1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2004, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2014 by Delphix. All rights reserved. 25 * Copyright 2018 Joyent, Inc. 26 */ 27 28 #include <sys/types.h> 29 #include <sys/sysmacros.h> 30 #include <sys/kmem.h> 31 #include <sys/atomic.h> 32 #include <sys/bitmap.h> 33 #include <sys/machparam.h> 34 #include <sys/machsystm.h> 35 #include <sys/mman.h> 36 #include <sys/systm.h> 37 #include <sys/cpuvar.h> 38 #include <sys/thread.h> 39 #include <sys/proc.h> 40 #include <sys/cpu.h> 41 #include <sys/kmem.h> 42 #include <sys/disp.h> 43 #include <sys/vmem.h> 44 #include <sys/vmsystm.h> 45 #include <sys/promif.h> 46 #include <sys/var.h> 47 #include <sys/x86_archext.h> 48 #include <sys/archsystm.h> 49 #include <sys/bootconf.h> 50 #include <sys/dumphdr.h> 51 #include <vm/seg_kmem.h> 52 #include <vm/seg_kpm.h> 53 #include <vm/hat.h> 54 #include <vm/hat_i86.h> 55 #include <sys/cmn_err.h> 56 #include <sys/panic.h> 57 58 #ifdef __xpv 59 #include <sys/hypervisor.h> 60 #include <sys/xpv_panic.h> 61 #endif 62 63 #include <sys/bootinfo.h> 64 #include <vm/kboot_mmu.h> 65 66 static void x86pte_zero(htable_t *dest, uint_t entry, uint_t count); 67 68 kmem_cache_t *htable_cache; 69 70 /* 71 * The variable htable_reserve_amount, rather than HTABLE_RESERVE_AMOUNT, 72 * is used in order to facilitate testing of the htable_steal() code. 73 * By resetting htable_reserve_amount to a lower value, we can force 74 * stealing to occur. The reserve amount is a guess to get us through boot. 75 */ 76 #define HTABLE_RESERVE_AMOUNT (200) 77 uint_t htable_reserve_amount = HTABLE_RESERVE_AMOUNT; 78 kmutex_t htable_reserve_mutex; 79 uint_t htable_reserve_cnt; 80 htable_t *htable_reserve_pool; 81 82 /* 83 * Used to hand test htable_steal(). 84 */ 85 #ifdef DEBUG 86 ulong_t force_steal = 0; 87 ulong_t ptable_cnt = 0; 88 #endif 89 90 /* 91 * This variable is so that we can tune this via /etc/system 92 * Any value works, but a power of two <= mmu.ptes_per_table is best. 93 */ 94 uint_t htable_steal_passes = 8; 95 96 /* 97 * mutex stuff for access to htable hash 98 */ 99 #define NUM_HTABLE_MUTEX 128 100 kmutex_t htable_mutex[NUM_HTABLE_MUTEX]; 101 #define HTABLE_MUTEX_HASH(h) ((h) & (NUM_HTABLE_MUTEX - 1)) 102 103 #define HTABLE_ENTER(h) mutex_enter(&htable_mutex[HTABLE_MUTEX_HASH(h)]); 104 #define HTABLE_EXIT(h) mutex_exit(&htable_mutex[HTABLE_MUTEX_HASH(h)]); 105 106 /* 107 * forward declarations 108 */ 109 static void link_ptp(htable_t *higher, htable_t *new, uintptr_t vaddr); 110 static void unlink_ptp(htable_t *higher, htable_t *old, uintptr_t vaddr); 111 static void htable_free(htable_t *ht); 112 static x86pte_t *x86pte_access_pagetable(htable_t *ht, uint_t index); 113 static void x86pte_release_pagetable(htable_t *ht); 114 static x86pte_t x86pte_cas(htable_t *ht, uint_t entry, x86pte_t old, 115 x86pte_t new); 116 117 /* 118 * A counter to track if we are stealing or reaping htables. When non-zero 119 * htable_free() will directly free htables (either to the reserve or kmem) 120 * instead of putting them in a hat's htable cache. 121 */ 122 uint32_t htable_dont_cache = 0; 123 124 /* 125 * Track the number of active pagetables, so we can know how many to reap 126 */ 127 static uint32_t active_ptables = 0; 128 129 #ifdef __xpv 130 /* 131 * Deal with hypervisor complications. 132 */ 133 void 134 xen_flush_va(caddr_t va) 135 { 136 struct mmuext_op t; 137 uint_t count; 138 139 if (IN_XPV_PANIC()) { 140 mmu_flush_tlb_page((uintptr_t)va); 141 } else { 142 t.cmd = MMUEXT_INVLPG_LOCAL; 143 t.arg1.linear_addr = (uintptr_t)va; 144 if (HYPERVISOR_mmuext_op(&t, 1, &count, DOMID_SELF) < 0) 145 panic("HYPERVISOR_mmuext_op() failed"); 146 ASSERT(count == 1); 147 } 148 } 149 150 void 151 xen_gflush_va(caddr_t va, cpuset_t cpus) 152 { 153 struct mmuext_op t; 154 uint_t count; 155 156 if (IN_XPV_PANIC()) { 157 mmu_flush_tlb_page((uintptr_t)va); 158 return; 159 } 160 161 t.cmd = MMUEXT_INVLPG_MULTI; 162 t.arg1.linear_addr = (uintptr_t)va; 163 /*LINTED: constant in conditional context*/ 164 set_xen_guest_handle(t.arg2.vcpumask, &cpus); 165 if (HYPERVISOR_mmuext_op(&t, 1, &count, DOMID_SELF) < 0) 166 panic("HYPERVISOR_mmuext_op() failed"); 167 ASSERT(count == 1); 168 } 169 170 void 171 xen_flush_tlb() 172 { 173 struct mmuext_op t; 174 uint_t count; 175 176 if (IN_XPV_PANIC()) { 177 xpv_panic_reload_cr3(); 178 } else { 179 t.cmd = MMUEXT_TLB_FLUSH_LOCAL; 180 if (HYPERVISOR_mmuext_op(&t, 1, &count, DOMID_SELF) < 0) 181 panic("HYPERVISOR_mmuext_op() failed"); 182 ASSERT(count == 1); 183 } 184 } 185 186 void 187 xen_gflush_tlb(cpuset_t cpus) 188 { 189 struct mmuext_op t; 190 uint_t count; 191 192 ASSERT(!IN_XPV_PANIC()); 193 t.cmd = MMUEXT_TLB_FLUSH_MULTI; 194 /*LINTED: constant in conditional context*/ 195 set_xen_guest_handle(t.arg2.vcpumask, &cpus); 196 if (HYPERVISOR_mmuext_op(&t, 1, &count, DOMID_SELF) < 0) 197 panic("HYPERVISOR_mmuext_op() failed"); 198 ASSERT(count == 1); 199 } 200 201 /* 202 * Install/Adjust a kpm mapping under the hypervisor. 203 * Value of "how" should be: 204 * PT_WRITABLE | PT_VALID - regular kpm mapping 205 * PT_VALID - make mapping read-only 206 * 0 - remove mapping 207 * 208 * returns 0 on success. non-zero for failure. 209 */ 210 int 211 xen_kpm_page(pfn_t pfn, uint_t how) 212 { 213 paddr_t pa = mmu_ptob((paddr_t)pfn); 214 x86pte_t pte = PT_NOCONSIST | PT_REF | PT_MOD; 215 216 if (kpm_vbase == NULL) 217 return (0); 218 219 if (how) 220 pte |= pa_to_ma(pa) | how; 221 else 222 pte = 0; 223 return (HYPERVISOR_update_va_mapping((uintptr_t)kpm_vbase + pa, 224 pte, UVMF_INVLPG | UVMF_ALL)); 225 } 226 227 void 228 xen_pin(pfn_t pfn, level_t lvl) 229 { 230 struct mmuext_op t; 231 uint_t count; 232 233 t.cmd = MMUEXT_PIN_L1_TABLE + lvl; 234 t.arg1.mfn = pfn_to_mfn(pfn); 235 if (HYPERVISOR_mmuext_op(&t, 1, &count, DOMID_SELF) < 0) 236 panic("HYPERVISOR_mmuext_op() failed"); 237 ASSERT(count == 1); 238 } 239 240 void 241 xen_unpin(pfn_t pfn) 242 { 243 struct mmuext_op t; 244 uint_t count; 245 246 t.cmd = MMUEXT_UNPIN_TABLE; 247 t.arg1.mfn = pfn_to_mfn(pfn); 248 if (HYPERVISOR_mmuext_op(&t, 1, &count, DOMID_SELF) < 0) 249 panic("HYPERVISOR_mmuext_op() failed"); 250 ASSERT(count == 1); 251 } 252 253 static void 254 xen_map(uint64_t pte, caddr_t va) 255 { 256 if (HYPERVISOR_update_va_mapping((uintptr_t)va, pte, 257 UVMF_INVLPG | UVMF_LOCAL)) 258 panic("HYPERVISOR_update_va_mapping() failed"); 259 } 260 #endif /* __xpv */ 261 262 /* 263 * Allocate a memory page for a hardware page table. 264 * 265 * A wrapper around page_get_physical(), with some extra checks. 266 */ 267 static pfn_t 268 ptable_alloc(uintptr_t seed) 269 { 270 pfn_t pfn; 271 page_t *pp; 272 273 pfn = PFN_INVALID; 274 275 /* 276 * The first check is to see if there is memory in the system. If we 277 * drop to throttlefree, then fail the ptable_alloc() and let the 278 * stealing code kick in. Note that we have to do this test here, 279 * since the test in page_create_throttle() would let the NOSLEEP 280 * allocation go through and deplete the page reserves. 281 * 282 * The !NOMEMWAIT() lets pageout, fsflush, etc. skip this check. 283 */ 284 if (!NOMEMWAIT() && freemem <= throttlefree + 1) 285 return (PFN_INVALID); 286 287 #ifdef DEBUG 288 /* 289 * This code makes htable_steal() easier to test. By setting 290 * force_steal we force pagetable allocations to fall 291 * into the stealing code. Roughly 1 in ever "force_steal" 292 * page table allocations will fail. 293 */ 294 if (proc_pageout != NULL && force_steal > 1 && 295 ++ptable_cnt > force_steal) { 296 ptable_cnt = 0; 297 return (PFN_INVALID); 298 } 299 #endif /* DEBUG */ 300 301 pp = page_get_physical(seed); 302 if (pp == NULL) 303 return (PFN_INVALID); 304 ASSERT(PAGE_SHARED(pp)); 305 pfn = pp->p_pagenum; 306 if (pfn == PFN_INVALID) 307 panic("ptable_alloc(): Invalid PFN!!"); 308 atomic_inc_32(&active_ptables); 309 HATSTAT_INC(hs_ptable_allocs); 310 return (pfn); 311 } 312 313 /* 314 * Free an htable's associated page table page. See the comments 315 * for ptable_alloc(). 316 */ 317 static void 318 ptable_free(pfn_t pfn) 319 { 320 page_t *pp = page_numtopp_nolock(pfn); 321 322 /* 323 * need to destroy the page used for the pagetable 324 */ 325 ASSERT(pfn != PFN_INVALID); 326 HATSTAT_INC(hs_ptable_frees); 327 atomic_dec_32(&active_ptables); 328 if (pp == NULL) 329 panic("ptable_free(): no page for pfn!"); 330 ASSERT(PAGE_SHARED(pp)); 331 ASSERT(pfn == pp->p_pagenum); 332 ASSERT(!IN_XPV_PANIC()); 333 334 /* 335 * Get an exclusive lock, might have to wait for a kmem reader. 336 */ 337 if (!page_tryupgrade(pp)) { 338 u_offset_t off = pp->p_offset; 339 page_unlock(pp); 340 pp = page_lookup(&kvp, off, SE_EXCL); 341 if (pp == NULL) 342 panic("page not found"); 343 } 344 #ifdef __xpv 345 if (kpm_vbase && xen_kpm_page(pfn, PT_VALID | PT_WRITABLE) < 0) 346 panic("failure making kpm r/w pfn=0x%lx", pfn); 347 #endif 348 page_hashout(pp, NULL); 349 page_free(pp, 1); 350 page_unresv(1); 351 } 352 353 /* 354 * Put one htable on the reserve list. 355 */ 356 static void 357 htable_put_reserve(htable_t *ht) 358 { 359 ht->ht_hat = NULL; /* no longer tied to a hat */ 360 ASSERT(ht->ht_pfn == PFN_INVALID); 361 HATSTAT_INC(hs_htable_rputs); 362 mutex_enter(&htable_reserve_mutex); 363 ht->ht_next = htable_reserve_pool; 364 htable_reserve_pool = ht; 365 ++htable_reserve_cnt; 366 mutex_exit(&htable_reserve_mutex); 367 } 368 369 /* 370 * Take one htable from the reserve. 371 */ 372 static htable_t * 373 htable_get_reserve(void) 374 { 375 htable_t *ht = NULL; 376 377 mutex_enter(&htable_reserve_mutex); 378 if (htable_reserve_cnt != 0) { 379 ht = htable_reserve_pool; 380 ASSERT(ht != NULL); 381 ASSERT(ht->ht_pfn == PFN_INVALID); 382 htable_reserve_pool = ht->ht_next; 383 --htable_reserve_cnt; 384 HATSTAT_INC(hs_htable_rgets); 385 } 386 mutex_exit(&htable_reserve_mutex); 387 return (ht); 388 } 389 390 /* 391 * Allocate initial htables and put them on the reserve list 392 */ 393 void 394 htable_initial_reserve(uint_t count) 395 { 396 htable_t *ht; 397 398 count += HTABLE_RESERVE_AMOUNT; 399 while (count > 0) { 400 ht = kmem_cache_alloc(htable_cache, KM_NOSLEEP); 401 ASSERT(ht != NULL); 402 403 ASSERT(use_boot_reserve); 404 ht->ht_pfn = PFN_INVALID; 405 htable_put_reserve(ht); 406 --count; 407 } 408 } 409 410 /* 411 * Readjust the reserves after a thread finishes using them. 412 */ 413 void 414 htable_adjust_reserve() 415 { 416 htable_t *ht; 417 418 /* 419 * Free any excess htables in the reserve list 420 */ 421 while (htable_reserve_cnt > htable_reserve_amount && 422 !USE_HAT_RESERVES()) { 423 ht = htable_get_reserve(); 424 if (ht == NULL) 425 return; 426 ASSERT(ht->ht_pfn == PFN_INVALID); 427 kmem_cache_free(htable_cache, ht); 428 } 429 } 430 431 /* 432 * Search the active htables for one to steal. Start at a different hash 433 * bucket every time to help spread the pain of stealing 434 */ 435 static void 436 htable_steal_active(hat_t *hat, uint_t cnt, uint_t threshold, 437 uint_t *stolen, htable_t **list) 438 { 439 static uint_t h_seed = 0; 440 htable_t *higher, *ht; 441 uint_t h, e, h_start; 442 uintptr_t va; 443 x86pte_t pte; 444 445 h = h_start = h_seed++ % hat->hat_num_hash; 446 do { 447 higher = NULL; 448 HTABLE_ENTER(h); 449 for (ht = hat->hat_ht_hash[h]; ht; ht = ht->ht_next) { 450 451 /* 452 * Can we rule out reaping? 453 */ 454 if (ht->ht_busy != 0 || 455 (ht->ht_flags & HTABLE_SHARED_PFN) || 456 ht->ht_level > 0 || ht->ht_valid_cnt > threshold || 457 ht->ht_lock_cnt != 0) 458 continue; 459 460 /* 461 * Increment busy so the htable can't disappear. We 462 * drop the htable mutex to avoid deadlocks with 463 * hat_pageunload() and the hment mutex while we 464 * call hat_pte_unmap() 465 */ 466 ++ht->ht_busy; 467 HTABLE_EXIT(h); 468 469 /* 470 * Try stealing. 471 * - unload and invalidate all PTEs 472 */ 473 for (e = 0, va = ht->ht_vaddr; 474 e < HTABLE_NUM_PTES(ht) && ht->ht_valid_cnt > 0 && 475 ht->ht_busy == 1 && ht->ht_lock_cnt == 0; 476 ++e, va += MMU_PAGESIZE) { 477 pte = x86pte_get(ht, e); 478 if (!PTE_ISVALID(pte)) 479 continue; 480 hat_pte_unmap(ht, e, HAT_UNLOAD, pte, NULL, 481 B_TRUE); 482 } 483 484 /* 485 * Reacquire htable lock. If we didn't remove all 486 * mappings in the table, or another thread added a new 487 * mapping behind us, give up on this table. 488 */ 489 HTABLE_ENTER(h); 490 if (ht->ht_busy != 1 || ht->ht_valid_cnt != 0 || 491 ht->ht_lock_cnt != 0) { 492 --ht->ht_busy; 493 continue; 494 } 495 496 /* 497 * Steal it and unlink the page table. 498 */ 499 higher = ht->ht_parent; 500 unlink_ptp(higher, ht, ht->ht_vaddr); 501 502 /* 503 * remove from the hash list 504 */ 505 if (ht->ht_next) 506 ht->ht_next->ht_prev = ht->ht_prev; 507 508 if (ht->ht_prev) { 509 ht->ht_prev->ht_next = ht->ht_next; 510 } else { 511 ASSERT(hat->hat_ht_hash[h] == ht); 512 hat->hat_ht_hash[h] = ht->ht_next; 513 } 514 515 /* 516 * Break to outer loop to release the 517 * higher (ht_parent) pagetable. This 518 * spreads out the pain caused by 519 * pagefaults. 520 */ 521 ht->ht_next = *list; 522 *list = ht; 523 ++*stolen; 524 break; 525 } 526 HTABLE_EXIT(h); 527 if (higher != NULL) 528 htable_release(higher); 529 if (++h == hat->hat_num_hash) 530 h = 0; 531 } while (*stolen < cnt && h != h_start); 532 } 533 534 /* 535 * Move hat to the end of the kas list 536 */ 537 static void 538 move_victim(hat_t *hat) 539 { 540 ASSERT(MUTEX_HELD(&hat_list_lock)); 541 542 /* unlink victim hat */ 543 if (hat->hat_prev) 544 hat->hat_prev->hat_next = hat->hat_next; 545 else 546 kas.a_hat->hat_next = hat->hat_next; 547 548 if (hat->hat_next) 549 hat->hat_next->hat_prev = hat->hat_prev; 550 else 551 kas.a_hat->hat_prev = hat->hat_prev; 552 /* relink at end of hat list */ 553 hat->hat_next = NULL; 554 hat->hat_prev = kas.a_hat->hat_prev; 555 if (hat->hat_prev) 556 hat->hat_prev->hat_next = hat; 557 else 558 kas.a_hat->hat_next = hat; 559 560 kas.a_hat->hat_prev = hat; 561 } 562 563 /* 564 * This routine steals htables from user processes. Called by htable_reap 565 * (reap=TRUE) or htable_alloc (reap=FALSE). 566 */ 567 static htable_t * 568 htable_steal(uint_t cnt, boolean_t reap) 569 { 570 hat_t *hat = kas.a_hat; /* list starts with khat */ 571 htable_t *list = NULL; 572 htable_t *ht; 573 uint_t stolen = 0; 574 uint_t pass, passes; 575 uint_t threshold; 576 577 /* 578 * Limit htable_steal_passes to something reasonable 579 */ 580 if (htable_steal_passes == 0) 581 htable_steal_passes = 1; 582 if (htable_steal_passes > mmu.ptes_per_table) 583 htable_steal_passes = mmu.ptes_per_table; 584 585 /* 586 * If we're stealing merely as part of kmem reaping (versus stealing 587 * to assure forward progress), we don't want to actually steal any 588 * active htables. (Stealing active htables merely to give memory 589 * back to the system can inadvertently kick off an htable crime wave 590 * as active processes repeatedly steal htables from one another, 591 * plummeting the system into a kind of HAT lawlessness that can 592 * become so violent as to impede the one thing that can end it: the 593 * freeing of memory via ARC reclaim and other means.) So if we're 594 * reaping, we limit ourselves to the first pass that steals cached 595 * htables that aren't in use -- which gives memory back, but averts 596 * the entire breakdown of social order. 597 */ 598 passes = reap ? 0 : htable_steal_passes; 599 600 /* 601 * Loop through all user hats. The 1st pass takes cached htables that 602 * aren't in use. The later passes steal by removing mappings, too. 603 */ 604 atomic_inc_32(&htable_dont_cache); 605 for (pass = 0; pass <= passes && stolen < cnt; ++pass) { 606 threshold = pass * mmu.ptes_per_table / htable_steal_passes; 607 608 mutex_enter(&hat_list_lock); 609 610 /* skip the first hat (kernel) */ 611 hat = kas.a_hat->hat_next; 612 for (;;) { 613 /* 614 * Skip any hat that is already being stolen from. 615 * 616 * We skip SHARED hats, as these are dummy 617 * hats that host ISM shared page tables. 618 * 619 * We also skip if HAT_FREEING because hat_pte_unmap() 620 * won't zero out the PTE's. That would lead to hitting 621 * stale PTEs either here or under hat_unload() when we 622 * steal and unload the same page table in competing 623 * threads. 624 * 625 * We skip HATs that belong to CPUs, to make our lives 626 * simpler. 627 */ 628 while (hat != NULL && (hat->hat_flags & 629 (HAT_VICTIM | HAT_SHARED | HAT_FREEING | 630 HAT_PCP)) != 0) { 631 hat = hat->hat_next; 632 } 633 634 if (hat == NULL) 635 break; 636 637 /* 638 * Mark the HAT as a stealing victim so that it is 639 * not freed from under us, e.g. in as_free() 640 */ 641 hat->hat_flags |= HAT_VICTIM; 642 mutex_exit(&hat_list_lock); 643 644 /* 645 * Take any htables from the hat's cached "free" list. 646 */ 647 hat_enter(hat); 648 while ((ht = hat->hat_ht_cached) != NULL && 649 stolen < cnt) { 650 hat->hat_ht_cached = ht->ht_next; 651 ht->ht_next = list; 652 list = ht; 653 ++stolen; 654 } 655 hat_exit(hat); 656 657 /* 658 * Don't steal active htables on first pass. 659 */ 660 if (pass != 0 && (stolen < cnt)) 661 htable_steal_active(hat, cnt, threshold, 662 &stolen, &list); 663 664 /* 665 * do synchronous teardown for the reap case so that 666 * we can forget hat; at this time, hat is 667 * guaranteed to be around because HAT_VICTIM is set 668 * (see htable_free() for similar code) 669 */ 670 for (ht = list; (ht) && (reap); ht = ht->ht_next) { 671 if (ht->ht_hat == NULL) 672 continue; 673 ASSERT(ht->ht_hat == hat); 674 #if defined(__xpv) && defined(__amd64) 675 ASSERT(!(ht->ht_flags & HTABLE_COPIED)); 676 if (ht->ht_level == mmu.max_level) { 677 ptable_free(hat->hat_user_ptable); 678 hat->hat_user_ptable = PFN_INVALID; 679 } 680 #endif 681 /* 682 * forget the hat 683 */ 684 ht->ht_hat = NULL; 685 } 686 687 mutex_enter(&hat_list_lock); 688 689 /* 690 * Are we finished? 691 */ 692 if (stolen == cnt) { 693 /* 694 * Try to spread the pain of stealing, 695 * move victim HAT to the end of the HAT list. 696 */ 697 if (pass >= 1 && cnt == 1 && 698 kas.a_hat->hat_prev != hat) 699 move_victim(hat); 700 /* 701 * We are finished 702 */ 703 } 704 705 /* 706 * Clear the victim flag, hat can go away now (once 707 * the lock is dropped) 708 */ 709 if (hat->hat_flags & HAT_VICTIM) { 710 ASSERT(hat != kas.a_hat); 711 hat->hat_flags &= ~HAT_VICTIM; 712 cv_broadcast(&hat_list_cv); 713 } 714 715 /* move on to the next hat */ 716 hat = hat->hat_next; 717 } 718 719 mutex_exit(&hat_list_lock); 720 721 } 722 ASSERT(!MUTEX_HELD(&hat_list_lock)); 723 724 atomic_dec_32(&htable_dont_cache); 725 return (list); 726 } 727 728 /* 729 * This is invoked from kmem when the system is low on memory. We try 730 * to free hments, htables, and ptables to improve the memory situation. 731 */ 732 /*ARGSUSED*/ 733 static void 734 htable_reap(void *handle) 735 { 736 uint_t reap_cnt; 737 htable_t *list; 738 htable_t *ht; 739 740 HATSTAT_INC(hs_reap_attempts); 741 if (!can_steal_post_boot) 742 return; 743 744 /* 745 * Try to reap 5% of the page tables bounded by a maximum of 746 * 5% of physmem and a minimum of 10. 747 */ 748 reap_cnt = MAX(MIN(physmem / 20, active_ptables / 20), 10); 749 750 /* 751 * Note: htable_dont_cache should be set at the time of 752 * invoking htable_free() 753 */ 754 atomic_inc_32(&htable_dont_cache); 755 /* 756 * Let htable_steal() do the work, we just call htable_free() 757 */ 758 XPV_DISALLOW_MIGRATE(); 759 list = htable_steal(reap_cnt, B_TRUE); 760 XPV_ALLOW_MIGRATE(); 761 while ((ht = list) != NULL) { 762 list = ht->ht_next; 763 HATSTAT_INC(hs_reaped); 764 htable_free(ht); 765 } 766 atomic_dec_32(&htable_dont_cache); 767 768 /* 769 * Free up excess reserves 770 */ 771 htable_adjust_reserve(); 772 hment_adjust_reserve(); 773 } 774 775 /* 776 * Allocate an htable, stealing one or using the reserve if necessary 777 */ 778 static htable_t * 779 htable_alloc( 780 hat_t *hat, 781 uintptr_t vaddr, 782 level_t level, 783 htable_t *shared) 784 { 785 htable_t *ht = NULL; 786 uint_t is_copied; 787 uint_t is_bare = 0; 788 uint_t need_to_zero = 1; 789 int kmflags = (can_steal_post_boot ? KM_NOSLEEP : KM_SLEEP); 790 791 if (level < 0 || level > TOP_LEVEL(hat)) 792 panic("htable_alloc(): level %d out of range\n", level); 793 794 is_copied = (hat->hat_flags & HAT_COPIED) && 795 level == hat->hat_max_level; 796 if (is_copied || shared != NULL) 797 is_bare = 1; 798 799 /* 800 * First reuse a cached htable from the hat_ht_cached field, this 801 * avoids unnecessary trips through kmem/page allocators. 802 */ 803 if (hat->hat_ht_cached != NULL && !is_bare) { 804 hat_enter(hat); 805 ht = hat->hat_ht_cached; 806 if (ht != NULL) { 807 hat->hat_ht_cached = ht->ht_next; 808 need_to_zero = 0; 809 /* XX64 ASSERT() they're all zero somehow */ 810 ASSERT(ht->ht_pfn != PFN_INVALID); 811 } 812 hat_exit(hat); 813 } 814 815 if (ht == NULL) { 816 /* 817 * Allocate an htable, possibly refilling the reserves. 818 */ 819 if (USE_HAT_RESERVES()) { 820 ht = htable_get_reserve(); 821 } else { 822 /* 823 * Donate successful htable allocations to the reserve. 824 */ 825 for (;;) { 826 ht = kmem_cache_alloc(htable_cache, kmflags); 827 if (ht == NULL) 828 break; 829 ht->ht_pfn = PFN_INVALID; 830 if (USE_HAT_RESERVES() || 831 htable_reserve_cnt >= htable_reserve_amount) 832 break; 833 htable_put_reserve(ht); 834 } 835 } 836 837 /* 838 * allocate a page for the hardware page table if needed 839 */ 840 if (ht != NULL && !is_bare) { 841 ht->ht_hat = hat; 842 ht->ht_pfn = ptable_alloc((uintptr_t)ht); 843 if (ht->ht_pfn == PFN_INVALID) { 844 if (USE_HAT_RESERVES()) 845 htable_put_reserve(ht); 846 else 847 kmem_cache_free(htable_cache, ht); 848 ht = NULL; 849 } 850 } 851 } 852 853 /* 854 * If allocations failed, kick off a kmem_reap() and resort to 855 * htable steal(). We may spin here if the system is very low on 856 * memory. If the kernel itself has consumed all memory and kmem_reap() 857 * can't free up anything, then we'll really get stuck here. 858 * That should only happen in a system where the administrator has 859 * misconfigured VM parameters via /etc/system. 860 */ 861 while (ht == NULL && can_steal_post_boot) { 862 kmem_reap(); 863 ht = htable_steal(1, B_FALSE); 864 HATSTAT_INC(hs_steals); 865 866 /* 867 * If we stole for a bare htable, release the pagetable page. 868 */ 869 if (ht != NULL) { 870 if (is_bare) { 871 ptable_free(ht->ht_pfn); 872 ht->ht_pfn = PFN_INVALID; 873 #if defined(__xpv) && defined(__amd64) 874 /* 875 * make stolen page table writable again in kpm 876 */ 877 } else if (kpm_vbase && xen_kpm_page(ht->ht_pfn, 878 PT_VALID | PT_WRITABLE) < 0) { 879 panic("failure making kpm r/w pfn=0x%lx", 880 ht->ht_pfn); 881 #endif 882 } 883 } 884 } 885 886 /* 887 * All attempts to allocate or steal failed. This should only happen 888 * if we run out of memory during boot, due perhaps to a huge 889 * boot_archive. At this point there's no way to continue. 890 */ 891 if (ht == NULL) 892 panic("htable_alloc(): couldn't steal\n"); 893 894 #if defined(__amd64) && defined(__xpv) 895 /* 896 * Under the 64-bit hypervisor, we have 2 top level page tables. 897 * If this allocation fails, we'll resort to stealing. 898 * We use the stolen page indirectly, by freeing the 899 * stolen htable first. 900 */ 901 if (level == mmu.max_level) { 902 for (;;) { 903 htable_t *stolen; 904 905 hat->hat_user_ptable = ptable_alloc((uintptr_t)ht + 1); 906 if (hat->hat_user_ptable != PFN_INVALID) 907 break; 908 stolen = htable_steal(1, B_FALSE); 909 if (stolen == NULL) 910 panic("2nd steal ptable failed\n"); 911 htable_free(stolen); 912 } 913 block_zero_no_xmm(kpm_vbase + pfn_to_pa(hat->hat_user_ptable), 914 MMU_PAGESIZE); 915 } 916 #endif 917 918 /* 919 * Shared page tables have all entries locked and entries may not 920 * be added or deleted. 921 */ 922 ht->ht_flags = 0; 923 if (shared != NULL) { 924 ASSERT(shared->ht_valid_cnt > 0); 925 ht->ht_flags |= HTABLE_SHARED_PFN; 926 ht->ht_pfn = shared->ht_pfn; 927 ht->ht_lock_cnt = 0; 928 ht->ht_valid_cnt = 0; /* updated in hat_share() */ 929 ht->ht_shares = shared; 930 need_to_zero = 0; 931 } else { 932 ht->ht_shares = NULL; 933 ht->ht_lock_cnt = 0; 934 ht->ht_valid_cnt = 0; 935 } 936 937 /* 938 * setup flags, etc. for copied page tables. 939 */ 940 if (is_copied) { 941 ht->ht_flags |= HTABLE_COPIED; 942 ASSERT(ht->ht_pfn == PFN_INVALID); 943 need_to_zero = 0; 944 } 945 946 /* 947 * fill in the htable 948 */ 949 ht->ht_hat = hat; 950 ht->ht_parent = NULL; 951 ht->ht_vaddr = vaddr; 952 ht->ht_level = level; 953 ht->ht_busy = 1; 954 ht->ht_next = NULL; 955 ht->ht_prev = NULL; 956 957 /* 958 * Zero out any freshly allocated page table 959 */ 960 if (need_to_zero) 961 x86pte_zero(ht, 0, mmu.ptes_per_table); 962 963 #if defined(__amd64) && defined(__xpv) 964 if (!is_bare && kpm_vbase) { 965 (void) xen_kpm_page(ht->ht_pfn, PT_VALID); 966 if (level == mmu.max_level) 967 (void) xen_kpm_page(hat->hat_user_ptable, PT_VALID); 968 } 969 #endif 970 971 return (ht); 972 } 973 974 /* 975 * Free up an htable, either to a hat's cached list, the reserves or 976 * back to kmem. 977 */ 978 static void 979 htable_free(htable_t *ht) 980 { 981 hat_t *hat = ht->ht_hat; 982 983 /* 984 * If the process isn't exiting, cache the free htable in the hat 985 * structure. We always do this for the boot time reserve. We don't 986 * do this if the hat is exiting or we are stealing/reaping htables. 987 */ 988 if (hat != NULL && 989 !(ht->ht_flags & HTABLE_SHARED_PFN) && 990 (use_boot_reserve || 991 (!(hat->hat_flags & HAT_FREEING) && !htable_dont_cache))) { 992 ASSERT((ht->ht_flags & HTABLE_COPIED) == 0); 993 ASSERT(ht->ht_pfn != PFN_INVALID); 994 hat_enter(hat); 995 ht->ht_next = hat->hat_ht_cached; 996 hat->hat_ht_cached = ht; 997 hat_exit(hat); 998 return; 999 } 1000 1001 /* 1002 * If we have a hardware page table, free it. 1003 * We don't free page tables that are accessed by sharing. 1004 */ 1005 if (ht->ht_flags & HTABLE_SHARED_PFN) { 1006 ASSERT(ht->ht_pfn != PFN_INVALID); 1007 } else if (!(ht->ht_flags & HTABLE_COPIED)) { 1008 ptable_free(ht->ht_pfn); 1009 #if defined(__amd64) && defined(__xpv) 1010 if (ht->ht_level == mmu.max_level && hat != NULL) { 1011 ptable_free(hat->hat_user_ptable); 1012 hat->hat_user_ptable = PFN_INVALID; 1013 } 1014 #endif 1015 } 1016 ht->ht_pfn = PFN_INVALID; 1017 1018 /* 1019 * Free it or put into reserves. 1020 */ 1021 if (USE_HAT_RESERVES() || htable_reserve_cnt < htable_reserve_amount) { 1022 htable_put_reserve(ht); 1023 } else { 1024 kmem_cache_free(htable_cache, ht); 1025 htable_adjust_reserve(); 1026 } 1027 } 1028 1029 1030 /* 1031 * This is called when a hat is being destroyed or swapped out. We reap all 1032 * the remaining htables in the hat cache. If destroying all left over 1033 * htables are also destroyed. 1034 * 1035 * We also don't need to invalidate any of the PTPs nor do any demapping. 1036 */ 1037 void 1038 htable_purge_hat(hat_t *hat) 1039 { 1040 htable_t *ht; 1041 int h; 1042 1043 /* 1044 * Purge the htable cache if just reaping. 1045 */ 1046 if (!(hat->hat_flags & HAT_FREEING)) { 1047 atomic_inc_32(&htable_dont_cache); 1048 for (;;) { 1049 hat_enter(hat); 1050 ht = hat->hat_ht_cached; 1051 if (ht == NULL) { 1052 hat_exit(hat); 1053 break; 1054 } 1055 hat->hat_ht_cached = ht->ht_next; 1056 hat_exit(hat); 1057 htable_free(ht); 1058 } 1059 atomic_dec_32(&htable_dont_cache); 1060 return; 1061 } 1062 1063 /* 1064 * if freeing, no locking is needed 1065 */ 1066 while ((ht = hat->hat_ht_cached) != NULL) { 1067 hat->hat_ht_cached = ht->ht_next; 1068 htable_free(ht); 1069 } 1070 1071 /* 1072 * walk thru the htable hash table and free all the htables in it. 1073 */ 1074 for (h = 0; h < hat->hat_num_hash; ++h) { 1075 while ((ht = hat->hat_ht_hash[h]) != NULL) { 1076 if (ht->ht_next) 1077 ht->ht_next->ht_prev = ht->ht_prev; 1078 1079 if (ht->ht_prev) { 1080 ht->ht_prev->ht_next = ht->ht_next; 1081 } else { 1082 ASSERT(hat->hat_ht_hash[h] == ht); 1083 hat->hat_ht_hash[h] = ht->ht_next; 1084 } 1085 htable_free(ht); 1086 } 1087 } 1088 } 1089 1090 /* 1091 * Unlink an entry for a table at vaddr and level out of the existing table 1092 * one level higher. We are always holding the HASH_ENTER() when doing this. 1093 */ 1094 static void 1095 unlink_ptp(htable_t *higher, htable_t *old, uintptr_t vaddr) 1096 { 1097 uint_t entry = htable_va2entry(vaddr, higher); 1098 x86pte_t expect = MAKEPTP(old->ht_pfn, old->ht_level); 1099 x86pte_t found; 1100 hat_t *hat = old->ht_hat; 1101 1102 ASSERT(higher->ht_busy > 0); 1103 ASSERT(higher->ht_valid_cnt > 0); 1104 ASSERT(old->ht_valid_cnt == 0); 1105 found = x86pte_cas(higher, entry, expect, 0); 1106 #ifdef __xpv 1107 /* 1108 * This is weird, but Xen apparently automatically unlinks empty 1109 * pagetables from the upper page table. So allow PTP to be 0 already. 1110 */ 1111 if (found != expect && found != 0) 1112 #else 1113 if (found != expect) 1114 #endif 1115 panic("Bad PTP found=" FMT_PTE ", expected=" FMT_PTE, 1116 found, expect); 1117 1118 /* 1119 * When a top level PTE changes for a copied htable, we must trigger a 1120 * hat_pcp_update() on all HAT CPUs. 1121 * 1122 * If we don't need do do that, then we still have to INVLPG against an 1123 * address covered by the inner page table, as the latest processors 1124 * have TLB-like caches for non-leaf page table entries. 1125 */ 1126 if (!(hat->hat_flags & HAT_FREEING)) { 1127 hat_tlb_inval(hat, (higher->ht_flags & HTABLE_COPIED) ? 1128 DEMAP_ALL_ADDR : old->ht_vaddr); 1129 } 1130 1131 HTABLE_DEC(higher->ht_valid_cnt); 1132 } 1133 1134 /* 1135 * Link an entry for a new table at vaddr and level into the existing table 1136 * one level higher. We are always holding the HASH_ENTER() when doing this. 1137 */ 1138 static void 1139 link_ptp(htable_t *higher, htable_t *new, uintptr_t vaddr) 1140 { 1141 uint_t entry = htable_va2entry(vaddr, higher); 1142 x86pte_t newptp = MAKEPTP(new->ht_pfn, new->ht_level); 1143 x86pte_t found; 1144 1145 ASSERT(higher->ht_busy > 0); 1146 1147 ASSERT(new->ht_level != mmu.max_level); 1148 1149 HTABLE_INC(higher->ht_valid_cnt); 1150 1151 found = x86pte_cas(higher, entry, 0, newptp); 1152 if ((found & ~PT_REF) != 0) 1153 panic("HAT: ptp not 0, found=" FMT_PTE, found); 1154 1155 /* 1156 * When a top level PTE changes for a copied htable, we must trigger a 1157 * hat_pcp_update() on all HAT CPUs. 1158 * 1159 * We also need to do this for the kernel hat on PAE 32 bit kernel. 1160 */ 1161 if ( 1162 #ifdef __i386 1163 (higher->ht_hat == kas.a_hat && 1164 higher->ht_level == higher->ht_hat->hat_max_level) || 1165 #endif 1166 (higher->ht_flags & HTABLE_COPIED)) 1167 hat_tlb_inval(higher->ht_hat, DEMAP_ALL_ADDR); 1168 } 1169 1170 /* 1171 * Release of hold on an htable. If this is the last use and the pagetable 1172 * is empty we may want to free it, then recursively look at the pagetable 1173 * above it. The recursion is handled by the outer while() loop. 1174 * 1175 * On the metal, during process exit, we don't bother unlinking the tables from 1176 * upper level pagetables. They are instead handled in bulk by hat_free_end(). 1177 * We can't do this on the hypervisor as we need the page table to be 1178 * implicitly unpinnned before it goes to the free page lists. This can't 1179 * happen unless we fully unlink it from the page table hierarchy. 1180 */ 1181 void 1182 htable_release(htable_t *ht) 1183 { 1184 uint_t hashval; 1185 htable_t *shared; 1186 htable_t *higher; 1187 hat_t *hat; 1188 uintptr_t va; 1189 level_t level; 1190 1191 while (ht != NULL) { 1192 shared = NULL; 1193 for (;;) { 1194 hat = ht->ht_hat; 1195 va = ht->ht_vaddr; 1196 level = ht->ht_level; 1197 hashval = HTABLE_HASH(hat, va, level); 1198 1199 /* 1200 * The common case is that this isn't the last use of 1201 * an htable so we don't want to free the htable. 1202 */ 1203 HTABLE_ENTER(hashval); 1204 ASSERT(ht->ht_valid_cnt >= 0); 1205 ASSERT(ht->ht_busy > 0); 1206 if (ht->ht_valid_cnt > 0) 1207 break; 1208 if (ht->ht_busy > 1) 1209 break; 1210 ASSERT(ht->ht_lock_cnt == 0); 1211 1212 #if !defined(__xpv) 1213 /* 1214 * we always release empty shared htables 1215 */ 1216 if (!(ht->ht_flags & HTABLE_SHARED_PFN)) { 1217 1218 /* 1219 * don't release if in address space tear down 1220 */ 1221 if (hat->hat_flags & HAT_FREEING) 1222 break; 1223 1224 /* 1225 * At and above max_page_level, free if it's for 1226 * a boot-time kernel mapping below kernelbase. 1227 */ 1228 if (level >= mmu.max_page_level && 1229 (hat != kas.a_hat || va >= kernelbase)) 1230 break; 1231 } 1232 #endif /* __xpv */ 1233 1234 /* 1235 * Remember if we destroy an htable that shares its PFN 1236 * from elsewhere. 1237 */ 1238 if (ht->ht_flags & HTABLE_SHARED_PFN) { 1239 ASSERT(shared == NULL); 1240 shared = ht->ht_shares; 1241 HATSTAT_INC(hs_htable_unshared); 1242 } 1243 1244 /* 1245 * Handle release of a table and freeing the htable_t. 1246 * Unlink it from the table higher (ie. ht_parent). 1247 */ 1248 higher = ht->ht_parent; 1249 ASSERT(higher != NULL); 1250 1251 /* 1252 * Unlink the pagetable. 1253 */ 1254 unlink_ptp(higher, ht, va); 1255 1256 /* 1257 * remove this htable from its hash list 1258 */ 1259 if (ht->ht_next) 1260 ht->ht_next->ht_prev = ht->ht_prev; 1261 1262 if (ht->ht_prev) { 1263 ht->ht_prev->ht_next = ht->ht_next; 1264 } else { 1265 ASSERT(hat->hat_ht_hash[hashval] == ht); 1266 hat->hat_ht_hash[hashval] = ht->ht_next; 1267 } 1268 HTABLE_EXIT(hashval); 1269 htable_free(ht); 1270 ht = higher; 1271 } 1272 1273 ASSERT(ht->ht_busy >= 1); 1274 --ht->ht_busy; 1275 HTABLE_EXIT(hashval); 1276 1277 /* 1278 * If we released a shared htable, do a release on the htable 1279 * from which it shared 1280 */ 1281 ht = shared; 1282 } 1283 } 1284 1285 /* 1286 * Find the htable for the pagetable at the given level for the given address. 1287 * If found acquires a hold that eventually needs to be htable_release()d 1288 */ 1289 htable_t * 1290 htable_lookup(hat_t *hat, uintptr_t vaddr, level_t level) 1291 { 1292 uintptr_t base; 1293 uint_t hashval; 1294 htable_t *ht = NULL; 1295 1296 ASSERT(level >= 0); 1297 ASSERT(level <= TOP_LEVEL(hat)); 1298 1299 if (level == TOP_LEVEL(hat)) { 1300 #if defined(__amd64) 1301 /* 1302 * 32 bit address spaces on 64 bit kernels need to check 1303 * for overflow of the 32 bit address space 1304 */ 1305 if ((hat->hat_flags & HAT_COPIED_32) && 1306 vaddr >= ((uint64_t)1 << 32)) 1307 return (NULL); 1308 #endif 1309 base = 0; 1310 } else { 1311 base = vaddr & LEVEL_MASK(level + 1); 1312 } 1313 1314 hashval = HTABLE_HASH(hat, base, level); 1315 HTABLE_ENTER(hashval); 1316 for (ht = hat->hat_ht_hash[hashval]; ht; ht = ht->ht_next) { 1317 if (ht->ht_hat == hat && 1318 ht->ht_vaddr == base && 1319 ht->ht_level == level) 1320 break; 1321 } 1322 if (ht) 1323 ++ht->ht_busy; 1324 1325 HTABLE_EXIT(hashval); 1326 return (ht); 1327 } 1328 1329 /* 1330 * Acquires a hold on a known htable (from a locked hment entry). 1331 */ 1332 void 1333 htable_acquire(htable_t *ht) 1334 { 1335 hat_t *hat = ht->ht_hat; 1336 level_t level = ht->ht_level; 1337 uintptr_t base = ht->ht_vaddr; 1338 uint_t hashval = HTABLE_HASH(hat, base, level); 1339 1340 HTABLE_ENTER(hashval); 1341 #ifdef DEBUG 1342 /* 1343 * make sure the htable is there 1344 */ 1345 { 1346 htable_t *h; 1347 1348 for (h = hat->hat_ht_hash[hashval]; 1349 h && h != ht; 1350 h = h->ht_next) 1351 ; 1352 ASSERT(h == ht); 1353 } 1354 #endif /* DEBUG */ 1355 ++ht->ht_busy; 1356 HTABLE_EXIT(hashval); 1357 } 1358 1359 /* 1360 * Find the htable for the pagetable at the given level for the given address. 1361 * If found acquires a hold that eventually needs to be htable_release()d 1362 * If not found the table is created. 1363 * 1364 * Since we can't hold a hash table mutex during allocation, we have to 1365 * drop it and redo the search on a create. Then we may have to free the newly 1366 * allocated htable if another thread raced in and created it ahead of us. 1367 */ 1368 htable_t * 1369 htable_create( 1370 hat_t *hat, 1371 uintptr_t vaddr, 1372 level_t level, 1373 htable_t *shared) 1374 { 1375 uint_t h; 1376 level_t l; 1377 uintptr_t base; 1378 htable_t *ht; 1379 htable_t *higher = NULL; 1380 htable_t *new = NULL; 1381 1382 if (level < 0 || level > TOP_LEVEL(hat)) 1383 panic("htable_create(): level %d out of range\n", level); 1384 1385 /* 1386 * Create the page tables in top down order. 1387 */ 1388 for (l = TOP_LEVEL(hat); l >= level; --l) { 1389 new = NULL; 1390 if (l == TOP_LEVEL(hat)) 1391 base = 0; 1392 else 1393 base = vaddr & LEVEL_MASK(l + 1); 1394 1395 h = HTABLE_HASH(hat, base, l); 1396 try_again: 1397 /* 1398 * look up the htable at this level 1399 */ 1400 HTABLE_ENTER(h); 1401 if (l == TOP_LEVEL(hat)) { 1402 ht = hat->hat_htable; 1403 } else { 1404 for (ht = hat->hat_ht_hash[h]; ht; ht = ht->ht_next) { 1405 ASSERT(ht->ht_hat == hat); 1406 if (ht->ht_vaddr == base && 1407 ht->ht_level == l) 1408 break; 1409 } 1410 } 1411 1412 /* 1413 * if we found the htable, increment its busy cnt 1414 * and if we had allocated a new htable, free it. 1415 */ 1416 if (ht != NULL) { 1417 /* 1418 * If we find a pre-existing shared table, it must 1419 * share from the same place. 1420 */ 1421 if (l == level && shared && ht->ht_shares && 1422 ht->ht_shares != shared) { 1423 panic("htable shared from wrong place " 1424 "found htable=%p shared=%p", 1425 (void *)ht, (void *)shared); 1426 } 1427 ++ht->ht_busy; 1428 HTABLE_EXIT(h); 1429 if (new) 1430 htable_free(new); 1431 if (higher != NULL) 1432 htable_release(higher); 1433 higher = ht; 1434 1435 /* 1436 * if we didn't find it on the first search 1437 * allocate a new one and search again 1438 */ 1439 } else if (new == NULL) { 1440 HTABLE_EXIT(h); 1441 new = htable_alloc(hat, base, l, 1442 l == level ? shared : NULL); 1443 goto try_again; 1444 1445 /* 1446 * 2nd search and still not there, use "new" table 1447 * Link new table into higher, when not at top level. 1448 */ 1449 } else { 1450 ht = new; 1451 if (higher != NULL) { 1452 link_ptp(higher, ht, base); 1453 ht->ht_parent = higher; 1454 } 1455 ht->ht_next = hat->hat_ht_hash[h]; 1456 ASSERT(ht->ht_prev == NULL); 1457 if (hat->hat_ht_hash[h]) 1458 hat->hat_ht_hash[h]->ht_prev = ht; 1459 hat->hat_ht_hash[h] = ht; 1460 HTABLE_EXIT(h); 1461 1462 /* 1463 * Note we don't do htable_release(higher). 1464 * That happens recursively when "new" is removed by 1465 * htable_release() or htable_steal(). 1466 */ 1467 higher = ht; 1468 1469 /* 1470 * If we just created a new shared page table we 1471 * increment the shared htable's busy count, so that 1472 * it can't be the victim of a steal even if it's empty. 1473 */ 1474 if (l == level && shared) { 1475 (void) htable_lookup(shared->ht_hat, 1476 shared->ht_vaddr, shared->ht_level); 1477 HATSTAT_INC(hs_htable_shared); 1478 } 1479 } 1480 } 1481 1482 return (ht); 1483 } 1484 1485 /* 1486 * Inherit initial pagetables from the boot program. On the 64-bit 1487 * hypervisor we also temporarily mark the p_index field of page table 1488 * pages, so we know not to try making them writable in seg_kpm. 1489 */ 1490 void 1491 htable_attach( 1492 hat_t *hat, 1493 uintptr_t base, 1494 level_t level, 1495 htable_t *parent, 1496 pfn_t pfn) 1497 { 1498 htable_t *ht; 1499 uint_t h; 1500 uint_t i; 1501 x86pte_t pte; 1502 x86pte_t *ptep; 1503 page_t *pp; 1504 extern page_t *boot_claim_page(pfn_t); 1505 1506 ht = htable_get_reserve(); 1507 if (level == mmu.max_level) 1508 kas.a_hat->hat_htable = ht; 1509 ht->ht_hat = hat; 1510 ht->ht_parent = parent; 1511 ht->ht_vaddr = base; 1512 ht->ht_level = level; 1513 ht->ht_busy = 1; 1514 ht->ht_next = NULL; 1515 ht->ht_prev = NULL; 1516 ht->ht_flags = 0; 1517 ht->ht_pfn = pfn; 1518 ht->ht_lock_cnt = 0; 1519 ht->ht_valid_cnt = 0; 1520 if (parent != NULL) 1521 ++parent->ht_busy; 1522 1523 h = HTABLE_HASH(hat, base, level); 1524 HTABLE_ENTER(h); 1525 ht->ht_next = hat->hat_ht_hash[h]; 1526 ASSERT(ht->ht_prev == NULL); 1527 if (hat->hat_ht_hash[h]) 1528 hat->hat_ht_hash[h]->ht_prev = ht; 1529 hat->hat_ht_hash[h] = ht; 1530 HTABLE_EXIT(h); 1531 1532 /* 1533 * make sure the page table physical page is not FREE 1534 */ 1535 if (page_resv(1, KM_NOSLEEP) == 0) 1536 panic("page_resv() failed in ptable alloc"); 1537 1538 pp = boot_claim_page(pfn); 1539 ASSERT(pp != NULL); 1540 1541 /* 1542 * Page table pages that were allocated by dboot or 1543 * in very early startup didn't go through boot_mapin() 1544 * and so won't have vnode/offsets. Fix that here. 1545 */ 1546 if (pp->p_vnode == NULL) { 1547 /* match offset calculation in page_get_physical() */ 1548 u_offset_t offset = (uintptr_t)ht; 1549 if (offset > kernelbase) 1550 offset -= kernelbase; 1551 offset <<= MMU_PAGESHIFT; 1552 #if defined(__amd64) 1553 offset += mmu.hole_start; /* something in VA hole */ 1554 #else 1555 offset += 1ULL << 40; /* something > 4 Gig */ 1556 #endif 1557 ASSERT(page_exists(&kvp, offset) == NULL); 1558 (void) page_hashin(pp, &kvp, offset, NULL); 1559 } 1560 page_downgrade(pp); 1561 #if defined(__xpv) && defined(__amd64) 1562 /* 1563 * Record in the page_t that is a pagetable for segkpm setup. 1564 */ 1565 if (kpm_vbase) 1566 pp->p_index = 1; 1567 #endif 1568 1569 /* 1570 * Count valid mappings and recursively attach lower level pagetables. 1571 */ 1572 ptep = kbm_remap_window(pfn_to_pa(pfn), 0); 1573 for (i = 0; i < HTABLE_NUM_PTES(ht); ++i) { 1574 if (mmu.pae_hat) 1575 pte = ptep[i]; 1576 else 1577 pte = ((x86pte32_t *)ptep)[i]; 1578 if (!IN_HYPERVISOR_VA(base) && PTE_ISVALID(pte)) { 1579 ++ht->ht_valid_cnt; 1580 if (!PTE_ISPAGE(pte, level)) { 1581 htable_attach(hat, base, level - 1, 1582 ht, PTE2PFN(pte, level)); 1583 ptep = kbm_remap_window(pfn_to_pa(pfn), 0); 1584 } 1585 } 1586 base += LEVEL_SIZE(level); 1587 if (base == mmu.hole_start) 1588 base = (mmu.hole_end + MMU_PAGEOFFSET) & MMU_PAGEMASK; 1589 } 1590 1591 /* 1592 * As long as all the mappings we had were below kernel base 1593 * we can release the htable. 1594 */ 1595 if (base < kernelbase) 1596 htable_release(ht); 1597 } 1598 1599 /* 1600 * Walk through a given htable looking for the first valid entry. This 1601 * routine takes both a starting and ending address. The starting address 1602 * is required to be within the htable provided by the caller, but there is 1603 * no such restriction on the ending address. 1604 * 1605 * If the routine finds a valid entry in the htable (at or beyond the 1606 * starting address), the PTE (and its address) will be returned. 1607 * This PTE may correspond to either a page or a pagetable - it is the 1608 * caller's responsibility to determine which. If no valid entry is 1609 * found, 0 (and invalid PTE) and the next unexamined address will be 1610 * returned. 1611 * 1612 * The loop has been carefully coded for optimization. 1613 */ 1614 static x86pte_t 1615 htable_scan(htable_t *ht, uintptr_t *vap, uintptr_t eaddr) 1616 { 1617 uint_t e; 1618 x86pte_t found_pte = (x86pte_t)0; 1619 caddr_t pte_ptr; 1620 caddr_t end_pte_ptr; 1621 int l = ht->ht_level; 1622 uintptr_t va = *vap & LEVEL_MASK(l); 1623 size_t pgsize = LEVEL_SIZE(l); 1624 1625 ASSERT(va >= ht->ht_vaddr); 1626 ASSERT(va <= HTABLE_LAST_PAGE(ht)); 1627 1628 /* 1629 * Compute the starting index and ending virtual address 1630 */ 1631 e = htable_va2entry(va, ht); 1632 1633 /* 1634 * The following page table scan code knows that the valid 1635 * bit of a PTE is in the lowest byte AND that x86 is little endian!! 1636 */ 1637 pte_ptr = (caddr_t)x86pte_access_pagetable(ht, 0); 1638 end_pte_ptr = (caddr_t)PT_INDEX_PTR(pte_ptr, HTABLE_NUM_PTES(ht)); 1639 pte_ptr = (caddr_t)PT_INDEX_PTR((x86pte_t *)pte_ptr, e); 1640 while (!PTE_ISVALID(*pte_ptr)) { 1641 va += pgsize; 1642 if (va >= eaddr) 1643 break; 1644 pte_ptr += mmu.pte_size; 1645 ASSERT(pte_ptr <= end_pte_ptr); 1646 if (pte_ptr == end_pte_ptr) 1647 break; 1648 } 1649 1650 /* 1651 * if we found a valid PTE, load the entire PTE 1652 */ 1653 if (va < eaddr && pte_ptr != end_pte_ptr) 1654 found_pte = GET_PTE((x86pte_t *)pte_ptr); 1655 x86pte_release_pagetable(ht); 1656 1657 #if defined(__amd64) 1658 /* 1659 * deal with VA hole on amd64 1660 */ 1661 if (l == mmu.max_level && va >= mmu.hole_start && va <= mmu.hole_end) 1662 va = mmu.hole_end + va - mmu.hole_start; 1663 #endif /* __amd64 */ 1664 1665 *vap = va; 1666 return (found_pte); 1667 } 1668 1669 /* 1670 * Find the address and htable for the first populated translation at or 1671 * above the given virtual address. The caller may also specify an upper 1672 * limit to the address range to search. Uses level information to quickly 1673 * skip unpopulated sections of virtual address spaces. 1674 * 1675 * If not found returns NULL. When found, returns the htable and virt addr 1676 * and has a hold on the htable. 1677 */ 1678 x86pte_t 1679 htable_walk( 1680 struct hat *hat, 1681 htable_t **htp, 1682 uintptr_t *vaddr, 1683 uintptr_t eaddr) 1684 { 1685 uintptr_t va = *vaddr; 1686 htable_t *ht; 1687 htable_t *prev = *htp; 1688 level_t l; 1689 level_t max_mapped_level; 1690 x86pte_t pte; 1691 1692 ASSERT(eaddr > va); 1693 1694 /* 1695 * If this is a user address, then we know we need not look beyond 1696 * kernelbase. 1697 */ 1698 ASSERT(hat == kas.a_hat || eaddr <= kernelbase || 1699 eaddr == HTABLE_WALK_TO_END); 1700 if (hat != kas.a_hat && eaddr == HTABLE_WALK_TO_END) 1701 eaddr = kernelbase; 1702 1703 /* 1704 * If we're coming in with a previous page table, search it first 1705 * without doing an htable_lookup(), this should be frequent. 1706 */ 1707 if (prev) { 1708 ASSERT(prev->ht_busy > 0); 1709 ASSERT(prev->ht_vaddr <= va); 1710 l = prev->ht_level; 1711 if (va <= HTABLE_LAST_PAGE(prev)) { 1712 pte = htable_scan(prev, &va, eaddr); 1713 1714 if (PTE_ISPAGE(pte, l)) { 1715 *vaddr = va; 1716 *htp = prev; 1717 return (pte); 1718 } 1719 } 1720 1721 /* 1722 * We found nothing in the htable provided by the caller, 1723 * so fall through and do the full search 1724 */ 1725 htable_release(prev); 1726 } 1727 1728 /* 1729 * Find the level of the largest pagesize used by this HAT. 1730 */ 1731 if (hat->hat_ism_pgcnt > 0) { 1732 max_mapped_level = mmu.umax_page_level; 1733 } else { 1734 max_mapped_level = 0; 1735 for (l = 1; l <= mmu.max_page_level; ++l) 1736 if (hat->hat_pages_mapped[l] != 0) 1737 max_mapped_level = l; 1738 } 1739 1740 while (va < eaddr && va >= *vaddr) { 1741 /* 1742 * Find lowest table with any entry for given address. 1743 */ 1744 for (l = 0; l <= TOP_LEVEL(hat); ++l) { 1745 ht = htable_lookup(hat, va, l); 1746 if (ht != NULL) { 1747 pte = htable_scan(ht, &va, eaddr); 1748 if (PTE_ISPAGE(pte, l)) { 1749 VERIFY(!IN_VA_HOLE(va)); 1750 *vaddr = va; 1751 *htp = ht; 1752 return (pte); 1753 } 1754 htable_release(ht); 1755 break; 1756 } 1757 1758 /* 1759 * No htable at this level for the address. If there 1760 * is no larger page size that could cover it, we can 1761 * skip right to the start of the next page table. 1762 */ 1763 ASSERT(l < TOP_LEVEL(hat)); 1764 if (l >= max_mapped_level) { 1765 va = NEXT_ENTRY_VA(va, l + 1); 1766 if (va >= eaddr) 1767 break; 1768 } 1769 } 1770 } 1771 1772 *vaddr = 0; 1773 *htp = NULL; 1774 return (0); 1775 } 1776 1777 /* 1778 * Find the htable and page table entry index of the given virtual address 1779 * with pagesize at or below given level. 1780 * If not found returns NULL. When found, returns the htable, sets 1781 * entry, and has a hold on the htable. 1782 */ 1783 htable_t * 1784 htable_getpte( 1785 struct hat *hat, 1786 uintptr_t vaddr, 1787 uint_t *entry, 1788 x86pte_t *pte, 1789 level_t level) 1790 { 1791 htable_t *ht; 1792 level_t l; 1793 uint_t e; 1794 1795 ASSERT(level <= mmu.max_page_level); 1796 1797 for (l = 0; l <= level; ++l) { 1798 ht = htable_lookup(hat, vaddr, l); 1799 if (ht == NULL) 1800 continue; 1801 e = htable_va2entry(vaddr, ht); 1802 if (entry != NULL) 1803 *entry = e; 1804 if (pte != NULL) 1805 *pte = x86pte_get(ht, e); 1806 return (ht); 1807 } 1808 return (NULL); 1809 } 1810 1811 /* 1812 * Find the htable and page table entry index of the given virtual address. 1813 * There must be a valid page mapped at the given address. 1814 * If not found returns NULL. When found, returns the htable, sets 1815 * entry, and has a hold on the htable. 1816 */ 1817 htable_t * 1818 htable_getpage(struct hat *hat, uintptr_t vaddr, uint_t *entry) 1819 { 1820 htable_t *ht; 1821 uint_t e; 1822 x86pte_t pte; 1823 1824 ht = htable_getpte(hat, vaddr, &e, &pte, mmu.max_page_level); 1825 if (ht == NULL) 1826 return (NULL); 1827 1828 if (entry) 1829 *entry = e; 1830 1831 if (PTE_ISPAGE(pte, ht->ht_level)) 1832 return (ht); 1833 htable_release(ht); 1834 return (NULL); 1835 } 1836 1837 1838 void 1839 htable_init() 1840 { 1841 /* 1842 * To save on kernel VA usage, we avoid debug information in 32 bit 1843 * kernels. 1844 */ 1845 #if defined(__amd64) 1846 int kmem_flags = KMC_NOHASH; 1847 #elif defined(__i386) 1848 int kmem_flags = KMC_NOHASH | KMC_NODEBUG; 1849 #endif 1850 1851 /* 1852 * initialize kmem caches 1853 */ 1854 htable_cache = kmem_cache_create("htable_t", 1855 sizeof (htable_t), 0, NULL, NULL, 1856 htable_reap, NULL, hat_memload_arena, kmem_flags); 1857 } 1858 1859 /* 1860 * get the pte index for the virtual address in the given htable's pagetable 1861 */ 1862 uint_t 1863 htable_va2entry(uintptr_t va, htable_t *ht) 1864 { 1865 level_t l = ht->ht_level; 1866 1867 ASSERT(va >= ht->ht_vaddr); 1868 ASSERT(va <= HTABLE_LAST_PAGE(ht)); 1869 return ((va >> LEVEL_SHIFT(l)) & (HTABLE_NUM_PTES(ht) - 1)); 1870 } 1871 1872 /* 1873 * Given an htable and the index of a pte in it, return the virtual address 1874 * of the page. 1875 */ 1876 uintptr_t 1877 htable_e2va(htable_t *ht, uint_t entry) 1878 { 1879 level_t l = ht->ht_level; 1880 uintptr_t va; 1881 1882 ASSERT(entry < HTABLE_NUM_PTES(ht)); 1883 va = ht->ht_vaddr + ((uintptr_t)entry << LEVEL_SHIFT(l)); 1884 1885 /* 1886 * Need to skip over any VA hole in top level table 1887 */ 1888 #if defined(__amd64) 1889 if (ht->ht_level == mmu.max_level && va >= mmu.hole_start) 1890 va += ((mmu.hole_end - mmu.hole_start) + 1); 1891 #endif 1892 1893 return (va); 1894 } 1895 1896 /* 1897 * The code uses compare and swap instructions to read/write PTE's to 1898 * avoid atomicity problems, since PTEs can be 8 bytes on 32 bit systems. 1899 * will naturally be atomic. 1900 * 1901 * The combination of using kpreempt_disable()/_enable() and the hci_mutex 1902 * are used to ensure that an interrupt won't overwrite a temporary mapping 1903 * while it's in use. If an interrupt thread tries to access a PTE, it will 1904 * yield briefly back to the pinned thread which holds the cpu's hci_mutex. 1905 */ 1906 void 1907 x86pte_cpu_init(cpu_t *cpu) 1908 { 1909 struct hat_cpu_info *hci; 1910 1911 hci = kmem_zalloc(sizeof (*hci), KM_SLEEP); 1912 mutex_init(&hci->hci_mutex, NULL, MUTEX_DEFAULT, NULL); 1913 cpu->cpu_hat_info = hci; 1914 } 1915 1916 void 1917 x86pte_cpu_fini(cpu_t *cpu) 1918 { 1919 struct hat_cpu_info *hci = cpu->cpu_hat_info; 1920 1921 kmem_free(hci, sizeof (*hci)); 1922 cpu->cpu_hat_info = NULL; 1923 } 1924 1925 #ifdef __i386 1926 /* 1927 * On 32 bit kernels, loading a 64 bit PTE is a little tricky 1928 */ 1929 x86pte_t 1930 get_pte64(x86pte_t *ptr) 1931 { 1932 volatile uint32_t *p = (uint32_t *)ptr; 1933 x86pte_t t; 1934 1935 ASSERT(mmu.pae_hat != 0); 1936 for (;;) { 1937 t = p[0]; 1938 t |= (uint64_t)p[1] << 32; 1939 if ((t & 0xffffffff) == p[0]) 1940 return (t); 1941 } 1942 } 1943 #endif /* __i386 */ 1944 1945 /* 1946 * Disable preemption and establish a mapping to the pagetable with the 1947 * given pfn. This is optimized for there case where it's the same 1948 * pfn as we last used referenced from this CPU. 1949 */ 1950 static x86pte_t * 1951 x86pte_access_pagetable(htable_t *ht, uint_t index) 1952 { 1953 /* 1954 * HTABLE_COPIED pagetables are contained in the hat_t 1955 */ 1956 if (ht->ht_flags & HTABLE_COPIED) { 1957 ASSERT3U(index, <, ht->ht_hat->hat_num_copied); 1958 return (PT_INDEX_PTR(ht->ht_hat->hat_copied_ptes, index)); 1959 } 1960 return (x86pte_mapin(ht->ht_pfn, index, ht)); 1961 } 1962 1963 /* 1964 * map the given pfn into the page table window. 1965 */ 1966 /*ARGSUSED*/ 1967 x86pte_t * 1968 x86pte_mapin(pfn_t pfn, uint_t index, htable_t *ht) 1969 { 1970 x86pte_t *pteptr; 1971 x86pte_t pte = 0; 1972 x86pte_t newpte; 1973 int x; 1974 1975 ASSERT(pfn != PFN_INVALID); 1976 1977 if (!khat_running) { 1978 caddr_t va = kbm_remap_window(pfn_to_pa(pfn), 1); 1979 return (PT_INDEX_PTR(va, index)); 1980 } 1981 1982 /* 1983 * If kpm is available, use it. 1984 */ 1985 if (kpm_vbase) 1986 return (PT_INDEX_PTR(hat_kpm_pfn2va(pfn), index)); 1987 1988 /* 1989 * Disable preemption and grab the CPU's hci_mutex 1990 */ 1991 kpreempt_disable(); 1992 1993 ASSERT(CPU->cpu_hat_info != NULL); 1994 ASSERT(!(getcr4() & CR4_PCIDE)); 1995 1996 mutex_enter(&CPU->cpu_hat_info->hci_mutex); 1997 x = PWIN_TABLE(CPU->cpu_id); 1998 pteptr = (x86pte_t *)PWIN_PTE_VA(x); 1999 #ifndef __xpv 2000 if (mmu.pae_hat) 2001 pte = *pteptr; 2002 else 2003 pte = *(x86pte32_t *)pteptr; 2004 #endif 2005 2006 newpte = MAKEPTE(pfn, 0) | mmu.pt_global | mmu.pt_nx; 2007 2008 /* 2009 * For hardware we can use a writable mapping. 2010 */ 2011 #ifdef __xpv 2012 if (IN_XPV_PANIC()) 2013 #endif 2014 newpte |= PT_WRITABLE; 2015 2016 if (!PTE_EQUIV(newpte, pte)) { 2017 2018 #ifdef __xpv 2019 if (!IN_XPV_PANIC()) { 2020 xen_map(newpte, PWIN_VA(x)); 2021 } else 2022 #endif 2023 { 2024 XPV_ALLOW_PAGETABLE_UPDATES(); 2025 if (mmu.pae_hat) 2026 *pteptr = newpte; 2027 else 2028 *(x86pte32_t *)pteptr = newpte; 2029 XPV_DISALLOW_PAGETABLE_UPDATES(); 2030 mmu_flush_tlb_kpage((uintptr_t)PWIN_VA(x)); 2031 } 2032 } 2033 return (PT_INDEX_PTR(PWIN_VA(x), index)); 2034 } 2035 2036 /* 2037 * Release access to a page table. 2038 */ 2039 static void 2040 x86pte_release_pagetable(htable_t *ht) 2041 { 2042 if (ht->ht_flags & HTABLE_COPIED) 2043 return; 2044 2045 x86pte_mapout(); 2046 } 2047 2048 void 2049 x86pte_mapout(void) 2050 { 2051 if (kpm_vbase != NULL || !khat_running) 2052 return; 2053 2054 /* 2055 * Drop the CPU's hci_mutex and restore preemption. 2056 */ 2057 #ifdef __xpv 2058 if (!IN_XPV_PANIC()) { 2059 uintptr_t va; 2060 2061 /* 2062 * We need to always clear the mapping in case a page 2063 * that was once a page table page is ballooned out. 2064 */ 2065 va = (uintptr_t)PWIN_VA(PWIN_TABLE(CPU->cpu_id)); 2066 (void) HYPERVISOR_update_va_mapping(va, 0, 2067 UVMF_INVLPG | UVMF_LOCAL); 2068 } 2069 #endif 2070 mutex_exit(&CPU->cpu_hat_info->hci_mutex); 2071 kpreempt_enable(); 2072 } 2073 2074 /* 2075 * Atomic retrieval of a pagetable entry 2076 */ 2077 x86pte_t 2078 x86pte_get(htable_t *ht, uint_t entry) 2079 { 2080 x86pte_t pte; 2081 x86pte_t *ptep; 2082 2083 /* 2084 * Be careful that loading PAE entries in 32 bit kernel is atomic. 2085 */ 2086 ASSERT(entry < mmu.ptes_per_table); 2087 ptep = x86pte_access_pagetable(ht, entry); 2088 pte = GET_PTE(ptep); 2089 x86pte_release_pagetable(ht); 2090 return (pte); 2091 } 2092 2093 /* 2094 * Atomic unconditional set of a page table entry, it returns the previous 2095 * value. For pre-existing mappings if the PFN changes, then we don't care 2096 * about the old pte's REF / MOD bits. If the PFN remains the same, we leave 2097 * the MOD/REF bits unchanged. 2098 * 2099 * If asked to overwrite a link to a lower page table with a large page 2100 * mapping, this routine returns the special value of LPAGE_ERROR. This 2101 * allows the upper HAT layers to retry with a smaller mapping size. 2102 */ 2103 x86pte_t 2104 x86pte_set(htable_t *ht, uint_t entry, x86pte_t new, void *ptr) 2105 { 2106 x86pte_t old; 2107 x86pte_t prev; 2108 x86pte_t *ptep; 2109 level_t l = ht->ht_level; 2110 x86pte_t pfn_mask = (l != 0) ? PT_PADDR_LGPG : PT_PADDR; 2111 x86pte_t n; 2112 uintptr_t addr = htable_e2va(ht, entry); 2113 hat_t *hat = ht->ht_hat; 2114 2115 ASSERT(new != 0); /* don't use to invalidate a PTE, see x86pte_update */ 2116 ASSERT(!(ht->ht_flags & HTABLE_SHARED_PFN)); 2117 if (ptr == NULL) 2118 ptep = x86pte_access_pagetable(ht, entry); 2119 else 2120 ptep = ptr; 2121 2122 /* 2123 * Install the new PTE. If remapping the same PFN, then 2124 * copy existing REF/MOD bits to new mapping. 2125 */ 2126 do { 2127 prev = GET_PTE(ptep); 2128 n = new; 2129 if (PTE_ISVALID(n) && (prev & pfn_mask) == (new & pfn_mask)) 2130 n |= prev & (PT_REF | PT_MOD); 2131 2132 /* 2133 * Another thread may have installed this mapping already, 2134 * flush the local TLB and be done. 2135 */ 2136 if (prev == n) { 2137 old = new; 2138 #ifdef __xpv 2139 if (!IN_XPV_PANIC()) 2140 xen_flush_va((caddr_t)addr); 2141 else 2142 #endif 2143 mmu_flush_tlb_page(addr); 2144 goto done; 2145 } 2146 2147 /* 2148 * Detect if we have a collision of installing a large 2149 * page mapping where there already is a lower page table. 2150 */ 2151 if (l > 0 && (prev & PT_VALID) && !(prev & PT_PAGESIZE)) { 2152 old = LPAGE_ERROR; 2153 goto done; 2154 } 2155 2156 XPV_ALLOW_PAGETABLE_UPDATES(); 2157 old = CAS_PTE(ptep, prev, n); 2158 XPV_DISALLOW_PAGETABLE_UPDATES(); 2159 } while (old != prev); 2160 2161 /* 2162 * Do a TLB demap if needed, ie. the old pte was valid. 2163 * 2164 * Note that a stale TLB writeback to the PTE here either can't happen 2165 * or doesn't matter. The PFN can only change for NOSYNC|NOCONSIST 2166 * mappings, but they were created with REF and MOD already set, so 2167 * no stale writeback will happen. 2168 * 2169 * Segmap is the only place where remaps happen on the same pfn and for 2170 * that we want to preserve the stale REF/MOD bits. 2171 */ 2172 if (old & PT_REF) 2173 hat_tlb_inval(hat, addr); 2174 2175 done: 2176 if (ptr == NULL) 2177 x86pte_release_pagetable(ht); 2178 return (old); 2179 } 2180 2181 /* 2182 * Atomic compare and swap of a page table entry. No TLB invalidates are done. 2183 * This is used for links between pagetables of different levels. 2184 * Note we always create these links with dirty/access set, so they should 2185 * never change. 2186 */ 2187 x86pte_t 2188 x86pte_cas(htable_t *ht, uint_t entry, x86pte_t old, x86pte_t new) 2189 { 2190 x86pte_t pte; 2191 x86pte_t *ptep; 2192 #ifdef __xpv 2193 /* 2194 * We can't use writable pagetables for upper level tables, so fake it. 2195 */ 2196 mmu_update_t t[2]; 2197 int cnt = 1; 2198 int count; 2199 maddr_t ma; 2200 2201 if (!IN_XPV_PANIC()) { 2202 ASSERT(!(ht->ht_flags & HTABLE_COPIED)); 2203 ma = pa_to_ma(PT_INDEX_PHYSADDR(pfn_to_pa(ht->ht_pfn), entry)); 2204 t[0].ptr = ma | MMU_NORMAL_PT_UPDATE; 2205 t[0].val = new; 2206 2207 #if defined(__amd64) 2208 /* 2209 * On the 64-bit hypervisor we need to maintain the user mode 2210 * top page table too. 2211 */ 2212 if (ht->ht_level == mmu.max_level && ht->ht_hat != kas.a_hat) { 2213 ma = pa_to_ma(PT_INDEX_PHYSADDR(pfn_to_pa( 2214 ht->ht_hat->hat_user_ptable), entry)); 2215 t[1].ptr = ma | MMU_NORMAL_PT_UPDATE; 2216 t[1].val = new; 2217 ++cnt; 2218 } 2219 #endif /* __amd64 */ 2220 2221 if (HYPERVISOR_mmu_update(t, cnt, &count, DOMID_SELF)) 2222 panic("HYPERVISOR_mmu_update() failed"); 2223 ASSERT(count == cnt); 2224 return (old); 2225 } 2226 #endif 2227 ptep = x86pte_access_pagetable(ht, entry); 2228 XPV_ALLOW_PAGETABLE_UPDATES(); 2229 pte = CAS_PTE(ptep, old, new); 2230 XPV_DISALLOW_PAGETABLE_UPDATES(); 2231 x86pte_release_pagetable(ht); 2232 return (pte); 2233 } 2234 2235 /* 2236 * Invalidate a page table entry as long as it currently maps something that 2237 * matches the value determined by expect. 2238 * 2239 * If tlb is set, also invalidates any TLB entries. 2240 * 2241 * Returns the previous value of the PTE. 2242 */ 2243 x86pte_t 2244 x86pte_inval( 2245 htable_t *ht, 2246 uint_t entry, 2247 x86pte_t expect, 2248 x86pte_t *pte_ptr, 2249 boolean_t tlb) 2250 { 2251 x86pte_t *ptep; 2252 x86pte_t oldpte; 2253 x86pte_t found; 2254 2255 ASSERT(!(ht->ht_flags & HTABLE_SHARED_PFN)); 2256 ASSERT(ht->ht_level <= mmu.max_page_level); 2257 2258 if (pte_ptr != NULL) 2259 ptep = pte_ptr; 2260 else 2261 ptep = x86pte_access_pagetable(ht, entry); 2262 2263 #if defined(__xpv) 2264 /* 2265 * If exit()ing just use HYPERVISOR_mmu_update(), as we can't be racing 2266 * with anything else. 2267 */ 2268 if ((ht->ht_hat->hat_flags & HAT_FREEING) && !IN_XPV_PANIC()) { 2269 int count; 2270 mmu_update_t t[1]; 2271 maddr_t ma; 2272 2273 oldpte = GET_PTE(ptep); 2274 if (expect != 0 && (oldpte & PT_PADDR) != (expect & PT_PADDR)) 2275 goto done; 2276 ma = pa_to_ma(PT_INDEX_PHYSADDR(pfn_to_pa(ht->ht_pfn), entry)); 2277 t[0].ptr = ma | MMU_NORMAL_PT_UPDATE; 2278 t[0].val = 0; 2279 if (HYPERVISOR_mmu_update(t, 1, &count, DOMID_SELF)) 2280 panic("HYPERVISOR_mmu_update() failed"); 2281 ASSERT(count == 1); 2282 goto done; 2283 } 2284 #endif /* __xpv */ 2285 2286 /* 2287 * Note that the loop is needed to handle changes due to h/w updating 2288 * of PT_MOD/PT_REF. 2289 */ 2290 do { 2291 oldpte = GET_PTE(ptep); 2292 if (expect != 0 && (oldpte & PT_PADDR) != (expect & PT_PADDR)) 2293 goto done; 2294 XPV_ALLOW_PAGETABLE_UPDATES(); 2295 found = CAS_PTE(ptep, oldpte, 0); 2296 XPV_DISALLOW_PAGETABLE_UPDATES(); 2297 } while (found != oldpte); 2298 if (tlb && (oldpte & (PT_REF | PT_MOD))) 2299 hat_tlb_inval(ht->ht_hat, htable_e2va(ht, entry)); 2300 2301 done: 2302 if (pte_ptr == NULL) 2303 x86pte_release_pagetable(ht); 2304 return (oldpte); 2305 } 2306 2307 /* 2308 * Change a page table entry af it currently matches the value in expect. 2309 */ 2310 x86pte_t 2311 x86pte_update( 2312 htable_t *ht, 2313 uint_t entry, 2314 x86pte_t expect, 2315 x86pte_t new) 2316 { 2317 x86pte_t *ptep; 2318 x86pte_t found; 2319 2320 ASSERT(new != 0); 2321 ASSERT(!(ht->ht_flags & HTABLE_SHARED_PFN)); 2322 ASSERT(ht->ht_level <= mmu.max_page_level); 2323 2324 ptep = x86pte_access_pagetable(ht, entry); 2325 XPV_ALLOW_PAGETABLE_UPDATES(); 2326 found = CAS_PTE(ptep, expect, new); 2327 XPV_DISALLOW_PAGETABLE_UPDATES(); 2328 if (found == expect) { 2329 hat_tlb_inval(ht->ht_hat, htable_e2va(ht, entry)); 2330 2331 /* 2332 * When removing write permission *and* clearing the 2333 * MOD bit, check if a write happened via a stale 2334 * TLB entry before the TLB shootdown finished. 2335 * 2336 * If it did happen, simply re-enable write permission and 2337 * act like the original CAS failed. 2338 */ 2339 if ((expect & (PT_WRITABLE | PT_MOD)) == PT_WRITABLE && 2340 (new & (PT_WRITABLE | PT_MOD)) == 0 && 2341 (GET_PTE(ptep) & PT_MOD) != 0) { 2342 do { 2343 found = GET_PTE(ptep); 2344 XPV_ALLOW_PAGETABLE_UPDATES(); 2345 found = 2346 CAS_PTE(ptep, found, found | PT_WRITABLE); 2347 XPV_DISALLOW_PAGETABLE_UPDATES(); 2348 } while ((found & PT_WRITABLE) == 0); 2349 } 2350 } 2351 x86pte_release_pagetable(ht); 2352 return (found); 2353 } 2354 2355 #ifndef __xpv 2356 /* 2357 * Copy page tables - this is just a little more complicated than the 2358 * previous routines. Note that it's also not atomic! It also is never 2359 * used for HTABLE_COPIED pagetables. 2360 */ 2361 void 2362 x86pte_copy(htable_t *src, htable_t *dest, uint_t entry, uint_t count) 2363 { 2364 caddr_t src_va; 2365 caddr_t dst_va; 2366 size_t size; 2367 x86pte_t *pteptr; 2368 x86pte_t pte; 2369 2370 ASSERT(khat_running); 2371 ASSERT(!(dest->ht_flags & HTABLE_COPIED)); 2372 ASSERT(!(src->ht_flags & HTABLE_COPIED)); 2373 ASSERT(!(src->ht_flags & HTABLE_SHARED_PFN)); 2374 ASSERT(!(dest->ht_flags & HTABLE_SHARED_PFN)); 2375 2376 /* 2377 * Acquire access to the CPU pagetable windows for the dest and source. 2378 */ 2379 dst_va = (caddr_t)x86pte_access_pagetable(dest, entry); 2380 if (kpm_vbase) { 2381 src_va = (caddr_t) 2382 PT_INDEX_PTR(hat_kpm_pfn2va(src->ht_pfn), entry); 2383 } else { 2384 uint_t x = PWIN_SRC(CPU->cpu_id); 2385 2386 ASSERT(!(getcr4() & CR4_PCIDE)); 2387 2388 /* 2389 * Finish defining the src pagetable mapping 2390 */ 2391 src_va = (caddr_t)PT_INDEX_PTR(PWIN_VA(x), entry); 2392 pte = MAKEPTE(src->ht_pfn, 0) | mmu.pt_global | mmu.pt_nx; 2393 pteptr = (x86pte_t *)PWIN_PTE_VA(x); 2394 if (mmu.pae_hat) 2395 *pteptr = pte; 2396 else 2397 *(x86pte32_t *)pteptr = pte; 2398 mmu_flush_tlb_kpage((uintptr_t)PWIN_VA(x)); 2399 } 2400 2401 /* 2402 * now do the copy 2403 */ 2404 size = count << mmu.pte_size_shift; 2405 bcopy(src_va, dst_va, size); 2406 2407 x86pte_release_pagetable(dest); 2408 } 2409 2410 #else /* __xpv */ 2411 2412 /* 2413 * The hypervisor only supports writable pagetables at level 0, so we have 2414 * to install these 1 by 1 the slow way. 2415 */ 2416 void 2417 x86pte_copy(htable_t *src, htable_t *dest, uint_t entry, uint_t count) 2418 { 2419 caddr_t src_va; 2420 x86pte_t pte; 2421 2422 ASSERT(!IN_XPV_PANIC()); 2423 src_va = (caddr_t)x86pte_access_pagetable(src, entry); 2424 while (count) { 2425 if (mmu.pae_hat) 2426 pte = *(x86pte_t *)src_va; 2427 else 2428 pte = *(x86pte32_t *)src_va; 2429 if (pte != 0) { 2430 set_pteval(pfn_to_pa(dest->ht_pfn), entry, 2431 dest->ht_level, pte); 2432 #ifdef __amd64 2433 if (dest->ht_level == mmu.max_level && 2434 htable_e2va(dest, entry) < HYPERVISOR_VIRT_END) 2435 set_pteval( 2436 pfn_to_pa(dest->ht_hat->hat_user_ptable), 2437 entry, dest->ht_level, pte); 2438 #endif 2439 } 2440 --count; 2441 ++entry; 2442 src_va += mmu.pte_size; 2443 } 2444 x86pte_release_pagetable(src); 2445 } 2446 #endif /* __xpv */ 2447 2448 /* 2449 * Zero page table entries - Note this doesn't use atomic stores! 2450 */ 2451 static void 2452 x86pte_zero(htable_t *dest, uint_t entry, uint_t count) 2453 { 2454 caddr_t dst_va; 2455 size_t size; 2456 #ifdef __xpv 2457 int x; 2458 x86pte_t newpte; 2459 #endif 2460 2461 /* 2462 * Map in the page table to be zeroed. 2463 */ 2464 ASSERT(!(dest->ht_flags & HTABLE_SHARED_PFN)); 2465 ASSERT(!(dest->ht_flags & HTABLE_COPIED)); 2466 2467 /* 2468 * On the hypervisor we don't use x86pte_access_pagetable() since 2469 * in this case the page is not pinned yet. 2470 */ 2471 #ifdef __xpv 2472 if (kpm_vbase == NULL) { 2473 kpreempt_disable(); 2474 ASSERT(CPU->cpu_hat_info != NULL); 2475 mutex_enter(&CPU->cpu_hat_info->hci_mutex); 2476 x = PWIN_TABLE(CPU->cpu_id); 2477 newpte = MAKEPTE(dest->ht_pfn, 0) | PT_WRITABLE; 2478 xen_map(newpte, PWIN_VA(x)); 2479 dst_va = (caddr_t)PT_INDEX_PTR(PWIN_VA(x), entry); 2480 } else 2481 #endif 2482 dst_va = (caddr_t)x86pte_access_pagetable(dest, entry); 2483 2484 size = count << mmu.pte_size_shift; 2485 ASSERT(size > BLOCKZEROALIGN); 2486 #ifdef __i386 2487 if (!is_x86_feature(x86_featureset, X86FSET_SSE2)) 2488 bzero(dst_va, size); 2489 else 2490 #endif 2491 block_zero_no_xmm(dst_va, size); 2492 2493 #ifdef __xpv 2494 if (kpm_vbase == NULL) { 2495 xen_map(0, PWIN_VA(x)); 2496 mutex_exit(&CPU->cpu_hat_info->hci_mutex); 2497 kpreempt_enable(); 2498 } else 2499 #endif 2500 x86pte_release_pagetable(dest); 2501 } 2502 2503 /* 2504 * Called to ensure that all pagetables are in the system dump 2505 */ 2506 void 2507 hat_dump(void) 2508 { 2509 hat_t *hat; 2510 uint_t h; 2511 htable_t *ht; 2512 2513 /* 2514 * Dump all page tables 2515 */ 2516 for (hat = kas.a_hat; hat != NULL; hat = hat->hat_next) { 2517 for (h = 0; h < hat->hat_num_hash; ++h) { 2518 for (ht = hat->hat_ht_hash[h]; ht; ht = ht->ht_next) { 2519 if ((ht->ht_flags & HTABLE_COPIED) == 0) 2520 dump_page(ht->ht_pfn); 2521 } 2522 } 2523 } 2524 } 2525