xref: /illumos-gate/usr/src/uts/i86pc/vm/htable.c (revision 16cac7864bfb2afb3e274fea3fbaf50e8f154079)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 #include <sys/types.h>
30 #include <sys/sysmacros.h>
31 #include <sys/kmem.h>
32 #include <sys/atomic.h>
33 #include <sys/bitmap.h>
34 #include <sys/machparam.h>
35 #include <sys/machsystm.h>
36 #include <sys/mman.h>
37 #include <sys/systm.h>
38 #include <sys/cpuvar.h>
39 #include <sys/thread.h>
40 #include <sys/proc.h>
41 #include <sys/cpu.h>
42 #include <sys/kmem.h>
43 #include <sys/disp.h>
44 #include <sys/vmem.h>
45 #include <sys/vmsystm.h>
46 #include <sys/promif.h>
47 #include <sys/var.h>
48 #include <sys/x86_archext.h>
49 #include <sys/archsystm.h>
50 #include <sys/bootconf.h>
51 #include <sys/dumphdr.h>
52 #include <vm/seg_kmem.h>
53 #include <vm/seg_kpm.h>
54 #include <vm/hat.h>
55 #include <vm/hat_i86.h>
56 #include <sys/cmn_err.h>
57 
58 #include <sys/bootinfo.h>
59 #include <vm/kboot_mmu.h>
60 
61 static void x86pte_zero(htable_t *dest, uint_t entry, uint_t count);
62 
63 kmem_cache_t *htable_cache;
64 
65 /*
66  * The variable htable_reserve_amount, rather than HTABLE_RESERVE_AMOUNT,
67  * is used in order to facilitate testing of the htable_steal() code.
68  * By resetting htable_reserve_amount to a lower value, we can force
69  * stealing to occur.  The reserve amount is a guess to get us through boot.
70  */
71 #define	HTABLE_RESERVE_AMOUNT	(200)
72 uint_t htable_reserve_amount = HTABLE_RESERVE_AMOUNT;
73 kmutex_t htable_reserve_mutex;
74 uint_t htable_reserve_cnt;
75 htable_t *htable_reserve_pool;
76 
77 /*
78  * Used to hand test htable_steal().
79  */
80 #ifdef DEBUG
81 ulong_t force_steal = 0;
82 ulong_t ptable_cnt = 0;
83 #endif
84 
85 /*
86  * This variable is so that we can tune this via /etc/system
87  * Any value works, but a power of two <= mmu.ptes_per_table is best.
88  */
89 uint_t htable_steal_passes = 8;
90 
91 /*
92  * mutex stuff for access to htable hash
93  */
94 #define	NUM_HTABLE_MUTEX 128
95 kmutex_t htable_mutex[NUM_HTABLE_MUTEX];
96 #define	HTABLE_MUTEX_HASH(h) ((h) & (NUM_HTABLE_MUTEX - 1))
97 
98 #define	HTABLE_ENTER(h)	mutex_enter(&htable_mutex[HTABLE_MUTEX_HASH(h)]);
99 #define	HTABLE_EXIT(h)	mutex_exit(&htable_mutex[HTABLE_MUTEX_HASH(h)]);
100 
101 /*
102  * forward declarations
103  */
104 static void link_ptp(htable_t *higher, htable_t *new, uintptr_t vaddr);
105 static void unlink_ptp(htable_t *higher, htable_t *old, uintptr_t vaddr);
106 static void htable_free(htable_t *ht);
107 static x86pte_t *x86pte_access_pagetable(htable_t *ht, uint_t index);
108 static void x86pte_release_pagetable(htable_t *ht);
109 static x86pte_t x86pte_cas(htable_t *ht, uint_t entry, x86pte_t old,
110 	x86pte_t new);
111 
112 /*
113  * A counter to track if we are stealing or reaping htables. When non-zero
114  * htable_free() will directly free htables (either to the reserve or kmem)
115  * instead of putting them in a hat's htable cache.
116  */
117 uint32_t htable_dont_cache = 0;
118 
119 /*
120  * Track the number of active pagetables, so we can know how many to reap
121  */
122 static uint32_t active_ptables = 0;
123 
124 /*
125  * Allocate a memory page for a hardware page table.
126  *
127  * A wrapper around page_get_physical(), with some extra checks.
128  */
129 static pfn_t
130 ptable_alloc(uintptr_t seed)
131 {
132 	pfn_t pfn;
133 	page_t *pp;
134 
135 	pfn = PFN_INVALID;
136 	atomic_add_32(&active_ptables, 1);
137 
138 	/*
139 	 * The first check is to see if there is memory in the system. If we
140 	 * drop to throttlefree, then fail the ptable_alloc() and let the
141 	 * stealing code kick in. Note that we have to do this test here,
142 	 * since the test in page_create_throttle() would let the NOSLEEP
143 	 * allocation go through and deplete the page reserves.
144 	 *
145 	 * The !NOMEMWAIT() lets pageout, fsflush, etc. skip this check.
146 	 */
147 	if (!NOMEMWAIT() && freemem <= throttlefree + 1)
148 		return (PFN_INVALID);
149 
150 #ifdef DEBUG
151 	/*
152 	 * This code makes htable_steal() easier to test. By setting
153 	 * force_steal we force pagetable allocations to fall
154 	 * into the stealing code. Roughly 1 in ever "force_steal"
155 	 * page table allocations will fail.
156 	 */
157 	if (proc_pageout != NULL && force_steal > 1 &&
158 	    ++ptable_cnt > force_steal) {
159 		ptable_cnt = 0;
160 		return (PFN_INVALID);
161 	}
162 #endif /* DEBUG */
163 
164 	pp = page_get_physical(seed);
165 	if (pp == NULL)
166 		return (PFN_INVALID);
167 	pfn = pp->p_pagenum;
168 	page_downgrade(pp);
169 	ASSERT(PAGE_SHARED(pp));
170 
171 	if (pfn == PFN_INVALID)
172 		panic("ptable_alloc(): Invalid PFN!!");
173 	HATSTAT_INC(hs_ptable_allocs);
174 	return (pfn);
175 }
176 
177 /*
178  * Free an htable's associated page table page.  See the comments
179  * for ptable_alloc().
180  */
181 static void
182 ptable_free(pfn_t pfn)
183 {
184 	page_t *pp = page_numtopp_nolock(pfn);
185 
186 	/*
187 	 * need to destroy the page used for the pagetable
188 	 */
189 	ASSERT(pfn != PFN_INVALID);
190 	HATSTAT_INC(hs_ptable_frees);
191 	atomic_add_32(&active_ptables, -1);
192 	if (pp == NULL)
193 		panic("ptable_free(): no page for pfn!");
194 	ASSERT(PAGE_SHARED(pp));
195 	ASSERT(pfn == pp->p_pagenum);
196 
197 	/*
198 	 * Get an exclusive lock, might have to wait for a kmem reader.
199 	 */
200 	if (!page_tryupgrade(pp)) {
201 		page_unlock(pp);
202 		/*
203 		 * RFE: we could change this to not loop forever
204 		 * George Cameron had some idea on how to do that.
205 		 * For now looping works - it's just like sfmmu.
206 		 */
207 		while (!page_lock(pp, SE_EXCL, (kmutex_t *)NULL, P_RECLAIM))
208 			continue;
209 	}
210 	page_free(pp, 1);
211 	page_unresv(1);
212 }
213 
214 /*
215  * Put one htable on the reserve list.
216  */
217 static void
218 htable_put_reserve(htable_t *ht)
219 {
220 	ht->ht_hat = NULL;		/* no longer tied to a hat */
221 	ASSERT(ht->ht_pfn == PFN_INVALID);
222 	HATSTAT_INC(hs_htable_rputs);
223 	mutex_enter(&htable_reserve_mutex);
224 	ht->ht_next = htable_reserve_pool;
225 	htable_reserve_pool = ht;
226 	++htable_reserve_cnt;
227 	mutex_exit(&htable_reserve_mutex);
228 }
229 
230 /*
231  * Take one htable from the reserve.
232  */
233 static htable_t *
234 htable_get_reserve(void)
235 {
236 	htable_t *ht = NULL;
237 
238 	mutex_enter(&htable_reserve_mutex);
239 	if (htable_reserve_cnt != 0) {
240 		ht = htable_reserve_pool;
241 		ASSERT(ht != NULL);
242 		ASSERT(ht->ht_pfn == PFN_INVALID);
243 		htable_reserve_pool = ht->ht_next;
244 		--htable_reserve_cnt;
245 		HATSTAT_INC(hs_htable_rgets);
246 	}
247 	mutex_exit(&htable_reserve_mutex);
248 	return (ht);
249 }
250 
251 /*
252  * Allocate initial htables and put them on the reserve list
253  */
254 void
255 htable_initial_reserve(uint_t count)
256 {
257 	htable_t *ht;
258 
259 	count += HTABLE_RESERVE_AMOUNT;
260 	while (count > 0) {
261 		ht = kmem_cache_alloc(htable_cache, KM_NOSLEEP);
262 		ASSERT(ht != NULL);
263 
264 		ASSERT(use_boot_reserve);
265 		ht->ht_pfn = PFN_INVALID;
266 		htable_put_reserve(ht);
267 		--count;
268 	}
269 }
270 
271 /*
272  * Readjust the reserves after a thread finishes using them.
273  */
274 void
275 htable_adjust_reserve()
276 {
277 	htable_t *ht;
278 
279 	/*
280 	 * Free any excess htables in the reserve list
281 	 */
282 	while (htable_reserve_cnt > htable_reserve_amount &&
283 	    !USE_HAT_RESERVES()) {
284 		ht = htable_get_reserve();
285 		if (ht == NULL)
286 			return;
287 		ASSERT(ht->ht_pfn == PFN_INVALID);
288 		kmem_cache_free(htable_cache, ht);
289 	}
290 }
291 
292 
293 /*
294  * This routine steals htables from user processes for htable_alloc() or
295  * for htable_reap().
296  */
297 static htable_t *
298 htable_steal(uint_t cnt)
299 {
300 	hat_t		*hat = kas.a_hat;	/* list starts with khat */
301 	htable_t	*list = NULL;
302 	htable_t	*ht;
303 	htable_t	*higher;
304 	uint_t		h;
305 	uint_t		h_start;
306 	static uint_t	h_seed = 0;
307 	uint_t		e;
308 	uintptr_t	va;
309 	x86pte_t	pte;
310 	uint_t		stolen = 0;
311 	uint_t		pass;
312 	uint_t		threshold;
313 
314 	/*
315 	 * Limit htable_steal_passes to something reasonable
316 	 */
317 	if (htable_steal_passes == 0)
318 		htable_steal_passes = 1;
319 	if (htable_steal_passes > mmu.ptes_per_table)
320 		htable_steal_passes = mmu.ptes_per_table;
321 
322 	/*
323 	 * Loop through all user hats. The 1st pass takes cached htables that
324 	 * aren't in use. The later passes steal by removing mappings, too.
325 	 */
326 	atomic_add_32(&htable_dont_cache, 1);
327 	for (pass = 0; pass <= htable_steal_passes && stolen < cnt; ++pass) {
328 		threshold = pass * mmu.ptes_per_table / htable_steal_passes;
329 		hat = kas.a_hat;
330 		for (;;) {
331 
332 			/*
333 			 * Clear the victim flag and move to next hat
334 			 */
335 			mutex_enter(&hat_list_lock);
336 			if (hat != kas.a_hat) {
337 				hat->hat_flags &= ~HAT_VICTIM;
338 				cv_broadcast(&hat_list_cv);
339 			}
340 			hat = hat->hat_next;
341 
342 			/*
343 			 * Skip any hat that is already being stolen from.
344 			 *
345 			 * We skip SHARED hats, as these are dummy
346 			 * hats that host ISM shared page tables.
347 			 *
348 			 * We also skip if HAT_FREEING because hat_pte_unmap()
349 			 * won't zero out the PTE's. That would lead to hitting
350 			 * stale PTEs either here or under hat_unload() when we
351 			 * steal and unload the same page table in competing
352 			 * threads.
353 			 */
354 			while (hat != NULL &&
355 			    (hat->hat_flags &
356 			    (HAT_VICTIM | HAT_SHARED | HAT_FREEING)) != 0)
357 				hat = hat->hat_next;
358 
359 			if (hat == NULL) {
360 				mutex_exit(&hat_list_lock);
361 				break;
362 			}
363 
364 			/*
365 			 * Are we finished?
366 			 */
367 			if (stolen == cnt) {
368 				/*
369 				 * Try to spread the pain of stealing,
370 				 * move victim HAT to the end of the HAT list.
371 				 */
372 				if (pass >= 1 && cnt == 1 &&
373 				    kas.a_hat->hat_prev != hat) {
374 
375 					/* unlink victim hat */
376 					if (hat->hat_prev)
377 						hat->hat_prev->hat_next =
378 						    hat->hat_next;
379 					else
380 						kas.a_hat->hat_next =
381 						    hat->hat_next;
382 					if (hat->hat_next)
383 						hat->hat_next->hat_prev =
384 						    hat->hat_prev;
385 					else
386 						kas.a_hat->hat_prev =
387 						    hat->hat_prev;
388 
389 
390 					/* relink at end of hat list */
391 					hat->hat_next = NULL;
392 					hat->hat_prev = kas.a_hat->hat_prev;
393 					if (hat->hat_prev)
394 						hat->hat_prev->hat_next = hat;
395 					else
396 						kas.a_hat->hat_next = hat;
397 					kas.a_hat->hat_prev = hat;
398 
399 				}
400 
401 				mutex_exit(&hat_list_lock);
402 				break;
403 			}
404 
405 			/*
406 			 * Mark the HAT as a stealing victim.
407 			 */
408 			hat->hat_flags |= HAT_VICTIM;
409 			mutex_exit(&hat_list_lock);
410 
411 			/*
412 			 * Take any htables from the hat's cached "free" list.
413 			 */
414 			hat_enter(hat);
415 			while ((ht = hat->hat_ht_cached) != NULL &&
416 			    stolen < cnt) {
417 				hat->hat_ht_cached = ht->ht_next;
418 				ht->ht_next = list;
419 				list = ht;
420 				++stolen;
421 			}
422 			hat_exit(hat);
423 
424 			/*
425 			 * Don't steal on first pass.
426 			 */
427 			if (pass == 0 || stolen == cnt)
428 				continue;
429 
430 			/*
431 			 * Search the active htables for one to steal.
432 			 * Start at a different hash bucket every time to
433 			 * help spread the pain of stealing.
434 			 */
435 			h = h_start = h_seed++ % hat->hat_num_hash;
436 			do {
437 				higher = NULL;
438 				HTABLE_ENTER(h);
439 				for (ht = hat->hat_ht_hash[h]; ht;
440 				    ht = ht->ht_next) {
441 
442 					/*
443 					 * Can we rule out reaping?
444 					 */
445 					if (ht->ht_busy != 0 ||
446 					    (ht->ht_flags & HTABLE_SHARED_PFN)||
447 					    ht->ht_level > 0 ||
448 					    ht->ht_valid_cnt > threshold ||
449 					    ht->ht_lock_cnt != 0)
450 						continue;
451 
452 					/*
453 					 * Increment busy so the htable can't
454 					 * disappear. We drop the htable mutex
455 					 * to avoid deadlocks with
456 					 * hat_pageunload() and the hment mutex
457 					 * while we call hat_pte_unmap()
458 					 */
459 					++ht->ht_busy;
460 					HTABLE_EXIT(h);
461 
462 					/*
463 					 * Try stealing.
464 					 * - unload and invalidate all PTEs
465 					 */
466 					for (e = 0, va = ht->ht_vaddr;
467 					    e < HTABLE_NUM_PTES(ht) &&
468 					    ht->ht_valid_cnt > 0 &&
469 					    ht->ht_busy == 1 &&
470 					    ht->ht_lock_cnt == 0;
471 					    ++e, va += MMU_PAGESIZE) {
472 						pte = x86pte_get(ht, e);
473 						if (!PTE_ISVALID(pte))
474 							continue;
475 						hat_pte_unmap(ht, e,
476 						    HAT_UNLOAD, pte, NULL);
477 					}
478 
479 					/*
480 					 * Reacquire htable lock. If we didn't
481 					 * remove all mappings in the table,
482 					 * or another thread added a new mapping
483 					 * behind us, give up on this table.
484 					 */
485 					HTABLE_ENTER(h);
486 					if (ht->ht_busy != 1 ||
487 					    ht->ht_valid_cnt != 0 ||
488 					    ht->ht_lock_cnt != 0) {
489 						--ht->ht_busy;
490 						continue;
491 					}
492 
493 					/*
494 					 * Steal it and unlink the page table.
495 					 */
496 					higher = ht->ht_parent;
497 					unlink_ptp(higher, ht, ht->ht_vaddr);
498 
499 					/*
500 					 * remove from the hash list
501 					 */
502 					if (ht->ht_next)
503 						ht->ht_next->ht_prev =
504 						    ht->ht_prev;
505 
506 					if (ht->ht_prev) {
507 						ht->ht_prev->ht_next =
508 						    ht->ht_next;
509 					} else {
510 						ASSERT(hat->hat_ht_hash[h] ==
511 						    ht);
512 						hat->hat_ht_hash[h] =
513 						    ht->ht_next;
514 					}
515 
516 					/*
517 					 * Break to outer loop to release the
518 					 * higher (ht_parent) pagetable. This
519 					 * spreads out the pain caused by
520 					 * pagefaults.
521 					 */
522 					ht->ht_next = list;
523 					list = ht;
524 					++stolen;
525 					break;
526 				}
527 				HTABLE_EXIT(h);
528 				if (higher != NULL)
529 					htable_release(higher);
530 				if (++h == hat->hat_num_hash)
531 					h = 0;
532 			} while (stolen < cnt && h != h_start);
533 		}
534 	}
535 	atomic_add_32(&htable_dont_cache, -1);
536 	return (list);
537 }
538 
539 
540 /*
541  * This is invoked from kmem when the system is low on memory.  We try
542  * to free hments, htables, and ptables to improve the memory situation.
543  */
544 /*ARGSUSED*/
545 static void
546 htable_reap(void *handle)
547 {
548 	uint_t		reap_cnt;
549 	htable_t	*list;
550 	htable_t	*ht;
551 
552 	HATSTAT_INC(hs_reap_attempts);
553 	if (!can_steal_post_boot)
554 		return;
555 
556 	/*
557 	 * Try to reap 5% of the page tables bounded by a maximum of
558 	 * 5% of physmem and a minimum of 10.
559 	 */
560 	reap_cnt = MIN(MAX(physmem / 20, active_ptables / 20), 10);
561 
562 	/*
563 	 * Let htable_steal() do the work, we just call htable_free()
564 	 */
565 	list = htable_steal(reap_cnt);
566 	while ((ht = list) != NULL) {
567 		list = ht->ht_next;
568 		HATSTAT_INC(hs_reaped);
569 		htable_free(ht);
570 	}
571 
572 	/*
573 	 * Free up excess reserves
574 	 */
575 	htable_adjust_reserve();
576 	hment_adjust_reserve();
577 }
578 
579 /*
580  * Allocate an htable, stealing one or using the reserve if necessary
581  */
582 static htable_t *
583 htable_alloc(
584 	hat_t		*hat,
585 	uintptr_t	vaddr,
586 	level_t		level,
587 	htable_t	*shared)
588 {
589 	htable_t	*ht = NULL;
590 	uint_t		is_vlp;
591 	uint_t		is_bare = 0;
592 	uint_t		need_to_zero = 1;
593 	int		kmflags = (can_steal_post_boot ? KM_NOSLEEP : KM_SLEEP);
594 
595 	if (level < 0 || level > TOP_LEVEL(hat))
596 		panic("htable_alloc(): level %d out of range\n", level);
597 
598 	is_vlp = (hat->hat_flags & HAT_VLP) && level == VLP_LEVEL;
599 	if (is_vlp || shared != NULL)
600 		is_bare = 1;
601 
602 	/*
603 	 * First reuse a cached htable from the hat_ht_cached field, this
604 	 * avoids unnecessary trips through kmem/page allocators.
605 	 */
606 	if (hat->hat_ht_cached != NULL && !is_bare) {
607 		hat_enter(hat);
608 		ht = hat->hat_ht_cached;
609 		if (ht != NULL) {
610 			hat->hat_ht_cached = ht->ht_next;
611 			need_to_zero = 0;
612 			/* XX64 ASSERT() they're all zero somehow */
613 			ASSERT(ht->ht_pfn != PFN_INVALID);
614 		}
615 		hat_exit(hat);
616 	}
617 
618 	if (ht == NULL) {
619 		/*
620 		 * Allocate an htable, possibly refilling the reserves.
621 		 */
622 		if (USE_HAT_RESERVES()) {
623 			ht = htable_get_reserve();
624 		} else {
625 			/*
626 			 * Donate successful htable allocations to the reserve.
627 			 */
628 			for (;;) {
629 				ht = kmem_cache_alloc(htable_cache, kmflags);
630 				if (ht == NULL)
631 					break;
632 				ht->ht_pfn = PFN_INVALID;
633 				if (USE_HAT_RESERVES() ||
634 				    htable_reserve_cnt >= htable_reserve_amount)
635 					break;
636 				htable_put_reserve(ht);
637 			}
638 		}
639 
640 		/*
641 		 * allocate a page for the hardware page table if needed
642 		 */
643 		if (ht != NULL && !is_bare) {
644 			ht->ht_hat = hat;
645 			ht->ht_pfn = ptable_alloc((uintptr_t)ht);
646 			if (ht->ht_pfn == PFN_INVALID) {
647 				if (USE_HAT_RESERVES())
648 					htable_put_reserve(ht);
649 				else
650 					kmem_cache_free(htable_cache, ht);
651 				ht = NULL;
652 			}
653 		}
654 	}
655 
656 	/*
657 	 * If allocations failed, kick off a kmem_reap() and resort to
658 	 * htable steal(). We may spin here if the system is very low on
659 	 * memory. If the kernel itself has consumed all memory and kmem_reap()
660 	 * can't free up anything, then we'll really get stuck here.
661 	 * That should only happen in a system where the administrator has
662 	 * misconfigured VM parameters via /etc/system.
663 	 */
664 	while (ht == NULL && can_steal_post_boot) {
665 		kmem_reap();
666 		ht = htable_steal(1);
667 		HATSTAT_INC(hs_steals);
668 
669 		/*
670 		 * If we stole for a bare htable, release the pagetable page.
671 		 */
672 		if (ht != NULL) {
673 			if (is_bare) {
674 				ptable_free(ht->ht_pfn);
675 				ht->ht_pfn = PFN_INVALID;
676 			}
677 		}
678 	}
679 
680 	/*
681 	 * All attempts to allocate or steal failed. This should only happen
682 	 * if we run out of memory during boot, due perhaps to a huge
683 	 * boot_archive. At this point there's no way to continue.
684 	 */
685 	if (ht == NULL)
686 		panic("htable_alloc(): couldn't steal\n");
687 
688 	/*
689 	 * Shared page tables have all entries locked and entries may not
690 	 * be added or deleted.
691 	 */
692 	ht->ht_flags = 0;
693 	if (shared != NULL) {
694 		ASSERT(level == 0);
695 		ASSERT(shared->ht_valid_cnt > 0);
696 		ht->ht_flags |= HTABLE_SHARED_PFN;
697 		ht->ht_pfn = shared->ht_pfn;
698 		ht->ht_lock_cnt = 0;
699 		ht->ht_valid_cnt = 0;		/* updated in hat_share() */
700 		ht->ht_shares = shared;
701 		need_to_zero = 0;
702 	} else {
703 		ht->ht_shares = NULL;
704 		ht->ht_lock_cnt = 0;
705 		ht->ht_valid_cnt = 0;
706 	}
707 
708 	/*
709 	 * setup flags, etc. for VLP htables
710 	 */
711 	if (is_vlp) {
712 		ht->ht_flags |= HTABLE_VLP;
713 		ASSERT(ht->ht_pfn == PFN_INVALID);
714 		need_to_zero = 0;
715 	}
716 
717 	/*
718 	 * fill in the htable
719 	 */
720 	ht->ht_hat = hat;
721 	ht->ht_parent = NULL;
722 	ht->ht_vaddr = vaddr;
723 	ht->ht_level = level;
724 	ht->ht_busy = 1;
725 	ht->ht_next = NULL;
726 	ht->ht_prev = NULL;
727 
728 	/*
729 	 * Zero out any freshly allocated page table
730 	 */
731 	if (need_to_zero)
732 		x86pte_zero(ht, 0, mmu.ptes_per_table);
733 
734 	return (ht);
735 }
736 
737 /*
738  * Free up an htable, either to a hat's cached list, the reserves or
739  * back to kmem.
740  */
741 static void
742 htable_free(htable_t *ht)
743 {
744 	hat_t *hat = ht->ht_hat;
745 
746 	/*
747 	 * If the process isn't exiting, cache the free htable in the hat
748 	 * structure. We always do this for the boot reserve. We don't
749 	 * do this if the hat is exiting or we are stealing/reaping htables.
750 	 */
751 	if (hat != NULL &&
752 	    !(ht->ht_flags & HTABLE_SHARED_PFN) &&
753 	    (use_boot_reserve ||
754 	    (!(hat->hat_flags & HAT_FREEING) && !htable_dont_cache))) {
755 		ASSERT((ht->ht_flags & HTABLE_VLP) == 0);
756 		ASSERT(ht->ht_pfn != PFN_INVALID);
757 		hat_enter(hat);
758 		ht->ht_next = hat->hat_ht_cached;
759 		hat->hat_ht_cached = ht;
760 		hat_exit(hat);
761 		return;
762 	}
763 
764 	/*
765 	 * If we have a hardware page table, free it.
766 	 * We don't free page tables that are accessed by sharing.
767 	 */
768 	if (ht->ht_flags & HTABLE_SHARED_PFN) {
769 		ASSERT(ht->ht_pfn != PFN_INVALID);
770 	} else if (!(ht->ht_flags & HTABLE_VLP)) {
771 		ptable_free(ht->ht_pfn);
772 	}
773 	ht->ht_pfn = PFN_INVALID;
774 
775 	/*
776 	 * Free htables or put into reserves.
777 	 */
778 	if (USE_HAT_RESERVES() || htable_reserve_cnt < htable_reserve_amount) {
779 		htable_put_reserve(ht);
780 	} else {
781 		kmem_cache_free(htable_cache, ht);
782 		htable_adjust_reserve();
783 	}
784 }
785 
786 
787 /*
788  * This is called when a hat is being destroyed or swapped out. We reap all
789  * the remaining htables in the hat cache. If destroying all left over
790  * htables are also destroyed.
791  *
792  * We also don't need to invalidate any of the PTPs nor do any demapping.
793  */
794 void
795 htable_purge_hat(hat_t *hat)
796 {
797 	htable_t *ht;
798 	int h;
799 
800 	/*
801 	 * Purge the htable cache if just reaping.
802 	 */
803 	if (!(hat->hat_flags & HAT_FREEING)) {
804 		atomic_add_32(&htable_dont_cache, 1);
805 		for (;;) {
806 			hat_enter(hat);
807 			ht = hat->hat_ht_cached;
808 			if (ht == NULL) {
809 				hat_exit(hat);
810 				break;
811 			}
812 			hat->hat_ht_cached = ht->ht_next;
813 			hat_exit(hat);
814 			htable_free(ht);
815 		}
816 		atomic_add_32(&htable_dont_cache, -1);
817 		return;
818 	}
819 
820 	/*
821 	 * if freeing, no locking is needed
822 	 */
823 	while ((ht = hat->hat_ht_cached) != NULL) {
824 		hat->hat_ht_cached = ht->ht_next;
825 		htable_free(ht);
826 	}
827 
828 	/*
829 	 * walk thru the htable hash table and free all the htables in it.
830 	 */
831 	for (h = 0; h < hat->hat_num_hash; ++h) {
832 		while ((ht = hat->hat_ht_hash[h]) != NULL) {
833 			if (ht->ht_next)
834 				ht->ht_next->ht_prev = ht->ht_prev;
835 
836 			if (ht->ht_prev) {
837 				ht->ht_prev->ht_next = ht->ht_next;
838 			} else {
839 				ASSERT(hat->hat_ht_hash[h] == ht);
840 				hat->hat_ht_hash[h] = ht->ht_next;
841 			}
842 			htable_free(ht);
843 		}
844 	}
845 }
846 
847 /*
848  * Unlink an entry for a table at vaddr and level out of the existing table
849  * one level higher. We are always holding the HASH_ENTER() when doing this.
850  */
851 static void
852 unlink_ptp(htable_t *higher, htable_t *old, uintptr_t vaddr)
853 {
854 	uint_t		entry = htable_va2entry(vaddr, higher);
855 	x86pte_t	expect = MAKEPTP(old->ht_pfn, old->ht_level);
856 	x86pte_t	found;
857 
858 	ASSERT(higher->ht_busy > 0);
859 	ASSERT(higher->ht_valid_cnt > 0);
860 	ASSERT(old->ht_valid_cnt == 0);
861 	found = x86pte_cas(higher, entry, expect, 0);
862 	if (found != expect)
863 		panic("Bad PTP found=" FMT_PTE ", expected=" FMT_PTE,
864 		    found, expect);
865 	HTABLE_DEC(higher->ht_valid_cnt);
866 }
867 
868 /*
869  * Link an entry for a new table at vaddr and level into the existing table
870  * one level higher. We are always holding the HASH_ENTER() when doing this.
871  */
872 static void
873 link_ptp(htable_t *higher, htable_t *new, uintptr_t vaddr)
874 {
875 	uint_t		entry = htable_va2entry(vaddr, higher);
876 	x86pte_t	newptp = MAKEPTP(new->ht_pfn, new->ht_level);
877 	x86pte_t	found;
878 
879 	ASSERT(higher->ht_busy > 0);
880 
881 	ASSERT(new->ht_level != mmu.max_level);
882 
883 	HTABLE_INC(higher->ht_valid_cnt);
884 
885 	found = x86pte_cas(higher, entry, 0, newptp);
886 	if ((found & ~PT_REF) != 0)
887 		panic("HAT: ptp not 0, found=" FMT_PTE, found);
888 }
889 
890 /*
891  * Release of hold on an htable. If this is the last use and the pagetable
892  * is empty we may want to free it, then recursively look at the pagetable
893  * above it. The recursion is handled by the outer while() loop.
894  */
895 void
896 htable_release(htable_t *ht)
897 {
898 	uint_t		hashval;
899 	htable_t	*shared;
900 	htable_t	*higher;
901 	hat_t		*hat;
902 	uintptr_t	va;
903 	level_t		level;
904 
905 	while (ht != NULL) {
906 		shared = NULL;
907 		for (;;) {
908 			hat = ht->ht_hat;
909 			va = ht->ht_vaddr;
910 			level = ht->ht_level;
911 			hashval = HTABLE_HASH(hat, va, level);
912 
913 			/*
914 			 * The common case is that this isn't the last use of
915 			 * an htable so we don't want to free the htable.
916 			 */
917 			HTABLE_ENTER(hashval);
918 			ASSERT(ht->ht_lock_cnt == 0 || ht->ht_valid_cnt > 0);
919 			ASSERT(ht->ht_valid_cnt >= 0);
920 			ASSERT(ht->ht_busy > 0);
921 			if (ht->ht_valid_cnt > 0)
922 				break;
923 			if (ht->ht_busy > 1)
924 				break;
925 
926 			/*
927 			 * we always release empty shared htables
928 			 */
929 			if (!(ht->ht_flags & HTABLE_SHARED_PFN)) {
930 
931 				/*
932 				 * don't release if in address space tear down
933 				 */
934 				if (hat->hat_flags & HAT_FREEING)
935 					break;
936 
937 				/*
938 				 * At and above max_page_level, free if it's for
939 				 * a boot-time kernel mapping below kernelbase.
940 				 */
941 				if (level >= mmu.max_page_level &&
942 				    (hat != kas.a_hat || va >= kernelbase))
943 					break;
944 			}
945 
946 			/*
947 			 * Remember if we destroy an htable that shares its PFN
948 			 * from elsewhere.
949 			 */
950 			if (ht->ht_flags & HTABLE_SHARED_PFN) {
951 				ASSERT(ht->ht_level == 0);
952 				ASSERT(shared == NULL);
953 				shared = ht->ht_shares;
954 				HATSTAT_INC(hs_htable_unshared);
955 			}
956 
957 			/*
958 			 * Handle release of a table and freeing the htable_t.
959 			 * Unlink it from the table higher (ie. ht_parent).
960 			 */
961 			ASSERT(ht->ht_lock_cnt == 0);
962 			higher = ht->ht_parent;
963 			ASSERT(higher != NULL);
964 
965 			/*
966 			 * Unlink the pagetable.
967 			 */
968 			unlink_ptp(higher, ht, va);
969 
970 			/*
971 			 * When any top level VLP page table entry changes, we
972 			 * must issue a reload of cr3 on all processors.
973 			 */
974 			if ((hat->hat_flags & HAT_VLP) &&
975 			    level == VLP_LEVEL - 1)
976 				hat_tlb_inval(hat, DEMAP_ALL_ADDR);
977 
978 			/*
979 			 * remove this htable from its hash list
980 			 */
981 			if (ht->ht_next)
982 				ht->ht_next->ht_prev = ht->ht_prev;
983 
984 			if (ht->ht_prev) {
985 				ht->ht_prev->ht_next = ht->ht_next;
986 			} else {
987 				ASSERT(hat->hat_ht_hash[hashval] == ht);
988 				hat->hat_ht_hash[hashval] = ht->ht_next;
989 			}
990 			HTABLE_EXIT(hashval);
991 			htable_free(ht);
992 			ht = higher;
993 		}
994 
995 		ASSERT(ht->ht_busy >= 1);
996 		--ht->ht_busy;
997 		HTABLE_EXIT(hashval);
998 
999 		/*
1000 		 * If we released a shared htable, do a release on the htable
1001 		 * from which it shared
1002 		 */
1003 		ht = shared;
1004 	}
1005 }
1006 
1007 /*
1008  * Find the htable for the pagetable at the given level for the given address.
1009  * If found acquires a hold that eventually needs to be htable_release()d
1010  */
1011 htable_t *
1012 htable_lookup(hat_t *hat, uintptr_t vaddr, level_t level)
1013 {
1014 	uintptr_t	base;
1015 	uint_t		hashval;
1016 	htable_t	*ht = NULL;
1017 
1018 	ASSERT(level >= 0);
1019 	ASSERT(level <= TOP_LEVEL(hat));
1020 
1021 	if (level == TOP_LEVEL(hat))
1022 		base = 0;
1023 	else
1024 		base = vaddr & LEVEL_MASK(level + 1);
1025 
1026 	hashval = HTABLE_HASH(hat, base, level);
1027 	HTABLE_ENTER(hashval);
1028 	for (ht = hat->hat_ht_hash[hashval]; ht; ht = ht->ht_next) {
1029 		if (ht->ht_hat == hat &&
1030 		    ht->ht_vaddr == base &&
1031 		    ht->ht_level == level)
1032 			break;
1033 	}
1034 	if (ht)
1035 		++ht->ht_busy;
1036 
1037 	HTABLE_EXIT(hashval);
1038 	return (ht);
1039 }
1040 
1041 /*
1042  * Acquires a hold on a known htable (from a locked hment entry).
1043  */
1044 void
1045 htable_acquire(htable_t *ht)
1046 {
1047 	hat_t		*hat = ht->ht_hat;
1048 	level_t		level = ht->ht_level;
1049 	uintptr_t	base = ht->ht_vaddr;
1050 	uint_t		hashval = HTABLE_HASH(hat, base, level);
1051 
1052 	HTABLE_ENTER(hashval);
1053 #ifdef DEBUG
1054 	/*
1055 	 * make sure the htable is there
1056 	 */
1057 	{
1058 		htable_t	*h;
1059 
1060 		for (h = hat->hat_ht_hash[hashval];
1061 		    h && h != ht;
1062 		    h = h->ht_next)
1063 			;
1064 		ASSERT(h == ht);
1065 	}
1066 #endif /* DEBUG */
1067 	++ht->ht_busy;
1068 	HTABLE_EXIT(hashval);
1069 }
1070 
1071 /*
1072  * Find the htable for the pagetable at the given level for the given address.
1073  * If found acquires a hold that eventually needs to be htable_release()d
1074  * If not found the table is created.
1075  *
1076  * Since we can't hold a hash table mutex during allocation, we have to
1077  * drop it and redo the search on a create. Then we may have to free the newly
1078  * allocated htable if another thread raced in and created it ahead of us.
1079  */
1080 htable_t *
1081 htable_create(
1082 	hat_t		*hat,
1083 	uintptr_t	vaddr,
1084 	level_t		level,
1085 	htable_t	*shared)
1086 {
1087 	uint_t		h;
1088 	level_t		l;
1089 	uintptr_t	base;
1090 	htable_t	*ht;
1091 	htable_t	*higher = NULL;
1092 	htable_t	*new = NULL;
1093 
1094 	if (level < 0 || level > TOP_LEVEL(hat))
1095 		panic("htable_create(): level %d out of range\n", level);
1096 
1097 	/*
1098 	 * Create the page tables in top down order.
1099 	 */
1100 	for (l = TOP_LEVEL(hat); l >= level; --l) {
1101 		new = NULL;
1102 		if (l == TOP_LEVEL(hat))
1103 			base = 0;
1104 		else
1105 			base = vaddr & LEVEL_MASK(l + 1);
1106 
1107 		h = HTABLE_HASH(hat, base, l);
1108 try_again:
1109 		/*
1110 		 * look up the htable at this level
1111 		 */
1112 		HTABLE_ENTER(h);
1113 		if (l == TOP_LEVEL(hat)) {
1114 			ht = hat->hat_htable;
1115 		} else {
1116 			for (ht = hat->hat_ht_hash[h]; ht; ht = ht->ht_next) {
1117 				ASSERT(ht->ht_hat == hat);
1118 				if (ht->ht_vaddr == base &&
1119 				    ht->ht_level == l)
1120 					break;
1121 			}
1122 		}
1123 
1124 		/*
1125 		 * if we found the htable, increment its busy cnt
1126 		 * and if we had allocated a new htable, free it.
1127 		 */
1128 		if (ht != NULL) {
1129 			/*
1130 			 * If we find a pre-existing shared table, it must
1131 			 * share from the same place.
1132 			 */
1133 			if (l == level && shared && ht->ht_shares &&
1134 			    ht->ht_shares != shared) {
1135 				panic("htable shared from wrong place "
1136 				    "found htable=%p shared=%p", ht, shared);
1137 			}
1138 			++ht->ht_busy;
1139 			HTABLE_EXIT(h);
1140 			if (new)
1141 				htable_free(new);
1142 			if (higher != NULL)
1143 				htable_release(higher);
1144 			higher = ht;
1145 
1146 		/*
1147 		 * if we didn't find it on the first search
1148 		 * allocate a new one and search again
1149 		 */
1150 		} else if (new == NULL) {
1151 			HTABLE_EXIT(h);
1152 			new = htable_alloc(hat, base, l,
1153 			    l == level ? shared : NULL);
1154 			goto try_again;
1155 
1156 		/*
1157 		 * 2nd search and still not there, use "new" table
1158 		 * Link new table into higher, when not at top level.
1159 		 */
1160 		} else {
1161 			ht = new;
1162 			if (higher != NULL) {
1163 				link_ptp(higher, ht, base);
1164 				ht->ht_parent = higher;
1165 
1166 				/*
1167 				 * When any top level VLP page table changes,
1168 				 * we must reload cr3 on all processors.
1169 				 */
1170 #ifdef __i386
1171 				if (mmu.pae_hat &&
1172 #else /* !__i386 */
1173 				if ((hat->hat_flags & HAT_VLP) &&
1174 #endif /* __i386 */
1175 				    l == VLP_LEVEL - 1)
1176 					hat_tlb_inval(hat, DEMAP_ALL_ADDR);
1177 			}
1178 			ht->ht_next = hat->hat_ht_hash[h];
1179 			ASSERT(ht->ht_prev == NULL);
1180 			if (hat->hat_ht_hash[h])
1181 				hat->hat_ht_hash[h]->ht_prev = ht;
1182 			hat->hat_ht_hash[h] = ht;
1183 			HTABLE_EXIT(h);
1184 
1185 			/*
1186 			 * Note we don't do htable_release(higher).
1187 			 * That happens recursively when "new" is removed by
1188 			 * htable_release() or htable_steal().
1189 			 */
1190 			higher = ht;
1191 
1192 			/*
1193 			 * If we just created a new shared page table we
1194 			 * increment the shared htable's busy count, so that
1195 			 * it can't be the victim of a steal even if it's empty.
1196 			 */
1197 			if (l == level && shared) {
1198 				(void) htable_lookup(shared->ht_hat,
1199 				    shared->ht_vaddr, shared->ht_level);
1200 				HATSTAT_INC(hs_htable_shared);
1201 			}
1202 		}
1203 	}
1204 
1205 	return (ht);
1206 }
1207 
1208 /*
1209  * Inherit initial pagetables from the boot program.
1210  */
1211 void
1212 htable_attach(
1213 	hat_t *hat,
1214 	uintptr_t base,
1215 	level_t level,
1216 	htable_t *parent,
1217 	pfn_t pfn)
1218 {
1219 	htable_t	*ht;
1220 	uint_t		h;
1221 	uint_t		i;
1222 	x86pte_t	pte;
1223 	x86pte_t	*ptep;
1224 	page_t		*pp;
1225 	extern page_t	*boot_claim_page(pfn_t);
1226 
1227 	ht = htable_get_reserve();
1228 	if (level == mmu.max_level)
1229 		kas.a_hat->hat_htable = ht;
1230 	ht->ht_hat = hat;
1231 	ht->ht_parent = parent;
1232 	ht->ht_vaddr = base;
1233 	ht->ht_level = level;
1234 	ht->ht_busy = 1;
1235 	ht->ht_next = NULL;
1236 	ht->ht_prev = NULL;
1237 	ht->ht_flags = 0;
1238 	ht->ht_pfn = pfn;
1239 	ht->ht_lock_cnt = 0;
1240 	ht->ht_valid_cnt = 0;
1241 	if (parent != NULL)
1242 		++parent->ht_busy;
1243 
1244 	h = HTABLE_HASH(hat, base, level);
1245 	HTABLE_ENTER(h);
1246 	ht->ht_next = hat->hat_ht_hash[h];
1247 	ASSERT(ht->ht_prev == NULL);
1248 	if (hat->hat_ht_hash[h])
1249 		hat->hat_ht_hash[h]->ht_prev = ht;
1250 	hat->hat_ht_hash[h] = ht;
1251 	HTABLE_EXIT(h);
1252 
1253 	/*
1254 	 * make sure the page table physical page is not FREE
1255 	 */
1256 	if (page_resv(1, KM_NOSLEEP) == 0)
1257 		panic("page_resv() failed in ptable alloc");
1258 
1259 	pp = boot_claim_page(pfn);
1260 	ASSERT(pp != NULL);
1261 	page_downgrade(pp);
1262 	/*
1263 	 * Record in the page_t that is a pagetable for segkpm setup.
1264 	 */
1265 	if (kpm_vbase)
1266 		pp->p_index = 1;
1267 
1268 	/*
1269 	 * Count valid mappings and recursively attach lower level pagetables.
1270 	 */
1271 	ptep = kbm_remap_window(pfn_to_pa(pfn), 0);
1272 	for (i = 0; i < HTABLE_NUM_PTES(ht); ++i) {
1273 		if (mmu.pae_hat)
1274 			pte = ptep[i];
1275 		else
1276 			pte = ((x86pte32_t *)ptep)[i];
1277 		if (!IN_HYPERVISOR_VA(base) && PTE_ISVALID(pte)) {
1278 			++ht->ht_valid_cnt;
1279 			if (!PTE_ISPAGE(pte, level)) {
1280 				htable_attach(hat, base, level - 1,
1281 				    ht, PTE2PFN(pte, level));
1282 				ptep = kbm_remap_window(pfn_to_pa(pfn), 0);
1283 			}
1284 		}
1285 		base += LEVEL_SIZE(level);
1286 		if (base == mmu.hole_start)
1287 			base = (mmu.hole_end + MMU_PAGEOFFSET) & MMU_PAGEMASK;
1288 	}
1289 
1290 	/*
1291 	 * As long as all the mappings we had were below kernel base
1292 	 * we can release the htable.
1293 	 */
1294 	if (base < kernelbase)
1295 		htable_release(ht);
1296 }
1297 
1298 /*
1299  * Walk through a given htable looking for the first valid entry.  This
1300  * routine takes both a starting and ending address.  The starting address
1301  * is required to be within the htable provided by the caller, but there is
1302  * no such restriction on the ending address.
1303  *
1304  * If the routine finds a valid entry in the htable (at or beyond the
1305  * starting address), the PTE (and its address) will be returned.
1306  * This PTE may correspond to either a page or a pagetable - it is the
1307  * caller's responsibility to determine which.  If no valid entry is
1308  * found, 0 (and invalid PTE) and the next unexamined address will be
1309  * returned.
1310  *
1311  * The loop has been carefully coded for optimization.
1312  */
1313 static x86pte_t
1314 htable_scan(htable_t *ht, uintptr_t *vap, uintptr_t eaddr)
1315 {
1316 	uint_t e;
1317 	x86pte_t found_pte = (x86pte_t)0;
1318 	caddr_t pte_ptr;
1319 	caddr_t end_pte_ptr;
1320 	int l = ht->ht_level;
1321 	uintptr_t va = *vap & LEVEL_MASK(l);
1322 	size_t pgsize = LEVEL_SIZE(l);
1323 
1324 	ASSERT(va >= ht->ht_vaddr);
1325 	ASSERT(va <= HTABLE_LAST_PAGE(ht));
1326 
1327 	/*
1328 	 * Compute the starting index and ending virtual address
1329 	 */
1330 	e = htable_va2entry(va, ht);
1331 
1332 	/*
1333 	 * The following page table scan code knows that the valid
1334 	 * bit of a PTE is in the lowest byte AND that x86 is little endian!!
1335 	 */
1336 	pte_ptr = (caddr_t)x86pte_access_pagetable(ht, 0);
1337 	end_pte_ptr = (caddr_t)PT_INDEX_PTR(pte_ptr, HTABLE_NUM_PTES(ht));
1338 	pte_ptr = (caddr_t)PT_INDEX_PTR((x86pte_t *)pte_ptr, e);
1339 	while (!PTE_ISVALID(*pte_ptr)) {
1340 		va += pgsize;
1341 		if (va >= eaddr)
1342 			break;
1343 		pte_ptr += mmu.pte_size;
1344 		ASSERT(pte_ptr <= end_pte_ptr);
1345 		if (pte_ptr == end_pte_ptr)
1346 			break;
1347 	}
1348 
1349 	/*
1350 	 * if we found a valid PTE, load the entire PTE
1351 	 */
1352 	if (va < eaddr && pte_ptr != end_pte_ptr)
1353 		found_pte = GET_PTE((x86pte_t *)pte_ptr);
1354 	x86pte_release_pagetable(ht);
1355 
1356 #if defined(__amd64)
1357 	/*
1358 	 * deal with VA hole on amd64
1359 	 */
1360 	if (l == mmu.max_level && va >= mmu.hole_start && va <= mmu.hole_end)
1361 		va = mmu.hole_end + va - mmu.hole_start;
1362 #endif /* __amd64 */
1363 
1364 	*vap = va;
1365 	return (found_pte);
1366 }
1367 
1368 /*
1369  * Find the address and htable for the first populated translation at or
1370  * above the given virtual address.  The caller may also specify an upper
1371  * limit to the address range to search.  Uses level information to quickly
1372  * skip unpopulated sections of virtual address spaces.
1373  *
1374  * If not found returns NULL. When found, returns the htable and virt addr
1375  * and has a hold on the htable.
1376  */
1377 x86pte_t
1378 htable_walk(
1379 	struct hat *hat,
1380 	htable_t **htp,
1381 	uintptr_t *vaddr,
1382 	uintptr_t eaddr)
1383 {
1384 	uintptr_t va = *vaddr;
1385 	htable_t *ht;
1386 	htable_t *prev = *htp;
1387 	level_t l;
1388 	level_t max_mapped_level;
1389 	x86pte_t pte;
1390 
1391 	ASSERT(eaddr > va);
1392 
1393 	/*
1394 	 * If this is a user address, then we know we need not look beyond
1395 	 * kernelbase.
1396 	 */
1397 	ASSERT(hat == kas.a_hat || eaddr <= kernelbase ||
1398 	    eaddr == HTABLE_WALK_TO_END);
1399 	if (hat != kas.a_hat && eaddr == HTABLE_WALK_TO_END)
1400 		eaddr = kernelbase;
1401 
1402 	/*
1403 	 * If we're coming in with a previous page table, search it first
1404 	 * without doing an htable_lookup(), this should be frequent.
1405 	 */
1406 	if (prev) {
1407 		ASSERT(prev->ht_busy > 0);
1408 		ASSERT(prev->ht_vaddr <= va);
1409 		l = prev->ht_level;
1410 		if (va <= HTABLE_LAST_PAGE(prev)) {
1411 			pte = htable_scan(prev, &va, eaddr);
1412 
1413 			if (PTE_ISPAGE(pte, l)) {
1414 				*vaddr = va;
1415 				*htp = prev;
1416 				return (pte);
1417 			}
1418 		}
1419 
1420 		/*
1421 		 * We found nothing in the htable provided by the caller,
1422 		 * so fall through and do the full search
1423 		 */
1424 		htable_release(prev);
1425 	}
1426 
1427 	/*
1428 	 * Find the level of the largest pagesize used by this HAT.
1429 	 */
1430 	max_mapped_level = 0;
1431 	for (l = 1; l <= mmu.max_page_level; ++l)
1432 		if (hat->hat_pages_mapped[l] != 0)
1433 			max_mapped_level = l;
1434 
1435 	while (va < eaddr && va >= *vaddr) {
1436 		ASSERT(!IN_VA_HOLE(va));
1437 
1438 		/*
1439 		 *  Find lowest table with any entry for given address.
1440 		 */
1441 		for (l = 0; l <= TOP_LEVEL(hat); ++l) {
1442 			ht = htable_lookup(hat, va, l);
1443 			if (ht != NULL) {
1444 				pte = htable_scan(ht, &va, eaddr);
1445 				if (PTE_ISPAGE(pte, l)) {
1446 					*vaddr = va;
1447 					*htp = ht;
1448 					return (pte);
1449 				}
1450 				htable_release(ht);
1451 				break;
1452 			}
1453 
1454 			/*
1455 			 * The ht is never NULL at the top level since
1456 			 * the top level htable is created in hat_alloc().
1457 			 */
1458 			ASSERT(l < TOP_LEVEL(hat));
1459 
1460 			/*
1461 			 * No htable covers the address. If there is no
1462 			 * larger page size that could cover it, we
1463 			 * skip to the start of the next page table.
1464 			 */
1465 			if (l >= max_mapped_level) {
1466 				va = NEXT_ENTRY_VA(va, l + 1);
1467 				break;
1468 			}
1469 		}
1470 	}
1471 
1472 	*vaddr = 0;
1473 	*htp = NULL;
1474 	return (0);
1475 }
1476 
1477 /*
1478  * Find the htable and page table entry index of the given virtual address
1479  * with pagesize at or below given level.
1480  * If not found returns NULL. When found, returns the htable, sets
1481  * entry, and has a hold on the htable.
1482  */
1483 htable_t *
1484 htable_getpte(
1485 	struct hat *hat,
1486 	uintptr_t vaddr,
1487 	uint_t *entry,
1488 	x86pte_t *pte,
1489 	level_t level)
1490 {
1491 	htable_t	*ht;
1492 	level_t		l;
1493 	uint_t		e;
1494 
1495 	ASSERT(level <= mmu.max_page_level);
1496 
1497 	for (l = 0; l <= level; ++l) {
1498 		ht = htable_lookup(hat, vaddr, l);
1499 		if (ht == NULL)
1500 			continue;
1501 		e = htable_va2entry(vaddr, ht);
1502 		if (entry != NULL)
1503 			*entry = e;
1504 		if (pte != NULL)
1505 			*pte = x86pte_get(ht, e);
1506 		return (ht);
1507 	}
1508 	return (NULL);
1509 }
1510 
1511 /*
1512  * Find the htable and page table entry index of the given virtual address.
1513  * There must be a valid page mapped at the given address.
1514  * If not found returns NULL. When found, returns the htable, sets
1515  * entry, and has a hold on the htable.
1516  */
1517 htable_t *
1518 htable_getpage(struct hat *hat, uintptr_t vaddr, uint_t *entry)
1519 {
1520 	htable_t	*ht;
1521 	uint_t		e;
1522 	x86pte_t	pte;
1523 
1524 	ht = htable_getpte(hat, vaddr, &e, &pte, mmu.max_page_level);
1525 	if (ht == NULL)
1526 		return (NULL);
1527 
1528 	if (entry)
1529 		*entry = e;
1530 
1531 	if (PTE_ISPAGE(pte, ht->ht_level))
1532 		return (ht);
1533 	htable_release(ht);
1534 	return (NULL);
1535 }
1536 
1537 
1538 void
1539 htable_init()
1540 {
1541 	/*
1542 	 * To save on kernel VA usage, we avoid debug information in 32 bit
1543 	 * kernels.
1544 	 */
1545 #if defined(__amd64)
1546 	int	kmem_flags = KMC_NOHASH;
1547 #elif defined(__i386)
1548 	int	kmem_flags = KMC_NOHASH | KMC_NODEBUG;
1549 #endif
1550 
1551 	/*
1552 	 * initialize kmem caches
1553 	 */
1554 	htable_cache = kmem_cache_create("htable_t",
1555 	    sizeof (htable_t), 0, NULL, NULL,
1556 	    htable_reap, NULL, hat_memload_arena, kmem_flags);
1557 }
1558 
1559 /*
1560  * get the pte index for the virtual address in the given htable's pagetable
1561  */
1562 uint_t
1563 htable_va2entry(uintptr_t va, htable_t *ht)
1564 {
1565 	level_t	l = ht->ht_level;
1566 
1567 	ASSERT(va >= ht->ht_vaddr);
1568 	ASSERT(va <= HTABLE_LAST_PAGE(ht));
1569 	return ((va >> LEVEL_SHIFT(l)) & (HTABLE_NUM_PTES(ht) - 1));
1570 }
1571 
1572 /*
1573  * Given an htable and the index of a pte in it, return the virtual address
1574  * of the page.
1575  */
1576 uintptr_t
1577 htable_e2va(htable_t *ht, uint_t entry)
1578 {
1579 	level_t	l = ht->ht_level;
1580 	uintptr_t va;
1581 
1582 	ASSERT(entry < HTABLE_NUM_PTES(ht));
1583 	va = ht->ht_vaddr + ((uintptr_t)entry << LEVEL_SHIFT(l));
1584 
1585 	/*
1586 	 * Need to skip over any VA hole in top level table
1587 	 */
1588 #if defined(__amd64)
1589 	if (ht->ht_level == mmu.max_level && va >= mmu.hole_start)
1590 		va += ((mmu.hole_end - mmu.hole_start) + 1);
1591 #endif
1592 
1593 	return (va);
1594 }
1595 
1596 /*
1597  * The code uses compare and swap instructions to read/write PTE's to
1598  * avoid atomicity problems, since PTEs can be 8 bytes on 32 bit systems.
1599  * will naturally be atomic.
1600  *
1601  * The combination of using kpreempt_disable()/_enable() and the hci_mutex
1602  * are used to ensure that an interrupt won't overwrite a temporary mapping
1603  * while it's in use. If an interrupt thread tries to access a PTE, it will
1604  * yield briefly back to the pinned thread which holds the cpu's hci_mutex.
1605  */
1606 void
1607 x86pte_cpu_init(cpu_t *cpu)
1608 {
1609 	struct hat_cpu_info *hci;
1610 
1611 	hci = kmem_zalloc(sizeof (*hci), KM_SLEEP);
1612 	mutex_init(&hci->hci_mutex, NULL, MUTEX_DEFAULT, NULL);
1613 	cpu->cpu_hat_info = hci;
1614 }
1615 
1616 void
1617 x86pte_cpu_fini(cpu_t *cpu)
1618 {
1619 	struct hat_cpu_info *hci = cpu->cpu_hat_info;
1620 
1621 	kmem_free(hci, sizeof (*hci));
1622 	cpu->cpu_hat_info = NULL;
1623 }
1624 
1625 #ifdef __i386
1626 /*
1627  * On 32 bit kernels, loading a 64 bit PTE is a little tricky
1628  */
1629 x86pte_t
1630 get_pte64(x86pte_t *ptr)
1631 {
1632 	volatile uint32_t *p = (uint32_t *)ptr;
1633 	x86pte_t t;
1634 
1635 	ASSERT(mmu.pae_hat != 0);
1636 	for (;;) {
1637 		t = p[0];
1638 		t |= (uint64_t)p[1] << 32;
1639 		if ((t & 0xffffffff) == p[0])
1640 			return (t);
1641 	}
1642 }
1643 #endif /* __i386 */
1644 
1645 /*
1646  * Disable preemption and establish a mapping to the pagetable with the
1647  * given pfn. This is optimized for there case where it's the same
1648  * pfn as we last used referenced from this CPU.
1649  */
1650 static x86pte_t *
1651 x86pte_access_pagetable(htable_t *ht, uint_t index)
1652 {
1653 	/*
1654 	 * VLP pagetables are contained in the hat_t
1655 	 */
1656 	if (ht->ht_flags & HTABLE_VLP)
1657 		return (PT_INDEX_PTR(ht->ht_hat->hat_vlp_ptes, index));
1658 	return (x86pte_mapin(ht->ht_pfn, index, ht));
1659 }
1660 
1661 /*
1662  * map the given pfn into the page table window.
1663  */
1664 /*ARGSUSED*/
1665 x86pte_t *
1666 x86pte_mapin(pfn_t pfn, uint_t index, htable_t *ht)
1667 {
1668 	x86pte_t *pteptr;
1669 	x86pte_t pte;
1670 	x86pte_t newpte;
1671 	int x;
1672 
1673 	ASSERT(pfn != PFN_INVALID);
1674 
1675 	if (!khat_running) {
1676 		caddr_t va = kbm_remap_window(pfn_to_pa(pfn), 1);
1677 		return (PT_INDEX_PTR(va, index));
1678 	}
1679 
1680 	/*
1681 	 * If kpm is available, use it.
1682 	 */
1683 	if (kpm_vbase)
1684 		return (PT_INDEX_PTR(hat_kpm_pfn2va(pfn), index));
1685 
1686 	/*
1687 	 * Disable preemption and grab the CPU's hci_mutex
1688 	 */
1689 	kpreempt_disable();
1690 	ASSERT(CPU->cpu_hat_info != NULL);
1691 	mutex_enter(&CPU->cpu_hat_info->hci_mutex);
1692 	x = PWIN_TABLE(CPU->cpu_id);
1693 	pteptr = (x86pte_t *)PWIN_PTE_VA(x);
1694 	if (mmu.pae_hat)
1695 		pte = *pteptr;
1696 	else
1697 		pte = *(x86pte32_t *)pteptr;
1698 
1699 	newpte = MAKEPTE(pfn, 0) | mmu.pt_global | mmu.pt_nx;
1700 	newpte |= PT_WRITABLE;
1701 
1702 	if (!PTE_EQUIV(newpte, pte)) {
1703 		if (mmu.pae_hat)
1704 			*pteptr = newpte;
1705 		else
1706 			*(x86pte32_t *)pteptr = newpte;
1707 		mmu_tlbflush_entry((caddr_t)(PWIN_VA(x)));
1708 	}
1709 	return (PT_INDEX_PTR(PWIN_VA(x), index));
1710 }
1711 
1712 /*
1713  * Release access to a page table.
1714  */
1715 static void
1716 x86pte_release_pagetable(htable_t *ht)
1717 {
1718 	/*
1719 	 * nothing to do for VLP htables
1720 	 */
1721 	if (ht->ht_flags & HTABLE_VLP)
1722 		return;
1723 
1724 	x86pte_mapout();
1725 }
1726 
1727 void
1728 x86pte_mapout(void)
1729 {
1730 	if (mmu.pwin_base == NULL || !khat_running)
1731 		return;
1732 
1733 	/*
1734 	 * Drop the CPU's hci_mutex and restore preemption.
1735 	 */
1736 	mutex_exit(&CPU->cpu_hat_info->hci_mutex);
1737 	kpreempt_enable();
1738 }
1739 
1740 /*
1741  * Atomic retrieval of a pagetable entry
1742  */
1743 x86pte_t
1744 x86pte_get(htable_t *ht, uint_t entry)
1745 {
1746 	x86pte_t	pte;
1747 	x86pte_t	*ptep;
1748 
1749 	/*
1750 	 * Be careful that loading PAE entries in 32 bit kernel is atomic.
1751 	 */
1752 	ASSERT(entry < mmu.ptes_per_table);
1753 	ptep = x86pte_access_pagetable(ht, entry);
1754 	pte = GET_PTE(ptep);
1755 	x86pte_release_pagetable(ht);
1756 	return (pte);
1757 }
1758 
1759 /*
1760  * Atomic unconditional set of a page table entry, it returns the previous
1761  * value. For pre-existing mappings if the PFN changes, then we don't care
1762  * about the old pte's REF / MOD bits. If the PFN remains the same, we leave
1763  * the MOD/REF bits unchanged.
1764  *
1765  * If asked to overwrite a link to a lower page table with a large page
1766  * mapping, this routine returns the special value of LPAGE_ERROR. This
1767  * allows the upper HAT layers to retry with a smaller mapping size.
1768  */
1769 x86pte_t
1770 x86pte_set(htable_t *ht, uint_t entry, x86pte_t new, void *ptr)
1771 {
1772 	x86pte_t	old;
1773 	x86pte_t	prev;
1774 	x86pte_t	*ptep;
1775 	level_t		l = ht->ht_level;
1776 	x86pte_t	pfn_mask = (l != 0) ? PT_PADDR_LGPG : PT_PADDR;
1777 	x86pte_t	n;
1778 	uintptr_t	addr = htable_e2va(ht, entry);
1779 	hat_t		*hat = ht->ht_hat;
1780 
1781 	ASSERT(new != 0); /* don't use to invalidate a PTE, see x86pte_update */
1782 	ASSERT(!(ht->ht_flags & HTABLE_SHARED_PFN));
1783 	if (ptr == NULL)
1784 		ptep = x86pte_access_pagetable(ht, entry);
1785 	else
1786 		ptep = ptr;
1787 
1788 	/*
1789 	 * Install the new PTE. If remapping the same PFN, then
1790 	 * copy existing REF/MOD bits to new mapping.
1791 	 */
1792 	do {
1793 		prev = GET_PTE(ptep);
1794 		n = new;
1795 		if (PTE_ISVALID(n) && (prev & pfn_mask) == (new & pfn_mask))
1796 			n |= prev & (PT_REF | PT_MOD);
1797 
1798 		/*
1799 		 * Another thread may have installed this mapping already,
1800 		 * flush the local TLB and be done.
1801 		 */
1802 		if (prev == n) {
1803 			old = new;
1804 			mmu_tlbflush_entry((caddr_t)addr);
1805 			goto done;
1806 		}
1807 
1808 		/*
1809 		 * Detect if we have a collision of installing a large
1810 		 * page mapping where there already is a lower page table.
1811 		 */
1812 		if (l > 0 && (prev & PT_VALID) && !(prev & PT_PAGESIZE)) {
1813 			old = LPAGE_ERROR;
1814 			goto done;
1815 		}
1816 
1817 		old = CAS_PTE(ptep, prev, n);
1818 	} while (old != prev);
1819 
1820 	/*
1821 	 * Do a TLB demap if needed, ie. the old pte was valid.
1822 	 *
1823 	 * Note that a stale TLB writeback to the PTE here either can't happen
1824 	 * or doesn't matter. The PFN can only change for NOSYNC|NOCONSIST
1825 	 * mappings, but they were created with REF and MOD already set, so
1826 	 * no stale writeback will happen.
1827 	 *
1828 	 * Segmap is the only place where remaps happen on the same pfn and for
1829 	 * that we want to preserve the stale REF/MOD bits.
1830 	 */
1831 	if (old & PT_REF)
1832 		hat_tlb_inval(hat, addr);
1833 
1834 done:
1835 	if (ptr == NULL)
1836 		x86pte_release_pagetable(ht);
1837 	return (old);
1838 }
1839 
1840 /*
1841  * Atomic compare and swap of a page table entry. No TLB invalidates are done.
1842  * This is used for links between pagetables of different levels.
1843  * Note we always create these links with dirty/access set, so they should
1844  * never change.
1845  */
1846 x86pte_t
1847 x86pte_cas(htable_t *ht, uint_t entry, x86pte_t old, x86pte_t new)
1848 {
1849 	x86pte_t	pte;
1850 	x86pte_t	*ptep;
1851 
1852 	ptep = x86pte_access_pagetable(ht, entry);
1853 	pte = CAS_PTE(ptep, old, new);
1854 	x86pte_release_pagetable(ht);
1855 	return (pte);
1856 }
1857 
1858 /*
1859  * data structure for cross call information
1860  */
1861 typedef struct xcall_inval {
1862 	caddr_t		xi_addr;
1863 	x86pte_t	xi_found;
1864 	x86pte_t	xi_oldpte;
1865 	x86pte_t	*xi_pteptr;
1866 	processorid_t	xi_initiator;
1867 } xcall_inval_t;
1868 
1869 /*
1870  * Cross call service routine to invalidate TLBs. On the
1871  * initiating CPU, this first clears the PTE in memory.
1872  */
1873 /*ARGSUSED*/
1874 static int
1875 x86pte_inval_func(xc_arg_t a1, xc_arg_t a2, xc_arg_t a3)
1876 {
1877 	xcall_inval_t	*xi = (xcall_inval_t *)a1;
1878 
1879 	if (CPU->cpu_id == xi->xi_initiator)
1880 		xi->xi_found = CAS_PTE(xi->xi_pteptr, xi->xi_oldpte, 0);
1881 
1882 	mmu_tlbflush_entry(xi->xi_addr);
1883 	return (0);
1884 }
1885 
1886 /*
1887  * Invalidate a page table entry as long as it currently maps something that
1888  * matches the value determined by expect.
1889  *
1890  * Also invalidates any TLB entries and returns the previous value of the PTE.
1891  */
1892 x86pte_t
1893 x86pte_inval(
1894 	htable_t *ht,
1895 	uint_t entry,
1896 	x86pte_t expect,
1897 	x86pte_t *pte_ptr)
1898 {
1899 	hat_t		*hat = ht->ht_hat;
1900 	x86pte_t	*ptep;
1901 	xcall_inval_t	xi;
1902 	cpuset_t	cpus;
1903 
1904 	ASSERT(!(ht->ht_flags & HTABLE_SHARED_PFN));
1905 	ASSERT(ht->ht_level != VLP_LEVEL);
1906 
1907 	if (pte_ptr != NULL)
1908 		ptep = pte_ptr;
1909 	else
1910 		ptep = x86pte_access_pagetable(ht, entry);
1911 	xi.xi_pteptr = ptep;
1912 	xi.xi_addr = (caddr_t)htable_e2va(ht, entry);
1913 
1914 	/*
1915 	 * Setup a cross call to any CPUs using this HAT
1916 	 */
1917 	kpreempt_disable();
1918 	xi.xi_initiator = CPU->cpu_id;
1919 	CPUSET_ZERO(cpus);
1920 	if (hat == kas.a_hat) {
1921 		CPUSET_OR(cpus, khat_cpuset);
1922 	} else {
1923 		mutex_enter(&hat->hat_switch_mutex);
1924 		CPUSET_OR(cpus, hat->hat_cpus);
1925 		CPUSET_ADD(cpus, CPU->cpu_id);
1926 	}
1927 
1928 	/*
1929 	 * Do the cross call to invalidate the PTE and flush TLBs.
1930 	 * Note that the loop is needed to handle changes due to h/w updating
1931 	 * of PT_MOD/PT_REF.
1932 	 */
1933 	do {
1934 		xi.xi_oldpte = GET_PTE(ptep);
1935 		if (expect != 0 &&
1936 		    (xi.xi_oldpte & PT_PADDR) != (expect & PT_PADDR))
1937 			break;
1938 		if (panicstr == NULL)
1939 			xc_wait_sync((xc_arg_t)&xi, NULL, NULL, X_CALL_HIPRI,
1940 				    cpus, x86pte_inval_func);
1941 		else
1942 			(void) x86pte_inval_func((xc_arg_t)&xi, NULL, NULL);
1943 	} while (xi.xi_found != xi.xi_oldpte);
1944 
1945 	if (hat != kas.a_hat)
1946 		mutex_exit(&hat->hat_switch_mutex);
1947 	kpreempt_enable();
1948 
1949 	if (pte_ptr == NULL)
1950 		x86pte_release_pagetable(ht);
1951 
1952 	return (xi.xi_oldpte);
1953 }
1954 
1955 /*
1956  * Change a page table entry af it currently matches the value in expect.
1957  */
1958 x86pte_t
1959 x86pte_update(
1960 	htable_t *ht,
1961 	uint_t entry,
1962 	x86pte_t expect,
1963 	x86pte_t new)
1964 {
1965 	x86pte_t	*ptep;
1966 	x86pte_t	found;
1967 
1968 	ASSERT(new != 0);
1969 	ASSERT(!(ht->ht_flags & HTABLE_SHARED_PFN));
1970 	ASSERT(ht->ht_level != VLP_LEVEL);
1971 
1972 	ptep = x86pte_access_pagetable(ht, entry);
1973 	found = CAS_PTE(ptep, expect, new);
1974 	if (found == expect) {
1975 		hat_tlb_inval(ht->ht_hat, htable_e2va(ht, entry));
1976 
1977 		/*
1978 		 * When removing write permission *and* clearing the
1979 		 * MOD bit, check if a write happened via a stale
1980 		 * TLB entry before the TLB shootdown finished.
1981 		 *
1982 		 * If it did happen, simply re-enable write permission and
1983 		 * act like the original CAS failed.
1984 		 */
1985 		if ((expect & (PT_WRITABLE | PT_MOD)) == PT_WRITABLE &&
1986 		    (new & (PT_WRITABLE | PT_MOD)) == 0 &&
1987 		    (GET_PTE(ptep) & PT_MOD) != 0) {
1988 			do {
1989 				found = GET_PTE(ptep);
1990 				found =
1991 				    CAS_PTE(ptep, found, found | PT_WRITABLE);
1992 			} while ((found & PT_WRITABLE) == 0);
1993 		}
1994 	}
1995 	x86pte_release_pagetable(ht);
1996 	return (found);
1997 }
1998 
1999 /*
2000  * Copy page tables - this is just a little more complicated than the
2001  * previous routines. Note that it's also not atomic! It also is never
2002  * used for VLP pagetables.
2003  */
2004 void
2005 x86pte_copy(htable_t *src, htable_t *dest, uint_t entry, uint_t count)
2006 {
2007 	caddr_t	src_va;
2008 	caddr_t dst_va;
2009 	size_t size;
2010 	x86pte_t *pteptr;
2011 	x86pte_t pte;
2012 
2013 	ASSERT(khat_running);
2014 	ASSERT(!(dest->ht_flags & HTABLE_VLP));
2015 	ASSERT(!(src->ht_flags & HTABLE_VLP));
2016 	ASSERT(!(src->ht_flags & HTABLE_SHARED_PFN));
2017 	ASSERT(!(dest->ht_flags & HTABLE_SHARED_PFN));
2018 
2019 	/*
2020 	 * Acquire access to the CPU pagetable windows for the dest and source.
2021 	 */
2022 	dst_va = (caddr_t)x86pte_access_pagetable(dest, entry);
2023 	if (kpm_vbase) {
2024 		src_va = (caddr_t)
2025 		    PT_INDEX_PTR(hat_kpm_pfn2va(src->ht_pfn), entry);
2026 	} else {
2027 		uint_t x = PWIN_SRC(CPU->cpu_id);
2028 
2029 		/*
2030 		 * Finish defining the src pagetable mapping
2031 		 */
2032 		src_va = (caddr_t)PT_INDEX_PTR(PWIN_VA(x), entry);
2033 		pte = MAKEPTE(src->ht_pfn, 0) | mmu.pt_global | mmu.pt_nx;
2034 		pteptr = (x86pte_t *)PWIN_PTE_VA(x);
2035 		if (mmu.pae_hat)
2036 			*pteptr = pte;
2037 		else
2038 			*(x86pte32_t *)pteptr = pte;
2039 		mmu_tlbflush_entry((caddr_t)(PWIN_VA(x)));
2040 	}
2041 
2042 	/*
2043 	 * now do the copy
2044 	 */
2045 	size = count << mmu.pte_size_shift;
2046 	bcopy(src_va, dst_va, size);
2047 
2048 	x86pte_release_pagetable(dest);
2049 }
2050 
2051 /*
2052  * Zero page table entries - Note this doesn't use atomic stores!
2053  */
2054 static void
2055 x86pte_zero(htable_t *dest, uint_t entry, uint_t count)
2056 {
2057 	caddr_t dst_va;
2058 	size_t size;
2059 
2060 	/*
2061 	 * Map in the page table to be zeroed.
2062 	 */
2063 	ASSERT(!(dest->ht_flags & HTABLE_SHARED_PFN));
2064 	ASSERT(!(dest->ht_flags & HTABLE_VLP));
2065 
2066 	dst_va = (caddr_t)x86pte_access_pagetable(dest, entry);
2067 
2068 	size = count << mmu.pte_size_shift;
2069 	ASSERT(size > BLOCKZEROALIGN);
2070 #ifdef __i386
2071 	if ((x86_feature & X86_SSE2) == 0)
2072 		bzero(dst_va, size);
2073 	else
2074 #endif
2075 		block_zero_no_xmm(dst_va, size);
2076 
2077 	x86pte_release_pagetable(dest);
2078 }
2079 
2080 /*
2081  * Called to ensure that all pagetables are in the system dump
2082  */
2083 void
2084 hat_dump(void)
2085 {
2086 	hat_t *hat;
2087 	uint_t h;
2088 	htable_t *ht;
2089 
2090 	/*
2091 	 * Dump all page tables
2092 	 */
2093 	for (hat = kas.a_hat; hat != NULL; hat = hat->hat_next) {
2094 		for (h = 0; h < hat->hat_num_hash; ++h) {
2095 			for (ht = hat->hat_ht_hash[h]; ht; ht = ht->ht_next) {
2096 				if ((ht->ht_flags & HTABLE_VLP) == 0)
2097 					dump_page(ht->ht_pfn);
2098 			}
2099 		}
2100 	}
2101 }
2102