xref: /illumos-gate/usr/src/uts/i86pc/vm/hment.c (revision 8548bf79039833dba8615afdf63258b2cb122121)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 #include <sys/types.h>
29 #include <sys/sysmacros.h>
30 #include <sys/kmem.h>
31 #include <sys/atomic.h>
32 #include <sys/bitmap.h>
33 #include <sys/systm.h>
34 #include <vm/seg_kmem.h>
35 #include <vm/hat.h>
36 #include <vm/vm_dep.h>
37 #include <vm/hat_i86.h>
38 #include <sys/cmn_err.h>
39 
40 
41 /*
42  * When pages are shared by more than one mapping, a list of these
43  * structs hangs off of the page_t connected by the hm_next and hm_prev
44  * fields.  Every hment is also indexed by a system-wide hash table, using
45  * hm_hashnext to connect it to the chain of hments in a single hash
46  * bucket.
47  */
48 struct hment {
49 	struct hment	*hm_hashnext;	/* next mapping on hash chain */
50 	struct hment	*hm_next;	/* next mapping of same page */
51 	struct hment	*hm_prev;	/* previous mapping of same page */
52 	htable_t	*hm_htable;	/* corresponding htable_t */
53 	pfn_t		hm_pfn;		/* mapping page frame number */
54 	uint16_t	hm_entry;	/* index of pte in htable */
55 	uint16_t	hm_pad;		/* explicitly expose compiler padding */
56 #ifdef __amd64
57 	uint32_t	hm_pad2;	/* explicitly expose compiler padding */
58 #endif
59 };
60 
61 /*
62  * Value returned by hment_walk() when dealing with a single mapping
63  * embedded in the page_t.
64  */
65 #define	HMENT_EMBEDDED ((hment_t *)(uintptr_t)1)
66 
67 kmem_cache_t *hment_cache;
68 
69 /*
70  * The hment reserve is similar to the htable reserve, with the following
71  * exception. Hment's are never needed for HAT kmem allocs.
72  *
73  * The hment_reserve_amount variable is used, so that you can change it's
74  * value to zero via a kernel debugger to force stealing to get tested.
75  */
76 #define	HMENT_RESERVE_AMOUNT	(200)	/* currently a guess at right value. */
77 uint_t hment_reserve_amount = HMENT_RESERVE_AMOUNT;
78 kmutex_t hment_reserve_mutex;
79 uint_t	hment_reserve_count;
80 hment_t	*hment_reserve_pool;
81 extern  kthread_t *hat_reserves_thread;
82 
83 /*
84  * Possible performance RFE: we might need to make this dynamic, perhaps
85  * based on the number of pages in the system.
86  */
87 #define	HMENT_HASH_SIZE (64 * 1024)
88 static uint_t hment_hash_entries = HMENT_HASH_SIZE;
89 static hment_t **hment_hash;
90 
91 /*
92  * Lots of highly shared pages will have the same value for "entry" (consider
93  * the starting address of "xterm" or "sh"). So we'll distinguish them by
94  * adding the pfn of the page table into both the high bits.
95  * The shift by 9 corresponds to the range of values for entry (0..511).
96  */
97 #define	HMENT_HASH(pfn, entry) (uint32_t) 	\
98 	((((pfn) << 9) + entry + pfn) & (hment_hash_entries - 1))
99 
100 /*
101  * "mlist_lock" is a hashed mutex lock for protecting per-page mapping
102  * lists and "hash_lock" is a similar lock protecting the hment hash
103  * table.  The hashed approach is taken to avoid the spatial overhead of
104  * maintaining a separate lock for each page, while still achieving better
105  * scalability than a single lock would allow.
106  */
107 #define	MLIST_NUM_LOCK	256		/* must be power of two */
108 static kmutex_t mlist_lock[MLIST_NUM_LOCK];
109 
110 /*
111  * the shift by 9 is so that all large pages don't use the same hash bucket
112  */
113 #define	MLIST_MUTEX(pp) \
114 	&mlist_lock[((pp)->p_pagenum + ((pp)->p_pagenum >> 9)) & \
115 	(MLIST_NUM_LOCK - 1)]
116 
117 #define	HASH_NUM_LOCK	256		/* must be power of two */
118 static kmutex_t hash_lock[HASH_NUM_LOCK];
119 
120 #define	HASH_MUTEX(idx) &hash_lock[(idx) & (HASH_NUM_LOCK-1)]
121 
122 static hment_t *hment_steal(void);
123 
124 /*
125  * put one hment onto the reserves list
126  */
127 static void
128 hment_put_reserve(hment_t *hm)
129 {
130 	HATSTAT_INC(hs_hm_put_reserve);
131 	mutex_enter(&hment_reserve_mutex);
132 	hm->hm_next = hment_reserve_pool;
133 	hment_reserve_pool = hm;
134 	++hment_reserve_count;
135 	mutex_exit(&hment_reserve_mutex);
136 }
137 
138 /*
139  * Take one hment from the reserve.
140  */
141 static hment_t *
142 hment_get_reserve(void)
143 {
144 	hment_t *hm = NULL;
145 
146 	/*
147 	 * We rely on a "donation system" to refill the hment reserve
148 	 * list, which only takes place when we are allocating hments for
149 	 * user mappings.  It is theoretically possible that an incredibly
150 	 * long string of kernel hment_alloc()s with no intervening user
151 	 * hment_alloc()s could exhaust that pool.
152 	 */
153 	HATSTAT_INC(hs_hm_get_reserve);
154 	mutex_enter(&hment_reserve_mutex);
155 	if (hment_reserve_count != 0) {
156 		hm = hment_reserve_pool;
157 		hment_reserve_pool = hm->hm_next;
158 		--hment_reserve_count;
159 	}
160 	mutex_exit(&hment_reserve_mutex);
161 	return (hm);
162 }
163 
164 /*
165  * Allocate an hment
166  */
167 static hment_t *
168 hment_alloc()
169 {
170 	int km_flag = can_steal_post_boot ? KM_NOSLEEP : KM_SLEEP;
171 	hment_t	*hm = NULL;
172 
173 	/*
174 	 * If we aren't using the reserves, try using kmem to get an hment.
175 	 * Donate any successful allocations to reserves if low.
176 	 *
177 	 * If we're in panic, resort to using the reserves.
178 	 */
179 	HATSTAT_INC(hs_hm_alloc);
180 	if (!USE_HAT_RESERVES()) {
181 		for (;;) {
182 			hm = kmem_cache_alloc(hment_cache, km_flag);
183 			if (USE_HAT_RESERVES() ||
184 			    hment_reserve_count >= hment_reserve_amount)
185 				break;
186 			hment_put_reserve(hm);
187 		}
188 	}
189 
190 	/*
191 	 * If allocation failed, we need to tap the reserves or steal
192 	 */
193 	if (hm == NULL) {
194 		if (USE_HAT_RESERVES())
195 			hm = hment_get_reserve();
196 
197 		/*
198 		 * If we still haven't gotten an hment, attempt to steal one by
199 		 * victimizing a mapping in a user htable.
200 		 */
201 		if (hm == NULL && can_steal_post_boot)
202 			hm = hment_steal();
203 
204 		/*
205 		 * we're in dire straights, try the reserve
206 		 */
207 		if (hm == NULL)
208 			hm = hment_get_reserve();
209 
210 		/*
211 		 * still no hment is a serious problem.
212 		 */
213 		if (hm == NULL)
214 			panic("hment_alloc(): no reserve, couldn't steal");
215 	}
216 
217 
218 	hm->hm_entry = 0;
219 	hm->hm_htable = NULL;
220 	hm->hm_hashnext = NULL;
221 	hm->hm_next = NULL;
222 	hm->hm_prev = NULL;
223 	hm->hm_pfn = PFN_INVALID;
224 	return (hm);
225 }
226 
227 /*
228  * Free an hment, possibly to the reserves list when called from the
229  * thread using the reserves. For example, when freeing an hment during an
230  * htable_steal(), we can't recurse into the kmem allocator, so we just
231  * push the hment onto the reserve list.
232  */
233 void
234 hment_free(hment_t *hm)
235 {
236 #ifdef DEBUG
237 	/*
238 	 * zero out all fields to try and force any race conditions to segfault
239 	 */
240 	bzero(hm, sizeof (*hm));
241 #endif
242 	HATSTAT_INC(hs_hm_free);
243 	if (USE_HAT_RESERVES() ||
244 	    hment_reserve_count < hment_reserve_amount)
245 		hment_put_reserve(hm);
246 	else
247 		kmem_cache_free(hment_cache, hm);
248 }
249 
250 int
251 x86_hm_held(page_t *pp)
252 {
253 	ASSERT(pp != NULL);
254 	return (MUTEX_HELD(MLIST_MUTEX(pp)));
255 }
256 
257 void
258 x86_hm_enter(page_t *pp)
259 {
260 	ASSERT(pp != NULL);
261 	mutex_enter(MLIST_MUTEX(pp));
262 }
263 
264 void
265 x86_hm_exit(page_t *pp)
266 {
267 	ASSERT(pp != NULL);
268 	mutex_exit(MLIST_MUTEX(pp));
269 }
270 
271 /*
272  * Internal routine to add a full hment to a page_t mapping list
273  */
274 static void
275 hment_insert(hment_t *hm, page_t *pp)
276 {
277 	uint_t		idx;
278 
279 	ASSERT(x86_hm_held(pp));
280 	ASSERT(!pp->p_embed);
281 
282 	/*
283 	 * Add the hment to the page's mapping list.
284 	 */
285 	++pp->p_share;
286 	hm->hm_next = pp->p_mapping;
287 	if (pp->p_mapping != NULL)
288 		((hment_t *)pp->p_mapping)->hm_prev = hm;
289 	pp->p_mapping = hm;
290 
291 	/*
292 	 * Add the hment to the system-wide hash table.
293 	 */
294 	idx = HMENT_HASH(hm->hm_htable->ht_pfn, hm->hm_entry);
295 
296 	mutex_enter(HASH_MUTEX(idx));
297 	hm->hm_hashnext = hment_hash[idx];
298 	hment_hash[idx] = hm;
299 	mutex_exit(HASH_MUTEX(idx));
300 }
301 
302 /*
303  * Prepare a mapping list entry to the given page.
304  *
305  * There are 4 different situations to deal with:
306  *
307  * - Adding the first mapping to a page_t as an embedded hment
308  * - Refaulting on an existing embedded mapping
309  * - Upgrading an embedded mapping when adding a 2nd mapping
310  * - Adding another mapping to a page_t that already has multiple mappings
311  *	 note we don't optimized for the refaulting case here.
312  *
313  * Due to competition with other threads that may be mapping/unmapping the
314  * same page and the need to drop all locks while allocating hments, any or
315  * all of the 3 situations can occur (and in almost any order) in any given
316  * call. Isn't this fun!
317  */
318 hment_t *
319 hment_prepare(htable_t *htable, uint_t entry, page_t *pp)
320 {
321 	hment_t		*hm = NULL;
322 
323 	ASSERT(x86_hm_held(pp));
324 
325 	for (;;) {
326 
327 		/*
328 		 * The most common case is establishing the first mapping to a
329 		 * page, so check that first. This doesn't need any allocated
330 		 * hment.
331 		 */
332 		if (pp->p_mapping == NULL) {
333 			ASSERT(!pp->p_embed);
334 			ASSERT(pp->p_share == 0);
335 			if (hm == NULL)
336 				break;
337 
338 			/*
339 			 * we had an hment already, so free it and retry
340 			 */
341 			goto free_and_continue;
342 		}
343 
344 		/*
345 		 * If there is an embedded mapping, we may need to
346 		 * convert it to an hment.
347 		 */
348 		if (pp->p_embed) {
349 
350 			/* should point to htable */
351 			ASSERT(pp->p_mapping != NULL);
352 
353 			/*
354 			 * If we are faulting on a pre-existing mapping
355 			 * there is no need to promote/allocate a new hment.
356 			 * This happens a lot due to segmap.
357 			 */
358 			if (pp->p_mapping == htable && pp->p_mlentry == entry) {
359 				if (hm == NULL)
360 					break;
361 				goto free_and_continue;
362 			}
363 
364 			/*
365 			 * If we have an hment allocated, use it to promote the
366 			 * existing embedded mapping.
367 			 */
368 			if (hm != NULL) {
369 				hm->hm_htable = pp->p_mapping;
370 				hm->hm_entry = pp->p_mlentry;
371 				hm->hm_pfn = pp->p_pagenum;
372 				pp->p_mapping = NULL;
373 				pp->p_share = 0;
374 				pp->p_embed = 0;
375 				hment_insert(hm, pp);
376 			}
377 
378 			/*
379 			 * We either didn't have an hment allocated or we just
380 			 * used it for the embedded mapping. In either case,
381 			 * allocate another hment and restart.
382 			 */
383 			goto allocate_and_continue;
384 		}
385 
386 		/*
387 		 * Last possibility is that we're adding an hment to a list
388 		 * of hments.
389 		 */
390 		if (hm != NULL)
391 			break;
392 allocate_and_continue:
393 		x86_hm_exit(pp);
394 		hm = hment_alloc();
395 		x86_hm_enter(pp);
396 		continue;
397 
398 free_and_continue:
399 		/*
400 		 * we allocated an hment already, free it and retry
401 		 */
402 		x86_hm_exit(pp);
403 		hment_free(hm);
404 		hm = NULL;
405 		x86_hm_enter(pp);
406 	}
407 	ASSERT(x86_hm_held(pp));
408 	return (hm);
409 }
410 
411 /*
412  * Record a mapping list entry for the htable/entry to the given page.
413  *
414  * hment_prepare() should have properly set up the situation.
415  */
416 void
417 hment_assign(htable_t *htable, uint_t entry, page_t *pp, hment_t *hm)
418 {
419 	ASSERT(x86_hm_held(pp));
420 
421 	/*
422 	 * The most common case is establishing the first mapping to a
423 	 * page, so check that first. This doesn't need any allocated
424 	 * hment.
425 	 */
426 	if (pp->p_mapping == NULL) {
427 		ASSERT(hm == NULL);
428 		ASSERT(!pp->p_embed);
429 		ASSERT(pp->p_share == 0);
430 		pp->p_embed = 1;
431 		pp->p_mapping = htable;
432 		pp->p_mlentry = entry;
433 		return;
434 	}
435 
436 	/*
437 	 * We should never get here with a pre-existing embedded maping
438 	 */
439 	ASSERT(!pp->p_embed);
440 
441 	/*
442 	 * add the new hment to the mapping list
443 	 */
444 	ASSERT(hm != NULL);
445 	hm->hm_htable = htable;
446 	hm->hm_entry = entry;
447 	hm->hm_pfn = pp->p_pagenum;
448 	hment_insert(hm, pp);
449 }
450 
451 /*
452  * Walk through the mappings for a page.
453  *
454  * must already have done an x86_hm_enter()
455  */
456 hment_t *
457 hment_walk(page_t *pp, htable_t **ht, uint_t *entry, hment_t *prev)
458 {
459 	hment_t		*hm;
460 
461 	ASSERT(x86_hm_held(pp));
462 
463 	if (pp->p_embed) {
464 		if (prev == NULL) {
465 			*ht = (htable_t *)pp->p_mapping;
466 			*entry = pp->p_mlentry;
467 			hm = HMENT_EMBEDDED;
468 		} else {
469 			ASSERT(prev == HMENT_EMBEDDED);
470 			hm = NULL;
471 		}
472 	} else {
473 		if (prev == NULL) {
474 			ASSERT(prev != HMENT_EMBEDDED);
475 			hm = (hment_t *)pp->p_mapping;
476 		} else {
477 			hm = prev->hm_next;
478 		}
479 
480 		if (hm != NULL) {
481 			*ht = hm->hm_htable;
482 			*entry = hm->hm_entry;
483 		}
484 	}
485 	return (hm);
486 }
487 
488 /*
489  * Remove a mapping to a page from its mapping list. Must have
490  * the corresponding mapping list locked.
491  * Finds the mapping list entry with the given pte_t and
492  * unlinks it from the mapping list.
493  */
494 hment_t *
495 hment_remove(page_t *pp, htable_t *ht, uint_t entry)
496 {
497 	hment_t		*prev = NULL;
498 	hment_t		*hm;
499 	uint_t		idx;
500 	pfn_t		pfn;
501 
502 	ASSERT(x86_hm_held(pp));
503 
504 	/*
505 	 * Check if we have only one mapping embedded in the page_t.
506 	 */
507 	if (pp->p_embed) {
508 		ASSERT(ht == (htable_t *)pp->p_mapping);
509 		ASSERT(entry == pp->p_mlentry);
510 		ASSERT(pp->p_share == 0);
511 		pp->p_mapping = NULL;
512 		pp->p_mlentry = 0;
513 		pp->p_embed = 0;
514 		return (NULL);
515 	}
516 
517 	/*
518 	 * Otherwise it must be in the list of hments.
519 	 * Find the hment in the system-wide hash table and remove it.
520 	 */
521 	ASSERT(pp->p_share != 0);
522 	pfn = pp->p_pagenum;
523 	idx = HMENT_HASH(ht->ht_pfn, entry);
524 	mutex_enter(HASH_MUTEX(idx));
525 	hm = hment_hash[idx];
526 	while (hm && (hm->hm_htable != ht || hm->hm_entry != entry ||
527 	    hm->hm_pfn != pfn)) {
528 		prev = hm;
529 		hm = hm->hm_hashnext;
530 	}
531 	if (hm == NULL) {
532 		panic("hment_remove() missing in hash table pp=%lx, ht=%lx,"
533 		    "entry=0x%x hash index=0x%x", (uintptr_t)pp, (uintptr_t)ht,
534 		    entry, idx);
535 	}
536 
537 	if (prev)
538 		prev->hm_hashnext = hm->hm_hashnext;
539 	else
540 		hment_hash[idx] = hm->hm_hashnext;
541 	mutex_exit(HASH_MUTEX(idx));
542 
543 	/*
544 	 * Remove the hment from the page's mapping list
545 	 */
546 	if (hm->hm_next)
547 		hm->hm_next->hm_prev = hm->hm_prev;
548 	if (hm->hm_prev)
549 		hm->hm_prev->hm_next = hm->hm_next;
550 	else
551 		pp->p_mapping = hm->hm_next;
552 
553 	--pp->p_share;
554 	hm->hm_hashnext = NULL;
555 	hm->hm_next = NULL;
556 	hm->hm_prev = NULL;
557 
558 	return (hm);
559 }
560 
561 /*
562  * Put initial hment's in the reserve pool.
563  */
564 void
565 hment_reserve(uint_t count)
566 {
567 	hment_t	*hm;
568 
569 	count += hment_reserve_amount;
570 
571 	while (hment_reserve_count < count) {
572 		hm = kmem_cache_alloc(hment_cache, KM_NOSLEEP);
573 		if (hm == NULL)
574 			return;
575 		hment_put_reserve(hm);
576 	}
577 }
578 
579 /*
580  * Readjust the hment reserves after they may have been used.
581  */
582 void
583 hment_adjust_reserve()
584 {
585 	hment_t	*hm;
586 
587 	/*
588 	 * Free up any excess reserves
589 	 */
590 	while (hment_reserve_count > hment_reserve_amount) {
591 		ASSERT(curthread != hat_reserves_thread);
592 		hm = hment_get_reserve();
593 		if (hm == NULL)
594 			return;
595 		hment_free(hm);
596 	}
597 }
598 
599 /*
600  * initialize hment data structures
601  */
602 void
603 hment_init(void)
604 {
605 	int i;
606 	int flags = KMC_NOHASH | KMC_NODEBUG;
607 
608 	/*
609 	 * Initialize kmem caches. On 32 bit kernel's we shut off
610 	 * debug information to save on precious kernel VA usage.
611 	 */
612 	hment_cache = kmem_cache_create("hment_t",
613 	    sizeof (hment_t), 0, NULL, NULL, NULL,
614 	    NULL, hat_memload_arena, flags);
615 
616 	hment_hash = kmem_zalloc(hment_hash_entries * sizeof (hment_t *),
617 	    KM_SLEEP);
618 
619 	for (i = 0; i < MLIST_NUM_LOCK; i++)
620 		mutex_init(&mlist_lock[i], NULL, MUTEX_DEFAULT, NULL);
621 
622 	for (i = 0; i < HASH_NUM_LOCK; i++)
623 		mutex_init(&hash_lock[i], NULL, MUTEX_DEFAULT, NULL);
624 
625 
626 }
627 
628 /*
629  * return the number of mappings to a page
630  *
631  * Note there is no ASSERT() that the MUTEX is held for this.
632  * Hence the return value might be inaccurate if this is called without
633  * doing an x86_hm_enter().
634  */
635 uint_t
636 hment_mapcnt(page_t *pp)
637 {
638 	uint_t cnt;
639 	uint_t szc;
640 	page_t *larger;
641 	hment_t	*hm;
642 
643 	x86_hm_enter(pp);
644 	if (pp->p_mapping == NULL)
645 		cnt = 0;
646 	else if (pp->p_embed)
647 		cnt = 1;
648 	else
649 		cnt = pp->p_share;
650 	x86_hm_exit(pp);
651 
652 	/*
653 	 * walk through all larger mapping sizes counting mappings
654 	 */
655 	for (szc = 1; szc <= pp->p_szc; ++szc) {
656 		larger = PP_GROUPLEADER(pp, szc);
657 		if (larger == pp)	/* don't double count large mappings */
658 			continue;
659 
660 		x86_hm_enter(larger);
661 		if (larger->p_mapping != NULL) {
662 			if (larger->p_embed &&
663 			    ((htable_t *)larger->p_mapping)->ht_level == szc) {
664 				++cnt;
665 			} else if (!larger->p_embed) {
666 				for (hm = larger->p_mapping; hm;
667 				    hm = hm->hm_next) {
668 					if (hm->hm_htable->ht_level == szc)
669 						++cnt;
670 				}
671 			}
672 		}
673 		x86_hm_exit(larger);
674 	}
675 	return (cnt);
676 }
677 
678 /*
679  * We need to steal an hment. Walk through all the page_t's until we
680  * find one that has multiple mappings. Unload one of the mappings
681  * and reclaim that hment. Note that we'll save/restart the starting
682  * page to try and spread the pain.
683  */
684 static page_t *last_page = NULL;
685 
686 static hment_t *
687 hment_steal(void)
688 {
689 	page_t *last = last_page;
690 	page_t *pp = last;
691 	hment_t *hm = NULL;
692 	hment_t *hm2;
693 	htable_t *ht;
694 	uint_t found_one = 0;
695 
696 	HATSTAT_INC(hs_hm_steals);
697 	if (pp == NULL)
698 		last = pp = page_first();
699 
700 	while (!found_one) {
701 		HATSTAT_INC(hs_hm_steal_exam);
702 		pp = page_next(pp);
703 		if (pp == NULL)
704 			pp = page_first();
705 
706 		/*
707 		 * The loop and function exit here if nothing found to steal.
708 		 */
709 		if (pp == last)
710 			return (NULL);
711 
712 		/*
713 		 * Only lock the page_t if it has hments.
714 		 */
715 		if (pp->p_mapping == NULL || pp->p_embed)
716 			continue;
717 
718 		/*
719 		 * Search the mapping list for a usable mapping.
720 		 */
721 		x86_hm_enter(pp);
722 		if (!pp->p_embed) {
723 			for (hm = pp->p_mapping; hm; hm = hm->hm_next) {
724 				ht = hm->hm_htable;
725 				if (ht->ht_hat != kas.a_hat &&
726 				    ht->ht_busy == 0 &&
727 				    ht->ht_lock_cnt == 0) {
728 					found_one = 1;
729 					break;
730 				}
731 			}
732 		}
733 		if (!found_one)
734 			x86_hm_exit(pp);
735 	}
736 
737 	/*
738 	 * Steal the mapping we found.  Note that hati_page_unmap() will
739 	 * do the x86_hm_exit().
740 	 */
741 	hm2 = hati_page_unmap(pp, ht, hm->hm_entry);
742 	ASSERT(hm2 == hm);
743 	last_page = pp;
744 	return (hm);
745 }
746