */ 1176 void 1177 htable_release(htable_t *ht) 1178 { 1179 uint_t hashval; 1180 htable_t *shared; 1181 htable_t *higher; 1182 hat_t *hat; 1183 uintptr_t va; 1184 level_t level; 1185 1186 while (ht != NULL) { 1187 shared = NULL; 1188 for (;;) { 1189 hat = ht->ht_hat; 1190 va = ht->ht_vaddr; 1191 level = ht->ht_level; 1192 hashval = HTABLE_HASH(hat, va, level); 1193 1194 /* 1195 * The common case is that this isn't the last use of 1196 * an htable so we don't want to free the htable. 1197 */ 1198 HTABLE_ENTER(hashval); 1199 ASSERT(ht->ht_valid_cnt >= 0); 1200 ASSERT(ht->ht_busy > 0); 1201 if (ht->ht_valid_cnt > 0) 1202 break; 1203 if (ht->ht_busy > 1) 1204 break; 1205 ASSERT(ht->ht_lock_cnt == 0); 1206 1207 #if !defined(__xpv) 1208 /* 1209 * we always release empty shared htables 1210 */ 1211 if (!(ht->ht_flags & HTABLE_SHARED_PFN)) { 1212 1213 /* 1214 * don't release if in address space tear down 1215 */ 1216 if (hat->hat_flags & HAT_FREEING) 1217 break; 1218 1219 /* 1220 * At and above max_page_level, free if it's for 1221 * a boot-time kernel mapping below kernelbase. 1222 */ 1223 if (level >= mmu.max_page_level && 1224 (hat != kas.a_hat || va >= kernelbase)) 1225 break; 1226 } 1227 #endif /* __xpv */ 1228 1229 /* 1230 * Remember if we destroy an htable that shares its PFN 1231 * from elsewhere. 1232 */ 1233 if (ht->ht_flags & HTABLE_SHARED_PFN) { 1234 ASSERT(shared == NULL); 1235 shared = ht->ht_shares; 1236 HATSTAT_INC(hs_htable_unshared); 1237 } 1238 1239 /* 1240 * Handle release of a table and freeing the htable_t. 1241 * Unlink it from the table higher (ie. ht_parent). 1242 */ 1243 higher = ht->ht_parent; 1244 ASSERT(higher != NULL); 1245 1246 /* 1247 * Unlink the pagetable. 1248 */ 1249 unlink_ptp(higher, ht, va); 1250 1251 /* 1252 * remove this htable from its hash list 1253 */ 1254 if (ht->ht_next) 1255 ht->ht_next->ht_prev = ht->ht_prev; 1256 1257 if (ht->ht_prev) { 1258 ht->ht_prev->ht_next = ht->ht_next; 1259 } else { 1260 ASSERT(hat->hat_ht_hash[hashval] == ht); 1261 hat->hat_ht_hash[hashval] = ht->ht_next; 1262 } 1263 HTABLE_EXIT(hashval); 1264 htable_free(ht); 1265 ht = higher; 1266 } 1267 1268 ASSERT(ht->ht_busy >= 1); 1269 --ht->ht_busy; 1270 HTABLE_EXIT(hashval); 1271 1272 /* 1273 * If we released a shared htable, do a release on the htable 1274 * from which it shared 1275 */ 1276 ht = shared; 1277 } 1278 } 1279 1280 /* 1281 * Find the htable for the pagetable at the given level for the given address. 1282 * If found acquires a hold that eventually needs to be htable_release()d 1283 */ 1284 htable_t * 1285 htable_lookup(hat_t *hat, uintptr_t vaddr, level_t level) 1286 { 1287 uintptr_t base; 1288 uint_t hashval; 1289 htable_t *ht = NULL; 1290 1291 ASSERT(level >= 0); 1292 ASSERT(level <= TOP_LEVEL(hat)); 1293 1294 if (level == TOP_LEVEL(hat)) { 1295 /* 1296 * 32 bit address spaces on 64 bit kernels need to check 1297 * for overflow of the 32 bit address space 1298 */ 1299 if ((hat->hat_flags & HAT_COPIED_32) && 1300 vaddr >= ((uint64_t)1 << 32)) 1301 return (NULL); 1302 base = 0; 1303 } else { 1304 base = vaddr & LEVEL_MASK(level + 1); 1305 } 1306 1307 hashval = HTABLE_HASH(hat, base, level); 1308 HTABLE_ENTER(hashval); 1309 for (ht = hat->hat_ht_hash[hashval]; ht; ht = ht->ht_next) { 1310 if (ht->ht_hat == hat && 1311 ht->ht_vaddr == base && 1312 ht->ht_level == level) 1313 break; 1314 } 1315 if (ht) 1316 ++ht->ht_busy; 1317 1318 HTABLE_EXIT(hashval); 1319 return (ht); 1320 } 1321 1322 /* 1323 * Acquires a hold on a known htable (from a locked hment entry). 1324 */ 1325 void 1326 htable_acquire(htable_t *ht) 1327 { 1328 hat_t *hat = ht->ht_hat; 1329 level_t level = ht->ht_level; 1330 uintptr_t base = ht->ht_vaddr; 1331 uint_t hashval = HTABLE_HASH(hat, base, level); 1332 1333 HTABLE_ENTER(hashval); 1334 #ifdef DEBUG 1335 /* 1336 * make sure the htable is there 1337 */ 1338 { 1339 htable_t *h; 1340 1341 for (h = hat->hat_ht_hash[hashval]; 1342 h && h != ht; 1343 h = h->ht_next) 1344 ; 1345 ASSERT(h == ht); 1346 } 1347 #endif /* DEBUG */ 1348 ++ht->ht_busy; 1349 HTABLE_EXIT(hashval); 1350 } 1351 1352 /* 1353 * Find the htable for the pagetable at the given level for the given address. 1354 * If found acquires a hold that eventually needs to be htable_release()d 1355 * If not found the table is created. 1356 * 1357 * Since we can't hold a hash table mutex during allocation, we have to 1358 * drop it and redo the search on a create. Then we may have to free the newly 1359 * allocated htable if another thread raced in and created it ahead of us. 1360 */ 1361 htable_t * 1362 htable_create( 1363 hat_t *hat, 1364 uintptr_t vaddr, 1365 level_t level, 1366 htable_t *shared) 1367 { 1368 uint_t h; 1369 level_t l; 1370 uintptr_t base; 1371 htable_t *ht; 1372 htable_t *higher = NULL; 1373 htable_t *new = NULL; 1374 1375 if (level < 0 || level > TOP_LEVEL(hat)) 1376 panic("htable_create(): level %d out of range\n", level); 1377 1378 ht = NULL; 1379 /* 1380 * Create the page tables in top down order. 1381 */ 1382 for (l = TOP_LEVEL(hat); l >= level; --l) { 1383 new = NULL; 1384 if (l == TOP_LEVEL(hat)) 1385 base = 0; 1386 else 1387 base = vaddr & LEVEL_MASK(l + 1); 1388 1389 h = HTABLE_HASH(hat, base, l); 1390 try_again: 1391 /* 1392 * look up the htable at this level 1393 */ 1394 HTABLE_ENTER(h); 1395 if (l == TOP_LEVEL(hat)) { 1396 ht = hat->hat_htable; 1397 } else { 1398 for (ht = hat->hat_ht_hash[h]; ht; ht = ht->ht_next) { 1399 ASSERT(ht->ht_hat == hat); 1400 if (ht->ht_vaddr == base && 1401 ht->ht_level == l) 1402 break; 1403 } 1404 } 1405 1406 /* 1407 * if we found the htable, increment its busy cnt 1408 * and if we had allocated a new htable, free it. 1409 */ 1410 if (ht != NULL) { 1411 /* 1412 * If we find a pre-existing shared table, it must 1413 * share from the same place. 1414 */ 1415 if (l == level && shared && ht->ht_shares && 1416 ht->ht_shares != shared) { 1417 panic("htable shared from wrong place " 1418 "found htable=%p shared=%p", 1419 (void *)ht, (void *)shared); 1420 } 1421 ++ht->ht_busy; 1422 HTABLE_EXIT(h); 1423 if (new) 1424 htable_free(new); 1425 if (higher != NULL) 1426 htable_release(higher); 1427 higher = ht; 1428 1429 /* 1430 * if we didn't find it on the first search 1431 * allocate a new one and search again 1432 */ 1433 } else if (new == NULL) { 1434 HTABLE_EXIT(h); 1435 new = htable_alloc(hat, base, l, 1436 l == level ? shared : NULL); 1437 goto try_again; 1438 1439 /* 1440 * 2nd search and still not there, use "new" table 1441 * Link new table into higher, when not at top level. 1442 */ 1443 } else { 1444 ht = new; 1445 if (higher != NULL) { 1446 link_ptp(higher, ht, base); 1447 ht->ht_parent = higher; 1448 } 1449 ht->ht_next = hat->hat_ht_hash[h]; 1450 ASSERT(ht->ht_prev == NULL); 1451 if (hat->hat_ht_hash[h]) 1452 hat->hat_ht_hash[h]->ht_prev = ht; 1453 hat->hat_ht_hash[h] = ht; 1454 HTABLE_EXIT(h); 1455 1456 /* 1457 * Note we don't do htable_release(higher). 1458 * That happens recursively when "new" is removed by 1459 * htable_release() or htable_steal(). 1460 */ 1461 higher = ht; 1462 1463 /* 1464 * If we just created a new shared page table we 1465 * increment the shared htable's busy count, so that 1466 * it can't be the victim of a steal even if it's empty. 1467 */ 1468 if (l == level && shared) { 1469 (void) htable_lookup(shared->ht_hat, 1470 shared->ht_vaddr, shared->ht_level); 1471 HATSTAT_INC(hs_htable_shared); 1472 } 1473 } 1474 } 1475 1476 return (ht); 1477 } 1478 1479 /* 1480 * Inherit initial pagetables from the boot program. On the 64-bit 1481 * hypervisor we also temporarily mark the p_index field of page table 1482 * pages, so we know not to try making them writable in seg_kpm. 1483 */ 1484 void 1485 htable_attach( 1486 hat_t *hat, 1487 uintptr_t base, 1488 level_t level, 1489 htable_t *parent, 1490 pfn_t pfn) 1491 { 1492 htable_t *ht; 1493 uint_t h; 1494 uint_t i; 1495 x86pte_t pte; 1496 x86pte_t *ptep; 1497 page_t *pp; 1498 extern page_t *boot_claim_page(pfn_t); 1499 1500 ht = htable_get_reserve(); 1501 if (level == mmu.max_level) 1502 kas.a_hat->hat_htable = ht; 1503 ht->ht_hat = hat; 1504 ht->ht_parent = parent; 1505 ht->ht_vaddr = base; 1506 ht->ht_level = level; 1507 ht->ht_busy = 1; 1508 ht->ht_next = NULL; 1509 ht->ht_prev = NULL; 1510 ht->ht_flags = 0; 1511 ht->ht_pfn = pfn; 1512 ht->ht_lock_cnt = 0; 1513 ht->ht_valid_cnt = 0; 1514 if (parent != NULL) 1515 ++parent->ht_busy; 1516 1517 h = HTABLE_HASH(hat, base, level); 1518 HTABLE_ENTER(h); 1519 ht->ht_next = hat->hat_ht_hash[h]; 1520 ASSERT(ht->ht_prev == NULL); 1521 if (hat->hat_ht_hash[h]) 1522 hat->hat_ht_hash[h]->ht_prev = ht; 1523 hat->hat_ht_hash[h] = ht; 1524 HTABLE_EXIT(h); 1525 1526 /* 1527 * make sure the page table physical page is not FREE 1528 */ 1529 if (page_resv(1, KM_NOSLEEP) == 0) 1530 panic("page_resv() failed in ptable alloc"); 1531 1532 pp = boot_claim_page(pfn); 1533 ASSERT(pp != NULL); 1534 1535 /* 1536 * Page table pages that were allocated by dboot or 1537 * in very early startup didn't go through boot_mapin() 1538 * and so won't have vnode/offsets. Fix that here. 1539 */ 1540 if (pp->p_vnode == NULL) { 1541 /* match offset calculation in page_get_physical() */ 1542 u_offset_t offset = (uintptr_t)ht; 1543 if (offset > kernelbase) 1544 offset -= kernelbase; 1545 offset <<= MMU_PAGESHIFT; 1546 offset += mmu.hole_start; /* something in VA hole */ 1547 ASSERT(page_exists(&kvp, offset) == NULL); 1548 (void) page_hashin(pp, &kvp, offset, NULL); 1549 } 1550 page_downgrade(pp); 1551 #if defined(__xpv) 1552 /* 1553 * Record in the page_t that is a pagetable for segkpm setup. 1554 */ 1555 if (kpm_vbase) 1556 pp->p_index = 1; 1557 #endif 1558 1559 /* 1560 * Count valid mappings and recursively attach lower level pagetables. 1561 */ 1562 ptep = kbm_remap_window(pfn_to_pa(pfn), 0); 1563 for (i = 0; i < HTABLE_NUM_PTES(ht); ++i) { 1564 if (mmu.pae_hat) 1565 pte = ptep[i]; 1566 else 1567 pte = ((x86pte32_t *)ptep)[i]; 1568 if (!IN_HYPERVISOR_VA(base) && PTE_ISVALID(pte)) { 1569 ++ht->ht_valid_cnt; 1570 if (!PTE_ISPAGE(pte, level)) { 1571 htable_attach(hat, base, level - 1, 1572 ht, PTE2PFN(pte, level)); 1573 ptep = kbm_remap_window(pfn_to_pa(pfn), 0); 1574 } 1575 } 1576 base += LEVEL_SIZE(level); 1577 if (base == mmu.hole_start) 1578 base = (mmu.hole_end + MMU_PAGEOFFSET) & MMU_PAGEMASK; 1579 } 1580 1581 /* 1582 * As long as all the mappings we had were below kernel base 1583 * we can release the htable. 1584 */ 1585 if (base < kernelbase) 1586 htable_release(ht); 1587 } 1588 1589 /* 1590 * Walk through a given htable looking for the first valid entry. This 1591 * routine takes both a starting and ending address. The starting address 1592 * is required to be within the htable provided by the caller, but there is 1593 * no such restriction on the ending address. 1594 * 1595 * If the routine finds a valid entry in the htable (at or beyond the 1596 * starting address), the PTE (and its address) will be returned. 1597 * This PTE may correspond to either a page or a pagetable - it is the 1598 * caller's responsibility to determine which. If no valid entry is 1599 * found, 0 (and invalid PTE) and the next unexamined address will be 1600 * returned. 1601 * 1602 * The loop has been carefully coded for optimization. 1603 */ 1604 static x86pte_t 1605 htable_scan(htable_t *ht, uintptr_t *vap, uintptr_t eaddr) 1606 { 1607 uint_t e; 1608 x86pte_t found_pte = (x86pte_t)0; 1609 caddr_t pte_ptr; 1610 caddr_t end_pte_ptr; 1611 int l = ht->ht_level; 1612 uintptr_t va = *vap & LEVEL_MASK(l); 1613 size_t pgsize = LEVEL_SIZE(l); 1614 1615 ASSERT(va >= ht->ht_vaddr); 1616 ASSERT(va <= HTABLE_LAST_PAGE(ht)); 1617 1618 /* 1619 * Compute the starting index and ending virtual address 1620 */ 1621 e = htable_va2entry(va, ht); 1622 1623 /* 1624 * The following page table scan code knows that the valid 1625 * bit of a PTE is in the lowest byte AND that x86 is little endian!! 1626 */ 1627 pte_ptr = (caddr_t)x86pte_access_pagetable(ht, 0); 1628 end_pte_ptr = (caddr_t)PT_INDEX_PTR(pte_ptr, HTABLE_NUM_PTES(ht)); 1629 pte_ptr = (caddr_t)PT_INDEX_PTR((x86pte_t *)pte_ptr, e); 1630 while (!PTE_ISVALID(*pte_ptr)) { 1631 va += pgsize; 1632 if (va >= eaddr) 1633 break; 1634 pte_ptr += mmu.pte_size; 1635 ASSERT(pte_ptr <= end_pte_ptr); 1636 if (pte_ptr == end_pte_ptr) 1637 break; 1638 } 1639 1640 /* 1641 * if we found a valid PTE, load the entire PTE 1642 */ 1643 if (va < eaddr && pte_ptr != end_pte_ptr) 1644 found_pte = GET_PTE((x86pte_t *)pte_ptr); 1645 x86pte_release_pagetable(ht); 1646 1647 /* 1648 * deal with VA hole on amd64 1649 */ 1650 if (l == mmu.max_level && va >= mmu.hole_start && va <= mmu.hole_end) 1651 va = mmu.hole_end + va - mmu.hole_start; 1652 1653 *vap = va; 1654 return (found_pte); 1655 } 1656 1657 /* 1658 * Find the address and htable for the first populated translation at or 1659 * above the given virtual address. The caller may also specify an upper 1660 * limit to the address range to search. Uses level information to quickly 1661 * skip unpopulated sections of virtual address spaces. 1662 * 1663 * If not found returns NULL. When found, returns the htable and virt addr 1664 * and has a hold on the htable. 1665 */ 1666 x86pte_t 1667 htable_walk( 1668 struct hat *hat, 1669 htable_t **htp, 1670 uintptr_t *vaddr, 1671 uintptr_t eaddr) 1672 { 1673 uintptr_t va = *vaddr; 1674 htable_t *ht; 1675 htable_t *prev = *htp; 1676 level_t l; 1677 level_t max_mapped_level; 1678 x86pte_t pte; 1679 1680 ASSERT(eaddr > va); 1681 1682 /* 1683 * If this is a user address, then we know we need not look beyond 1684 * kernelbase. 1685 */ 1686 ASSERT(hat == kas.a_hat || eaddr <= kernelbase || 1687 eaddr == HTABLE_WALK_TO_END); 1688 if (hat != kas.a_hat && eaddr == HTABLE_WALK_TO_END) 1689 eaddr = kernelbase; 1690 1691 /* 1692 * If we're coming in with a previous page table, search it first 1693 * without doing an htable_lookup(), this should be frequent. 1694 */ 1695 if (prev) { 1696 ASSERT(prev->ht_busy > 0); 1697 ASSERT(prev->ht_vaddr <= va); 1698 l = prev->ht_level; 1699 if (va <= HTABLE_LAST_PAGE(prev)) { 1700 pte = htable_scan(prev, &va, eaddr); 1701 1702 if (PTE_ISPAGE(pte, l)) { 1703 *vaddr = va; 1704 *htp = prev; 1705 return (pte); 1706 } 1707 } 1708 1709 /* 1710 * We found nothing in the htable provided by the caller, 1711 * so fall through and do the full search 1712 */ 1713 htable_release(prev); 1714 } 1715 1716 /* 1717 * Find the level of the largest pagesize used by this HAT. 1718 */ 1719 if (hat->hat_ism_pgcnt > 0) { 1720 max_mapped_level = mmu.umax_page_level; 1721 } else { 1722 max_mapped_level = 0; 1723 for (l = 1; l <= mmu.max_page_level; ++l) 1724 if (hat->hat_pages_mapped[l] != 0) 1725 max_mapped_level = l; 1726 } 1727 1728 while (va < eaddr && va >= *vaddr) { 1729 /* 1730 * Find lowest table with any entry for given address. 1731 */ 1732 for (l = 0; l <= TOP_LEVEL(hat); ++l) { 1733 ht = htable_lookup(hat, va, l); 1734 if (ht != NULL) { 1735 pte = htable_scan(ht, &va, eaddr); 1736 if (PTE_ISPAGE(pte, l)) { 1737 VERIFY(!IN_VA_HOLE(va)); 1738 *vaddr = va; 1739 *htp = ht; 1740 return (pte); 1741 } 1742 htable_release(ht); 1743 break; 1744 } 1745 1746 /* 1747 * No htable at this level for the address. If there 1748 * is no larger page size that could cover it, we can 1749 * skip right to the start of the next page table. 1750 */ 1751 ASSERT(l < TOP_LEVEL(hat)); 1752 if (l >= max_mapped_level) { 1753 va = NEXT_ENTRY_VA(va, l + 1); 1754 if (va >= eaddr) 1755 break; 1756 } 1757 } 1758 } 1759 1760 *vaddr = 0; 1761 *htp = NULL; 1762 return (0); 1763 } 1764 1765 /* 1766 * Find the htable and page table entry index of the given virtual address 1767 * with pagesize at or below given level. 1768 * If not found returns NULL. When found, returns the htable, sets 1769 * entry, and has a hold on the htable. 1770 */ 1771 htable_t * 1772 htable_getpte( 1773 struct hat *hat, 1774 uintptr_t vaddr, 1775 uint_t *entry, 1776 x86pte_t *pte, 1777 level_t level) 1778 { 1779 htable_t *ht; 1780 level_t l; 1781 uint_t e; 1782 1783 ASSERT(level <= mmu.max_page_level); 1784 1785 for (l = 0; l <= level; ++l) { 1786 ht = htable_lookup(hat, vaddr, l); 1787 if (ht == NULL) 1788 continue; 1789 e = htable_va2entry(vaddr, ht); 1790 if (entry != NULL) 1791 *entry = e; 1792 if (pte != NULL) 1793 *pte = x86pte_get(ht, e); 1794 return (ht); 1795 } 1796 return (NULL); 1797 } 1798 1799 /* 1800 * Find the htable and page table entry index of the given virtual address. 1801 * There must be a valid page mapped at the given address. 1802 * If not found returns NULL. When found, returns the htable, sets 1803 * entry, and has a hold on the htable. 1804 */ 1805 htable_t * 1806 htable_getpage(struct hat *hat, uintptr_t vaddr, uint_t *entry) 1807 { 1808 htable_t *ht; 1809 uint_t e; 1810 x86pte_t pte; 1811 1812 ht = htable_getpte(hat, vaddr, &e, &pte, mmu.max_page_level); 1813 if (ht == NULL) 1814 return (NULL); 1815 1816 if (entry) 1817 *entry = e; 1818 1819 if (PTE_ISPAGE(pte, ht->ht_level)) 1820 return (ht); 1821 htable_release(ht); 1822 return (NULL); 1823 } 1824 1825 1826 void 1827 htable_init() 1828 { 1829 /* 1830 * To save on kernel VA usage, we avoid debug information in 32 bit 1831 * kernels. 1832 */ 1833 int kmem_flags = KMC_NOHASH; 1834 1835 /* 1836 * initialize kmem caches 1837 */ 1838 htable_cache = kmem_cache_create("htable_t", 1839 sizeof (htable_t), 0, NULL, NULL, 1840 htable_reap, NULL, hat_memload_arena, kmem_flags); 1841 } 1842 1843 /* 1844 * get the pte index for the virtual address in the given htable's pagetable 1845 */ 1846 uint_t 1847 htable_va2entry(uintptr_t va, htable_t *ht) 1848 { 1849 level_t l = ht->ht_level; 1850 1851 ASSERT(va >= ht->ht_vaddr); 1852 ASSERT(va <= HTABLE_LAST_PAGE(ht)); 1853 return ((va >> LEVEL_SHIFT(l)) & (HTABLE_NUM_PTES(ht) - 1)); 1854 } 1855 1856 /* 1857 * Given an htable and the index of a pte in it, return the virtual address 1858 * of the page. 1859 */ 1860 uintptr_t 1861 htable_e2va(htable_t *ht, uint_t entry) 1862 { 1863 level_t l = ht->ht_level; 1864 uintptr_t va; 1865 1866 ASSERT(entry < HTABLE_NUM_PTES(ht)); 1867 va = ht->ht_vaddr + ((uintptr_t)entry << LEVEL_SHIFT(l)); 1868 1869 /* 1870 * Need to skip over any VA hole in top level table 1871 */ 1872 if (ht->ht_level == mmu.max_level && va >= mmu.hole_start) 1873 va += ((mmu.hole_end - mmu.hole_start) + 1); 1874 1875 return (va); 1876 } 1877 1878 /* 1879 * The code uses compare and swap instructions to read/write PTE's to 1880 * avoid atomicity problems, since PTEs can be 8 bytes on 32 bit systems. 1881 * will naturally be atomic. 1882 * 1883 * The combination of using kpreempt_disable()/_enable() and the hci_mutex 1884 * are used to ensure that an interrupt won't overwrite a temporary mapping 1885 * while it's in use. If an interrupt thread tries to access a PTE, it will 1886 * yield briefly back to the pinned thread which holds the cpu's hci_mutex. 1887 */ 1888 void 1889 x86pte_cpu_init(cpu_t *cpu) 1890 { 1891 struct hat_cpu_info *hci; 1892 1893 hci = kmem_zalloc(sizeof (*hci), KM_SLEEP); 1894 mutex_init(&hci->hci_mutex, NULL, MUTEX_DEFAULT, NULL); 1895 cpu->cpu_hat_info = hci; 1896 } 1897 1898 void 1899 x86pte_cpu_fini(cpu_t *cpu) 1900 { 1901 struct hat_cpu_info *hci = cpu->cpu_hat_info; 1902 1903 kmem_free(hci, sizeof (*hci)); 1904 cpu->cpu_hat_info = NULL; 1905 } 1906 1907 /* 1908 * Disable preemption and establish a mapping to the pagetable with the 1909 * given pfn. This is optimized for there case where it's the same 1910 * pfn as we last used referenced from this CPU. 1911 */ 1912 static x86pte_t * 1913 x86pte_access_pagetable(htable_t *ht, uint_t index) 1914 { 1915 /* 1916 * HTABLE_COPIED pagetables are contained in the hat_t 1917 */ 1918 if (ht->ht_flags & HTABLE_COPIED) { 1919 ASSERT3U(index, <, ht->ht_hat->hat_num_copied); 1920 return (PT_INDEX_PTR(ht->ht_hat->hat_copied_ptes, index)); 1921 } 1922 return (x86pte_mapin(ht->ht_pfn, index, ht)); 1923 } 1924 1925 /* 1926 * map the given pfn into the page table window. 1927 */ 1928 /*ARGSUSED*/ 1929 x86pte_t * 1930 x86pte_mapin(pfn_t pfn, uint_t index, htable_t *ht) 1931 { 1932 x86pte_t *pteptr; 1933 x86pte_t pte = 0; 1934 x86pte_t newpte; 1935 int x; 1936 1937 ASSERT(pfn != PFN_INVALID); 1938 1939 if (!khat_running) { 1940 caddr_t va = kbm_remap_window(pfn_to_pa(pfn), 1); 1941 return (PT_INDEX_PTR(va, index)); 1942 } 1943 1944 /* 1945 * If kpm is available, use it. 1946 */ 1947 if (kpm_vbase) 1948 return (PT_INDEX_PTR(hat_kpm_pfn2va(pfn), index)); 1949 1950 /* 1951 * Disable preemption and grab the CPU's hci_mutex 1952 */ 1953 kpreempt_disable(); 1954 1955 ASSERT(CPU->cpu_hat_info != NULL); 1956 ASSERT(!(getcr4() & CR4_PCIDE)); 1957 1958 mutex_enter(&CPU->cpu_hat_info->hci_mutex); 1959 x = PWIN_TABLE(CPU->cpu_id); 1960 pteptr = (x86pte_t *)PWIN_PTE_VA(x); 1961 #ifndef __xpv 1962 if (mmu.pae_hat) 1963 pte = *pteptr; 1964 else 1965 pte = *(x86pte32_t *)pteptr; 1966 #endif 1967 1968 newpte = MAKEPTE(pfn, 0) | mmu.pt_global | mmu.pt_nx; 1969 1970 /* 1971 * For hardware we can use a writable mapping. 1972 */ 1973 #ifdef __xpv 1974 if (IN_XPV_PANIC()) 1975 #endif 1976 newpte |= PT_WRITABLE; 1977 1978 if (!PTE_EQUIV(newpte, pte)) { 1979 1980 #ifdef __xpv 1981 if (!IN_XPV_PANIC()) { 1982 xen_map(newpte, PWIN_VA(x)); 1983 } else 1984 #endif 1985 { 1986 XPV_ALLOW_PAGETABLE_UPDATES(); 1987 if (mmu.pae_hat) 1988 *pteptr = newpte; 1989 else 1990 *(x86pte32_t *)pteptr = newpte; 1991 XPV_DISALLOW_PAGETABLE_UPDATES(); 1992 mmu_flush_tlb_kpage((uintptr_t)PWIN_VA(x)); 1993 } 1994 } 1995 return (PT_INDEX_PTR(PWIN_VA(x), index)); 1996 } 1997 1998 /* 1999 * Release access to a page table. 2000 */ 2001 static void 2002 x86pte_release_pagetable(htable_t *ht) 2003 { 2004 if (ht->ht_flags & HTABLE_COPIED) 2005 return; 2006 2007 x86pte_mapout(); 2008 } 2009 2010 void 2011 x86pte_mapout(void) 2012 { 2013 if (kpm_vbase != NULL || !khat_running) 2014 return; 2015 2016 /* 2017 * Drop the CPU's hci_mutex and restore preemption. 2018 */ 2019 #ifdef __xpv 2020 if (!IN_XPV_PANIC()) { 2021 uintptr_t va; 2022 2023 /* 2024 * We need to always clear the mapping in case a page 2025 * that was once a page table page is ballooned out. 2026 */ 2027 va = (uintptr_t)PWIN_VA(PWIN_TABLE(CPU->cpu_id)); 2028 (void) HYPERVISOR_update_va_mapping(va, 0, 2029 UVMF_INVLPG | UVMF_LOCAL); 2030 } 2031 #endif 2032 mutex_exit(&CPU->cpu_hat_info->hci_mutex); 2033 kpreempt_enable(); 2034 } 2035 2036 /* 2037 * Atomic retrieval of a pagetable entry 2038 */ 2039 x86pte_t 2040 x86pte_get(htable_t *ht, uint_t entry) 2041 { 2042 x86pte_t pte; 2043 x86pte_t *ptep; 2044 2045 /* 2046 * Be careful that loading PAE entries in 32 bit kernel is atomic. 2047 */ 2048 ASSERT(entry < mmu.ptes_per_table); 2049 ptep = x86pte_access_pagetable(ht, entry); 2050 pte = GET_PTE(ptep); 2051 x86pte_release_pagetable(ht); 2052 return (pte); 2053 } 2054 2055 /* 2056 * Atomic unconditional set of a page table entry, it returns the previous 2057 * value. For pre-existing mappings if the PFN changes, then we don't care 2058 * about the old pte's REF / MOD bits. If the PFN remains the same, we leave 2059 * the MOD/REF bits unchanged. 2060 * 2061 * If asked to overwrite a link to a lower page table with a large page 2062 * mapping, this routine returns the special value of LPAGE_ERROR. This 2063 * allows the upper HAT layers to retry with a smaller mapping size. 2064 */ 2065 x86pte_t 2066 x86pte_set(htable_t *ht, uint_t entry, x86pte_t new, void *ptr) 2067 { 2068 x86pte_t old; 2069 x86pte_t prev; 2070 x86pte_t *ptep; 2071 level_t l = ht->ht_level; 2072 x86pte_t pfn_mask = (l != 0) ? PT_PADDR_LGPG : PT_PADDR; 2073 x86pte_t n; 2074 uintptr_t addr = htable_e2va(ht, entry); 2075 hat_t *hat = ht->ht_hat; 2076 2077 ASSERT(new != 0); /* don't use to invalidate a PTE, see x86pte_update */ 2078 ASSERT(!(ht->ht_flags & HTABLE_SHARED_PFN)); 2079 if (ptr == NULL) 2080 ptep = x86pte_access_pagetable(ht, entry); 2081 else 2082 ptep = ptr; 2083 2084 /* 2085 * Install the new PTE. If remapping the same PFN, then 2086 * copy existing REF/MOD bits to new mapping. 2087 */ 2088 do { 2089 prev = GET_PTE(ptep); 2090 n = new; 2091 if (PTE_ISVALID(n) && (prev & pfn_mask) == (new & pfn_mask)) 2092 n |= prev & (PT_REF | PT_MOD); 2093 2094 /* 2095 * Another thread may have installed this mapping already, 2096 * flush the local TLB and be done. 2097 */ 2098 if (prev == n) { 2099 old = new; 2100 #ifdef __xpv 2101 if (!IN_XPV_PANIC()) 2102 xen_flush_va((caddr_t)addr); 2103 else 2104 #endif 2105 mmu_flush_tlb_page(addr); 2106 goto done; 2107 } 2108 2109 /* 2110 * Detect if we have a collision of installing a large 2111 * page mapping where there already is a lower page table. 2112 */ 2113 if (l > 0 && (prev & PT_VALID) && !(prev & PT_PAGESIZE)) { 2114 old = LPAGE_ERROR; 2115 goto done; 2116 } 2117 2118 XPV_ALLOW_PAGETABLE_UPDATES(); 2119 old = CAS_PTE(ptep, prev, n); 2120 XPV_DISALLOW_PAGETABLE_UPDATES(); 2121 } while (old != prev); 2122 2123 /* 2124 * Do a TLB demap if needed, ie. the old pte was valid. 2125 * 2126 * Note that a stale TLB writeback to the PTE here either can't happen 2127 * or doesn't matter. The PFN can only change for NOSYNC|NOCONSIST 2128 * mappings, but they were created with REF and MOD already set, so 2129 * no stale writeback will happen. 2130 * 2131 * Segmap is the only place where remaps happen on the same pfn and for 2132 * that we want to preserve the stale REF/MOD bits. 2133 */ 2134 if (old & PT_REF) 2135 hat_tlb_inval(hat, addr); 2136 2137 done: 2138 if (ptr == NULL) 2139 x86pte_release_pagetable(ht); 2140 return (old); 2141 } 2142 2143 /* 2144 * Atomic compare and swap of a page table entry. No TLB invalidates are done. 2145 * This is used for links between pagetables of different levels. 2146 * Note we always create these links with dirty/access set, so they should 2147 * never change. 2148 */ 2149 x86pte_t 2150 x86pte_cas(htable_t *ht, uint_t entry, x86pte_t old, x86pte_t new) 2151 { 2152 x86pte_t pte; 2153 x86pte_t *ptep; 2154 #ifdef __xpv 2155 /* 2156 * We can't use writable pagetables for upper level tables, so fake it. 2157 */ 2158 mmu_update_t t[2]; 2159 int cnt = 1; 2160 int count; 2161 maddr_t ma; 2162 2163 if (!IN_XPV_PANIC()) { 2164 ASSERT(!(ht->ht_flags & HTABLE_COPIED)); 2165 ma = pa_to_ma(PT_INDEX_PHYSADDR(pfn_to_pa(ht->ht_pfn), entry)); 2166 t[0].ptr = ma | MMU_NORMAL_PT_UPDATE; 2167 t[0].val = new; 2168 2169 /* 2170 * On the 64-bit hypervisor we need to maintain the user mode 2171 * top page table too. 2172 */ 2173 if (ht->ht_level == mmu.max_level && ht->ht_hat != kas.a_hat) { 2174 ma = pa_to_ma(PT_INDEX_PHYSADDR(pfn_to_pa( 2175 ht->ht_hat->hat_user_ptable), entry)); 2176 t[1].ptr = ma | MMU_NORMAL_PT_UPDATE; 2177 t[1].val = new; 2178 ++cnt; 2179 } 2180 2181 if (HYPERVISOR_mmu_update(t, cnt, &count, DOMID_SELF)) 2182 panic("HYPERVISOR_mmu_update() failed"); 2183 ASSERT(count == cnt); 2184 return (old); 2185 } 2186 #endif 2187 ptep = x86pte_access_pagetable(ht, entry); 2188 XPV_ALLOW_PAGETABLE_UPDATES(); 2189 pte = CAS_PTE(ptep, old, new); 2190 XPV_DISALLOW_PAGETABLE_UPDATES(); 2191 x86pte_release_pagetable(ht); 2192 return (pte); 2193 } 2194 2195 /* 2196 * Invalidate a page table entry as long as it currently maps something that 2197 * matches the value determined by expect. 2198 * 2199 * If tlb is set, also invalidates any TLB entries. 2200 * 2201 * Returns the previous value of the PTE. 2202 */ 2203 x86pte_t 2204 x86pte_inval( 2205 htable_t *ht, 2206 uint_t entry, 2207 x86pte_t expect, 2208 x86pte_t *pte_ptr, 2209 boolean_t tlb) 2210 { 2211 x86pte_t *ptep; 2212 x86pte_t oldpte; 2213 x86pte_t found; 2214 2215 ASSERT(!(ht->ht_flags & HTABLE_SHARED_PFN)); 2216 ASSERT(ht->ht_level <= mmu.max_page_level); 2217 2218 if (pte_ptr != NULL) 2219 ptep = pte_ptr; 2220 else 2221 ptep = x86pte_access_pagetable(ht, entry); 2222 2223 #if defined(__xpv) 2224 /* 2225 * If exit()ing just use HYPERVISOR_mmu_update(), as we can't be racing 2226 * with anything else. 2227 */ 2228 if ((ht->ht_hat->hat_flags & HAT_FREEING) && !IN_XPV_PANIC()) { 2229 int count; 2230 mmu_update_t t[1]; 2231 maddr_t ma; 2232 2233 oldpte = GET_PTE(ptep); 2234 if (expect != 0 && (oldpte & PT_PADDR) != (expect & PT_PADDR)) 2235 goto done; 2236 ma = pa_to_ma(PT_INDEX_PHYSADDR(pfn_to_pa(ht->ht_pfn), entry)); 2237 t[0].ptr = ma | MMU_NORMAL_PT_UPDATE; 2238 t[0].val = 0; 2239 if (HYPERVISOR_mmu_update(t, 1, &count, DOMID_SELF)) 2240 panic("HYPERVISOR_mmu_update() failed"); 2241 ASSERT(count == 1); 2242 goto done; 2243 } 2244 #endif /* __xpv */ 2245 2246 /* 2247 * Note that the loop is needed to handle changes due to h/w updating 2248 * of PT_MOD/PT_REF. 2249 */ 2250 do { 2251 oldpte = GET_PTE(ptep); 2252 if (expect != 0 && (oldpte & PT_PADDR) != (expect & PT_PADDR)) 2253 goto done; 2254 XPV_ALLOW_PAGETABLE_UPDATES(); 2255 found = CAS_PTE(ptep, oldpte, 0); 2256 XPV_DISALLOW_PAGETABLE_UPDATES(); 2257 } while (found != oldpte); 2258 if (tlb && (oldpte & (PT_REF | PT_MOD))) 2259 hat_tlb_inval(ht->ht_hat, htable_e2va(ht, entry)); 2260 2261 done: 2262 if (pte_ptr == NULL) 2263 x86pte_release_pagetable(ht); 2264 return (oldpte); 2265 } 2266 2267 /* 2268 * Change a page table entry af it currently matches the value in expect. 2269 */ 2270 x86pte_t 2271 x86pte_update( 2272 htable_t *ht, 2273 uint_t entry, 2274 x86pte_t expect, 2275 x86pte_t new) 2276 { 2277 x86pte_t *ptep; 2278 x86pte_t found; 2279 2280 ASSERT(new != 0); 2281 ASSERT(!(ht->ht_flags & HTABLE_SHARED_PFN)); 2282 ASSERT(ht->ht_level <= mmu.max_page_level); 2283 2284 ptep = x86pte_access_pagetable(ht, entry); 2285 XPV_ALLOW_PAGETABLE_UPDATES(); 2286 found = CAS_PTE(ptep, expect, new); 2287 XPV_DISALLOW_PAGETABLE_UPDATES(); 2288 if (found == expect) { 2289 hat_tlb_inval(ht->ht_hat, htable_e2va(ht, entry)); 2290 2291 /* 2292 * When removing write permission *and* clearing the 2293 * MOD bit, check if a write happened via a stale 2294 * TLB entry before the TLB shootdown finished. 2295 * 2296 * If it did happen, simply re-enable write permission and 2297 * act like the original CAS failed. 2298 */ 2299 if ((expect & (PT_WRITABLE | PT_MOD)) == PT_WRITABLE && 2300 (new & (PT_WRITABLE | PT_MOD)) == 0 && 2301 (GET_PTE(ptep) & PT_MOD) != 0) { 2302 do { 2303 found = GET_PTE(ptep); 2304 XPV_ALLOW_PAGETABLE_UPDATES(); 2305 found = 2306 CAS_PTE(ptep, found, found | PT_WRITABLE); 2307 XPV_DISALLOW_PAGETABLE_UPDATES(); 2308 } while ((found & PT_WRITABLE) == 0); 2309 } 2310 } 2311 x86pte_release_pagetable(ht); 2312 return (found); 2313 } 2314 2315 #ifndef __xpv 2316 /* 2317 * Copy page tables - this is just a little more complicated than the 2318 * previous routines. Note that it's also not atomic! It also is never 2319 * used for HTABLE_COPIED pagetables. 2320 */ 2321 void 2322 x86pte_copy(htable_t *src, htable_t *dest, uint_t entry, uint_t count) 2323 { 2324 caddr_t src_va; 2325 caddr_t dst_va; 2326 size_t size; 2327 x86pte_t *pteptr; 2328 x86pte_t pte; 2329 2330 ASSERT(khat_running); 2331 ASSERT(!(dest->ht_flags & HTABLE_COPIED)); 2332 ASSERT(!(src->ht_flags & HTABLE_COPIED)); 2333 ASSERT(!(src->ht_flags & HTABLE_SHARED_PFN)); 2334 ASSERT(!(dest->ht_flags & HTABLE_SHARED_PFN)); 2335 2336 /* 2337 * Acquire access to the CPU pagetable windows for the dest and source. 2338 */ 2339 dst_va = (caddr_t)x86pte_access_pagetable(dest, entry); 2340 if (kpm_vbase) { 2341 src_va = (caddr_t) 2342 PT_INDEX_PTR(hat_kpm_pfn2va(src->ht_pfn), entry); 2343 } else { 2344 uint_t x = PWIN_SRC(CPU->cpu_id); 2345 2346 ASSERT(!(getcr4() & CR4_PCIDE)); 2347 2348 /* 2349 * Finish defining the src pagetable mapping 2350 */ 2351 src_va = (caddr_t)PT_INDEX_PTR(PWIN_VA(x), entry); 2352 pte = MAKEPTE(src->ht_pfn, 0) | mmu.pt_global | mmu.pt_nx; 2353 pteptr = (x86pte_t *)PWIN_PTE_VA(x); 2354 if (mmu.pae_hat) 2355 *pteptr = pte; 2356 else 2357 *(x86pte32_t *)pteptr = pte; 2358 mmu_flush_tlb_kpage((uintptr_t)PWIN_VA(x)); 2359 } 2360 2361 /* 2362 * now do the copy 2363 */ 2364 size = count << mmu.pte_size_shift; 2365 bcopy(src_va, dst_va, size); 2366 2367 x86pte_release_pagetable(dest); 2368 } 2369 2370 #else /* __xpv */ 2371 2372 /* 2373 * The hypervisor only supports writable pagetables at level 0, so we have 2374 * to install these 1 by 1 the slow way. 2375 */ 2376 void 2377 x86pte_copy(htable_t *src, htable_t *dest, uint_t entry, uint_t count) 2378 { 2379 caddr_t src_va; 2380 x86pte_t pte; 2381 2382 ASSERT(!IN_XPV_PANIC()); 2383 src_va = (caddr_t)x86pte_access_pagetable(src, entry); 2384 while (count) { 2385 if (mmu.pae_hat) 2386 pte = *(x86pte_t *)src_va; 2387 else 2388 pte = *(x86pte32_t *)src_va; 2389 if (pte != 0) { 2390 set_pteval(pfn_to_pa(dest->ht_pfn), entry, 2391 dest->ht_level, pte); 2392 if (dest->ht_level == mmu.max_level && 2393 htable_e2va(dest, entry) < HYPERVISOR_VIRT_END) 2394 set_pteval( 2395 pfn_to_pa(dest->ht_hat->hat_user_ptable), 2396 entry, dest->ht_level, pte); 2397 } 2398 --count; 2399 ++entry; 2400 src_va += mmu.pte_size; 2401 } 2402 x86pte_release_pagetable(src); 2403 } 2404 #endif /* __xpv */ 2405 2406 /* 2407 * Zero page table entries - Note this doesn't use atomic stores! 2408 */ 2409 static void 2410 x86pte_zero(htable_t *dest, uint_t entry, uint_t count) 2411 { 2412 caddr_t dst_va; 2413 size_t size; 2414 #ifdef __xpv 2415 int x = 0; 2416 x86pte_t newpte; 2417 #endif 2418 2419 /* 2420 * Map in the page table to be zeroed. 2421 */ 2422 ASSERT(!(dest->ht_flags & HTABLE_SHARED_PFN)); 2423 ASSERT(!(dest->ht_flags & HTABLE_COPIED)); 2424 2425 /* 2426 * On the hypervisor we don't use x86pte_access_pagetable() since 2427 * in this case the page is not pinned yet. 2428 */ 2429 #ifdef __xpv 2430 if (kpm_vbase == NULL) { 2431 kpreempt_disable(); 2432 ASSERT(CPU->cpu_hat_info != NULL); 2433 mutex_enter(&CPU->cpu_hat_info->hci_mutex); 2434 x = PWIN_TABLE(CPU->cpu_id); 2435 newpte = MAKEPTE(dest->ht_pfn, 0) | PT_WRITABLE; 2436 xen_map(newpte, PWIN_VA(x)); 2437 dst_va = (caddr_t)PT_INDEX_PTR(PWIN_VA(x), entry); 2438 } else 2439 #endif 2440 dst_va = (caddr_t)x86pte_access_pagetable(dest, entry); 2441 2442 size = count << mmu.pte_size_shift; 2443 ASSERT(size > BLOCKZEROALIGN); 2444 block_zero_no_xmm(dst_va, size); 2445 2446 #ifdef __xpv 2447 if (kpm_vbase == NULL) { 2448 xen_map(0, PWIN_VA(x)); 2449 mutex_exit(&CPU->cpu_hat_info->hci_mutex); 2450 kpreempt_enable(); 2451 } else 2452 #endif 2453 x86pte_release_pagetable(dest); 2454 } 2455 2456 /* 2457 * Called to ensure that all pagetables are in the system dump 2458 */ 2459 void 2460 hat_dump(void) 2461 { 2462 hat_t *hat; 2463 uint_t h; 2464 htable_t *ht; 2465 2466 /* 2467 * Dump all page tables 2468 */ 2469 for (hat = kas.a_hat; hat != NULL; hat = hat->hat_next) { 2470 for (h = 0; h < hat->hat_num_hash; ++h) { 2471 for (ht = hat->hat_ht_hash[h]; ht; ht = ht->ht_next) { 2472 if ((ht->ht_flags & HTABLE_COPIED) == 0) 2473 dump_page(ht->ht_pfn); 2474 } 2475 } 2476 } 2477 } 2478