xref: /illumos-gate/usr/src/uts/i86pc/vm/hat_i86.c (revision 2e837a72011f54762249b6612c2a64f171efcd43)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 1992, 2010, Oracle and/or its affiliates. All rights reserved.
23  */
24 /*
25  * Copyright (c) 2010, Intel Corporation.
26  * All rights reserved.
27  */
28 /*
29  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
30  * Copyright 2018 Joyent, Inc.  All rights reserved.
31  * Copyright (c) 2014, 2015 by Delphix. All rights reserved.
32  */
33 
34 /*
35  * VM - Hardware Address Translation management for i386 and amd64
36  *
37  * Implementation of the interfaces described in <common/vm/hat.h>
38  *
39  * Nearly all the details of how the hardware is managed should not be
40  * visible outside this layer except for misc. machine specific functions
41  * that work in conjunction with this code.
42  *
43  * Routines used only inside of i86pc/vm start with hati_ for HAT Internal.
44  */
45 
46 /*
47  * amd64 HAT Design
48  *
49  * ----------
50  * Background
51  * ----------
52  *
53  * On x86, the address space is shared between a user process and the kernel.
54  * This is different from SPARC. Conventionally, the kernel lives at the top of
55  * the address space and the user process gets to enjoy the rest of it. If you
56  * look at the image of the address map in uts/i86pc/os/startup.c, you'll get a
57  * rough sense of how the address space is laid out and used.
58  *
59  * Every unique address space is represented by an instance of a HAT structure
60  * called a 'hat_t'. In addition to a hat_t structure for each process, there is
61  * also one that is used for the kernel (kas.a_hat), and each CPU ultimately
62  * also has a HAT.
63  *
64  * Each HAT contains a pointer to its root page table. This root page table is
65  * what we call an L3 page table in illumos and Intel calls the PML4. It is the
66  * physical address of the L3 table that we place in the %cr3 register which the
67  * processor uses.
68  *
69  * Each of the many layers of the page table is represented by a structure
70  * called an htable_t. The htable_t manages a set of 512 8-byte entries. The
71  * number of entries in a given page table is constant across all different
72  * level page tables. Note, this is only true on amd64. This has not always been
73  * the case on x86.
74  *
75  * Each entry in a page table, generally referred to as a PTE, may refer to
76  * another page table or a memory location, depending on the level of the page
77  * table and the use of large pages. Importantly, the top-level L3 page table
78  * (PML4) only supports linking to further page tables. This is also true on
79  * systems which support a 5th level page table (which we do not currently
80  * support).
81  *
82  * Historically, on x86, when a process was running on CPU, the root of the page
83  * table was inserted into %cr3 on each CPU on which it was currently running.
84  * When processes would switch (by calling hat_switch()), then the value in %cr3
85  * on that CPU would change to that of the new HAT. While this behavior is still
86  * maintained in the xpv kernel, this is not what is done today.
87  *
88  * -------------------
89  * Per-CPU Page Tables
90  * -------------------
91  *
92  * Throughout the system the 64-bit kernel has a notion of what it calls a
93  * per-CPU page table or PCP. The notion of a per-CPU page table was originally
94  * introduced as part of the original work to support x86 PAE. On the 64-bit
95  * kernel, it was originally used for 32-bit processes running on the 64-bit
96  * kernel. The rationale behind this was that each 32-bit process could have all
97  * of its memory represented in a single L2 page table as each L2 page table
98  * entry represents 1 GbE of memory.
99  *
100  * Following on from this, the idea was that given that all of the L3 page table
101  * entries for 32-bit processes are basically going to be identical with the
102  * exception of the first entry in the page table, why not share those page
103  * table entries. This gave rise to the idea of a per-CPU page table.
104  *
105  * The way this works is that we have a member in the machcpu_t called the
106  * mcpu_hat_info. That structure contains two different 4k pages: one that
107  * represents the L3 page table and one that represents an L2 page table. When
108  * the CPU starts up, the L3 page table entries are copied in from the kernel's
109  * page table. The L3 kernel entries do not change throughout the lifetime of
110  * the kernel. The kernel portion of these L3 pages for each CPU have the same
111  * records, meaning that they point to the same L2 page tables and thus see a
112  * consistent view of the world.
113  *
114  * When a 32-bit process is loaded into this world, we copy the 32-bit process's
115  * four top-level page table entries into the CPU's L2 page table and then set
116  * the CPU's first L3 page table entry to point to the CPU's L2 page.
117  * Specifically, in hat_pcp_update(), we're copying from the process's
118  * HAT_COPIED_32 HAT into the page tables specific to this CPU.
119  *
120  * As part of the implementation of kernel page table isolation, this was also
121  * extended to 64-bit processes. When a 64-bit process runs, we'll copy their L3
122  * PTEs across into the current CPU's L3 page table. (As we can't do the
123  * first-L3-entry trick for 64-bit processes, ->hci_pcp_l2ptes is unused in this
124  * case.)
125  *
126  * The use of per-CPU page tables has a lot of implementation ramifications. A
127  * HAT that runs a user process will be flagged with the HAT_COPIED flag to
128  * indicate that it is using the per-CPU page table functionality. In tandem
129  * with the HAT, the top-level htable_t will be flagged with the HTABLE_COPIED
130  * flag. If the HAT represents a 32-bit process, then we will also set the
131  * HAT_COPIED_32 flag on that hat_t.
132  *
133  * These two flags work together. The top-level htable_t when using per-CPU page
134  * tables is 'virtual'. We never allocate a ptable for this htable_t (i.e.
135  * ht->ht_pfn is PFN_INVALID).  Instead, when we need to modify a PTE in an
136  * HTABLE_COPIED ptable, x86pte_access_pagetable() will redirect any accesses to
137  * ht_hat->hat_copied_ptes.
138  *
139  * Of course, such a modification won't actually modify the HAT_PCP page tables
140  * that were copied from the HAT_COPIED htable. When we change the top level
141  * page table entries (L2 PTEs for a 32-bit process and L3 PTEs for a 64-bit
142  * process), we need to make sure to trigger hat_pcp_update() on all CPUs that
143  * are currently tied to this HAT (including the current CPU).
144  *
145  * To do this, PCP piggy-backs on TLB invalidation, specifically via the
146  * hat_tlb_inval() path from link_ptp() and unlink_ptp().
147  *
148  * (Importantly, in all such cases, when this is in operation, the top-level
149  * entry should not be able to refer to an actual page table entry that can be
150  * changed and consolidated into a large page. If large page consolidation is
151  * required here, then there will be much that needs to be reconsidered.)
152  *
153  * -----------------------------------------------
154  * Kernel Page Table Isolation and the Per-CPU HAT
155  * -----------------------------------------------
156  *
157  * All Intel CPUs that support speculative execution and paging are subject to a
158  * series of bugs that have been termed 'Meltdown'. These exploits allow a user
159  * process to read kernel memory through cache side channels and speculative
160  * execution. To mitigate this on vulnerable CPUs, we need to use a technique
161  * called kernel page table isolation. What this requires is that we have two
162  * different page table roots. When executing in kernel mode, we will use a %cr3
163  * value that has both the user and kernel pages. However when executing in user
164  * mode, we will need to have a %cr3 that has all of the user pages; however,
165  * only a subset of the kernel pages required to operate.
166  *
167  * These kernel pages that we need mapped are:
168  *
169  *   o Kernel Text that allows us to switch between the cr3 values.
170  *   o The current global descriptor table (GDT)
171  *   o The current interrupt descriptor table (IDT)
172  *   o The current task switching state (TSS)
173  *   o The current local descriptor table (LDT)
174  *   o Stacks and scratch space used by the interrupt handlers
175  *
176  * For more information on the stack switching techniques, construction of the
177  * trampolines, and more, please see i86pc/ml/kpti_trampolines.s. The most
178  * important part of these mappings are the following two constraints:
179  *
180  *   o The mappings are all per-CPU (except for read-only text)
181  *   o The mappings are static. They are all established before the CPU is
182  *     started (with the exception of the boot CPU).
183  *
184  * To facilitate the kernel page table isolation we employ our per-CPU
185  * page tables discussed in the previous section and add the notion of a per-CPU
186  * HAT. Fundamentally we have a second page table root. There is both a kernel
187  * page table (hci_pcp_l3ptes), and a user L3 page table (hci_user_l3ptes).
188  * Both will have the user page table entries copied into them, the same way
189  * that we discussed in the section 'Per-CPU Page Tables'.
190  *
191  * The complex part of this is how do we construct the set of kernel mappings
192  * that should be present when running with the user page table. To answer that,
193  * we add the notion of a per-CPU HAT. This HAT functions like a normal HAT,
194  * except that it's not really associated with an address space the same way
195  * that other HATs are.
196  *
197  * This HAT lives off of the 'struct hat_cpu_info' which is a member of the
198  * machcpu in the member hci_user_hat. We use this per-CPU HAT to create the set
199  * of kernel mappings that should be present on this CPU. The kernel mappings
200  * are added to the per-CPU HAT through the function hati_cpu_punchin(). Once a
201  * mapping has been punched in, it may not be punched out. The reason that we
202  * opt to leverage a HAT structure is that it knows how to allocate and manage
203  * all of the lower level page tables as required.
204  *
205  * Because all of the mappings are present at the beginning of time for this CPU
206  * and none of the mappings are in the kernel pageable segment, we don't have to
207  * worry about faulting on these HAT structures and thus the notion of the
208  * current HAT that we're using is always the appropriate HAT for the process
209  * (usually a user HAT or the kernel's HAT).
210  *
211  * A further constraint we place on the system with these per-CPU HATs is that
212  * they are not subject to htable_steal(). Because each CPU will have a rather
213  * fixed number of page tables, the same way that we don't steal from the
214  * kernel's HAT, it was determined that we should not steal from this HAT due to
215  * the complications involved and somewhat criminal nature of htable_steal().
216  *
217  * The per-CPU HAT is initialized in hat_pcp_setup() which is called as part of
218  * onlining the CPU, but before the CPU is actually started. The per-CPU HAT is
219  * removed in hat_pcp_teardown() which is called when a CPU is being offlined to
220  * be removed from the system (which is different from what psradm usually
221  * does).
222  *
223  * Finally, once the CPU has been onlined, the set of mappings in the per-CPU
224  * HAT must not change. The HAT related functions that we call are not meant to
225  * be called when we're switching between processes. For example, it is quite
226  * possible that if they were, they would try to grab an htable mutex which
227  * another thread might have. One needs to treat hat_switch() as though they
228  * were above LOCK_LEVEL and therefore _must not_ block under any circumstance.
229  */
230 
231 #include <sys/machparam.h>
232 #include <sys/machsystm.h>
233 #include <sys/mman.h>
234 #include <sys/types.h>
235 #include <sys/systm.h>
236 #include <sys/cpuvar.h>
237 #include <sys/thread.h>
238 #include <sys/proc.h>
239 #include <sys/cpu.h>
240 #include <sys/kmem.h>
241 #include <sys/disp.h>
242 #include <sys/shm.h>
243 #include <sys/sysmacros.h>
244 #include <sys/machparam.h>
245 #include <sys/vmem.h>
246 #include <sys/vmsystm.h>
247 #include <sys/promif.h>
248 #include <sys/var.h>
249 #include <sys/x86_archext.h>
250 #include <sys/atomic.h>
251 #include <sys/bitmap.h>
252 #include <sys/controlregs.h>
253 #include <sys/bootconf.h>
254 #include <sys/bootsvcs.h>
255 #include <sys/bootinfo.h>
256 #include <sys/archsystm.h>
257 
258 #include <vm/seg_kmem.h>
259 #include <vm/hat_i86.h>
260 #include <vm/as.h>
261 #include <vm/seg.h>
262 #include <vm/page.h>
263 #include <vm/seg_kp.h>
264 #include <vm/seg_kpm.h>
265 #include <vm/vm_dep.h>
266 #ifdef __xpv
267 #include <sys/hypervisor.h>
268 #endif
269 #include <vm/kboot_mmu.h>
270 #include <vm/seg_spt.h>
271 
272 #include <sys/cmn_err.h>
273 
274 /*
275  * Basic parameters for hat operation.
276  */
277 struct hat_mmu_info mmu;
278 
279 /*
280  * The page that is the kernel's top level pagetable.
281  *
282  * For 32 bit PAE support on i86pc, the kernel hat will use the 1st 4 entries
283  * on this 4K page for its top level page table. The remaining groups of
284  * 4 entries are used for per processor copies of user PCP pagetables for
285  * running threads.  See hat_switch() and reload_pae32() for details.
286  *
287  * pcp_page[0..3] - level==2 PTEs for kernel HAT
288  * pcp_page[4..7] - level==2 PTEs for user thread on cpu 0
289  * pcp_page[8..11]  - level==2 PTE for user thread on cpu 1
290  * etc...
291  *
292  * On the 64-bit kernel, this is the normal root of the page table and there is
293  * nothing special about it when used for other CPUs.
294  */
295 static x86pte_t *pcp_page;
296 
297 /*
298  * forward declaration of internal utility routines
299  */
300 static x86pte_t hati_update_pte(htable_t *ht, uint_t entry, x86pte_t expected,
301 	x86pte_t new);
302 
303 /*
304  * The kernel address space exists in all non-HAT_COPIED HATs. To implement this
305  * the kernel reserves a fixed number of entries in the topmost level(s) of page
306  * tables. The values are setup during startup and then copied to every user hat
307  * created by hat_alloc(). This means that kernelbase must be:
308  *
309  *	  4Meg aligned for 32 bit kernels
310  *	512Gig aligned for x86_64 64 bit kernel
311  *
312  * The hat_kernel_range_ts describe what needs to be copied from kernel hat
313  * to each user hat.
314  */
315 typedef struct hat_kernel_range {
316 	level_t		hkr_level;
317 	uintptr_t	hkr_start_va;
318 	uintptr_t	hkr_end_va;	/* zero means to end of memory */
319 } hat_kernel_range_t;
320 #define	NUM_KERNEL_RANGE 2
321 static hat_kernel_range_t kernel_ranges[NUM_KERNEL_RANGE];
322 static int num_kernel_ranges;
323 
324 uint_t use_boot_reserve = 1;	/* cleared after early boot process */
325 uint_t can_steal_post_boot = 0;	/* set late in boot to enable stealing */
326 
327 /*
328  * enable_1gpg: controls 1g page support for user applications.
329  * By default, 1g pages are exported to user applications. enable_1gpg can
330  * be set to 0 to not export.
331  */
332 int	enable_1gpg = 1;
333 
334 /*
335  * AMD shanghai processors provide better management of 1gb ptes in its tlb.
336  * By default, 1g page support will be disabled for pre-shanghai AMD
337  * processors that don't have optimal tlb support for the 1g page size.
338  * chk_optimal_1gtlb can be set to 0 to force 1g page support on sub-optimal
339  * processors.
340  */
341 int	chk_optimal_1gtlb = 1;
342 
343 
344 #ifdef DEBUG
345 uint_t	map1gcnt;
346 #endif
347 
348 
349 /*
350  * A cpuset for all cpus. This is used for kernel address cross calls, since
351  * the kernel addresses apply to all cpus.
352  */
353 cpuset_t khat_cpuset;
354 
355 /*
356  * management stuff for hat structures
357  */
358 kmutex_t	hat_list_lock;
359 kcondvar_t	hat_list_cv;
360 kmem_cache_t	*hat_cache;
361 kmem_cache_t	*hat_hash_cache;
362 kmem_cache_t	*hat32_hash_cache;
363 
364 /*
365  * Simple statistics
366  */
367 struct hatstats hatstat;
368 
369 /*
370  * Some earlier hypervisor versions do not emulate cmpxchg of PTEs
371  * correctly.  For such hypervisors we must set PT_USER for kernel
372  * entries ourselves (normally the emulation would set PT_USER for
373  * kernel entries and PT_USER|PT_GLOBAL for user entries).  pt_kern is
374  * thus set appropriately.  Note that dboot/kbm is OK, as only the full
375  * HAT uses cmpxchg() and the other paths (hypercall etc.) were never
376  * incorrect.
377  */
378 int pt_kern;
379 
380 #ifndef __xpv
381 extern pfn_t memseg_get_start(struct memseg *);
382 #endif
383 
384 #define	PP_GETRM(pp, rmmask)    (pp->p_nrm & rmmask)
385 #define	PP_ISMOD(pp)		PP_GETRM(pp, P_MOD)
386 #define	PP_ISREF(pp)		PP_GETRM(pp, P_REF)
387 #define	PP_ISRO(pp)		PP_GETRM(pp, P_RO)
388 
389 #define	PP_SETRM(pp, rm)	atomic_orb(&(pp->p_nrm), rm)
390 #define	PP_SETMOD(pp)		PP_SETRM(pp, P_MOD)
391 #define	PP_SETREF(pp)		PP_SETRM(pp, P_REF)
392 #define	PP_SETRO(pp)		PP_SETRM(pp, P_RO)
393 
394 #define	PP_CLRRM(pp, rm)	atomic_andb(&(pp->p_nrm), ~(rm))
395 #define	PP_CLRMOD(pp)   	PP_CLRRM(pp, P_MOD)
396 #define	PP_CLRREF(pp)   	PP_CLRRM(pp, P_REF)
397 #define	PP_CLRRO(pp)    	PP_CLRRM(pp, P_RO)
398 #define	PP_CLRALL(pp)		PP_CLRRM(pp, P_MOD | P_REF | P_RO)
399 
400 /*
401  * kmem cache constructor for struct hat
402  */
403 /*ARGSUSED*/
404 static int
405 hati_constructor(void *buf, void *handle, int kmflags)
406 {
407 	hat_t	*hat = buf;
408 
409 	mutex_init(&hat->hat_mutex, NULL, MUTEX_DEFAULT, NULL);
410 	bzero(hat->hat_pages_mapped,
411 	    sizeof (pgcnt_t) * (mmu.max_page_level + 1));
412 	hat->hat_ism_pgcnt = 0;
413 	hat->hat_stats = 0;
414 	hat->hat_flags = 0;
415 	CPUSET_ZERO(hat->hat_cpus);
416 	hat->hat_htable = NULL;
417 	hat->hat_ht_hash = NULL;
418 	return (0);
419 }
420 
421 /*
422  * Put it at the start of the global list of all hats (used by stealing)
423  *
424  * kas.a_hat is not in the list but is instead used to find the
425  * first and last items in the list.
426  *
427  * - kas.a_hat->hat_next points to the start of the user hats.
428  *   The list ends where hat->hat_next == NULL
429  *
430  * - kas.a_hat->hat_prev points to the last of the user hats.
431  *   The list begins where hat->hat_prev == NULL
432  */
433 static void
434 hat_list_append(hat_t *hat)
435 {
436 	mutex_enter(&hat_list_lock);
437 	hat->hat_prev = NULL;
438 	hat->hat_next = kas.a_hat->hat_next;
439 	if (hat->hat_next)
440 		hat->hat_next->hat_prev = hat;
441 	else
442 		kas.a_hat->hat_prev = hat;
443 	kas.a_hat->hat_next = hat;
444 	mutex_exit(&hat_list_lock);
445 }
446 
447 /*
448  * Allocate a hat structure for as. We also create the top level
449  * htable and initialize it to contain the kernel hat entries.
450  */
451 hat_t *
452 hat_alloc(struct as *as)
453 {
454 	hat_t			*hat;
455 	htable_t		*ht;	/* top level htable */
456 	uint_t			use_copied;
457 	uint_t			r;
458 	hat_kernel_range_t	*rp;
459 	uintptr_t		va;
460 	uintptr_t		eva;
461 	uint_t			start;
462 	uint_t			cnt;
463 	htable_t		*src;
464 	boolean_t		use_hat32_cache;
465 
466 	/*
467 	 * Once we start creating user process HATs we can enable
468 	 * the htable_steal() code.
469 	 */
470 	if (can_steal_post_boot == 0)
471 		can_steal_post_boot = 1;
472 
473 	ASSERT(AS_WRITE_HELD(as));
474 	hat = kmem_cache_alloc(hat_cache, KM_SLEEP);
475 	hat->hat_as = as;
476 	mutex_init(&hat->hat_mutex, NULL, MUTEX_DEFAULT, NULL);
477 	ASSERT(hat->hat_flags == 0);
478 
479 #if defined(__xpv)
480 	/*
481 	 * No PCP stuff on the hypervisor due to the 64-bit split top level
482 	 * page tables.  On 32-bit it's not needed as the hypervisor takes
483 	 * care of copying the top level PTEs to a below 4Gig page.
484 	 */
485 	use_copied = 0;
486 	use_hat32_cache = B_FALSE;
487 	hat->hat_max_level = mmu.max_level;
488 	hat->hat_num_copied = 0;
489 	hat->hat_flags = 0;
490 #else	/* __xpv */
491 
492 	/*
493 	 * All processes use HAT_COPIED on the 64-bit kernel if KPTI is
494 	 * turned on.
495 	 */
496 	if (ttoproc(curthread)->p_model == DATAMODEL_ILP32) {
497 		use_copied = 1;
498 		hat->hat_max_level = mmu.max_level32;
499 		hat->hat_num_copied = mmu.num_copied_ents32;
500 		use_hat32_cache = B_TRUE;
501 		hat->hat_flags |= HAT_COPIED_32;
502 		HATSTAT_INC(hs_hat_copied32);
503 	} else if (kpti_enable == 1) {
504 		use_copied = 1;
505 		hat->hat_max_level = mmu.max_level;
506 		hat->hat_num_copied = mmu.num_copied_ents;
507 		use_hat32_cache = B_FALSE;
508 		HATSTAT_INC(hs_hat_copied64);
509 	} else {
510 		use_copied = 0;
511 		use_hat32_cache = B_FALSE;
512 		hat->hat_max_level = mmu.max_level;
513 		hat->hat_num_copied = 0;
514 		hat->hat_flags = 0;
515 		HATSTAT_INC(hs_hat_normal64);
516 	}
517 #endif	/* __xpv */
518 	if (use_copied) {
519 		hat->hat_flags |= HAT_COPIED;
520 		bzero(hat->hat_copied_ptes, sizeof (hat->hat_copied_ptes));
521 	}
522 
523 	/*
524 	 * Allocate the htable hash. For 32-bit PCP processes we use the
525 	 * hat32_hash_cache. However, for 64-bit PCP processes we do not as the
526 	 * number of entries that they have to handle is closer to
527 	 * hat_hash_cache in count (though there will be more wastage when we
528 	 * have more DRAM in the system and thus push down the user address
529 	 * range).
530 	 */
531 	if (use_hat32_cache) {
532 		hat->hat_num_hash = mmu.hat32_hash_cnt;
533 		hat->hat_ht_hash = kmem_cache_alloc(hat32_hash_cache, KM_SLEEP);
534 	} else {
535 		hat->hat_num_hash = mmu.hash_cnt;
536 		hat->hat_ht_hash = kmem_cache_alloc(hat_hash_cache, KM_SLEEP);
537 	}
538 	bzero(hat->hat_ht_hash, hat->hat_num_hash * sizeof (htable_t *));
539 
540 	/*
541 	 * Initialize Kernel HAT entries at the top of the top level page
542 	 * tables for the new hat.
543 	 */
544 	hat->hat_htable = NULL;
545 	hat->hat_ht_cached = NULL;
546 	XPV_DISALLOW_MIGRATE();
547 	ht = htable_create(hat, (uintptr_t)0, TOP_LEVEL(hat), NULL);
548 	hat->hat_htable = ht;
549 
550 #if defined(__amd64)
551 	if (hat->hat_flags & HAT_COPIED)
552 		goto init_done;
553 #endif
554 
555 	for (r = 0; r < num_kernel_ranges; ++r) {
556 		rp = &kernel_ranges[r];
557 		for (va = rp->hkr_start_va; va != rp->hkr_end_va;
558 		    va += cnt * LEVEL_SIZE(rp->hkr_level)) {
559 
560 			if (rp->hkr_level == TOP_LEVEL(hat))
561 				ht = hat->hat_htable;
562 			else
563 				ht = htable_create(hat, va, rp->hkr_level,
564 				    NULL);
565 
566 			start = htable_va2entry(va, ht);
567 			cnt = HTABLE_NUM_PTES(ht) - start;
568 			eva = va +
569 			    ((uintptr_t)cnt << LEVEL_SHIFT(rp->hkr_level));
570 			if (rp->hkr_end_va != 0 &&
571 			    (eva > rp->hkr_end_va || eva == 0))
572 				cnt = htable_va2entry(rp->hkr_end_va, ht) -
573 				    start;
574 
575 #if defined(__i386) && !defined(__xpv)
576 			if (ht->ht_flags & HTABLE_COPIED) {
577 				bcopy(&pcp_page[start],
578 				    &hat->hat_copied_ptes[start],
579 				    cnt * sizeof (x86pte_t));
580 				continue;
581 			}
582 #endif
583 			src = htable_lookup(kas.a_hat, va, rp->hkr_level);
584 			ASSERT(src != NULL);
585 			x86pte_copy(src, ht, start, cnt);
586 			htable_release(src);
587 		}
588 	}
589 
590 init_done:
591 
592 #if defined(__xpv)
593 	/*
594 	 * Pin top level page tables after initializing them
595 	 */
596 	xen_pin(hat->hat_htable->ht_pfn, mmu.max_level);
597 #if defined(__amd64)
598 	xen_pin(hat->hat_user_ptable, mmu.max_level);
599 #endif
600 #endif
601 	XPV_ALLOW_MIGRATE();
602 
603 	hat_list_append(hat);
604 
605 	return (hat);
606 }
607 
608 #if !defined(__xpv)
609 /*
610  * Cons up a HAT for a CPU. This represents the user mappings. This will have
611  * various kernel pages punched into it manually. Importantly, this hat is
612  * ineligible for stealing. We really don't want to deal with this ever
613  * faulting and figuring out that this is happening, much like we don't with
614  * kas.
615  */
616 static hat_t *
617 hat_cpu_alloc(cpu_t *cpu)
618 {
619 	hat_t *hat;
620 	htable_t *ht;
621 
622 	hat = kmem_cache_alloc(hat_cache, KM_SLEEP);
623 	hat->hat_as = NULL;
624 	mutex_init(&hat->hat_mutex, NULL, MUTEX_DEFAULT, NULL);
625 	hat->hat_max_level = mmu.max_level;
626 	hat->hat_num_copied = 0;
627 	hat->hat_flags = HAT_PCP;
628 
629 	hat->hat_num_hash = mmu.hash_cnt;
630 	hat->hat_ht_hash = kmem_cache_alloc(hat_hash_cache, KM_SLEEP);
631 	bzero(hat->hat_ht_hash, hat->hat_num_hash * sizeof (htable_t *));
632 
633 	hat->hat_next = hat->hat_prev = NULL;
634 
635 	/*
636 	 * Because this HAT will only ever be used by the current CPU, we'll go
637 	 * ahead and set the CPUSET up to only point to the CPU in question.
638 	 */
639 	CPUSET_ADD(hat->hat_cpus, cpu->cpu_id);
640 
641 	hat->hat_htable = NULL;
642 	hat->hat_ht_cached = NULL;
643 	ht = htable_create(hat, (uintptr_t)0, TOP_LEVEL(hat), NULL);
644 	hat->hat_htable = ht;
645 
646 	hat_list_append(hat);
647 
648 	return (hat);
649 }
650 #endif /* !__xpv */
651 
652 /*
653  * process has finished executing but as has not been cleaned up yet.
654  */
655 /*ARGSUSED*/
656 void
657 hat_free_start(hat_t *hat)
658 {
659 	ASSERT(AS_WRITE_HELD(hat->hat_as));
660 
661 	/*
662 	 * If the hat is currently a stealing victim, wait for the stealing
663 	 * to finish.  Once we mark it as HAT_FREEING, htable_steal()
664 	 * won't look at its pagetables anymore.
665 	 */
666 	mutex_enter(&hat_list_lock);
667 	while (hat->hat_flags & HAT_VICTIM)
668 		cv_wait(&hat_list_cv, &hat_list_lock);
669 	hat->hat_flags |= HAT_FREEING;
670 	mutex_exit(&hat_list_lock);
671 }
672 
673 /*
674  * An address space is being destroyed, so we destroy the associated hat.
675  */
676 void
677 hat_free_end(hat_t *hat)
678 {
679 	kmem_cache_t *cache;
680 
681 	ASSERT(hat->hat_flags & HAT_FREEING);
682 
683 	/*
684 	 * must not be running on the given hat
685 	 */
686 	ASSERT(CPU->cpu_current_hat != hat);
687 
688 	/*
689 	 * Remove it from the list of HATs
690 	 */
691 	mutex_enter(&hat_list_lock);
692 	if (hat->hat_prev)
693 		hat->hat_prev->hat_next = hat->hat_next;
694 	else
695 		kas.a_hat->hat_next = hat->hat_next;
696 	if (hat->hat_next)
697 		hat->hat_next->hat_prev = hat->hat_prev;
698 	else
699 		kas.a_hat->hat_prev = hat->hat_prev;
700 	mutex_exit(&hat_list_lock);
701 	hat->hat_next = hat->hat_prev = NULL;
702 
703 #if defined(__xpv)
704 	/*
705 	 * On the hypervisor, unpin top level page table(s)
706 	 */
707 	VERIFY3U(hat->hat_flags & HAT_PCP, ==, 0);
708 	xen_unpin(hat->hat_htable->ht_pfn);
709 #if defined(__amd64)
710 	xen_unpin(hat->hat_user_ptable);
711 #endif
712 #endif
713 
714 	/*
715 	 * Make a pass through the htables freeing them all up.
716 	 */
717 	htable_purge_hat(hat);
718 
719 	/*
720 	 * Decide which kmem cache the hash table came from, then free it.
721 	 */
722 	if (hat->hat_flags & HAT_COPIED) {
723 #if defined(__amd64)
724 		if (hat->hat_flags & HAT_COPIED_32) {
725 			cache = hat32_hash_cache;
726 		} else {
727 			cache = hat_hash_cache;
728 		}
729 #else
730 		cache = hat32_hash_cache;
731 #endif
732 	} else {
733 		cache = hat_hash_cache;
734 	}
735 	kmem_cache_free(cache, hat->hat_ht_hash);
736 	hat->hat_ht_hash = NULL;
737 
738 	hat->hat_flags = 0;
739 	hat->hat_max_level = 0;
740 	hat->hat_num_copied = 0;
741 	kmem_cache_free(hat_cache, hat);
742 }
743 
744 /*
745  * round kernelbase down to a supported value to use for _userlimit
746  *
747  * userlimit must be aligned down to an entry in the top level htable.
748  * The one exception is for 32 bit HAT's running PAE.
749  */
750 uintptr_t
751 hat_kernelbase(uintptr_t va)
752 {
753 #if defined(__i386)
754 	va &= LEVEL_MASK(1);
755 #endif
756 	if (IN_VA_HOLE(va))
757 		panic("_userlimit %p will fall in VA hole\n", (void *)va);
758 	return (va);
759 }
760 
761 /*
762  *
763  */
764 static void
765 set_max_page_level()
766 {
767 	level_t lvl;
768 
769 	if (!kbm_largepage_support) {
770 		lvl = 0;
771 	} else {
772 		if (is_x86_feature(x86_featureset, X86FSET_1GPG)) {
773 			lvl = 2;
774 			if (chk_optimal_1gtlb &&
775 			    cpuid_opteron_erratum(CPU, 6671130)) {
776 				lvl = 1;
777 			}
778 			if (plat_mnode_xcheck(LEVEL_SIZE(2) >>
779 			    LEVEL_SHIFT(0))) {
780 				lvl = 1;
781 			}
782 		} else {
783 			lvl = 1;
784 		}
785 	}
786 	mmu.max_page_level = lvl;
787 
788 	if ((lvl == 2) && (enable_1gpg == 0))
789 		mmu.umax_page_level = 1;
790 	else
791 		mmu.umax_page_level = lvl;
792 }
793 
794 /*
795  * Determine the number of slots that are in used in the top-most level page
796  * table for user memory. This is based on _userlimit. In effect this is similar
797  * to htable_va2entry, but without the convenience of having an htable.
798  */
799 void
800 mmu_calc_user_slots(void)
801 {
802 	uint_t ent, nptes;
803 	uintptr_t shift;
804 
805 	nptes = mmu.top_level_count;
806 	shift = _userlimit >> mmu.level_shift[mmu.max_level];
807 	ent = shift & (nptes - 1);
808 
809 	/*
810 	 * Ent tells us the slot that the page for _userlimit would fit in. We
811 	 * need to add one to this to cover the total number of entries.
812 	 */
813 	mmu.top_level_uslots = ent + 1;
814 
815 	/*
816 	 * When running 32-bit compatability processes on a 64-bit kernel, we
817 	 * will only need to use one slot.
818 	 */
819 	mmu.top_level_uslots32 = 1;
820 
821 	/*
822 	 * Record the number of PCP page table entries that we'll need to copy
823 	 * around. For 64-bit processes this is the number of user slots. For
824 	 * 32-bit proceses, this is 4 1 GiB pages.
825 	 */
826 	mmu.num_copied_ents = mmu.top_level_uslots;
827 	mmu.num_copied_ents32 = 4;
828 }
829 
830 /*
831  * Initialize hat data structures based on processor MMU information.
832  */
833 void
834 mmu_init(void)
835 {
836 	uint_t max_htables;
837 	uint_t pa_bits;
838 	uint_t va_bits;
839 	int i;
840 
841 	/*
842 	 * If CPU enabled the page table global bit, use it for the kernel
843 	 * This is bit 7 in CR4 (PGE - Page Global Enable).
844 	 */
845 	if (is_x86_feature(x86_featureset, X86FSET_PGE) &&
846 	    (getcr4() & CR4_PGE) != 0)
847 		mmu.pt_global = PT_GLOBAL;
848 
849 #if !defined(__xpv)
850 	/*
851 	 * The 64-bit x86 kernel has split user/kernel page tables. As such we
852 	 * cannot have the global bit set. The simplest way for us to deal with
853 	 * this is to just say that pt_global is zero, so the global bit isn't
854 	 * present.
855 	 */
856 	if (kpti_enable == 1)
857 		mmu.pt_global = 0;
858 #endif
859 
860 	/*
861 	 * Detect NX and PAE usage.
862 	 */
863 	mmu.pae_hat = kbm_pae_support;
864 	if (kbm_nx_support)
865 		mmu.pt_nx = PT_NX;
866 	else
867 		mmu.pt_nx = 0;
868 
869 	/*
870 	 * Use CPU info to set various MMU parameters
871 	 */
872 	cpuid_get_addrsize(CPU, &pa_bits, &va_bits);
873 
874 	if (va_bits < sizeof (void *) * NBBY) {
875 		mmu.hole_start = (1ul << (va_bits - 1));
876 		mmu.hole_end = 0ul - mmu.hole_start - 1;
877 	} else {
878 		mmu.hole_end = 0;
879 		mmu.hole_start = mmu.hole_end - 1;
880 	}
881 #if defined(OPTERON_ERRATUM_121)
882 	/*
883 	 * If erratum 121 has already been detected at this time, hole_start
884 	 * contains the value to be subtracted from mmu.hole_start.
885 	 */
886 	ASSERT(hole_start == 0 || opteron_erratum_121 != 0);
887 	hole_start = mmu.hole_start - hole_start;
888 #else
889 	hole_start = mmu.hole_start;
890 #endif
891 	hole_end = mmu.hole_end;
892 
893 	mmu.highest_pfn = mmu_btop((1ull << pa_bits) - 1);
894 	if (mmu.pae_hat == 0 && pa_bits > 32)
895 		mmu.highest_pfn = PFN_4G - 1;
896 
897 	if (mmu.pae_hat) {
898 		mmu.pte_size = 8;	/* 8 byte PTEs */
899 		mmu.pte_size_shift = 3;
900 	} else {
901 		mmu.pte_size = 4;	/* 4 byte PTEs */
902 		mmu.pte_size_shift = 2;
903 	}
904 
905 	if (mmu.pae_hat && !is_x86_feature(x86_featureset, X86FSET_PAE))
906 		panic("Processor does not support PAE");
907 
908 	if (!is_x86_feature(x86_featureset, X86FSET_CX8))
909 		panic("Processor does not support cmpxchg8b instruction");
910 
911 #if defined(__amd64)
912 
913 	mmu.num_level = 4;
914 	mmu.max_level = 3;
915 	mmu.ptes_per_table = 512;
916 	mmu.top_level_count = 512;
917 
918 	/*
919 	 * 32-bit processes only use 1 GB ptes.
920 	 */
921 	mmu.max_level32 = 2;
922 
923 	mmu.level_shift[0] = 12;
924 	mmu.level_shift[1] = 21;
925 	mmu.level_shift[2] = 30;
926 	mmu.level_shift[3] = 39;
927 
928 #elif defined(__i386)
929 
930 	if (mmu.pae_hat) {
931 		mmu.num_level = 3;
932 		mmu.max_level = 2;
933 		mmu.ptes_per_table = 512;
934 		mmu.top_level_count = 4;
935 
936 		mmu.level_shift[0] = 12;
937 		mmu.level_shift[1] = 21;
938 		mmu.level_shift[2] = 30;
939 
940 	} else {
941 		mmu.num_level = 2;
942 		mmu.max_level = 1;
943 		mmu.ptes_per_table = 1024;
944 		mmu.top_level_count = 1024;
945 
946 		mmu.level_shift[0] = 12;
947 		mmu.level_shift[1] = 22;
948 	}
949 
950 #endif	/* __i386 */
951 
952 	for (i = 0; i < mmu.num_level; ++i) {
953 		mmu.level_size[i] = 1UL << mmu.level_shift[i];
954 		mmu.level_offset[i] = mmu.level_size[i] - 1;
955 		mmu.level_mask[i] = ~mmu.level_offset[i];
956 	}
957 
958 	set_max_page_level();
959 	mmu_calc_user_slots();
960 
961 	mmu_page_sizes = mmu.max_page_level + 1;
962 	mmu_exported_page_sizes = mmu.umax_page_level + 1;
963 
964 	/* restrict legacy applications from using pagesizes 1g and above */
965 	mmu_legacy_page_sizes =
966 	    (mmu_exported_page_sizes > 2) ? 2 : mmu_exported_page_sizes;
967 
968 
969 	for (i = 0; i <= mmu.max_page_level; ++i) {
970 		mmu.pte_bits[i] = PT_VALID | pt_kern;
971 		if (i > 0)
972 			mmu.pte_bits[i] |= PT_PAGESIZE;
973 	}
974 
975 	/*
976 	 * NOTE Legacy 32 bit PAE mode only has the P_VALID bit at top level.
977 	 */
978 	for (i = 1; i < mmu.num_level; ++i)
979 		mmu.ptp_bits[i] = PT_PTPBITS;
980 
981 #if defined(__i386)
982 	mmu.ptp_bits[2] = PT_VALID;
983 #endif
984 
985 	/*
986 	 * Compute how many hash table entries to have per process for htables.
987 	 * We start with 1 page's worth of entries.
988 	 *
989 	 * If physical memory is small, reduce the amount need to cover it.
990 	 */
991 	max_htables = physmax / mmu.ptes_per_table;
992 	mmu.hash_cnt = MMU_PAGESIZE / sizeof (htable_t *);
993 	while (mmu.hash_cnt > 16 && mmu.hash_cnt >= max_htables)
994 		mmu.hash_cnt >>= 1;
995 	mmu.hat32_hash_cnt = mmu.hash_cnt;
996 
997 #if defined(__amd64)
998 	/*
999 	 * If running in 64 bits and physical memory is large,
1000 	 * increase the size of the cache to cover all of memory for
1001 	 * a 64 bit process.
1002 	 */
1003 #define	HASH_MAX_LENGTH 4
1004 	while (mmu.hash_cnt * HASH_MAX_LENGTH < max_htables)
1005 		mmu.hash_cnt <<= 1;
1006 #endif
1007 }
1008 
1009 
1010 /*
1011  * initialize hat data structures
1012  */
1013 void
1014 hat_init()
1015 {
1016 #if defined(__i386)
1017 	/*
1018 	 * _userlimit must be aligned correctly
1019 	 */
1020 	if ((_userlimit & LEVEL_MASK(1)) != _userlimit) {
1021 		prom_printf("hat_init(): _userlimit=%p, not aligned at %p\n",
1022 		    (void *)_userlimit, (void *)LEVEL_SIZE(1));
1023 		halt("hat_init(): Unable to continue");
1024 	}
1025 #endif
1026 
1027 	cv_init(&hat_list_cv, NULL, CV_DEFAULT, NULL);
1028 
1029 	/*
1030 	 * initialize kmem caches
1031 	 */
1032 	htable_init();
1033 	hment_init();
1034 
1035 	hat_cache = kmem_cache_create("hat_t",
1036 	    sizeof (hat_t), 0, hati_constructor, NULL, NULL,
1037 	    NULL, 0, 0);
1038 
1039 	hat_hash_cache = kmem_cache_create("HatHash",
1040 	    mmu.hash_cnt * sizeof (htable_t *), 0, NULL, NULL, NULL,
1041 	    NULL, 0, 0);
1042 
1043 	/*
1044 	 * 32-bit PCP hats can use a smaller hash table size on large memory
1045 	 * machines
1046 	 */
1047 	if (mmu.hash_cnt == mmu.hat32_hash_cnt) {
1048 		hat32_hash_cache = hat_hash_cache;
1049 	} else {
1050 		hat32_hash_cache = kmem_cache_create("Hat32Hash",
1051 		    mmu.hat32_hash_cnt * sizeof (htable_t *), 0, NULL, NULL,
1052 		    NULL, NULL, 0, 0);
1053 	}
1054 
1055 	/*
1056 	 * Set up the kernel's hat
1057 	 */
1058 	AS_LOCK_ENTER(&kas, RW_WRITER);
1059 	kas.a_hat = kmem_cache_alloc(hat_cache, KM_NOSLEEP);
1060 	mutex_init(&kas.a_hat->hat_mutex, NULL, MUTEX_DEFAULT, NULL);
1061 	kas.a_hat->hat_as = &kas;
1062 	kas.a_hat->hat_flags = 0;
1063 	AS_LOCK_EXIT(&kas);
1064 
1065 	CPUSET_ZERO(khat_cpuset);
1066 	CPUSET_ADD(khat_cpuset, CPU->cpu_id);
1067 
1068 	/*
1069 	 * The kernel HAT doesn't use PCP regardless of architectures.
1070 	 */
1071 	ASSERT3U(mmu.max_level, >, 0);
1072 	kas.a_hat->hat_max_level = mmu.max_level;
1073 	kas.a_hat->hat_num_copied = 0;
1074 
1075 	/*
1076 	 * The kernel hat's next pointer serves as the head of the hat list .
1077 	 * The kernel hat's prev pointer tracks the last hat on the list for
1078 	 * htable_steal() to use.
1079 	 */
1080 	kas.a_hat->hat_next = NULL;
1081 	kas.a_hat->hat_prev = NULL;
1082 
1083 	/*
1084 	 * Allocate an htable hash bucket for the kernel
1085 	 * XX64 - tune for 64 bit procs
1086 	 */
1087 	kas.a_hat->hat_num_hash = mmu.hash_cnt;
1088 	kas.a_hat->hat_ht_hash = kmem_cache_alloc(hat_hash_cache, KM_NOSLEEP);
1089 	bzero(kas.a_hat->hat_ht_hash, mmu.hash_cnt * sizeof (htable_t *));
1090 
1091 	/*
1092 	 * zero out the top level and cached htable pointers
1093 	 */
1094 	kas.a_hat->hat_ht_cached = NULL;
1095 	kas.a_hat->hat_htable = NULL;
1096 
1097 	/*
1098 	 * Pre-allocate hrm_hashtab before enabling the collection of
1099 	 * refmod statistics.  Allocating on the fly would mean us
1100 	 * running the risk of suffering recursive mutex enters or
1101 	 * deadlocks.
1102 	 */
1103 	hrm_hashtab = kmem_zalloc(HRM_HASHSIZE * sizeof (struct hrmstat *),
1104 	    KM_SLEEP);
1105 }
1106 
1107 
1108 extern void kpti_tramp_start();
1109 extern void kpti_tramp_end();
1110 
1111 extern void kdi_isr_start();
1112 extern void kdi_isr_end();
1113 
1114 extern gate_desc_t kdi_idt[NIDT];
1115 
1116 /*
1117  * Prepare per-CPU pagetables for all processes on the 64 bit kernel.
1118  *
1119  * Each CPU has a set of 2 pagetables that are reused for any 32 bit
1120  * process it runs. They are the top level pagetable, hci_pcp_l3ptes, and
1121  * the next to top level table for the bottom 512 Gig, hci_pcp_l2ptes.
1122  */
1123 /*ARGSUSED*/
1124 static void
1125 hat_pcp_setup(struct cpu *cpu)
1126 {
1127 #if !defined(__xpv)
1128 	struct hat_cpu_info *hci = cpu->cpu_hat_info;
1129 	uintptr_t va;
1130 	size_t len;
1131 
1132 	/*
1133 	 * allocate the level==2 page table for the bottom most
1134 	 * 512Gig of address space (this is where 32 bit apps live)
1135 	 */
1136 	ASSERT(hci != NULL);
1137 	hci->hci_pcp_l2ptes = kmem_zalloc(MMU_PAGESIZE, KM_SLEEP);
1138 
1139 	/*
1140 	 * Allocate a top level pagetable and copy the kernel's
1141 	 * entries into it. Then link in hci_pcp_l2ptes in the 1st entry.
1142 	 */
1143 	hci->hci_pcp_l3ptes = kmem_zalloc(MMU_PAGESIZE, KM_SLEEP);
1144 	hci->hci_pcp_l3pfn =
1145 	    hat_getpfnum(kas.a_hat, (caddr_t)hci->hci_pcp_l3ptes);
1146 	ASSERT3U(hci->hci_pcp_l3pfn, !=, PFN_INVALID);
1147 	bcopy(pcp_page, hci->hci_pcp_l3ptes, MMU_PAGESIZE);
1148 
1149 	hci->hci_pcp_l2pfn =
1150 	    hat_getpfnum(kas.a_hat, (caddr_t)hci->hci_pcp_l2ptes);
1151 	ASSERT3U(hci->hci_pcp_l2pfn, !=, PFN_INVALID);
1152 
1153 	/*
1154 	 * Now go through and allocate the user version of these structures.
1155 	 * Unlike with the kernel version, we allocate a hat to represent the
1156 	 * top-level page table as that will make it much simpler when we need
1157 	 * to patch through user entries.
1158 	 */
1159 	hci->hci_user_hat = hat_cpu_alloc(cpu);
1160 	hci->hci_user_l3pfn = hci->hci_user_hat->hat_htable->ht_pfn;
1161 	ASSERT3U(hci->hci_user_l3pfn, !=, PFN_INVALID);
1162 	hci->hci_user_l3ptes =
1163 	    (x86pte_t *)hat_kpm_mapin_pfn(hci->hci_user_l3pfn);
1164 
1165 	/* Skip the rest of this if KPTI is switched off at boot. */
1166 	if (kpti_enable != 1)
1167 		return;
1168 
1169 	/*
1170 	 * OK, now that we have this we need to go through and punch the normal
1171 	 * holes in the CPU's hat for this. At this point we'll punch in the
1172 	 * following:
1173 	 *
1174 	 *   o GDT
1175 	 *   o IDT
1176 	 *   o LDT
1177 	 *   o Trampoline Code
1178 	 *   o machcpu KPTI page
1179 	 *   o kmdb ISR code page (just trampolines)
1180 	 *
1181 	 * If this is cpu0, then we also can initialize the following because
1182 	 * they'll have already been allocated.
1183 	 *
1184 	 *   o TSS for CPU 0
1185 	 *   o Double Fault for CPU 0
1186 	 *
1187 	 * The following items have yet to be allocated and have not been
1188 	 * punched in yet. They will be punched in later:
1189 	 *
1190 	 *   o TSS (mach_cpucontext_alloc_tables())
1191 	 *   o Double Fault Stack (mach_cpucontext_alloc_tables())
1192 	 */
1193 	hati_cpu_punchin(cpu, (uintptr_t)cpu->cpu_gdt, PROT_READ);
1194 	hati_cpu_punchin(cpu, (uintptr_t)cpu->cpu_idt, PROT_READ);
1195 
1196 	/*
1197 	 * As the KDI IDT is only active during kmdb sessions (including single
1198 	 * stepping), typically we don't actually need this punched in (we
1199 	 * consider the routines that switch to the user cr3 to be toxic).  But
1200 	 * if we ever accidentally end up on the user cr3 while on this IDT,
1201 	 * we'd prefer not to triple fault.
1202 	 */
1203 	hati_cpu_punchin(cpu, (uintptr_t)&kdi_idt, PROT_READ);
1204 
1205 	CTASSERT(((uintptr_t)&kpti_tramp_start % MMU_PAGESIZE) == 0);
1206 	CTASSERT(((uintptr_t)&kpti_tramp_end % MMU_PAGESIZE) == 0);
1207 	for (va = (uintptr_t)&kpti_tramp_start;
1208 	    va < (uintptr_t)&kpti_tramp_end; va += MMU_PAGESIZE) {
1209 		hati_cpu_punchin(cpu, va, PROT_READ | PROT_EXEC);
1210 	}
1211 
1212 	VERIFY3U(((uintptr_t)cpu->cpu_m.mcpu_ldt) % MMU_PAGESIZE, ==, 0);
1213 	for (va = (uintptr_t)cpu->cpu_m.mcpu_ldt, len = LDT_CPU_SIZE;
1214 	    len >= MMU_PAGESIZE; va += MMU_PAGESIZE, len -= MMU_PAGESIZE) {
1215 		hati_cpu_punchin(cpu, va, PROT_READ);
1216 	}
1217 
1218 	/* mcpu_pad2 is the start of the page containing the kpti_frames. */
1219 	hati_cpu_punchin(cpu, (uintptr_t)&cpu->cpu_m.mcpu_pad2[0],
1220 	    PROT_READ | PROT_WRITE);
1221 
1222 	if (cpu == &cpus[0]) {
1223 		/*
1224 		 * CPU0 uses a global for its double fault stack to deal with
1225 		 * the chicken and egg problem. We need to punch it into its
1226 		 * user HAT.
1227 		 */
1228 		extern char dblfault_stack0[];
1229 
1230 		hati_cpu_punchin(cpu, (uintptr_t)cpu->cpu_m.mcpu_tss,
1231 		    PROT_READ);
1232 
1233 		for (va = (uintptr_t)dblfault_stack0,
1234 		    len = DEFAULTSTKSZ; len >= MMU_PAGESIZE;
1235 		    va += MMU_PAGESIZE, len -= MMU_PAGESIZE) {
1236 			hati_cpu_punchin(cpu, va, PROT_READ | PROT_WRITE);
1237 		}
1238 	}
1239 
1240 	CTASSERT(((uintptr_t)&kdi_isr_start % MMU_PAGESIZE) == 0);
1241 	CTASSERT(((uintptr_t)&kdi_isr_end % MMU_PAGESIZE) == 0);
1242 	for (va = (uintptr_t)&kdi_isr_start;
1243 	    va < (uintptr_t)&kdi_isr_end; va += MMU_PAGESIZE) {
1244 		hati_cpu_punchin(cpu, va, PROT_READ | PROT_EXEC);
1245 	}
1246 #endif /* !__xpv */
1247 }
1248 
1249 /*ARGSUSED*/
1250 static void
1251 hat_pcp_teardown(cpu_t *cpu)
1252 {
1253 #if !defined(__xpv)
1254 	struct hat_cpu_info *hci;
1255 
1256 	if ((hci = cpu->cpu_hat_info) == NULL)
1257 		return;
1258 	if (hci->hci_pcp_l2ptes != NULL)
1259 		kmem_free(hci->hci_pcp_l2ptes, MMU_PAGESIZE);
1260 	if (hci->hci_pcp_l3ptes != NULL)
1261 		kmem_free(hci->hci_pcp_l3ptes, MMU_PAGESIZE);
1262 	if (hci->hci_user_hat != NULL) {
1263 		hat_free_start(hci->hci_user_hat);
1264 		hat_free_end(hci->hci_user_hat);
1265 	}
1266 #endif
1267 }
1268 
1269 #define	NEXT_HKR(r, l, s, e) {			\
1270 	kernel_ranges[r].hkr_level = l;		\
1271 	kernel_ranges[r].hkr_start_va = s;	\
1272 	kernel_ranges[r].hkr_end_va = e;	\
1273 	++r;					\
1274 }
1275 
1276 /*
1277  * Finish filling in the kernel hat.
1278  * Pre fill in all top level kernel page table entries for the kernel's
1279  * part of the address range.  From this point on we can't use any new
1280  * kernel large pages if they need PTE's at max_level
1281  *
1282  * create the kmap mappings.
1283  */
1284 void
1285 hat_init_finish(void)
1286 {
1287 	size_t		size;
1288 	uint_t		r = 0;
1289 	uintptr_t	va;
1290 	hat_kernel_range_t *rp;
1291 
1292 
1293 	/*
1294 	 * We are now effectively running on the kernel hat.
1295 	 * Clearing use_boot_reserve shuts off using the pre-allocated boot
1296 	 * reserve for all HAT allocations.  From here on, the reserves are
1297 	 * only used when avoiding recursion in kmem_alloc().
1298 	 */
1299 	use_boot_reserve = 0;
1300 	htable_adjust_reserve();
1301 
1302 	/*
1303 	 * User HATs are initialized with copies of all kernel mappings in
1304 	 * higher level page tables. Ensure that those entries exist.
1305 	 */
1306 #if defined(__amd64)
1307 
1308 	NEXT_HKR(r, 3, kernelbase, 0);
1309 #if defined(__xpv)
1310 	NEXT_HKR(r, 3, HYPERVISOR_VIRT_START, HYPERVISOR_VIRT_END);
1311 #endif
1312 
1313 #elif defined(__i386)
1314 
1315 #if !defined(__xpv)
1316 	if (mmu.pae_hat) {
1317 		va = kernelbase;
1318 		if ((va & LEVEL_MASK(2)) != va) {
1319 			va = P2ROUNDUP(va, LEVEL_SIZE(2));
1320 			NEXT_HKR(r, 1, kernelbase, va);
1321 		}
1322 		if (va != 0)
1323 			NEXT_HKR(r, 2, va, 0);
1324 	} else
1325 #endif /* __xpv */
1326 		NEXT_HKR(r, 1, kernelbase, 0);
1327 
1328 #endif /* __i386 */
1329 
1330 	num_kernel_ranges = r;
1331 
1332 	/*
1333 	 * Create all the kernel pagetables that will have entries
1334 	 * shared to user HATs.
1335 	 */
1336 	for (r = 0; r < num_kernel_ranges; ++r) {
1337 		rp = &kernel_ranges[r];
1338 		for (va = rp->hkr_start_va; va != rp->hkr_end_va;
1339 		    va += LEVEL_SIZE(rp->hkr_level)) {
1340 			htable_t *ht;
1341 
1342 			if (IN_HYPERVISOR_VA(va))
1343 				continue;
1344 
1345 			/* can/must skip if a page mapping already exists */
1346 			if (rp->hkr_level <= mmu.max_page_level &&
1347 			    (ht = htable_getpage(kas.a_hat, va, NULL)) !=
1348 			    NULL) {
1349 				htable_release(ht);
1350 				continue;
1351 			}
1352 
1353 			(void) htable_create(kas.a_hat, va, rp->hkr_level - 1,
1354 			    NULL);
1355 		}
1356 	}
1357 
1358 	/*
1359 	 * 32 bit PAE metal kernels use only 4 of the 512 entries in the
1360 	 * page holding the top level pagetable. We use the remainder for
1361 	 * the "per CPU" page tables for PCP processes.
1362 	 * Map the top level kernel pagetable into the kernel to make
1363 	 * it easy to use bcopy access these tables.
1364 	 *
1365 	 * PAE is required for the 64-bit kernel which uses this as well to
1366 	 * perform the per-CPU pagetables. See the big theory statement.
1367 	 */
1368 	if (mmu.pae_hat) {
1369 		pcp_page = vmem_alloc(heap_arena, MMU_PAGESIZE, VM_SLEEP);
1370 		hat_devload(kas.a_hat, (caddr_t)pcp_page, MMU_PAGESIZE,
1371 		    kas.a_hat->hat_htable->ht_pfn,
1372 #if !defined(__xpv)
1373 		    PROT_WRITE |
1374 #endif
1375 		    PROT_READ | HAT_NOSYNC | HAT_UNORDERED_OK,
1376 		    HAT_LOAD | HAT_LOAD_NOCONSIST);
1377 	}
1378 	hat_pcp_setup(CPU);
1379 
1380 	/*
1381 	 * Create kmap (cached mappings of kernel PTEs)
1382 	 * for 32 bit we map from segmap_start .. ekernelheap
1383 	 * for 64 bit we map from segmap_start .. segmap_start + segmapsize;
1384 	 */
1385 #if defined(__i386)
1386 	size = (uintptr_t)ekernelheap - segmap_start;
1387 #elif defined(__amd64)
1388 	size = segmapsize;
1389 #endif
1390 	hat_kmap_init((uintptr_t)segmap_start, size);
1391 
1392 #if !defined(__xpv)
1393 	ASSERT3U(kas.a_hat->hat_htable->ht_pfn, !=, PFN_INVALID);
1394 	ASSERT3U(kpti_safe_cr3, ==,
1395 	    MAKECR3(kas.a_hat->hat_htable->ht_pfn, PCID_KERNEL));
1396 #endif
1397 }
1398 
1399 /*
1400  * On 32 bit PAE mode, PTE's are 64 bits, but ordinary atomic memory references
1401  * are 32 bit, so for safety we must use atomic_cas_64() to install these.
1402  */
1403 #ifdef __i386
1404 static void
1405 reload_pae32(hat_t *hat, cpu_t *cpu)
1406 {
1407 	x86pte_t *src;
1408 	x86pte_t *dest;
1409 	x86pte_t pte;
1410 	int i;
1411 
1412 	/*
1413 	 * Load the 4 entries of the level 2 page table into this
1414 	 * cpu's range of the pcp_page and point cr3 at them.
1415 	 */
1416 	ASSERT(mmu.pae_hat);
1417 	src = hat->hat_copied_ptes;
1418 	dest = pcp_page + (cpu->cpu_id + 1) * MAX_COPIED_PTES;
1419 	for (i = 0; i < MAX_COPIED_PTES; ++i) {
1420 		for (;;) {
1421 			pte = dest[i];
1422 			if (pte == src[i])
1423 				break;
1424 			if (atomic_cas_64(dest + i, pte, src[i]) != src[i])
1425 				break;
1426 		}
1427 	}
1428 }
1429 #endif
1430 
1431 /*
1432  * Update the PCP data on the CPU cpu to the one on the hat. If this is a 32-bit
1433  * process, then we must update the L2 pages and then the L3. If this is a
1434  * 64-bit process then we must update the L3 entries.
1435  */
1436 static void
1437 hat_pcp_update(cpu_t *cpu, const hat_t *hat)
1438 {
1439 	ASSERT3U(hat->hat_flags & HAT_COPIED, !=, 0);
1440 
1441 	if ((hat->hat_flags & HAT_COPIED_32) != 0) {
1442 		const x86pte_t *l2src;
1443 		x86pte_t *l2dst, *l3ptes, *l3uptes;
1444 		/*
1445 		 * This is a 32-bit process. To set this up, we need to do the
1446 		 * following:
1447 		 *
1448 		 *  - Copy the 4 L2 PTEs into the dedicated L2 table
1449 		 *  - Zero the user L3 PTEs in the user and kernel page table
1450 		 *  - Set the first L3 PTE to point to the CPU L2 table
1451 		 */
1452 		l2src = hat->hat_copied_ptes;
1453 		l2dst = cpu->cpu_hat_info->hci_pcp_l2ptes;
1454 		l3ptes = cpu->cpu_hat_info->hci_pcp_l3ptes;
1455 		l3uptes = cpu->cpu_hat_info->hci_user_l3ptes;
1456 
1457 		l2dst[0] = l2src[0];
1458 		l2dst[1] = l2src[1];
1459 		l2dst[2] = l2src[2];
1460 		l2dst[3] = l2src[3];
1461 
1462 		/*
1463 		 * Make sure to use the mmu to get the number of slots. The
1464 		 * number of PLP entries that this has will always be less as
1465 		 * it's a 32-bit process.
1466 		 */
1467 		bzero(l3ptes, sizeof (x86pte_t) * mmu.top_level_uslots);
1468 		l3ptes[0] = MAKEPTP(cpu->cpu_hat_info->hci_pcp_l2pfn, 2);
1469 		bzero(l3uptes, sizeof (x86pte_t) * mmu.top_level_uslots);
1470 		l3uptes[0] = MAKEPTP(cpu->cpu_hat_info->hci_pcp_l2pfn, 2);
1471 	} else {
1472 		/*
1473 		 * This is a 64-bit process. To set this up, we need to do the
1474 		 * following:
1475 		 *
1476 		 *  - Zero the 4 L2 PTEs in the CPU structure for safety
1477 		 *  - Copy over the new user L3 PTEs into the kernel page table
1478 		 *  - Copy over the new user L3 PTEs into the user page table
1479 		 */
1480 		ASSERT3S(kpti_enable, ==, 1);
1481 		bzero(cpu->cpu_hat_info->hci_pcp_l2ptes, sizeof (x86pte_t) * 4);
1482 		bcopy(hat->hat_copied_ptes, cpu->cpu_hat_info->hci_pcp_l3ptes,
1483 		    sizeof (x86pte_t) * mmu.top_level_uslots);
1484 		bcopy(hat->hat_copied_ptes, cpu->cpu_hat_info->hci_user_l3ptes,
1485 		    sizeof (x86pte_t) * mmu.top_level_uslots);
1486 	}
1487 }
1488 
1489 static void
1490 reset_kpti(struct kpti_frame *fr, uint64_t kcr3, uint64_t ucr3)
1491 {
1492 	ASSERT3U(fr->kf_tr_flag, ==, 0);
1493 #if DEBUG
1494 	if (fr->kf_kernel_cr3 != 0) {
1495 		ASSERT3U(fr->kf_lower_redzone, ==, 0xdeadbeefdeadbeef);
1496 		ASSERT3U(fr->kf_middle_redzone, ==, 0xdeadbeefdeadbeef);
1497 		ASSERT3U(fr->kf_upper_redzone, ==, 0xdeadbeefdeadbeef);
1498 	}
1499 #endif
1500 
1501 	bzero(fr, offsetof(struct kpti_frame, kf_kernel_cr3));
1502 	bzero(&fr->kf_unused, sizeof (struct kpti_frame) -
1503 	    offsetof(struct kpti_frame, kf_unused));
1504 
1505 	fr->kf_kernel_cr3 = kcr3;
1506 	fr->kf_user_cr3 = ucr3;
1507 	fr->kf_tr_ret_rsp = (uintptr_t)&fr->kf_tr_rsp;
1508 
1509 	fr->kf_lower_redzone = 0xdeadbeefdeadbeef;
1510 	fr->kf_middle_redzone = 0xdeadbeefdeadbeef;
1511 	fr->kf_upper_redzone = 0xdeadbeefdeadbeef;
1512 }
1513 
1514 #ifdef __xpv
1515 static void
1516 hat_switch_xen(hat_t *hat)
1517 {
1518 	struct mmuext_op t[2];
1519 	uint_t retcnt;
1520 	uint_t opcnt = 1;
1521 	uint64_t newcr3;
1522 
1523 	ASSERT(!(hat->hat_flags & HAT_COPIED));
1524 	ASSERT(!(getcr4() & CR4_PCIDE));
1525 
1526 	newcr3 = MAKECR3((uint64_t)hat->hat_htable->ht_pfn, PCID_NONE);
1527 
1528 	t[0].cmd = MMUEXT_NEW_BASEPTR;
1529 	t[0].arg1.mfn = mmu_btop(pa_to_ma(newcr3));
1530 
1531 	/*
1532 	 * There's an interesting problem here, as to what to actually specify
1533 	 * when switching to the kernel hat.  For now we'll reuse the kernel hat
1534 	 * again.
1535 	 */
1536 	t[1].cmd = MMUEXT_NEW_USER_BASEPTR;
1537 	if (hat == kas.a_hat)
1538 		t[1].arg1.mfn = mmu_btop(pa_to_ma(newcr3));
1539 	else
1540 		t[1].arg1.mfn = pfn_to_mfn(hat->hat_user_ptable);
1541 	++opcnt;
1542 
1543 	if (HYPERVISOR_mmuext_op(t, opcnt, &retcnt, DOMID_SELF) < 0)
1544 		panic("HYPERVISOR_mmu_update() failed");
1545 	ASSERT(retcnt == opcnt);
1546 }
1547 #endif /* __xpv */
1548 
1549 /*
1550  * Switch to a new active hat, maintaining bit masks to track active CPUs.
1551  *
1552  * With KPTI, all our HATs except kas should be using PCP.  Thus, to switch
1553  * HATs, we need to copy over the new user PTEs, then set our trampoline context
1554  * as appropriate.
1555  *
1556  * If lacking PCID, we then load our new cr3, which will flush the TLB: we may
1557  * have established userspace TLB entries via kernel accesses, and these are no
1558  * longer valid.  We have to do this eagerly, as we just deleted this CPU from
1559  * ->hat_cpus, so would no longer see any TLB shootdowns.
1560  *
1561  * With PCID enabled, things get a little more complicated.  We would like to
1562  * keep TLB context around when entering and exiting the kernel, and to do this,
1563  * we partition the TLB into two different spaces:
1564  *
1565  * PCID_KERNEL is defined as zero, and used both by kas and all other address
1566  * spaces while in the kernel (post-trampoline).
1567  *
1568  * PCID_USER is used while in userspace.  Therefore, userspace cannot use any
1569  * lingering PCID_KERNEL entries to kernel addresses it should not be able to
1570  * read.
1571  *
1572  * The trampoline cr3s are set not to invalidate on a mov to %cr3. This means if
1573  * we take a journey through the kernel without switching HATs, we have some
1574  * hope of keeping our TLB state around.
1575  *
1576  * On a hat switch, rather than deal with any necessary flushes on the way out
1577  * of the trampolines, we do them upfront here. If we're switching from kas, we
1578  * shouldn't need any invalidation.
1579  *
1580  * Otherwise, we can have stale userspace entries for both PCID_USER (what
1581  * happened before we move onto the kcr3) and PCID_KERNEL (any subsequent
1582  * userspace accesses such as ddi_copyin()).  Since setcr3() won't do these
1583  * flushes on its own in PCIDE, we'll do a non-flushing load and then
1584  * invalidate everything.
1585  */
1586 void
1587 hat_switch(hat_t *hat)
1588 {
1589 	cpu_t *cpu = CPU;
1590 	hat_t *old = cpu->cpu_current_hat;
1591 
1592 	/*
1593 	 * set up this information first, so we don't miss any cross calls
1594 	 */
1595 	if (old != NULL) {
1596 		if (old == hat)
1597 			return;
1598 		if (old != kas.a_hat)
1599 			CPUSET_ATOMIC_DEL(old->hat_cpus, cpu->cpu_id);
1600 	}
1601 
1602 	/*
1603 	 * Add this CPU to the active set for this HAT.
1604 	 */
1605 	if (hat != kas.a_hat) {
1606 		CPUSET_ATOMIC_ADD(hat->hat_cpus, cpu->cpu_id);
1607 	}
1608 	cpu->cpu_current_hat = hat;
1609 
1610 #if defined(__xpv)
1611 	hat_switch_xen(hat);
1612 #else
1613 	struct hat_cpu_info *info = cpu->cpu_m.mcpu_hat_info;
1614 	uint64_t pcide = getcr4() & CR4_PCIDE;
1615 	uint64_t kcr3, ucr3;
1616 	pfn_t tl_kpfn;
1617 	ulong_t	flag;
1618 
1619 	EQUIV(kpti_enable, !mmu.pt_global);
1620 
1621 	if (hat->hat_flags & HAT_COPIED) {
1622 		hat_pcp_update(cpu, hat);
1623 		tl_kpfn = info->hci_pcp_l3pfn;
1624 	} else {
1625 		IMPLY(kpti_enable, hat == kas.a_hat);
1626 		tl_kpfn = hat->hat_htable->ht_pfn;
1627 	}
1628 
1629 	if (pcide) {
1630 		ASSERT(kpti_enable);
1631 
1632 		kcr3 = MAKECR3(tl_kpfn, PCID_KERNEL) | CR3_NOINVL_BIT;
1633 		ucr3 = MAKECR3(info->hci_user_l3pfn, PCID_USER) |
1634 		    CR3_NOINVL_BIT;
1635 
1636 		setcr3(kcr3);
1637 		if (old != kas.a_hat)
1638 			mmu_flush_tlb(FLUSH_TLB_ALL, NULL);
1639 	} else {
1640 		kcr3 = MAKECR3(tl_kpfn, PCID_NONE);
1641 		ucr3 = kpti_enable ?
1642 		    MAKECR3(info->hci_user_l3pfn, PCID_NONE) :
1643 		    0;
1644 
1645 		setcr3(kcr3);
1646 	}
1647 
1648 	/*
1649 	 * We will already be taking shootdowns for our new HAT, and as KPTI
1650 	 * invpcid emulation needs to use kf_user_cr3, make sure we don't get
1651 	 * any cross calls while we're inconsistent.  Note that it's harmless to
1652 	 * have a *stale* kf_user_cr3 (we just did a FLUSH_TLB_ALL), but a
1653 	 * *zero* kf_user_cr3 is not going to go very well.
1654 	 */
1655 	if (pcide)
1656 		flag = intr_clear();
1657 
1658 	reset_kpti(&cpu->cpu_m.mcpu_kpti, kcr3, ucr3);
1659 	reset_kpti(&cpu->cpu_m.mcpu_kpti_flt, kcr3, ucr3);
1660 	reset_kpti(&cpu->cpu_m.mcpu_kpti_dbg, kcr3, ucr3);
1661 
1662 	if (pcide)
1663 		intr_restore(flag);
1664 
1665 #endif /* !__xpv */
1666 
1667 	ASSERT(cpu == CPU);
1668 }
1669 
1670 /*
1671  * Utility to return a valid x86pte_t from protections, pfn, and level number
1672  */
1673 static x86pte_t
1674 hati_mkpte(pfn_t pfn, uint_t attr, level_t level, uint_t flags)
1675 {
1676 	x86pte_t	pte;
1677 	uint_t		cache_attr = attr & HAT_ORDER_MASK;
1678 
1679 	pte = MAKEPTE(pfn, level);
1680 
1681 	if (attr & PROT_WRITE)
1682 		PTE_SET(pte, PT_WRITABLE);
1683 
1684 	if (attr & PROT_USER)
1685 		PTE_SET(pte, PT_USER);
1686 
1687 	if (!(attr & PROT_EXEC))
1688 		PTE_SET(pte, mmu.pt_nx);
1689 
1690 	/*
1691 	 * Set the software bits used track ref/mod sync's and hments.
1692 	 * If not using REF/MOD, set them to avoid h/w rewriting PTEs.
1693 	 */
1694 	if (flags & HAT_LOAD_NOCONSIST)
1695 		PTE_SET(pte, PT_NOCONSIST | PT_REF | PT_MOD);
1696 	else if (attr & HAT_NOSYNC)
1697 		PTE_SET(pte, PT_NOSYNC | PT_REF | PT_MOD);
1698 
1699 	/*
1700 	 * Set the caching attributes in the PTE. The combination
1701 	 * of attributes are poorly defined, so we pay attention
1702 	 * to them in the given order.
1703 	 *
1704 	 * The test for HAT_STRICTORDER is different because it's defined
1705 	 * as "0" - which was a stupid thing to do, but is too late to change!
1706 	 */
1707 	if (cache_attr == HAT_STRICTORDER) {
1708 		PTE_SET(pte, PT_NOCACHE);
1709 	/*LINTED [Lint hates empty ifs, but it's the obvious way to do this] */
1710 	} else if (cache_attr & (HAT_UNORDERED_OK | HAT_STORECACHING_OK)) {
1711 		/* nothing to set */;
1712 	} else if (cache_attr & (HAT_MERGING_OK | HAT_LOADCACHING_OK)) {
1713 		PTE_SET(pte, PT_NOCACHE);
1714 		if (is_x86_feature(x86_featureset, X86FSET_PAT))
1715 			PTE_SET(pte, (level == 0) ? PT_PAT_4K : PT_PAT_LARGE);
1716 		else
1717 			PTE_SET(pte, PT_WRITETHRU);
1718 	} else {
1719 		panic("hati_mkpte(): bad caching attributes: %x\n", cache_attr);
1720 	}
1721 
1722 	return (pte);
1723 }
1724 
1725 /*
1726  * Duplicate address translations of the parent to the child.
1727  * This function really isn't used anymore.
1728  */
1729 /*ARGSUSED*/
1730 int
1731 hat_dup(hat_t *old, hat_t *new, caddr_t addr, size_t len, uint_t flag)
1732 {
1733 	ASSERT((uintptr_t)addr < kernelbase);
1734 	ASSERT(new != kas.a_hat);
1735 	ASSERT(old != kas.a_hat);
1736 	return (0);
1737 }
1738 
1739 /*
1740  * Allocate any hat resources required for a process being swapped in.
1741  */
1742 /*ARGSUSED*/
1743 void
1744 hat_swapin(hat_t *hat)
1745 {
1746 	/* do nothing - we let everything fault back in */
1747 }
1748 
1749 /*
1750  * Unload all translations associated with an address space of a process
1751  * that is being swapped out.
1752  */
1753 void
1754 hat_swapout(hat_t *hat)
1755 {
1756 	uintptr_t	vaddr = (uintptr_t)0;
1757 	uintptr_t	eaddr = _userlimit;
1758 	htable_t	*ht = NULL;
1759 	level_t		l;
1760 
1761 	XPV_DISALLOW_MIGRATE();
1762 	/*
1763 	 * We can't just call hat_unload(hat, 0, _userlimit...)  here, because
1764 	 * seg_spt and shared pagetables can't be swapped out.
1765 	 * Take a look at segspt_shmswapout() - it's a big no-op.
1766 	 *
1767 	 * Instead we'll walk through all the address space and unload
1768 	 * any mappings which we are sure are not shared, not locked.
1769 	 */
1770 	ASSERT(IS_PAGEALIGNED(vaddr));
1771 	ASSERT(IS_PAGEALIGNED(eaddr));
1772 	ASSERT(AS_LOCK_HELD(hat->hat_as));
1773 	if ((uintptr_t)hat->hat_as->a_userlimit < eaddr)
1774 		eaddr = (uintptr_t)hat->hat_as->a_userlimit;
1775 
1776 	while (vaddr < eaddr) {
1777 		(void) htable_walk(hat, &ht, &vaddr, eaddr);
1778 		if (ht == NULL)
1779 			break;
1780 
1781 		ASSERT(!IN_VA_HOLE(vaddr));
1782 
1783 		/*
1784 		 * If the page table is shared skip its entire range.
1785 		 */
1786 		l = ht->ht_level;
1787 		if (ht->ht_flags & HTABLE_SHARED_PFN) {
1788 			vaddr = ht->ht_vaddr + LEVEL_SIZE(l + 1);
1789 			htable_release(ht);
1790 			ht = NULL;
1791 			continue;
1792 		}
1793 
1794 		/*
1795 		 * If the page table has no locked entries, unload this one.
1796 		 */
1797 		if (ht->ht_lock_cnt == 0)
1798 			hat_unload(hat, (caddr_t)vaddr, LEVEL_SIZE(l),
1799 			    HAT_UNLOAD_UNMAP);
1800 
1801 		/*
1802 		 * If we have a level 0 page table with locked entries,
1803 		 * skip the entire page table, otherwise skip just one entry.
1804 		 */
1805 		if (ht->ht_lock_cnt > 0 && l == 0)
1806 			vaddr = ht->ht_vaddr + LEVEL_SIZE(1);
1807 		else
1808 			vaddr += LEVEL_SIZE(l);
1809 	}
1810 	if (ht)
1811 		htable_release(ht);
1812 
1813 	/*
1814 	 * We're in swapout because the system is low on memory, so
1815 	 * go back and flush all the htables off the cached list.
1816 	 */
1817 	htable_purge_hat(hat);
1818 	XPV_ALLOW_MIGRATE();
1819 }
1820 
1821 /*
1822  * returns number of bytes that have valid mappings in hat.
1823  */
1824 size_t
1825 hat_get_mapped_size(hat_t *hat)
1826 {
1827 	size_t total = 0;
1828 	int l;
1829 
1830 	for (l = 0; l <= mmu.max_page_level; l++)
1831 		total += (hat->hat_pages_mapped[l] << LEVEL_SHIFT(l));
1832 	total += hat->hat_ism_pgcnt;
1833 
1834 	return (total);
1835 }
1836 
1837 /*
1838  * enable/disable collection of stats for hat.
1839  */
1840 int
1841 hat_stats_enable(hat_t *hat)
1842 {
1843 	atomic_inc_32(&hat->hat_stats);
1844 	return (1);
1845 }
1846 
1847 void
1848 hat_stats_disable(hat_t *hat)
1849 {
1850 	atomic_dec_32(&hat->hat_stats);
1851 }
1852 
1853 /*
1854  * Utility to sync the ref/mod bits from a page table entry to the page_t
1855  * We must be holding the mapping list lock when this is called.
1856  */
1857 static void
1858 hati_sync_pte_to_page(page_t *pp, x86pte_t pte, level_t level)
1859 {
1860 	uint_t	rm = 0;
1861 	pgcnt_t	pgcnt;
1862 
1863 	if (PTE_GET(pte, PT_SOFTWARE) >= PT_NOSYNC)
1864 		return;
1865 
1866 	if (PTE_GET(pte, PT_REF))
1867 		rm |= P_REF;
1868 
1869 	if (PTE_GET(pte, PT_MOD))
1870 		rm |= P_MOD;
1871 
1872 	if (rm == 0)
1873 		return;
1874 
1875 	/*
1876 	 * sync to all constituent pages of a large page
1877 	 */
1878 	ASSERT(x86_hm_held(pp));
1879 	pgcnt = page_get_pagecnt(level);
1880 	ASSERT(IS_P2ALIGNED(pp->p_pagenum, pgcnt));
1881 	for (; pgcnt > 0; --pgcnt) {
1882 		/*
1883 		 * hat_page_demote() can't decrease
1884 		 * pszc below this mapping size
1885 		 * since this large mapping existed after we
1886 		 * took mlist lock.
1887 		 */
1888 		ASSERT(pp->p_szc >= level);
1889 		hat_page_setattr(pp, rm);
1890 		++pp;
1891 	}
1892 }
1893 
1894 /*
1895  * This the set of PTE bits for PFN, permissions and caching
1896  * that are allowed to change on a HAT_LOAD_REMAP
1897  */
1898 #define	PT_REMAP_BITS							\
1899 	(PT_PADDR | PT_NX | PT_WRITABLE | PT_WRITETHRU |		\
1900 	PT_NOCACHE | PT_PAT_4K | PT_PAT_LARGE | PT_IGNORE | PT_REF | PT_MOD)
1901 
1902 #define	REMAPASSERT(EX)	if (!(EX)) panic("hati_pte_map: " #EX)
1903 /*
1904  * Do the low-level work to get a mapping entered into a HAT's pagetables
1905  * and in the mapping list of the associated page_t.
1906  */
1907 static int
1908 hati_pte_map(
1909 	htable_t	*ht,
1910 	uint_t		entry,
1911 	page_t		*pp,
1912 	x86pte_t	pte,
1913 	int		flags,
1914 	void		*pte_ptr)
1915 {
1916 	hat_t		*hat = ht->ht_hat;
1917 	x86pte_t	old_pte;
1918 	level_t		l = ht->ht_level;
1919 	hment_t		*hm;
1920 	uint_t		is_consist;
1921 	uint_t		is_locked;
1922 	int		rv = 0;
1923 
1924 	/*
1925 	 * Is this a consistent (ie. need mapping list lock) mapping?
1926 	 */
1927 	is_consist = (pp != NULL && (flags & HAT_LOAD_NOCONSIST) == 0);
1928 
1929 	/*
1930 	 * Track locked mapping count in the htable.  Do this first,
1931 	 * as we track locking even if there already is a mapping present.
1932 	 */
1933 	is_locked = (flags & HAT_LOAD_LOCK) != 0 && hat != kas.a_hat;
1934 	if (is_locked)
1935 		HTABLE_LOCK_INC(ht);
1936 
1937 	/*
1938 	 * Acquire the page's mapping list lock and get an hment to use.
1939 	 * Note that hment_prepare() might return NULL.
1940 	 */
1941 	if (is_consist) {
1942 		x86_hm_enter(pp);
1943 		hm = hment_prepare(ht, entry, pp);
1944 	}
1945 
1946 	/*
1947 	 * Set the new pte, retrieving the old one at the same time.
1948 	 */
1949 	old_pte = x86pte_set(ht, entry, pte, pte_ptr);
1950 
1951 	/*
1952 	 * Did we get a large page / page table collision?
1953 	 */
1954 	if (old_pte == LPAGE_ERROR) {
1955 		if (is_locked)
1956 			HTABLE_LOCK_DEC(ht);
1957 		rv = -1;
1958 		goto done;
1959 	}
1960 
1961 	/*
1962 	 * If the mapping didn't change there is nothing more to do.
1963 	 */
1964 	if (PTE_EQUIV(pte, old_pte))
1965 		goto done;
1966 
1967 	/*
1968 	 * Install a new mapping in the page's mapping list
1969 	 */
1970 	if (!PTE_ISVALID(old_pte)) {
1971 		if (is_consist) {
1972 			hment_assign(ht, entry, pp, hm);
1973 			x86_hm_exit(pp);
1974 		} else {
1975 			ASSERT(flags & HAT_LOAD_NOCONSIST);
1976 		}
1977 #if defined(__amd64)
1978 		if (ht->ht_flags & HTABLE_COPIED) {
1979 			cpu_t *cpu = CPU;
1980 			hat_pcp_update(cpu, hat);
1981 		}
1982 #endif
1983 		HTABLE_INC(ht->ht_valid_cnt);
1984 		PGCNT_INC(hat, l);
1985 		return (rv);
1986 	}
1987 
1988 	/*
1989 	 * Remap's are more complicated:
1990 	 *  - HAT_LOAD_REMAP must be specified if changing the pfn.
1991 	 *    We also require that NOCONSIST be specified.
1992 	 *  - Otherwise only permission or caching bits may change.
1993 	 */
1994 	if (!PTE_ISPAGE(old_pte, l))
1995 		panic("non-null/page mapping pte=" FMT_PTE, old_pte);
1996 
1997 	if (PTE2PFN(old_pte, l) != PTE2PFN(pte, l)) {
1998 		REMAPASSERT(flags & HAT_LOAD_REMAP);
1999 		REMAPASSERT(flags & HAT_LOAD_NOCONSIST);
2000 		REMAPASSERT(PTE_GET(old_pte, PT_SOFTWARE) >= PT_NOCONSIST);
2001 		REMAPASSERT(pf_is_memory(PTE2PFN(old_pte, l)) ==
2002 		    pf_is_memory(PTE2PFN(pte, l)));
2003 		REMAPASSERT(!is_consist);
2004 	}
2005 
2006 	/*
2007 	 * We only let remaps change the certain bits in the PTE.
2008 	 */
2009 	if (PTE_GET(old_pte, ~PT_REMAP_BITS) != PTE_GET(pte, ~PT_REMAP_BITS))
2010 		panic("remap bits changed: old_pte="FMT_PTE", pte="FMT_PTE"\n",
2011 		    old_pte, pte);
2012 
2013 	/*
2014 	 * We don't create any mapping list entries on a remap, so release
2015 	 * any allocated hment after we drop the mapping list lock.
2016 	 */
2017 done:
2018 	if (is_consist) {
2019 		x86_hm_exit(pp);
2020 		if (hm != NULL)
2021 			hment_free(hm);
2022 	}
2023 	return (rv);
2024 }
2025 
2026 /*
2027  * Internal routine to load a single page table entry. This only fails if
2028  * we attempt to overwrite a page table link with a large page.
2029  */
2030 static int
2031 hati_load_common(
2032 	hat_t		*hat,
2033 	uintptr_t	va,
2034 	page_t		*pp,
2035 	uint_t		attr,
2036 	uint_t		flags,
2037 	level_t		level,
2038 	pfn_t		pfn)
2039 {
2040 	htable_t	*ht;
2041 	uint_t		entry;
2042 	x86pte_t	pte;
2043 	int		rv = 0;
2044 
2045 	/*
2046 	 * The number 16 is arbitrary and here to catch a recursion problem
2047 	 * early before we blow out the kernel stack.
2048 	 */
2049 	++curthread->t_hatdepth;
2050 	ASSERT(curthread->t_hatdepth < 16);
2051 
2052 	ASSERT(hat == kas.a_hat || (hat->hat_flags & HAT_PCP) != 0 ||
2053 	    AS_LOCK_HELD(hat->hat_as));
2054 
2055 	if (flags & HAT_LOAD_SHARE)
2056 		hat->hat_flags |= HAT_SHARED;
2057 
2058 	/*
2059 	 * Find the page table that maps this page if it already exists.
2060 	 */
2061 	ht = htable_lookup(hat, va, level);
2062 
2063 	/*
2064 	 * We must have HAT_LOAD_NOCONSIST if page_t is NULL.
2065 	 */
2066 	if (pp == NULL)
2067 		flags |= HAT_LOAD_NOCONSIST;
2068 
2069 	if (ht == NULL) {
2070 		ht = htable_create(hat, va, level, NULL);
2071 		ASSERT(ht != NULL);
2072 	}
2073 	/*
2074 	 * htable_va2entry checks this condition as well, but it won't include
2075 	 * much useful info in the panic. So we do it in advance here to include
2076 	 * all the context.
2077 	 */
2078 	if (ht->ht_vaddr > va || va > HTABLE_LAST_PAGE(ht)) {
2079 		panic("hati_load_common: bad htable: va=%p, last page=%p, "
2080 		    "ht->ht_vaddr=%p, ht->ht_level=%d", (void *)va,
2081 		    (void *)HTABLE_LAST_PAGE(ht), (void *)ht->ht_vaddr,
2082 		    (int)ht->ht_level);
2083 	}
2084 	entry = htable_va2entry(va, ht);
2085 
2086 	/*
2087 	 * a bunch of paranoid error checking
2088 	 */
2089 	ASSERT(ht->ht_busy > 0);
2090 	ASSERT(ht->ht_level == level);
2091 
2092 	/*
2093 	 * construct the new PTE
2094 	 */
2095 	if (hat == kas.a_hat)
2096 		attr &= ~PROT_USER;
2097 	pte = hati_mkpte(pfn, attr, level, flags);
2098 	if (hat == kas.a_hat && va >= kernelbase)
2099 		PTE_SET(pte, mmu.pt_global);
2100 
2101 	/*
2102 	 * establish the mapping
2103 	 */
2104 	rv = hati_pte_map(ht, entry, pp, pte, flags, NULL);
2105 
2106 	/*
2107 	 * release the htable and any reserves
2108 	 */
2109 	htable_release(ht);
2110 	--curthread->t_hatdepth;
2111 	return (rv);
2112 }
2113 
2114 /*
2115  * special case of hat_memload to deal with some kernel addrs for performance
2116  */
2117 static void
2118 hat_kmap_load(
2119 	caddr_t		addr,
2120 	page_t		*pp,
2121 	uint_t		attr,
2122 	uint_t		flags)
2123 {
2124 	uintptr_t	va = (uintptr_t)addr;
2125 	x86pte_t	pte;
2126 	pfn_t		pfn = page_pptonum(pp);
2127 	pgcnt_t		pg_off = mmu_btop(va - mmu.kmap_addr);
2128 	htable_t	*ht;
2129 	uint_t		entry;
2130 	void		*pte_ptr;
2131 
2132 	/*
2133 	 * construct the requested PTE
2134 	 */
2135 	attr &= ~PROT_USER;
2136 	attr |= HAT_STORECACHING_OK;
2137 	pte = hati_mkpte(pfn, attr, 0, flags);
2138 	PTE_SET(pte, mmu.pt_global);
2139 
2140 	/*
2141 	 * Figure out the pte_ptr and htable and use common code to finish up
2142 	 */
2143 	if (mmu.pae_hat)
2144 		pte_ptr = mmu.kmap_ptes + pg_off;
2145 	else
2146 		pte_ptr = (x86pte32_t *)mmu.kmap_ptes + pg_off;
2147 	ht = mmu.kmap_htables[(va - mmu.kmap_htables[0]->ht_vaddr) >>
2148 	    LEVEL_SHIFT(1)];
2149 	entry = htable_va2entry(va, ht);
2150 	++curthread->t_hatdepth;
2151 	ASSERT(curthread->t_hatdepth < 16);
2152 	(void) hati_pte_map(ht, entry, pp, pte, flags, pte_ptr);
2153 	--curthread->t_hatdepth;
2154 }
2155 
2156 /*
2157  * hat_memload() - load a translation to the given page struct
2158  *
2159  * Flags for hat_memload/hat_devload/hat_*attr.
2160  *
2161  * 	HAT_LOAD	Default flags to load a translation to the page.
2162  *
2163  * 	HAT_LOAD_LOCK	Lock down mapping resources; hat_map(), hat_memload(),
2164  *			and hat_devload().
2165  *
2166  *	HAT_LOAD_NOCONSIST Do not add mapping to page_t mapping list.
2167  *			sets PT_NOCONSIST
2168  *
2169  *	HAT_LOAD_SHARE	A flag to hat_memload() to indicate h/w page tables
2170  *			that map some user pages (not kas) is shared by more
2171  *			than one process (eg. ISM).
2172  *
2173  *	HAT_LOAD_REMAP	Reload a valid pte with a different page frame.
2174  *
2175  *	HAT_NO_KALLOC	Do not kmem_alloc while creating the mapping; at this
2176  *			point, it's setting up mapping to allocate internal
2177  *			hat layer data structures.  This flag forces hat layer
2178  *			to tap its reserves in order to prevent infinite
2179  *			recursion.
2180  *
2181  * The following is a protection attribute (like PROT_READ, etc.)
2182  *
2183  *	HAT_NOSYNC	set PT_NOSYNC - this mapping's ref/mod bits
2184  *			are never cleared.
2185  *
2186  * Installing new valid PTE's and creation of the mapping list
2187  * entry are controlled under the same lock. It's derived from the
2188  * page_t being mapped.
2189  */
2190 static uint_t supported_memload_flags =
2191 	HAT_LOAD | HAT_LOAD_LOCK | HAT_LOAD_ADV | HAT_LOAD_NOCONSIST |
2192 	HAT_LOAD_SHARE | HAT_NO_KALLOC | HAT_LOAD_REMAP | HAT_LOAD_TEXT;
2193 
2194 void
2195 hat_memload(
2196 	hat_t		*hat,
2197 	caddr_t		addr,
2198 	page_t		*pp,
2199 	uint_t		attr,
2200 	uint_t		flags)
2201 {
2202 	uintptr_t	va = (uintptr_t)addr;
2203 	level_t		level = 0;
2204 	pfn_t		pfn = page_pptonum(pp);
2205 
2206 	XPV_DISALLOW_MIGRATE();
2207 	ASSERT(IS_PAGEALIGNED(va));
2208 	ASSERT(hat == kas.a_hat || va < _userlimit);
2209 	ASSERT(hat == kas.a_hat || AS_LOCK_HELD(hat->hat_as));
2210 	ASSERT((flags & supported_memload_flags) == flags);
2211 
2212 	ASSERT(!IN_VA_HOLE(va));
2213 	ASSERT(!PP_ISFREE(pp));
2214 
2215 	/*
2216 	 * kernel address special case for performance.
2217 	 */
2218 	if (mmu.kmap_addr <= va && va < mmu.kmap_eaddr) {
2219 		ASSERT(hat == kas.a_hat);
2220 		hat_kmap_load(addr, pp, attr, flags);
2221 		XPV_ALLOW_MIGRATE();
2222 		return;
2223 	}
2224 
2225 	/*
2226 	 * This is used for memory with normal caching enabled, so
2227 	 * always set HAT_STORECACHING_OK.
2228 	 */
2229 	attr |= HAT_STORECACHING_OK;
2230 	if (hati_load_common(hat, va, pp, attr, flags, level, pfn) != 0)
2231 		panic("unexpected hati_load_common() failure");
2232 	XPV_ALLOW_MIGRATE();
2233 }
2234 
2235 /* ARGSUSED */
2236 void
2237 hat_memload_region(struct hat *hat, caddr_t addr, struct page *pp,
2238     uint_t attr, uint_t flags, hat_region_cookie_t rcookie)
2239 {
2240 	hat_memload(hat, addr, pp, attr, flags);
2241 }
2242 
2243 /*
2244  * Load the given array of page structs using large pages when possible
2245  */
2246 void
2247 hat_memload_array(
2248 	hat_t		*hat,
2249 	caddr_t		addr,
2250 	size_t		len,
2251 	page_t		**pages,
2252 	uint_t		attr,
2253 	uint_t		flags)
2254 {
2255 	uintptr_t	va = (uintptr_t)addr;
2256 	uintptr_t	eaddr = va + len;
2257 	level_t		level;
2258 	size_t		pgsize;
2259 	pgcnt_t		pgindx = 0;
2260 	pfn_t		pfn;
2261 	pgcnt_t		i;
2262 
2263 	XPV_DISALLOW_MIGRATE();
2264 	ASSERT(IS_PAGEALIGNED(va));
2265 	ASSERT(hat == kas.a_hat || va + len <= _userlimit);
2266 	ASSERT(hat == kas.a_hat || AS_LOCK_HELD(hat->hat_as));
2267 	ASSERT((flags & supported_memload_flags) == flags);
2268 
2269 	/*
2270 	 * memload is used for memory with full caching enabled, so
2271 	 * set HAT_STORECACHING_OK.
2272 	 */
2273 	attr |= HAT_STORECACHING_OK;
2274 
2275 	/*
2276 	 * handle all pages using largest possible pagesize
2277 	 */
2278 	while (va < eaddr) {
2279 		/*
2280 		 * decide what level mapping to use (ie. pagesize)
2281 		 */
2282 		pfn = page_pptonum(pages[pgindx]);
2283 		for (level = mmu.max_page_level; ; --level) {
2284 			pgsize = LEVEL_SIZE(level);
2285 			if (level == 0)
2286 				break;
2287 
2288 			if (!IS_P2ALIGNED(va, pgsize) ||
2289 			    (eaddr - va) < pgsize ||
2290 			    !IS_P2ALIGNED(pfn_to_pa(pfn), pgsize))
2291 				continue;
2292 
2293 			/*
2294 			 * To use a large mapping of this size, all the
2295 			 * pages we are passed must be sequential subpages
2296 			 * of the large page.
2297 			 * hat_page_demote() can't change p_szc because
2298 			 * all pages are locked.
2299 			 */
2300 			if (pages[pgindx]->p_szc >= level) {
2301 				for (i = 0; i < mmu_btop(pgsize); ++i) {
2302 					if (pfn + i !=
2303 					    page_pptonum(pages[pgindx + i]))
2304 						break;
2305 					ASSERT(pages[pgindx + i]->p_szc >=
2306 					    level);
2307 					ASSERT(pages[pgindx] + i ==
2308 					    pages[pgindx + i]);
2309 				}
2310 				if (i == mmu_btop(pgsize)) {
2311 #ifdef DEBUG
2312 					if (level == 2)
2313 						map1gcnt++;
2314 #endif
2315 					break;
2316 				}
2317 			}
2318 		}
2319 
2320 		/*
2321 		 * Load this page mapping. If the load fails, try a smaller
2322 		 * pagesize.
2323 		 */
2324 		ASSERT(!IN_VA_HOLE(va));
2325 		while (hati_load_common(hat, va, pages[pgindx], attr,
2326 		    flags, level, pfn) != 0) {
2327 			if (level == 0)
2328 				panic("unexpected hati_load_common() failure");
2329 			--level;
2330 			pgsize = LEVEL_SIZE(level);
2331 		}
2332 
2333 		/*
2334 		 * move to next page
2335 		 */
2336 		va += pgsize;
2337 		pgindx += mmu_btop(pgsize);
2338 	}
2339 	XPV_ALLOW_MIGRATE();
2340 }
2341 
2342 /* ARGSUSED */
2343 void
2344 hat_memload_array_region(struct hat *hat, caddr_t addr, size_t len,
2345     struct page **pps, uint_t attr, uint_t flags,
2346     hat_region_cookie_t rcookie)
2347 {
2348 	hat_memload_array(hat, addr, len, pps, attr, flags);
2349 }
2350 
2351 /*
2352  * void hat_devload(hat, addr, len, pf, attr, flags)
2353  *	load/lock the given page frame number
2354  *
2355  * Advisory ordering attributes. Apply only to device mappings.
2356  *
2357  * HAT_STRICTORDER: the CPU must issue the references in order, as the
2358  *	programmer specified.  This is the default.
2359  * HAT_UNORDERED_OK: the CPU may reorder the references (this is all kinds
2360  *	of reordering; store or load with store or load).
2361  * HAT_MERGING_OK: merging and batching: the CPU may merge individual stores
2362  *	to consecutive locations (for example, turn two consecutive byte
2363  *	stores into one halfword store), and it may batch individual loads
2364  *	(for example, turn two consecutive byte loads into one halfword load).
2365  *	This also implies re-ordering.
2366  * HAT_LOADCACHING_OK: the CPU may cache the data it fetches and reuse it
2367  *	until another store occurs.  The default is to fetch new data
2368  *	on every load.  This also implies merging.
2369  * HAT_STORECACHING_OK: the CPU may keep the data in the cache and push it to
2370  *	the device (perhaps with other data) at a later time.  The default is
2371  *	to push the data right away.  This also implies load caching.
2372  *
2373  * Equivalent of hat_memload(), but can be used for device memory where
2374  * there are no page_t's and we support additional flags (write merging, etc).
2375  * Note that we can have large page mappings with this interface.
2376  */
2377 int supported_devload_flags = HAT_LOAD | HAT_LOAD_LOCK |
2378 	HAT_LOAD_NOCONSIST | HAT_STRICTORDER | HAT_UNORDERED_OK |
2379 	HAT_MERGING_OK | HAT_LOADCACHING_OK | HAT_STORECACHING_OK;
2380 
2381 void
2382 hat_devload(
2383 	hat_t		*hat,
2384 	caddr_t		addr,
2385 	size_t		len,
2386 	pfn_t		pfn,
2387 	uint_t		attr,
2388 	int		flags)
2389 {
2390 	uintptr_t	va = ALIGN2PAGE(addr);
2391 	uintptr_t	eva = va + len;
2392 	level_t		level;
2393 	size_t		pgsize;
2394 	page_t		*pp;
2395 	int		f;	/* per PTE copy of flags  - maybe modified */
2396 	uint_t		a;	/* per PTE copy of attr */
2397 
2398 	XPV_DISALLOW_MIGRATE();
2399 	ASSERT(IS_PAGEALIGNED(va));
2400 	ASSERT(hat == kas.a_hat || eva <= _userlimit);
2401 	ASSERT(hat == kas.a_hat || AS_LOCK_HELD(hat->hat_as));
2402 	ASSERT((flags & supported_devload_flags) == flags);
2403 
2404 	/*
2405 	 * handle all pages
2406 	 */
2407 	while (va < eva) {
2408 
2409 		/*
2410 		 * decide what level mapping to use (ie. pagesize)
2411 		 */
2412 		for (level = mmu.max_page_level; ; --level) {
2413 			pgsize = LEVEL_SIZE(level);
2414 			if (level == 0)
2415 				break;
2416 			if (IS_P2ALIGNED(va, pgsize) &&
2417 			    (eva - va) >= pgsize &&
2418 			    IS_P2ALIGNED(pfn, mmu_btop(pgsize))) {
2419 #ifdef DEBUG
2420 				if (level == 2)
2421 					map1gcnt++;
2422 #endif
2423 				break;
2424 			}
2425 		}
2426 
2427 		/*
2428 		 * If this is just memory then allow caching (this happens
2429 		 * for the nucleus pages) - though HAT_PLAT_NOCACHE can be used
2430 		 * to override that. If we don't have a page_t then make sure
2431 		 * NOCONSIST is set.
2432 		 */
2433 		a = attr;
2434 		f = flags;
2435 		if (!pf_is_memory(pfn))
2436 			f |= HAT_LOAD_NOCONSIST;
2437 		else if (!(a & HAT_PLAT_NOCACHE))
2438 			a |= HAT_STORECACHING_OK;
2439 
2440 		if (f & HAT_LOAD_NOCONSIST)
2441 			pp = NULL;
2442 		else
2443 			pp = page_numtopp_nolock(pfn);
2444 
2445 		/*
2446 		 * Check to make sure we are really trying to map a valid
2447 		 * memory page. The caller wishing to intentionally map
2448 		 * free memory pages will have passed the HAT_LOAD_NOCONSIST
2449 		 * flag, then pp will be NULL.
2450 		 */
2451 		if (pp != NULL) {
2452 			if (PP_ISFREE(pp)) {
2453 				panic("hat_devload: loading "
2454 				    "a mapping to free page %p", (void *)pp);
2455 			}
2456 
2457 			if (!PAGE_LOCKED(pp) && !PP_ISNORELOC(pp)) {
2458 				panic("hat_devload: loading a mapping "
2459 				    "to an unlocked page %p",
2460 				    (void *)pp);
2461 			}
2462 		}
2463 
2464 		/*
2465 		 * load this page mapping
2466 		 */
2467 		ASSERT(!IN_VA_HOLE(va));
2468 		while (hati_load_common(hat, va, pp, a, f, level, pfn) != 0) {
2469 			if (level == 0)
2470 				panic("unexpected hati_load_common() failure");
2471 			--level;
2472 			pgsize = LEVEL_SIZE(level);
2473 		}
2474 
2475 		/*
2476 		 * move to next page
2477 		 */
2478 		va += pgsize;
2479 		pfn += mmu_btop(pgsize);
2480 	}
2481 	XPV_ALLOW_MIGRATE();
2482 }
2483 
2484 /*
2485  * void hat_unlock(hat, addr, len)
2486  *	unlock the mappings to a given range of addresses
2487  *
2488  * Locks are tracked by ht_lock_cnt in the htable.
2489  */
2490 void
2491 hat_unlock(hat_t *hat, caddr_t addr, size_t len)
2492 {
2493 	uintptr_t	vaddr = (uintptr_t)addr;
2494 	uintptr_t	eaddr = vaddr + len;
2495 	htable_t	*ht = NULL;
2496 
2497 	/*
2498 	 * kernel entries are always locked, we don't track lock counts
2499 	 */
2500 	ASSERT(hat == kas.a_hat || eaddr <= _userlimit);
2501 	ASSERT(IS_PAGEALIGNED(vaddr));
2502 	ASSERT(IS_PAGEALIGNED(eaddr));
2503 	if (hat == kas.a_hat)
2504 		return;
2505 	if (eaddr > _userlimit)
2506 		panic("hat_unlock() address out of range - above _userlimit");
2507 
2508 	XPV_DISALLOW_MIGRATE();
2509 	ASSERT(AS_LOCK_HELD(hat->hat_as));
2510 	while (vaddr < eaddr) {
2511 		(void) htable_walk(hat, &ht, &vaddr, eaddr);
2512 		if (ht == NULL)
2513 			break;
2514 
2515 		ASSERT(!IN_VA_HOLE(vaddr));
2516 
2517 		if (ht->ht_lock_cnt < 1)
2518 			panic("hat_unlock(): lock_cnt < 1, "
2519 			    "htable=%p, vaddr=%p\n", (void *)ht, (void *)vaddr);
2520 		HTABLE_LOCK_DEC(ht);
2521 
2522 		vaddr += LEVEL_SIZE(ht->ht_level);
2523 	}
2524 	if (ht)
2525 		htable_release(ht);
2526 	XPV_ALLOW_MIGRATE();
2527 }
2528 
2529 /* ARGSUSED */
2530 void
2531 hat_unlock_region(struct hat *hat, caddr_t addr, size_t len,
2532     hat_region_cookie_t rcookie)
2533 {
2534 	panic("No shared region support on x86");
2535 }
2536 
2537 #if !defined(__xpv)
2538 /*
2539  * Cross call service routine to demap a range of virtual
2540  * pages on the current CPU or flush all mappings in TLB.
2541  */
2542 static int
2543 hati_demap_func(xc_arg_t a1, xc_arg_t a2, xc_arg_t a3)
2544 {
2545 	_NOTE(ARGUNUSED(a3));
2546 	hat_t		*hat = (hat_t *)a1;
2547 	tlb_range_t	*range = (tlb_range_t *)a2;
2548 
2549 	/*
2550 	 * If the target hat isn't the kernel and this CPU isn't operating
2551 	 * in the target hat, we can ignore the cross call.
2552 	 */
2553 	if (hat != kas.a_hat && hat != CPU->cpu_current_hat)
2554 		return (0);
2555 
2556 	if (range->tr_va != DEMAP_ALL_ADDR) {
2557 		mmu_flush_tlb(FLUSH_TLB_RANGE, range);
2558 		return (0);
2559 	}
2560 
2561 	/*
2562 	 * We are flushing all of userspace.
2563 	 *
2564 	 * When using PCP, we first need to update this CPU's idea of the PCP
2565 	 * PTEs.
2566 	 */
2567 	if (hat->hat_flags & HAT_COPIED) {
2568 #if defined(__amd64)
2569 		hat_pcp_update(CPU, hat);
2570 #elif defined(__i386)
2571 		reload_pae32(hat, CPU);
2572 #endif
2573 	}
2574 
2575 	mmu_flush_tlb(FLUSH_TLB_NONGLOBAL, NULL);
2576 	return (0);
2577 }
2578 
2579 #define	TLBIDLE_CPU_HALTED	(0x1UL)
2580 #define	TLBIDLE_INVAL_ALL	(0x2UL)
2581 #define	CAS_TLB_INFO(cpu, old, new)	\
2582 	atomic_cas_ulong((ulong_t *)&(cpu)->cpu_m.mcpu_tlb_info, (old), (new))
2583 
2584 /*
2585  * Record that a CPU is going idle
2586  */
2587 void
2588 tlb_going_idle(void)
2589 {
2590 	atomic_or_ulong((ulong_t *)&CPU->cpu_m.mcpu_tlb_info,
2591 	    TLBIDLE_CPU_HALTED);
2592 }
2593 
2594 /*
2595  * Service a delayed TLB flush if coming out of being idle.
2596  * It will be called from cpu idle notification with interrupt disabled.
2597  */
2598 void
2599 tlb_service(void)
2600 {
2601 	ulong_t tlb_info;
2602 	ulong_t found;
2603 
2604 	/*
2605 	 * We only have to do something if coming out of being idle.
2606 	 */
2607 	tlb_info = CPU->cpu_m.mcpu_tlb_info;
2608 	if (tlb_info & TLBIDLE_CPU_HALTED) {
2609 		ASSERT(CPU->cpu_current_hat == kas.a_hat);
2610 
2611 		/*
2612 		 * Atomic clear and fetch of old state.
2613 		 */
2614 		while ((found = CAS_TLB_INFO(CPU, tlb_info, 0)) != tlb_info) {
2615 			ASSERT(found & TLBIDLE_CPU_HALTED);
2616 			tlb_info = found;
2617 			SMT_PAUSE();
2618 		}
2619 		if (tlb_info & TLBIDLE_INVAL_ALL)
2620 			mmu_flush_tlb(FLUSH_TLB_ALL, NULL);
2621 	}
2622 }
2623 #endif /* !__xpv */
2624 
2625 /*
2626  * Internal routine to do cross calls to invalidate a range of pages on
2627  * all CPUs using a given hat.
2628  */
2629 void
2630 hat_tlb_inval_range(hat_t *hat, tlb_range_t *in_range)
2631 {
2632 	extern int	flushes_require_xcalls;	/* from mp_startup.c */
2633 	cpuset_t	justme;
2634 	cpuset_t	cpus_to_shootdown;
2635 	tlb_range_t	range = *in_range;
2636 #ifndef __xpv
2637 	cpuset_t	check_cpus;
2638 	cpu_t		*cpup;
2639 	int		c;
2640 #endif
2641 
2642 	/*
2643 	 * If the hat is being destroyed, there are no more users, so
2644 	 * demap need not do anything.
2645 	 */
2646 	if (hat->hat_flags & HAT_FREEING)
2647 		return;
2648 
2649 	/*
2650 	 * If demapping from a shared pagetable, we best demap the
2651 	 * entire set of user TLBs, since we don't know what addresses
2652 	 * these were shared at.
2653 	 */
2654 	if (hat->hat_flags & HAT_SHARED) {
2655 		hat = kas.a_hat;
2656 		range.tr_va = DEMAP_ALL_ADDR;
2657 	}
2658 
2659 	/*
2660 	 * if not running with multiple CPUs, don't use cross calls
2661 	 */
2662 	if (panicstr || !flushes_require_xcalls) {
2663 #ifdef __xpv
2664 		if (range.tr_va == DEMAP_ALL_ADDR) {
2665 			xen_flush_tlb();
2666 		} else {
2667 			for (size_t i = 0; i < TLB_RANGE_LEN(&range);
2668 			    i += MMU_PAGESIZE) {
2669 				xen_flush_va((caddr_t)(range.tr_va + i));
2670 			}
2671 		}
2672 #else
2673 		(void) hati_demap_func((xc_arg_t)hat, (xc_arg_t)&range, 0);
2674 #endif
2675 		return;
2676 	}
2677 
2678 
2679 	/*
2680 	 * Determine CPUs to shootdown. Kernel changes always do all CPUs.
2681 	 * Otherwise it's just CPUs currently executing in this hat.
2682 	 */
2683 	kpreempt_disable();
2684 	CPUSET_ONLY(justme, CPU->cpu_id);
2685 	if (hat == kas.a_hat)
2686 		cpus_to_shootdown = khat_cpuset;
2687 	else
2688 		cpus_to_shootdown = hat->hat_cpus;
2689 
2690 #ifndef __xpv
2691 	/*
2692 	 * If any CPUs in the set are idle, just request a delayed flush
2693 	 * and avoid waking them up.
2694 	 */
2695 	check_cpus = cpus_to_shootdown;
2696 	for (c = 0; c < NCPU && !CPUSET_ISNULL(check_cpus); ++c) {
2697 		ulong_t tlb_info;
2698 
2699 		if (!CPU_IN_SET(check_cpus, c))
2700 			continue;
2701 		CPUSET_DEL(check_cpus, c);
2702 		cpup = cpu[c];
2703 		if (cpup == NULL)
2704 			continue;
2705 
2706 		tlb_info = cpup->cpu_m.mcpu_tlb_info;
2707 		while (tlb_info == TLBIDLE_CPU_HALTED) {
2708 			(void) CAS_TLB_INFO(cpup, TLBIDLE_CPU_HALTED,
2709 			    TLBIDLE_CPU_HALTED | TLBIDLE_INVAL_ALL);
2710 			SMT_PAUSE();
2711 			tlb_info = cpup->cpu_m.mcpu_tlb_info;
2712 		}
2713 		if (tlb_info == (TLBIDLE_CPU_HALTED | TLBIDLE_INVAL_ALL)) {
2714 			HATSTAT_INC(hs_tlb_inval_delayed);
2715 			CPUSET_DEL(cpus_to_shootdown, c);
2716 		}
2717 	}
2718 #endif
2719 
2720 	if (CPUSET_ISNULL(cpus_to_shootdown) ||
2721 	    CPUSET_ISEQUAL(cpus_to_shootdown, justme)) {
2722 
2723 #ifdef __xpv
2724 		if (range.tr_va == DEMAP_ALL_ADDR) {
2725 			xen_flush_tlb();
2726 		} else {
2727 			for (size_t i = 0; i < TLB_RANGE_LEN(&range);
2728 			    i += MMU_PAGESIZE) {
2729 				xen_flush_va((caddr_t)(range.tr_va + i));
2730 			}
2731 		}
2732 #else
2733 		(void) hati_demap_func((xc_arg_t)hat, (xc_arg_t)&range, 0);
2734 #endif
2735 
2736 	} else {
2737 
2738 		CPUSET_ADD(cpus_to_shootdown, CPU->cpu_id);
2739 #ifdef __xpv
2740 		if (range.tr_va == DEMAP_ALL_ADDR) {
2741 			xen_gflush_tlb(cpus_to_shootdown);
2742 		} else {
2743 			for (size_t i = 0; i < TLB_RANGE_LEN(&range);
2744 			    i += MMU_PAGESIZE) {
2745 				xen_gflush_va((caddr_t)(range.tr_va + i),
2746 				    cpus_to_shootdown);
2747 			}
2748 		}
2749 #else
2750 		xc_call((xc_arg_t)hat, (xc_arg_t)&range, 0,
2751 		    CPUSET2BV(cpus_to_shootdown), hati_demap_func);
2752 #endif
2753 
2754 	}
2755 	kpreempt_enable();
2756 }
2757 
2758 void
2759 hat_tlb_inval(hat_t *hat, uintptr_t va)
2760 {
2761 	/*
2762 	 * Create range for a single page.
2763 	 */
2764 	tlb_range_t range;
2765 	range.tr_va = va;
2766 	range.tr_cnt = 1; /* one page */
2767 	range.tr_level = MIN_PAGE_LEVEL; /* pages are MMU_PAGESIZE */
2768 
2769 	hat_tlb_inval_range(hat, &range);
2770 }
2771 
2772 /*
2773  * Interior routine for HAT_UNLOADs from hat_unload_callback(),
2774  * hat_kmap_unload() OR from hat_steal() code.  This routine doesn't
2775  * handle releasing of the htables.
2776  */
2777 void
2778 hat_pte_unmap(
2779 	htable_t	*ht,
2780 	uint_t		entry,
2781 	uint_t		flags,
2782 	x86pte_t	old_pte,
2783 	void		*pte_ptr,
2784 	boolean_t	tlb)
2785 {
2786 	hat_t		*hat = ht->ht_hat;
2787 	hment_t		*hm = NULL;
2788 	page_t		*pp = NULL;
2789 	level_t		l = ht->ht_level;
2790 	pfn_t		pfn;
2791 
2792 	/*
2793 	 * We always track the locking counts, even if nothing is unmapped
2794 	 */
2795 	if ((flags & HAT_UNLOAD_UNLOCK) != 0 && hat != kas.a_hat) {
2796 		ASSERT(ht->ht_lock_cnt > 0);
2797 		HTABLE_LOCK_DEC(ht);
2798 	}
2799 
2800 	/*
2801 	 * Figure out which page's mapping list lock to acquire using the PFN
2802 	 * passed in "old" PTE. We then attempt to invalidate the PTE.
2803 	 * If another thread, probably a hat_pageunload, has asynchronously
2804 	 * unmapped/remapped this address we'll loop here.
2805 	 */
2806 	ASSERT(ht->ht_busy > 0);
2807 	while (PTE_ISVALID(old_pte)) {
2808 		pfn = PTE2PFN(old_pte, l);
2809 		if (PTE_GET(old_pte, PT_SOFTWARE) >= PT_NOCONSIST) {
2810 			pp = NULL;
2811 		} else {
2812 #ifdef __xpv
2813 			if (pfn == PFN_INVALID)
2814 				panic("Invalid PFN, but not PT_NOCONSIST");
2815 #endif
2816 			pp = page_numtopp_nolock(pfn);
2817 			if (pp == NULL) {
2818 				panic("no page_t, not NOCONSIST: old_pte="
2819 				    FMT_PTE " ht=%lx entry=0x%x pte_ptr=%lx",
2820 				    old_pte, (uintptr_t)ht, entry,
2821 				    (uintptr_t)pte_ptr);
2822 			}
2823 			x86_hm_enter(pp);
2824 		}
2825 
2826 		old_pte = x86pte_inval(ht, entry, old_pte, pte_ptr, tlb);
2827 
2828 		/*
2829 		 * If the page hadn't changed we've unmapped it and can proceed
2830 		 */
2831 		if (PTE_ISVALID(old_pte) && PTE2PFN(old_pte, l) == pfn)
2832 			break;
2833 
2834 		/*
2835 		 * Otherwise, we'll have to retry with the current old_pte.
2836 		 * Drop the hment lock, since the pfn may have changed.
2837 		 */
2838 		if (pp != NULL) {
2839 			x86_hm_exit(pp);
2840 			pp = NULL;
2841 		} else {
2842 			ASSERT(PTE_GET(old_pte, PT_SOFTWARE) >= PT_NOCONSIST);
2843 		}
2844 	}
2845 
2846 	/*
2847 	 * If the old mapping wasn't valid, there's nothing more to do
2848 	 */
2849 	if (!PTE_ISVALID(old_pte)) {
2850 		if (pp != NULL)
2851 			x86_hm_exit(pp);
2852 		return;
2853 	}
2854 
2855 	/*
2856 	 * Take care of syncing any MOD/REF bits and removing the hment.
2857 	 */
2858 	if (pp != NULL) {
2859 		if (!(flags & HAT_UNLOAD_NOSYNC))
2860 			hati_sync_pte_to_page(pp, old_pte, l);
2861 		hm = hment_remove(pp, ht, entry);
2862 		x86_hm_exit(pp);
2863 		if (hm != NULL)
2864 			hment_free(hm);
2865 	}
2866 
2867 	/*
2868 	 * Handle book keeping in the htable and hat
2869 	 */
2870 	ASSERT(ht->ht_valid_cnt > 0);
2871 	HTABLE_DEC(ht->ht_valid_cnt);
2872 	PGCNT_DEC(hat, l);
2873 }
2874 
2875 /*
2876  * very cheap unload implementation to special case some kernel addresses
2877  */
2878 static void
2879 hat_kmap_unload(caddr_t addr, size_t len, uint_t flags)
2880 {
2881 	uintptr_t	va = (uintptr_t)addr;
2882 	uintptr_t	eva = va + len;
2883 	pgcnt_t		pg_index;
2884 	htable_t	*ht;
2885 	uint_t		entry;
2886 	x86pte_t	*pte_ptr;
2887 	x86pte_t	old_pte;
2888 
2889 	for (; va < eva; va += MMU_PAGESIZE) {
2890 		/*
2891 		 * Get the PTE
2892 		 */
2893 		pg_index = mmu_btop(va - mmu.kmap_addr);
2894 		pte_ptr = PT_INDEX_PTR(mmu.kmap_ptes, pg_index);
2895 		old_pte = GET_PTE(pte_ptr);
2896 
2897 		/*
2898 		 * get the htable / entry
2899 		 */
2900 		ht = mmu.kmap_htables[(va - mmu.kmap_htables[0]->ht_vaddr)
2901 		    >> LEVEL_SHIFT(1)];
2902 		entry = htable_va2entry(va, ht);
2903 
2904 		/*
2905 		 * use mostly common code to unmap it.
2906 		 */
2907 		hat_pte_unmap(ht, entry, flags, old_pte, pte_ptr, B_TRUE);
2908 	}
2909 }
2910 
2911 
2912 /*
2913  * unload a range of virtual address space (no callback)
2914  */
2915 void
2916 hat_unload(hat_t *hat, caddr_t addr, size_t len, uint_t flags)
2917 {
2918 	uintptr_t va = (uintptr_t)addr;
2919 
2920 	XPV_DISALLOW_MIGRATE();
2921 	ASSERT(hat == kas.a_hat || va + len <= _userlimit);
2922 
2923 	/*
2924 	 * special case for performance.
2925 	 */
2926 	if (mmu.kmap_addr <= va && va < mmu.kmap_eaddr) {
2927 		ASSERT(hat == kas.a_hat);
2928 		hat_kmap_unload(addr, len, flags);
2929 	} else {
2930 		hat_unload_callback(hat, addr, len, flags, NULL);
2931 	}
2932 	XPV_ALLOW_MIGRATE();
2933 }
2934 
2935 /*
2936  * Invalidate the TLB, and perform the callback to the upper level VM system,
2937  * for the specified ranges of contiguous pages.
2938  */
2939 static void
2940 handle_ranges(hat_t *hat, hat_callback_t *cb, uint_t cnt, tlb_range_t *range)
2941 {
2942 	while (cnt > 0) {
2943 		--cnt;
2944 		hat_tlb_inval_range(hat, &range[cnt]);
2945 
2946 		if (cb != NULL) {
2947 			cb->hcb_start_addr = (caddr_t)range[cnt].tr_va;
2948 			cb->hcb_end_addr = cb->hcb_start_addr;
2949 			cb->hcb_end_addr += range[cnt].tr_cnt <<
2950 			    LEVEL_SHIFT(range[cnt].tr_level);
2951 			cb->hcb_function(cb);
2952 		}
2953 	}
2954 }
2955 
2956 /*
2957  * Unload a given range of addresses (has optional callback)
2958  *
2959  * Flags:
2960  * define	HAT_UNLOAD		0x00
2961  * define	HAT_UNLOAD_NOSYNC	0x02
2962  * define	HAT_UNLOAD_UNLOCK	0x04
2963  * define	HAT_UNLOAD_OTHER	0x08 - not used
2964  * define	HAT_UNLOAD_UNMAP	0x10 - same as HAT_UNLOAD
2965  */
2966 #define	MAX_UNLOAD_CNT (8)
2967 void
2968 hat_unload_callback(
2969 	hat_t		*hat,
2970 	caddr_t		addr,
2971 	size_t		len,
2972 	uint_t		flags,
2973 	hat_callback_t	*cb)
2974 {
2975 	uintptr_t	vaddr = (uintptr_t)addr;
2976 	uintptr_t	eaddr = vaddr + len;
2977 	htable_t	*ht = NULL;
2978 	uint_t		entry;
2979 	uintptr_t	contig_va = (uintptr_t)-1L;
2980 	tlb_range_t	r[MAX_UNLOAD_CNT];
2981 	uint_t		r_cnt = 0;
2982 	x86pte_t	old_pte;
2983 
2984 	XPV_DISALLOW_MIGRATE();
2985 	ASSERT(hat == kas.a_hat || eaddr <= _userlimit);
2986 	ASSERT(IS_PAGEALIGNED(vaddr));
2987 	ASSERT(IS_PAGEALIGNED(eaddr));
2988 
2989 	/*
2990 	 * Special case a single page being unloaded for speed. This happens
2991 	 * quite frequently, COW faults after a fork() for example.
2992 	 */
2993 	if (cb == NULL && len == MMU_PAGESIZE) {
2994 		ht = htable_getpte(hat, vaddr, &entry, &old_pte, 0);
2995 		if (ht != NULL) {
2996 			if (PTE_ISVALID(old_pte)) {
2997 				hat_pte_unmap(ht, entry, flags, old_pte,
2998 				    NULL, B_TRUE);
2999 			}
3000 			htable_release(ht);
3001 		}
3002 		XPV_ALLOW_MIGRATE();
3003 		return;
3004 	}
3005 
3006 	while (vaddr < eaddr) {
3007 		old_pte = htable_walk(hat, &ht, &vaddr, eaddr);
3008 		if (ht == NULL)
3009 			break;
3010 
3011 		ASSERT(!IN_VA_HOLE(vaddr));
3012 
3013 		if (vaddr < (uintptr_t)addr)
3014 			panic("hat_unload_callback(): unmap inside large page");
3015 
3016 		/*
3017 		 * We'll do the call backs for contiguous ranges
3018 		 */
3019 		if (vaddr != contig_va ||
3020 		    (r_cnt > 0 && r[r_cnt - 1].tr_level != ht->ht_level)) {
3021 			if (r_cnt == MAX_UNLOAD_CNT) {
3022 				handle_ranges(hat, cb, r_cnt, r);
3023 				r_cnt = 0;
3024 			}
3025 			r[r_cnt].tr_va = vaddr;
3026 			r[r_cnt].tr_cnt = 0;
3027 			r[r_cnt].tr_level = ht->ht_level;
3028 			++r_cnt;
3029 		}
3030 
3031 		/*
3032 		 * Unload one mapping (for a single page) from the page tables.
3033 		 * Note that we do not remove the mapping from the TLB yet,
3034 		 * as indicated by the tlb=FALSE argument to hat_pte_unmap().
3035 		 * handle_ranges() will clear the TLB entries with one call to
3036 		 * hat_tlb_inval_range() per contiguous range.  This is
3037 		 * safe because the page can not be reused until the
3038 		 * callback is made (or we return).
3039 		 */
3040 		entry = htable_va2entry(vaddr, ht);
3041 		hat_pte_unmap(ht, entry, flags, old_pte, NULL, B_FALSE);
3042 		ASSERT(ht->ht_level <= mmu.max_page_level);
3043 		vaddr += LEVEL_SIZE(ht->ht_level);
3044 		contig_va = vaddr;
3045 		++r[r_cnt - 1].tr_cnt;
3046 	}
3047 	if (ht)
3048 		htable_release(ht);
3049 
3050 	/*
3051 	 * handle last range for callbacks
3052 	 */
3053 	if (r_cnt > 0)
3054 		handle_ranges(hat, cb, r_cnt, r);
3055 	XPV_ALLOW_MIGRATE();
3056 }
3057 
3058 /*
3059  * Invalidate a virtual address translation on a slave CPU during
3060  * panic() dumps.
3061  */
3062 void
3063 hat_flush_range(hat_t *hat, caddr_t va, size_t size)
3064 {
3065 	ssize_t sz;
3066 	caddr_t endva = va + size;
3067 
3068 	while (va < endva) {
3069 		sz = hat_getpagesize(hat, va);
3070 		if (sz < 0) {
3071 #ifdef __xpv
3072 			xen_flush_tlb();
3073 #else
3074 			mmu_flush_tlb(FLUSH_TLB_ALL, NULL);
3075 #endif
3076 			break;
3077 		}
3078 #ifdef __xpv
3079 		xen_flush_va(va);
3080 #else
3081 		mmu_flush_tlb_kpage((uintptr_t)va);
3082 #endif
3083 		va += sz;
3084 	}
3085 }
3086 
3087 /*
3088  * synchronize mapping with software data structures
3089  *
3090  * This interface is currently only used by the working set monitor
3091  * driver.
3092  */
3093 /*ARGSUSED*/
3094 void
3095 hat_sync(hat_t *hat, caddr_t addr, size_t len, uint_t flags)
3096 {
3097 	uintptr_t	vaddr = (uintptr_t)addr;
3098 	uintptr_t	eaddr = vaddr + len;
3099 	htable_t	*ht = NULL;
3100 	uint_t		entry;
3101 	x86pte_t	pte;
3102 	x86pte_t	save_pte;
3103 	x86pte_t	new;
3104 	page_t		*pp;
3105 
3106 	ASSERT(!IN_VA_HOLE(vaddr));
3107 	ASSERT(IS_PAGEALIGNED(vaddr));
3108 	ASSERT(IS_PAGEALIGNED(eaddr));
3109 	ASSERT(hat == kas.a_hat || eaddr <= _userlimit);
3110 
3111 	XPV_DISALLOW_MIGRATE();
3112 	for (; vaddr < eaddr; vaddr += LEVEL_SIZE(ht->ht_level)) {
3113 try_again:
3114 		pte = htable_walk(hat, &ht, &vaddr, eaddr);
3115 		if (ht == NULL)
3116 			break;
3117 		entry = htable_va2entry(vaddr, ht);
3118 
3119 		if (PTE_GET(pte, PT_SOFTWARE) >= PT_NOSYNC ||
3120 		    PTE_GET(pte, PT_REF | PT_MOD) == 0)
3121 			continue;
3122 
3123 		/*
3124 		 * We need to acquire the mapping list lock to protect
3125 		 * against hat_pageunload(), hat_unload(), etc.
3126 		 */
3127 		pp = page_numtopp_nolock(PTE2PFN(pte, ht->ht_level));
3128 		if (pp == NULL)
3129 			break;
3130 		x86_hm_enter(pp);
3131 		save_pte = pte;
3132 		pte = x86pte_get(ht, entry);
3133 		if (pte != save_pte) {
3134 			x86_hm_exit(pp);
3135 			goto try_again;
3136 		}
3137 		if (PTE_GET(pte, PT_SOFTWARE) >= PT_NOSYNC ||
3138 		    PTE_GET(pte, PT_REF | PT_MOD) == 0) {
3139 			x86_hm_exit(pp);
3140 			continue;
3141 		}
3142 
3143 		/*
3144 		 * Need to clear ref or mod bits. We may compete with
3145 		 * hardware updating the R/M bits and have to try again.
3146 		 */
3147 		if (flags == HAT_SYNC_ZERORM) {
3148 			new = pte;
3149 			PTE_CLR(new, PT_REF | PT_MOD);
3150 			pte = hati_update_pte(ht, entry, pte, new);
3151 			if (pte != 0) {
3152 				x86_hm_exit(pp);
3153 				goto try_again;
3154 			}
3155 		} else {
3156 			/*
3157 			 * sync the PTE to the page_t
3158 			 */
3159 			hati_sync_pte_to_page(pp, save_pte, ht->ht_level);
3160 		}
3161 		x86_hm_exit(pp);
3162 	}
3163 	if (ht)
3164 		htable_release(ht);
3165 	XPV_ALLOW_MIGRATE();
3166 }
3167 
3168 /*
3169  * void	hat_map(hat, addr, len, flags)
3170  */
3171 /*ARGSUSED*/
3172 void
3173 hat_map(hat_t *hat, caddr_t addr, size_t len, uint_t flags)
3174 {
3175 	/* does nothing */
3176 }
3177 
3178 /*
3179  * uint_t hat_getattr(hat, addr, *attr)
3180  *	returns attr for <hat,addr> in *attr.  returns 0 if there was a
3181  *	mapping and *attr is valid, nonzero if there was no mapping and
3182  *	*attr is not valid.
3183  */
3184 uint_t
3185 hat_getattr(hat_t *hat, caddr_t addr, uint_t *attr)
3186 {
3187 	uintptr_t	vaddr = ALIGN2PAGE(addr);
3188 	htable_t	*ht = NULL;
3189 	x86pte_t	pte;
3190 
3191 	ASSERT(hat == kas.a_hat || vaddr <= _userlimit);
3192 
3193 	if (IN_VA_HOLE(vaddr))
3194 		return ((uint_t)-1);
3195 
3196 	ht = htable_getpte(hat, vaddr, NULL, &pte, mmu.max_page_level);
3197 	if (ht == NULL)
3198 		return ((uint_t)-1);
3199 
3200 	if (!PTE_ISVALID(pte) || !PTE_ISPAGE(pte, ht->ht_level)) {
3201 		htable_release(ht);
3202 		return ((uint_t)-1);
3203 	}
3204 
3205 	*attr = PROT_READ;
3206 	if (PTE_GET(pte, PT_WRITABLE))
3207 		*attr |= PROT_WRITE;
3208 	if (PTE_GET(pte, PT_USER))
3209 		*attr |= PROT_USER;
3210 	if (!PTE_GET(pte, mmu.pt_nx))
3211 		*attr |= PROT_EXEC;
3212 	if (PTE_GET(pte, PT_SOFTWARE) >= PT_NOSYNC)
3213 		*attr |= HAT_NOSYNC;
3214 	htable_release(ht);
3215 	return (0);
3216 }
3217 
3218 /*
3219  * hat_updateattr() applies the given attribute change to an existing mapping
3220  */
3221 #define	HAT_LOAD_ATTR		1
3222 #define	HAT_SET_ATTR		2
3223 #define	HAT_CLR_ATTR		3
3224 
3225 static void
3226 hat_updateattr(hat_t *hat, caddr_t addr, size_t len, uint_t attr, int what)
3227 {
3228 	uintptr_t	vaddr = (uintptr_t)addr;
3229 	uintptr_t	eaddr = (uintptr_t)addr + len;
3230 	htable_t	*ht = NULL;
3231 	uint_t		entry;
3232 	x86pte_t	oldpte, newpte;
3233 	page_t		*pp;
3234 
3235 	XPV_DISALLOW_MIGRATE();
3236 	ASSERT(IS_PAGEALIGNED(vaddr));
3237 	ASSERT(IS_PAGEALIGNED(eaddr));
3238 	ASSERT(hat == kas.a_hat || AS_LOCK_HELD(hat->hat_as));
3239 	for (; vaddr < eaddr; vaddr += LEVEL_SIZE(ht->ht_level)) {
3240 try_again:
3241 		oldpte = htable_walk(hat, &ht, &vaddr, eaddr);
3242 		if (ht == NULL)
3243 			break;
3244 		if (PTE_GET(oldpte, PT_SOFTWARE) >= PT_NOCONSIST)
3245 			continue;
3246 
3247 		pp = page_numtopp_nolock(PTE2PFN(oldpte, ht->ht_level));
3248 		if (pp == NULL)
3249 			continue;
3250 		x86_hm_enter(pp);
3251 
3252 		newpte = oldpte;
3253 		/*
3254 		 * We found a page table entry in the desired range,
3255 		 * figure out the new attributes.
3256 		 */
3257 		if (what == HAT_SET_ATTR || what == HAT_LOAD_ATTR) {
3258 			if ((attr & PROT_WRITE) &&
3259 			    !PTE_GET(oldpte, PT_WRITABLE))
3260 				newpte |= PT_WRITABLE;
3261 
3262 			if ((attr & HAT_NOSYNC) &&
3263 			    PTE_GET(oldpte, PT_SOFTWARE) < PT_NOSYNC)
3264 				newpte |= PT_NOSYNC;
3265 
3266 			if ((attr & PROT_EXEC) && PTE_GET(oldpte, mmu.pt_nx))
3267 				newpte &= ~mmu.pt_nx;
3268 		}
3269 
3270 		if (what == HAT_LOAD_ATTR) {
3271 			if (!(attr & PROT_WRITE) &&
3272 			    PTE_GET(oldpte, PT_WRITABLE))
3273 				newpte &= ~PT_WRITABLE;
3274 
3275 			if (!(attr & HAT_NOSYNC) &&
3276 			    PTE_GET(oldpte, PT_SOFTWARE) >= PT_NOSYNC)
3277 				newpte &= ~PT_SOFTWARE;
3278 
3279 			if (!(attr & PROT_EXEC) && !PTE_GET(oldpte, mmu.pt_nx))
3280 				newpte |= mmu.pt_nx;
3281 		}
3282 
3283 		if (what == HAT_CLR_ATTR) {
3284 			if ((attr & PROT_WRITE) && PTE_GET(oldpte, PT_WRITABLE))
3285 				newpte &= ~PT_WRITABLE;
3286 
3287 			if ((attr & HAT_NOSYNC) &&
3288 			    PTE_GET(oldpte, PT_SOFTWARE) >= PT_NOSYNC)
3289 				newpte &= ~PT_SOFTWARE;
3290 
3291 			if ((attr & PROT_EXEC) && !PTE_GET(oldpte, mmu.pt_nx))
3292 				newpte |= mmu.pt_nx;
3293 		}
3294 
3295 		/*
3296 		 * Ensure NOSYNC/NOCONSIST mappings have REF and MOD set.
3297 		 * x86pte_set() depends on this.
3298 		 */
3299 		if (PTE_GET(newpte, PT_SOFTWARE) >= PT_NOSYNC)
3300 			newpte |= PT_REF | PT_MOD;
3301 
3302 		/*
3303 		 * what about PROT_READ or others? this code only handles:
3304 		 * EXEC, WRITE, NOSYNC
3305 		 */
3306 
3307 		/*
3308 		 * If new PTE really changed, update the table.
3309 		 */
3310 		if (newpte != oldpte) {
3311 			entry = htable_va2entry(vaddr, ht);
3312 			oldpte = hati_update_pte(ht, entry, oldpte, newpte);
3313 			if (oldpte != 0) {
3314 				x86_hm_exit(pp);
3315 				goto try_again;
3316 			}
3317 		}
3318 		x86_hm_exit(pp);
3319 	}
3320 	if (ht)
3321 		htable_release(ht);
3322 	XPV_ALLOW_MIGRATE();
3323 }
3324 
3325 /*
3326  * Various wrappers for hat_updateattr()
3327  */
3328 void
3329 hat_setattr(hat_t *hat, caddr_t addr, size_t len, uint_t attr)
3330 {
3331 	ASSERT(hat == kas.a_hat || (uintptr_t)addr + len <= _userlimit);
3332 	hat_updateattr(hat, addr, len, attr, HAT_SET_ATTR);
3333 }
3334 
3335 void
3336 hat_clrattr(hat_t *hat, caddr_t addr, size_t len, uint_t attr)
3337 {
3338 	ASSERT(hat == kas.a_hat || (uintptr_t)addr + len <= _userlimit);
3339 	hat_updateattr(hat, addr, len, attr, HAT_CLR_ATTR);
3340 }
3341 
3342 void
3343 hat_chgattr(hat_t *hat, caddr_t addr, size_t len, uint_t attr)
3344 {
3345 	ASSERT(hat == kas.a_hat || (uintptr_t)addr + len <= _userlimit);
3346 	hat_updateattr(hat, addr, len, attr, HAT_LOAD_ATTR);
3347 }
3348 
3349 void
3350 hat_chgprot(hat_t *hat, caddr_t addr, size_t len, uint_t vprot)
3351 {
3352 	ASSERT(hat == kas.a_hat || (uintptr_t)addr + len <= _userlimit);
3353 	hat_updateattr(hat, addr, len, vprot & HAT_PROT_MASK, HAT_LOAD_ATTR);
3354 }
3355 
3356 /*
3357  * size_t hat_getpagesize(hat, addr)
3358  *	returns pagesize in bytes for <hat, addr>. returns -1 of there is
3359  *	no mapping. This is an advisory call.
3360  */
3361 ssize_t
3362 hat_getpagesize(hat_t *hat, caddr_t addr)
3363 {
3364 	uintptr_t	vaddr = ALIGN2PAGE(addr);
3365 	htable_t	*ht;
3366 	size_t		pagesize;
3367 
3368 	ASSERT(hat == kas.a_hat || vaddr <= _userlimit);
3369 	if (IN_VA_HOLE(vaddr))
3370 		return (-1);
3371 	ht = htable_getpage(hat, vaddr, NULL);
3372 	if (ht == NULL)
3373 		return (-1);
3374 	pagesize = LEVEL_SIZE(ht->ht_level);
3375 	htable_release(ht);
3376 	return (pagesize);
3377 }
3378 
3379 
3380 
3381 /*
3382  * pfn_t hat_getpfnum(hat, addr)
3383  *	returns pfn for <hat, addr> or PFN_INVALID if mapping is invalid.
3384  */
3385 pfn_t
3386 hat_getpfnum(hat_t *hat, caddr_t addr)
3387 {
3388 	uintptr_t	vaddr = ALIGN2PAGE(addr);
3389 	htable_t	*ht;
3390 	uint_t		entry;
3391 	pfn_t		pfn = PFN_INVALID;
3392 
3393 	ASSERT(hat == kas.a_hat || vaddr <= _userlimit);
3394 	if (khat_running == 0)
3395 		return (PFN_INVALID);
3396 
3397 	if (IN_VA_HOLE(vaddr))
3398 		return (PFN_INVALID);
3399 
3400 	XPV_DISALLOW_MIGRATE();
3401 	/*
3402 	 * A very common use of hat_getpfnum() is from the DDI for kernel pages.
3403 	 * Use the kmap_ptes (which also covers the 32 bit heap) to speed
3404 	 * this up.
3405 	 */
3406 	if (mmu.kmap_addr <= vaddr && vaddr < mmu.kmap_eaddr) {
3407 		x86pte_t pte;
3408 		pgcnt_t pg_index;
3409 
3410 		pg_index = mmu_btop(vaddr - mmu.kmap_addr);
3411 		pte = GET_PTE(PT_INDEX_PTR(mmu.kmap_ptes, pg_index));
3412 		if (PTE_ISVALID(pte))
3413 			/*LINTED [use of constant 0 causes a lint warning] */
3414 			pfn = PTE2PFN(pte, 0);
3415 		XPV_ALLOW_MIGRATE();
3416 		return (pfn);
3417 	}
3418 
3419 	ht = htable_getpage(hat, vaddr, &entry);
3420 	if (ht == NULL) {
3421 		XPV_ALLOW_MIGRATE();
3422 		return (PFN_INVALID);
3423 	}
3424 	ASSERT(vaddr >= ht->ht_vaddr);
3425 	ASSERT(vaddr <= HTABLE_LAST_PAGE(ht));
3426 	pfn = PTE2PFN(x86pte_get(ht, entry), ht->ht_level);
3427 	if (ht->ht_level > 0)
3428 		pfn += mmu_btop(vaddr & LEVEL_OFFSET(ht->ht_level));
3429 	htable_release(ht);
3430 	XPV_ALLOW_MIGRATE();
3431 	return (pfn);
3432 }
3433 
3434 /*
3435  * int hat_probe(hat, addr)
3436  *	return 0 if no valid mapping is present.  Faster version
3437  *	of hat_getattr in certain architectures.
3438  */
3439 int
3440 hat_probe(hat_t *hat, caddr_t addr)
3441 {
3442 	uintptr_t	vaddr = ALIGN2PAGE(addr);
3443 	uint_t		entry;
3444 	htable_t	*ht;
3445 	pgcnt_t		pg_off;
3446 
3447 	ASSERT(hat == kas.a_hat || vaddr <= _userlimit);
3448 	ASSERT(hat == kas.a_hat || AS_LOCK_HELD(hat->hat_as));
3449 	if (IN_VA_HOLE(vaddr))
3450 		return (0);
3451 
3452 	/*
3453 	 * Most common use of hat_probe is from segmap. We special case it
3454 	 * for performance.
3455 	 */
3456 	if (mmu.kmap_addr <= vaddr && vaddr < mmu.kmap_eaddr) {
3457 		pg_off = mmu_btop(vaddr - mmu.kmap_addr);
3458 		if (mmu.pae_hat)
3459 			return (PTE_ISVALID(mmu.kmap_ptes[pg_off]));
3460 		else
3461 			return (PTE_ISVALID(
3462 			    ((x86pte32_t *)mmu.kmap_ptes)[pg_off]));
3463 	}
3464 
3465 	ht = htable_getpage(hat, vaddr, &entry);
3466 	htable_release(ht);
3467 	return (ht != NULL);
3468 }
3469 
3470 /*
3471  * Find out if the segment for hat_share()/hat_unshare() is DISM or locked ISM.
3472  */
3473 static int
3474 is_it_dism(hat_t *hat, caddr_t va)
3475 {
3476 	struct seg *seg;
3477 	struct shm_data *shmd;
3478 	struct spt_data *sptd;
3479 
3480 	seg = as_findseg(hat->hat_as, va, 0);
3481 	ASSERT(seg != NULL);
3482 	ASSERT(seg->s_base <= va);
3483 	shmd = (struct shm_data *)seg->s_data;
3484 	ASSERT(shmd != NULL);
3485 	sptd = (struct spt_data *)shmd->shm_sptseg->s_data;
3486 	ASSERT(sptd != NULL);
3487 	if (sptd->spt_flags & SHM_PAGEABLE)
3488 		return (1);
3489 	return (0);
3490 }
3491 
3492 /*
3493  * Simple implementation of ISM. hat_share() is similar to hat_memload_array(),
3494  * except that we use the ism_hat's existing mappings to determine the pages
3495  * and protections to use for this hat. If we find a full properly aligned
3496  * and sized pagetable, we will attempt to share the pagetable itself.
3497  */
3498 /*ARGSUSED*/
3499 int
3500 hat_share(
3501 	hat_t		*hat,
3502 	caddr_t		addr,
3503 	hat_t		*ism_hat,
3504 	caddr_t		src_addr,
3505 	size_t		len,	/* almost useless value, see below.. */
3506 	uint_t		ismszc)
3507 {
3508 	uintptr_t	vaddr_start = (uintptr_t)addr;
3509 	uintptr_t	vaddr;
3510 	uintptr_t	eaddr = vaddr_start + len;
3511 	uintptr_t	ism_addr_start = (uintptr_t)src_addr;
3512 	uintptr_t	ism_addr = ism_addr_start;
3513 	uintptr_t	e_ism_addr = ism_addr + len;
3514 	htable_t	*ism_ht = NULL;
3515 	htable_t	*ht;
3516 	x86pte_t	pte;
3517 	page_t		*pp;
3518 	pfn_t		pfn;
3519 	level_t		l;
3520 	pgcnt_t		pgcnt;
3521 	uint_t		prot;
3522 	int		is_dism;
3523 	int		flags;
3524 
3525 	/*
3526 	 * We might be asked to share an empty DISM hat by as_dup()
3527 	 */
3528 	ASSERT(hat != kas.a_hat);
3529 	ASSERT(eaddr <= _userlimit);
3530 	if (!(ism_hat->hat_flags & HAT_SHARED)) {
3531 		ASSERT(hat_get_mapped_size(ism_hat) == 0);
3532 		return (0);
3533 	}
3534 	XPV_DISALLOW_MIGRATE();
3535 
3536 	/*
3537 	 * The SPT segment driver often passes us a size larger than there are
3538 	 * valid mappings. That's because it rounds the segment size up to a
3539 	 * large pagesize, even if the actual memory mapped by ism_hat is less.
3540 	 */
3541 	ASSERT(IS_PAGEALIGNED(vaddr_start));
3542 	ASSERT(IS_PAGEALIGNED(ism_addr_start));
3543 	ASSERT(ism_hat->hat_flags & HAT_SHARED);
3544 	is_dism = is_it_dism(hat, addr);
3545 	while (ism_addr < e_ism_addr) {
3546 		/*
3547 		 * use htable_walk to get the next valid ISM mapping
3548 		 */
3549 		pte = htable_walk(ism_hat, &ism_ht, &ism_addr, e_ism_addr);
3550 		if (ism_ht == NULL)
3551 			break;
3552 
3553 		/*
3554 		 * First check to see if we already share the page table.
3555 		 */
3556 		l = ism_ht->ht_level;
3557 		vaddr = vaddr_start + (ism_addr - ism_addr_start);
3558 		ht = htable_lookup(hat, vaddr, l);
3559 		if (ht != NULL) {
3560 			if (ht->ht_flags & HTABLE_SHARED_PFN)
3561 				goto shared;
3562 			htable_release(ht);
3563 			goto not_shared;
3564 		}
3565 
3566 		/*
3567 		 * Can't ever share top table.
3568 		 */
3569 		if (l == mmu.max_level)
3570 			goto not_shared;
3571 
3572 		/*
3573 		 * Avoid level mismatches later due to DISM faults.
3574 		 */
3575 		if (is_dism && l > 0)
3576 			goto not_shared;
3577 
3578 		/*
3579 		 * addresses and lengths must align
3580 		 * table must be fully populated
3581 		 * no lower level page tables
3582 		 */
3583 		if (ism_addr != ism_ht->ht_vaddr ||
3584 		    (vaddr & LEVEL_OFFSET(l + 1)) != 0)
3585 			goto not_shared;
3586 
3587 		/*
3588 		 * The range of address space must cover a full table.
3589 		 */
3590 		if (e_ism_addr - ism_addr < LEVEL_SIZE(l + 1))
3591 			goto not_shared;
3592 
3593 		/*
3594 		 * All entries in the ISM page table must be leaf PTEs.
3595 		 */
3596 		if (l > 0) {
3597 			int e;
3598 
3599 			/*
3600 			 * We know the 0th is from htable_walk() above.
3601 			 */
3602 			for (e = 1; e < HTABLE_NUM_PTES(ism_ht); ++e) {
3603 				x86pte_t pte;
3604 				pte = x86pte_get(ism_ht, e);
3605 				if (!PTE_ISPAGE(pte, l))
3606 					goto not_shared;
3607 			}
3608 		}
3609 
3610 		/*
3611 		 * share the page table
3612 		 */
3613 		ht = htable_create(hat, vaddr, l, ism_ht);
3614 shared:
3615 		ASSERT(ht->ht_flags & HTABLE_SHARED_PFN);
3616 		ASSERT(ht->ht_shares == ism_ht);
3617 		hat->hat_ism_pgcnt +=
3618 		    (ism_ht->ht_valid_cnt - ht->ht_valid_cnt) <<
3619 		    (LEVEL_SHIFT(ht->ht_level) - MMU_PAGESHIFT);
3620 		ht->ht_valid_cnt = ism_ht->ht_valid_cnt;
3621 		htable_release(ht);
3622 		ism_addr = ism_ht->ht_vaddr + LEVEL_SIZE(l + 1);
3623 		htable_release(ism_ht);
3624 		ism_ht = NULL;
3625 		continue;
3626 
3627 not_shared:
3628 		/*
3629 		 * Unable to share the page table. Instead we will
3630 		 * create new mappings from the values in the ISM mappings.
3631 		 * Figure out what level size mappings to use;
3632 		 */
3633 		for (l = ism_ht->ht_level; l > 0; --l) {
3634 			if (LEVEL_SIZE(l) <= eaddr - vaddr &&
3635 			    (vaddr & LEVEL_OFFSET(l)) == 0)
3636 				break;
3637 		}
3638 
3639 		/*
3640 		 * The ISM mapping might be larger than the share area,
3641 		 * be careful to truncate it if needed.
3642 		 */
3643 		if (eaddr - vaddr >= LEVEL_SIZE(ism_ht->ht_level)) {
3644 			pgcnt = mmu_btop(LEVEL_SIZE(ism_ht->ht_level));
3645 		} else {
3646 			pgcnt = mmu_btop(eaddr - vaddr);
3647 			l = 0;
3648 		}
3649 
3650 		pfn = PTE2PFN(pte, ism_ht->ht_level);
3651 		ASSERT(pfn != PFN_INVALID);
3652 		while (pgcnt > 0) {
3653 			/*
3654 			 * Make a new pte for the PFN for this level.
3655 			 * Copy protections for the pte from the ISM pte.
3656 			 */
3657 			pp = page_numtopp_nolock(pfn);
3658 			ASSERT(pp != NULL);
3659 
3660 			prot = PROT_USER | PROT_READ | HAT_UNORDERED_OK;
3661 			if (PTE_GET(pte, PT_WRITABLE))
3662 				prot |= PROT_WRITE;
3663 			if (!PTE_GET(pte, PT_NX))
3664 				prot |= PROT_EXEC;
3665 
3666 			flags = HAT_LOAD;
3667 			if (!is_dism)
3668 				flags |= HAT_LOAD_LOCK | HAT_LOAD_NOCONSIST;
3669 			while (hati_load_common(hat, vaddr, pp, prot, flags,
3670 			    l, pfn) != 0) {
3671 				if (l == 0)
3672 					panic("hati_load_common() failure");
3673 				--l;
3674 			}
3675 
3676 			vaddr += LEVEL_SIZE(l);
3677 			ism_addr += LEVEL_SIZE(l);
3678 			pfn += mmu_btop(LEVEL_SIZE(l));
3679 			pgcnt -= mmu_btop(LEVEL_SIZE(l));
3680 		}
3681 	}
3682 	if (ism_ht != NULL)
3683 		htable_release(ism_ht);
3684 	XPV_ALLOW_MIGRATE();
3685 	return (0);
3686 }
3687 
3688 
3689 /*
3690  * hat_unshare() is similar to hat_unload_callback(), but
3691  * we have to look for empty shared pagetables. Note that
3692  * hat_unshare() is always invoked against an entire segment.
3693  */
3694 /*ARGSUSED*/
3695 void
3696 hat_unshare(hat_t *hat, caddr_t addr, size_t len, uint_t ismszc)
3697 {
3698 	uint64_t	vaddr = (uintptr_t)addr;
3699 	uintptr_t	eaddr = vaddr + len;
3700 	htable_t	*ht = NULL;
3701 	uint_t		need_demaps = 0;
3702 	int		flags = HAT_UNLOAD_UNMAP;
3703 	level_t		l;
3704 
3705 	ASSERT(hat != kas.a_hat);
3706 	ASSERT(eaddr <= _userlimit);
3707 	ASSERT(IS_PAGEALIGNED(vaddr));
3708 	ASSERT(IS_PAGEALIGNED(eaddr));
3709 	XPV_DISALLOW_MIGRATE();
3710 
3711 	/*
3712 	 * First go through and remove any shared pagetables.
3713 	 *
3714 	 * Note that it's ok to delay the TLB shootdown till the entire range is
3715 	 * finished, because if hat_pageunload() were to unload a shared
3716 	 * pagetable page, its hat_tlb_inval() will do a global TLB invalidate.
3717 	 */
3718 	l = mmu.max_page_level;
3719 	if (l == mmu.max_level)
3720 		--l;
3721 	for (; l >= 0; --l) {
3722 		for (vaddr = (uintptr_t)addr; vaddr < eaddr;
3723 		    vaddr = (vaddr & LEVEL_MASK(l + 1)) + LEVEL_SIZE(l + 1)) {
3724 			ASSERT(!IN_VA_HOLE(vaddr));
3725 			/*
3726 			 * find a pagetable that maps the current address
3727 			 */
3728 			ht = htable_lookup(hat, vaddr, l);
3729 			if (ht == NULL)
3730 				continue;
3731 			if (ht->ht_flags & HTABLE_SHARED_PFN) {
3732 				/*
3733 				 * clear page count, set valid_cnt to 0,
3734 				 * let htable_release() finish the job
3735 				 */
3736 				hat->hat_ism_pgcnt -= ht->ht_valid_cnt <<
3737 				    (LEVEL_SHIFT(ht->ht_level) - MMU_PAGESHIFT);
3738 				ht->ht_valid_cnt = 0;
3739 				need_demaps = 1;
3740 			}
3741 			htable_release(ht);
3742 		}
3743 	}
3744 
3745 	/*
3746 	 * flush the TLBs - since we're probably dealing with MANY mappings
3747 	 * we just do a full invalidation.
3748 	 */
3749 	if (!(hat->hat_flags & HAT_FREEING) && need_demaps)
3750 		hat_tlb_inval(hat, DEMAP_ALL_ADDR);
3751 
3752 	/*
3753 	 * Now go back and clean up any unaligned mappings that
3754 	 * couldn't share pagetables.
3755 	 */
3756 	if (!is_it_dism(hat, addr))
3757 		flags |= HAT_UNLOAD_UNLOCK;
3758 	hat_unload(hat, addr, len, flags);
3759 	XPV_ALLOW_MIGRATE();
3760 }
3761 
3762 
3763 /*
3764  * hat_reserve() does nothing
3765  */
3766 /*ARGSUSED*/
3767 void
3768 hat_reserve(struct as *as, caddr_t addr, size_t len)
3769 {
3770 }
3771 
3772 
3773 /*
3774  * Called when all mappings to a page should have write permission removed.
3775  * Mostly stolen from hat_pagesync()
3776  */
3777 static void
3778 hati_page_clrwrt(struct page *pp)
3779 {
3780 	hment_t		*hm = NULL;
3781 	htable_t	*ht;
3782 	uint_t		entry;
3783 	x86pte_t	old;
3784 	x86pte_t	new;
3785 	uint_t		pszc = 0;
3786 
3787 	XPV_DISALLOW_MIGRATE();
3788 next_size:
3789 	/*
3790 	 * walk thru the mapping list clearing write permission
3791 	 */
3792 	x86_hm_enter(pp);
3793 	while ((hm = hment_walk(pp, &ht, &entry, hm)) != NULL) {
3794 		if (ht->ht_level < pszc)
3795 			continue;
3796 		old = x86pte_get(ht, entry);
3797 
3798 		for (;;) {
3799 			/*
3800 			 * Is this mapping of interest?
3801 			 */
3802 			if (PTE2PFN(old, ht->ht_level) != pp->p_pagenum ||
3803 			    PTE_GET(old, PT_WRITABLE) == 0)
3804 				break;
3805 
3806 			/*
3807 			 * Clear ref/mod writable bits. This requires cross
3808 			 * calls to ensure any executing TLBs see cleared bits.
3809 			 */
3810 			new = old;
3811 			PTE_CLR(new, PT_REF | PT_MOD | PT_WRITABLE);
3812 			old = hati_update_pte(ht, entry, old, new);
3813 			if (old != 0)
3814 				continue;
3815 
3816 			break;
3817 		}
3818 	}
3819 	x86_hm_exit(pp);
3820 	while (pszc < pp->p_szc) {
3821 		page_t *tpp;
3822 		pszc++;
3823 		tpp = PP_GROUPLEADER(pp, pszc);
3824 		if (pp != tpp) {
3825 			pp = tpp;
3826 			goto next_size;
3827 		}
3828 	}
3829 	XPV_ALLOW_MIGRATE();
3830 }
3831 
3832 /*
3833  * void hat_page_setattr(pp, flag)
3834  * void hat_page_clrattr(pp, flag)
3835  *	used to set/clr ref/mod bits.
3836  */
3837 void
3838 hat_page_setattr(struct page *pp, uint_t flag)
3839 {
3840 	vnode_t		*vp = pp->p_vnode;
3841 	kmutex_t	*vphm = NULL;
3842 	page_t		**listp;
3843 	int		noshuffle;
3844 
3845 	noshuffle = flag & P_NSH;
3846 	flag &= ~P_NSH;
3847 
3848 	if (PP_GETRM(pp, flag) == flag)
3849 		return;
3850 
3851 	if ((flag & P_MOD) != 0 && vp != NULL && IS_VMODSORT(vp) &&
3852 	    !noshuffle) {
3853 		vphm = page_vnode_mutex(vp);
3854 		mutex_enter(vphm);
3855 	}
3856 
3857 	PP_SETRM(pp, flag);
3858 
3859 	if (vphm != NULL) {
3860 
3861 		/*
3862 		 * Some File Systems examine v_pages for NULL w/o
3863 		 * grabbing the vphm mutex. Must not let it become NULL when
3864 		 * pp is the only page on the list.
3865 		 */
3866 		if (pp->p_vpnext != pp) {
3867 			page_vpsub(&vp->v_pages, pp);
3868 			if (vp->v_pages != NULL)
3869 				listp = &vp->v_pages->p_vpprev->p_vpnext;
3870 			else
3871 				listp = &vp->v_pages;
3872 			page_vpadd(listp, pp);
3873 		}
3874 		mutex_exit(vphm);
3875 	}
3876 }
3877 
3878 void
3879 hat_page_clrattr(struct page *pp, uint_t flag)
3880 {
3881 	vnode_t		*vp = pp->p_vnode;
3882 	ASSERT(!(flag & ~(P_MOD | P_REF | P_RO)));
3883 
3884 	/*
3885 	 * Caller is expected to hold page's io lock for VMODSORT to work
3886 	 * correctly with pvn_vplist_dirty() and pvn_getdirty() when mod
3887 	 * bit is cleared.
3888 	 * We don't have assert to avoid tripping some existing third party
3889 	 * code. The dirty page is moved back to top of the v_page list
3890 	 * after IO is done in pvn_write_done().
3891 	 */
3892 	PP_CLRRM(pp, flag);
3893 
3894 	if ((flag & P_MOD) != 0 && vp != NULL && IS_VMODSORT(vp)) {
3895 
3896 		/*
3897 		 * VMODSORT works by removing write permissions and getting
3898 		 * a fault when a page is made dirty. At this point
3899 		 * we need to remove write permission from all mappings
3900 		 * to this page.
3901 		 */
3902 		hati_page_clrwrt(pp);
3903 	}
3904 }
3905 
3906 /*
3907  *	If flag is specified, returns 0 if attribute is disabled
3908  *	and non zero if enabled.  If flag specifes multiple attributes
3909  *	then returns 0 if ALL attributes are disabled.  This is an advisory
3910  *	call.
3911  */
3912 uint_t
3913 hat_page_getattr(struct page *pp, uint_t flag)
3914 {
3915 	return (PP_GETRM(pp, flag));
3916 }
3917 
3918 
3919 /*
3920  * common code used by hat_pageunload() and hment_steal()
3921  */
3922 hment_t *
3923 hati_page_unmap(page_t *pp, htable_t *ht, uint_t entry)
3924 {
3925 	x86pte_t old_pte;
3926 	pfn_t pfn = pp->p_pagenum;
3927 	hment_t *hm;
3928 
3929 	/*
3930 	 * We need to acquire a hold on the htable in order to
3931 	 * do the invalidate. We know the htable must exist, since
3932 	 * unmap's don't release the htable until after removing any
3933 	 * hment. Having x86_hm_enter() keeps that from proceeding.
3934 	 */
3935 	htable_acquire(ht);
3936 
3937 	/*
3938 	 * Invalidate the PTE and remove the hment.
3939 	 */
3940 	old_pte = x86pte_inval(ht, entry, 0, NULL, B_TRUE);
3941 	if (PTE2PFN(old_pte, ht->ht_level) != pfn) {
3942 		panic("x86pte_inval() failure found PTE = " FMT_PTE
3943 		    " pfn being unmapped is %lx ht=0x%lx entry=0x%x",
3944 		    old_pte, pfn, (uintptr_t)ht, entry);
3945 	}
3946 
3947 	/*
3948 	 * Clean up all the htable information for this mapping
3949 	 */
3950 	ASSERT(ht->ht_valid_cnt > 0);
3951 	HTABLE_DEC(ht->ht_valid_cnt);
3952 	PGCNT_DEC(ht->ht_hat, ht->ht_level);
3953 
3954 	/*
3955 	 * sync ref/mod bits to the page_t
3956 	 */
3957 	if (PTE_GET(old_pte, PT_SOFTWARE) < PT_NOSYNC)
3958 		hati_sync_pte_to_page(pp, old_pte, ht->ht_level);
3959 
3960 	/*
3961 	 * Remove the mapping list entry for this page.
3962 	 */
3963 	hm = hment_remove(pp, ht, entry);
3964 
3965 	/*
3966 	 * drop the mapping list lock so that we might free the
3967 	 * hment and htable.
3968 	 */
3969 	x86_hm_exit(pp);
3970 	htable_release(ht);
3971 	return (hm);
3972 }
3973 
3974 extern int	vpm_enable;
3975 /*
3976  * Unload all translations to a page. If the page is a subpage of a large
3977  * page, the large page mappings are also removed.
3978  *
3979  * The forceflags are unused.
3980  */
3981 
3982 /*ARGSUSED*/
3983 static int
3984 hati_pageunload(struct page *pp, uint_t pg_szcd, uint_t forceflag)
3985 {
3986 	page_t		*cur_pp = pp;
3987 	hment_t		*hm;
3988 	hment_t		*prev;
3989 	htable_t	*ht;
3990 	uint_t		entry;
3991 	level_t		level;
3992 
3993 	XPV_DISALLOW_MIGRATE();
3994 
3995 	/*
3996 	 * prevent recursion due to kmem_free()
3997 	 */
3998 	++curthread->t_hatdepth;
3999 	ASSERT(curthread->t_hatdepth < 16);
4000 
4001 #if defined(__amd64)
4002 	/*
4003 	 * clear the vpm ref.
4004 	 */
4005 	if (vpm_enable) {
4006 		pp->p_vpmref = 0;
4007 	}
4008 #endif
4009 	/*
4010 	 * The loop with next_size handles pages with multiple pagesize mappings
4011 	 */
4012 next_size:
4013 	for (;;) {
4014 
4015 		/*
4016 		 * Get a mapping list entry
4017 		 */
4018 		x86_hm_enter(cur_pp);
4019 		for (prev = NULL; ; prev = hm) {
4020 			hm = hment_walk(cur_pp, &ht, &entry, prev);
4021 			if (hm == NULL) {
4022 				x86_hm_exit(cur_pp);
4023 
4024 				/*
4025 				 * If not part of a larger page, we're done.
4026 				 */
4027 				if (cur_pp->p_szc <= pg_szcd) {
4028 					ASSERT(curthread->t_hatdepth > 0);
4029 					--curthread->t_hatdepth;
4030 					XPV_ALLOW_MIGRATE();
4031 					return (0);
4032 				}
4033 
4034 				/*
4035 				 * Else check the next larger page size.
4036 				 * hat_page_demote() may decrease p_szc
4037 				 * but that's ok we'll just take an extra
4038 				 * trip discover there're no larger mappings
4039 				 * and return.
4040 				 */
4041 				++pg_szcd;
4042 				cur_pp = PP_GROUPLEADER(cur_pp, pg_szcd);
4043 				goto next_size;
4044 			}
4045 
4046 			/*
4047 			 * If this mapping size matches, remove it.
4048 			 */
4049 			level = ht->ht_level;
4050 			if (level == pg_szcd)
4051 				break;
4052 		}
4053 
4054 		/*
4055 		 * Remove the mapping list entry for this page.
4056 		 * Note this does the x86_hm_exit() for us.
4057 		 */
4058 		hm = hati_page_unmap(cur_pp, ht, entry);
4059 		if (hm != NULL)
4060 			hment_free(hm);
4061 	}
4062 }
4063 
4064 int
4065 hat_pageunload(struct page *pp, uint_t forceflag)
4066 {
4067 	ASSERT(PAGE_EXCL(pp));
4068 	return (hati_pageunload(pp, 0, forceflag));
4069 }
4070 
4071 /*
4072  * Unload all large mappings to pp and reduce by 1 p_szc field of every large
4073  * page level that included pp.
4074  *
4075  * pp must be locked EXCL. Even though no other constituent pages are locked
4076  * it's legal to unload large mappings to pp because all constituent pages of
4077  * large locked mappings have to be locked SHARED.  therefore if we have EXCL
4078  * lock on one of constituent pages none of the large mappings to pp are
4079  * locked.
4080  *
4081  * Change (always decrease) p_szc field starting from the last constituent
4082  * page and ending with root constituent page so that root's pszc always shows
4083  * the area where hat_page_demote() may be active.
4084  *
4085  * This mechanism is only used for file system pages where it's not always
4086  * possible to get EXCL locks on all constituent pages to demote the size code
4087  * (as is done for anonymous or kernel large pages).
4088  */
4089 void
4090 hat_page_demote(page_t *pp)
4091 {
4092 	uint_t		pszc;
4093 	uint_t		rszc;
4094 	uint_t		szc;
4095 	page_t		*rootpp;
4096 	page_t		*firstpp;
4097 	page_t		*lastpp;
4098 	pgcnt_t		pgcnt;
4099 
4100 	ASSERT(PAGE_EXCL(pp));
4101 	ASSERT(!PP_ISFREE(pp));
4102 	ASSERT(page_szc_lock_assert(pp));
4103 
4104 	if (pp->p_szc == 0)
4105 		return;
4106 
4107 	rootpp = PP_GROUPLEADER(pp, 1);
4108 	(void) hati_pageunload(rootpp, 1, HAT_FORCE_PGUNLOAD);
4109 
4110 	/*
4111 	 * all large mappings to pp are gone
4112 	 * and no new can be setup since pp is locked exclusively.
4113 	 *
4114 	 * Lock the root to make sure there's only one hat_page_demote()
4115 	 * outstanding within the area of this root's pszc.
4116 	 *
4117 	 * Second potential hat_page_demote() is already eliminated by upper
4118 	 * VM layer via page_szc_lock() but we don't rely on it and use our
4119 	 * own locking (so that upper layer locking can be changed without
4120 	 * assumptions that hat depends on upper layer VM to prevent multiple
4121 	 * hat_page_demote() to be issued simultaneously to the same large
4122 	 * page).
4123 	 */
4124 again:
4125 	pszc = pp->p_szc;
4126 	if (pszc == 0)
4127 		return;
4128 	rootpp = PP_GROUPLEADER(pp, pszc);
4129 	x86_hm_enter(rootpp);
4130 	/*
4131 	 * If root's p_szc is different from pszc we raced with another
4132 	 * hat_page_demote().  Drop the lock and try to find the root again.
4133 	 * If root's p_szc is greater than pszc previous hat_page_demote() is
4134 	 * not done yet.  Take and release mlist lock of root's root to wait
4135 	 * for previous hat_page_demote() to complete.
4136 	 */
4137 	if ((rszc = rootpp->p_szc) != pszc) {
4138 		x86_hm_exit(rootpp);
4139 		if (rszc > pszc) {
4140 			/* p_szc of a locked non free page can't increase */
4141 			ASSERT(pp != rootpp);
4142 
4143 			rootpp = PP_GROUPLEADER(rootpp, rszc);
4144 			x86_hm_enter(rootpp);
4145 			x86_hm_exit(rootpp);
4146 		}
4147 		goto again;
4148 	}
4149 	ASSERT(pp->p_szc == pszc);
4150 
4151 	/*
4152 	 * Decrement by 1 p_szc of every constituent page of a region that
4153 	 * covered pp. For example if original szc is 3 it gets changed to 2
4154 	 * everywhere except in region 2 that covered pp. Region 2 that
4155 	 * covered pp gets demoted to 1 everywhere except in region 1 that
4156 	 * covered pp. The region 1 that covered pp is demoted to region
4157 	 * 0. It's done this way because from region 3 we removed level 3
4158 	 * mappings, from region 2 that covered pp we removed level 2 mappings
4159 	 * and from region 1 that covered pp we removed level 1 mappings.  All
4160 	 * changes are done from from high pfn's to low pfn's so that roots
4161 	 * are changed last allowing one to know the largest region where
4162 	 * hat_page_demote() is stil active by only looking at the root page.
4163 	 *
4164 	 * This algorithm is implemented in 2 while loops. First loop changes
4165 	 * p_szc of pages to the right of pp's level 1 region and second
4166 	 * loop changes p_szc of pages of level 1 region that covers pp
4167 	 * and all pages to the left of level 1 region that covers pp.
4168 	 * In the first loop p_szc keeps dropping with every iteration
4169 	 * and in the second loop it keeps increasing with every iteration.
4170 	 *
4171 	 * First loop description: Demote pages to the right of pp outside of
4172 	 * level 1 region that covers pp.  In every iteration of the while
4173 	 * loop below find the last page of szc region and the first page of
4174 	 * (szc - 1) region that is immediately to the right of (szc - 1)
4175 	 * region that covers pp.  From last such page to first such page
4176 	 * change every page's szc to szc - 1. Decrement szc and continue
4177 	 * looping until szc is 1. If pp belongs to the last (szc - 1) region
4178 	 * of szc region skip to the next iteration.
4179 	 */
4180 	szc = pszc;
4181 	while (szc > 1) {
4182 		lastpp = PP_GROUPLEADER(pp, szc);
4183 		pgcnt = page_get_pagecnt(szc);
4184 		lastpp += pgcnt - 1;
4185 		firstpp = PP_GROUPLEADER(pp, (szc - 1));
4186 		pgcnt = page_get_pagecnt(szc - 1);
4187 		if (lastpp - firstpp < pgcnt) {
4188 			szc--;
4189 			continue;
4190 		}
4191 		firstpp += pgcnt;
4192 		while (lastpp != firstpp) {
4193 			ASSERT(lastpp->p_szc == pszc);
4194 			lastpp->p_szc = szc - 1;
4195 			lastpp--;
4196 		}
4197 		firstpp->p_szc = szc - 1;
4198 		szc--;
4199 	}
4200 
4201 	/*
4202 	 * Second loop description:
4203 	 * First iteration changes p_szc to 0 of every
4204 	 * page of level 1 region that covers pp.
4205 	 * Subsequent iterations find last page of szc region
4206 	 * immediately to the left of szc region that covered pp
4207 	 * and first page of (szc + 1) region that covers pp.
4208 	 * From last to first page change p_szc of every page to szc.
4209 	 * Increment szc and continue looping until szc is pszc.
4210 	 * If pp belongs to the fist szc region of (szc + 1) region
4211 	 * skip to the next iteration.
4212 	 *
4213 	 */
4214 	szc = 0;
4215 	while (szc < pszc) {
4216 		firstpp = PP_GROUPLEADER(pp, (szc + 1));
4217 		if (szc == 0) {
4218 			pgcnt = page_get_pagecnt(1);
4219 			lastpp = firstpp + (pgcnt - 1);
4220 		} else {
4221 			lastpp = PP_GROUPLEADER(pp, szc);
4222 			if (firstpp == lastpp) {
4223 				szc++;
4224 				continue;
4225 			}
4226 			lastpp--;
4227 			pgcnt = page_get_pagecnt(szc);
4228 		}
4229 		while (lastpp != firstpp) {
4230 			ASSERT(lastpp->p_szc == pszc);
4231 			lastpp->p_szc = szc;
4232 			lastpp--;
4233 		}
4234 		firstpp->p_szc = szc;
4235 		if (firstpp == rootpp)
4236 			break;
4237 		szc++;
4238 	}
4239 	x86_hm_exit(rootpp);
4240 }
4241 
4242 /*
4243  * get hw stats from hardware into page struct and reset hw stats
4244  * returns attributes of page
4245  * Flags for hat_pagesync, hat_getstat, hat_sync
4246  *
4247  * define	HAT_SYNC_ZERORM		0x01
4248  *
4249  * Additional flags for hat_pagesync
4250  *
4251  * define	HAT_SYNC_STOPON_REF	0x02
4252  * define	HAT_SYNC_STOPON_MOD	0x04
4253  * define	HAT_SYNC_STOPON_RM	0x06
4254  * define	HAT_SYNC_STOPON_SHARED	0x08
4255  */
4256 uint_t
4257 hat_pagesync(struct page *pp, uint_t flags)
4258 {
4259 	hment_t		*hm = NULL;
4260 	htable_t	*ht;
4261 	uint_t		entry;
4262 	x86pte_t	old, save_old;
4263 	x86pte_t	new;
4264 	uchar_t		nrmbits = P_REF|P_MOD|P_RO;
4265 	extern ulong_t	po_share;
4266 	page_t		*save_pp = pp;
4267 	uint_t		pszc = 0;
4268 
4269 	ASSERT(PAGE_LOCKED(pp) || panicstr);
4270 
4271 	if (PP_ISRO(pp) && (flags & HAT_SYNC_STOPON_MOD))
4272 		return (pp->p_nrm & nrmbits);
4273 
4274 	if ((flags & HAT_SYNC_ZERORM) == 0) {
4275 
4276 		if ((flags & HAT_SYNC_STOPON_REF) != 0 && PP_ISREF(pp))
4277 			return (pp->p_nrm & nrmbits);
4278 
4279 		if ((flags & HAT_SYNC_STOPON_MOD) != 0 && PP_ISMOD(pp))
4280 			return (pp->p_nrm & nrmbits);
4281 
4282 		if ((flags & HAT_SYNC_STOPON_SHARED) != 0 &&
4283 		    hat_page_getshare(pp) > po_share) {
4284 			if (PP_ISRO(pp))
4285 				PP_SETREF(pp);
4286 			return (pp->p_nrm & nrmbits);
4287 		}
4288 	}
4289 
4290 	XPV_DISALLOW_MIGRATE();
4291 next_size:
4292 	/*
4293 	 * walk thru the mapping list syncing (and clearing) ref/mod bits.
4294 	 */
4295 	x86_hm_enter(pp);
4296 	while ((hm = hment_walk(pp, &ht, &entry, hm)) != NULL) {
4297 		if (ht->ht_level < pszc)
4298 			continue;
4299 		old = x86pte_get(ht, entry);
4300 try_again:
4301 
4302 		ASSERT(PTE2PFN(old, ht->ht_level) == pp->p_pagenum);
4303 
4304 		if (PTE_GET(old, PT_REF | PT_MOD) == 0)
4305 			continue;
4306 
4307 		save_old = old;
4308 		if ((flags & HAT_SYNC_ZERORM) != 0) {
4309 
4310 			/*
4311 			 * Need to clear ref or mod bits. Need to demap
4312 			 * to make sure any executing TLBs see cleared bits.
4313 			 */
4314 			new = old;
4315 			PTE_CLR(new, PT_REF | PT_MOD);
4316 			old = hati_update_pte(ht, entry, old, new);
4317 			if (old != 0)
4318 				goto try_again;
4319 
4320 			old = save_old;
4321 		}
4322 
4323 		/*
4324 		 * Sync the PTE
4325 		 */
4326 		if (!(flags & HAT_SYNC_ZERORM) &&
4327 		    PTE_GET(old, PT_SOFTWARE) <= PT_NOSYNC)
4328 			hati_sync_pte_to_page(pp, old, ht->ht_level);
4329 
4330 		/*
4331 		 * can stop short if we found a ref'd or mod'd page
4332 		 */
4333 		if ((flags & HAT_SYNC_STOPON_MOD) && PP_ISMOD(save_pp) ||
4334 		    (flags & HAT_SYNC_STOPON_REF) && PP_ISREF(save_pp)) {
4335 			x86_hm_exit(pp);
4336 			goto done;
4337 		}
4338 	}
4339 	x86_hm_exit(pp);
4340 	while (pszc < pp->p_szc) {
4341 		page_t *tpp;
4342 		pszc++;
4343 		tpp = PP_GROUPLEADER(pp, pszc);
4344 		if (pp != tpp) {
4345 			pp = tpp;
4346 			goto next_size;
4347 		}
4348 	}
4349 done:
4350 	XPV_ALLOW_MIGRATE();
4351 	return (save_pp->p_nrm & nrmbits);
4352 }
4353 
4354 /*
4355  * returns approx number of mappings to this pp.  A return of 0 implies
4356  * there are no mappings to the page.
4357  */
4358 ulong_t
4359 hat_page_getshare(page_t *pp)
4360 {
4361 	uint_t cnt;
4362 	cnt = hment_mapcnt(pp);
4363 #if defined(__amd64)
4364 	if (vpm_enable && pp->p_vpmref) {
4365 		cnt += 1;
4366 	}
4367 #endif
4368 	return (cnt);
4369 }
4370 
4371 /*
4372  * Return 1 the number of mappings exceeds sh_thresh. Return 0
4373  * otherwise.
4374  */
4375 int
4376 hat_page_checkshare(page_t *pp, ulong_t sh_thresh)
4377 {
4378 	return (hat_page_getshare(pp) > sh_thresh);
4379 }
4380 
4381 /*
4382  * hat_softlock isn't supported anymore
4383  */
4384 /*ARGSUSED*/
4385 faultcode_t
4386 hat_softlock(
4387 	hat_t *hat,
4388 	caddr_t addr,
4389 	size_t *len,
4390 	struct page **page_array,
4391 	uint_t flags)
4392 {
4393 	return (FC_NOSUPPORT);
4394 }
4395 
4396 
4397 
4398 /*
4399  * Routine to expose supported HAT features to platform independent code.
4400  */
4401 /*ARGSUSED*/
4402 int
4403 hat_supported(enum hat_features feature, void *arg)
4404 {
4405 	switch (feature) {
4406 
4407 	case HAT_SHARED_PT:	/* this is really ISM */
4408 		return (1);
4409 
4410 	case HAT_DYNAMIC_ISM_UNMAP:
4411 		return (0);
4412 
4413 	case HAT_VMODSORT:
4414 		return (1);
4415 
4416 	case HAT_SHARED_REGIONS:
4417 		return (0);
4418 
4419 	default:
4420 		panic("hat_supported() - unknown feature");
4421 	}
4422 	return (0);
4423 }
4424 
4425 /*
4426  * Called when a thread is exiting and has been switched to the kernel AS
4427  */
4428 void
4429 hat_thread_exit(kthread_t *thd)
4430 {
4431 	ASSERT(thd->t_procp->p_as == &kas);
4432 	XPV_DISALLOW_MIGRATE();
4433 	hat_switch(thd->t_procp->p_as->a_hat);
4434 	XPV_ALLOW_MIGRATE();
4435 }
4436 
4437 /*
4438  * Setup the given brand new hat structure as the new HAT on this cpu's mmu.
4439  */
4440 /*ARGSUSED*/
4441 void
4442 hat_setup(hat_t *hat, int flags)
4443 {
4444 	XPV_DISALLOW_MIGRATE();
4445 	kpreempt_disable();
4446 
4447 	hat_switch(hat);
4448 
4449 	kpreempt_enable();
4450 	XPV_ALLOW_MIGRATE();
4451 }
4452 
4453 /*
4454  * Prepare for a CPU private mapping for the given address.
4455  *
4456  * The address can only be used from a single CPU and can be remapped
4457  * using hat_mempte_remap().  Return the address of the PTE.
4458  *
4459  * We do the htable_create() if necessary and increment the valid count so
4460  * the htable can't disappear.  We also hat_devload() the page table into
4461  * kernel so that the PTE is quickly accessed.
4462  */
4463 hat_mempte_t
4464 hat_mempte_setup(caddr_t addr)
4465 {
4466 	uintptr_t	va = (uintptr_t)addr;
4467 	htable_t	*ht;
4468 	uint_t		entry;
4469 	x86pte_t	oldpte;
4470 	hat_mempte_t	p;
4471 
4472 	ASSERT(IS_PAGEALIGNED(va));
4473 	ASSERT(!IN_VA_HOLE(va));
4474 	++curthread->t_hatdepth;
4475 	XPV_DISALLOW_MIGRATE();
4476 	ht = htable_getpte(kas.a_hat, va, &entry, &oldpte, 0);
4477 	if (ht == NULL) {
4478 		ht = htable_create(kas.a_hat, va, 0, NULL);
4479 		entry = htable_va2entry(va, ht);
4480 		ASSERT(ht->ht_level == 0);
4481 		oldpte = x86pte_get(ht, entry);
4482 	}
4483 	if (PTE_ISVALID(oldpte))
4484 		panic("hat_mempte_setup(): address already mapped"
4485 		    "ht=%p, entry=%d, pte=" FMT_PTE, (void *)ht, entry, oldpte);
4486 
4487 	/*
4488 	 * increment ht_valid_cnt so that the pagetable can't disappear
4489 	 */
4490 	HTABLE_INC(ht->ht_valid_cnt);
4491 
4492 	/*
4493 	 * return the PTE physical address to the caller.
4494 	 */
4495 	htable_release(ht);
4496 	XPV_ALLOW_MIGRATE();
4497 	p = PT_INDEX_PHYSADDR(pfn_to_pa(ht->ht_pfn), entry);
4498 	--curthread->t_hatdepth;
4499 	return (p);
4500 }
4501 
4502 /*
4503  * Release a CPU private mapping for the given address.
4504  * We decrement the htable valid count so it might be destroyed.
4505  */
4506 /*ARGSUSED1*/
4507 void
4508 hat_mempte_release(caddr_t addr, hat_mempte_t pte_pa)
4509 {
4510 	htable_t	*ht;
4511 
4512 	XPV_DISALLOW_MIGRATE();
4513 	/*
4514 	 * invalidate any left over mapping and decrement the htable valid count
4515 	 */
4516 #ifdef __xpv
4517 	if (HYPERVISOR_update_va_mapping((uintptr_t)addr, 0,
4518 	    UVMF_INVLPG | UVMF_LOCAL))
4519 		panic("HYPERVISOR_update_va_mapping() failed");
4520 #else
4521 	{
4522 		x86pte_t *pteptr;
4523 
4524 		pteptr = x86pte_mapin(mmu_btop(pte_pa),
4525 		    (pte_pa & MMU_PAGEOFFSET) >> mmu.pte_size_shift, NULL);
4526 		if (mmu.pae_hat)
4527 			*pteptr = 0;
4528 		else
4529 			*(x86pte32_t *)pteptr = 0;
4530 		mmu_flush_tlb_kpage((uintptr_t)addr);
4531 		x86pte_mapout();
4532 	}
4533 #endif
4534 
4535 	ht = htable_getpte(kas.a_hat, ALIGN2PAGE(addr), NULL, NULL, 0);
4536 	if (ht == NULL)
4537 		panic("hat_mempte_release(): invalid address");
4538 	ASSERT(ht->ht_level == 0);
4539 	HTABLE_DEC(ht->ht_valid_cnt);
4540 	htable_release(ht);
4541 	XPV_ALLOW_MIGRATE();
4542 }
4543 
4544 /*
4545  * Apply a temporary CPU private mapping to a page. We flush the TLB only
4546  * on this CPU, so this ought to have been called with preemption disabled.
4547  */
4548 void
4549 hat_mempte_remap(
4550 	pfn_t		pfn,
4551 	caddr_t		addr,
4552 	hat_mempte_t	pte_pa,
4553 	uint_t		attr,
4554 	uint_t		flags)
4555 {
4556 	uintptr_t	va = (uintptr_t)addr;
4557 	x86pte_t	pte;
4558 
4559 	/*
4560 	 * Remap the given PTE to the new page's PFN. Invalidate only
4561 	 * on this CPU.
4562 	 */
4563 #ifdef DEBUG
4564 	htable_t	*ht;
4565 	uint_t		entry;
4566 
4567 	ASSERT(IS_PAGEALIGNED(va));
4568 	ASSERT(!IN_VA_HOLE(va));
4569 	ht = htable_getpte(kas.a_hat, va, &entry, NULL, 0);
4570 	ASSERT(ht != NULL);
4571 	ASSERT(ht->ht_level == 0);
4572 	ASSERT(ht->ht_valid_cnt > 0);
4573 	ASSERT(ht->ht_pfn == mmu_btop(pte_pa));
4574 	htable_release(ht);
4575 #endif
4576 	XPV_DISALLOW_MIGRATE();
4577 	pte = hati_mkpte(pfn, attr, 0, flags);
4578 #ifdef __xpv
4579 	if (HYPERVISOR_update_va_mapping(va, pte, UVMF_INVLPG | UVMF_LOCAL))
4580 		panic("HYPERVISOR_update_va_mapping() failed");
4581 #else
4582 	{
4583 		x86pte_t *pteptr;
4584 
4585 		pteptr = x86pte_mapin(mmu_btop(pte_pa),
4586 		    (pte_pa & MMU_PAGEOFFSET) >> mmu.pte_size_shift, NULL);
4587 		if (mmu.pae_hat)
4588 			*(x86pte_t *)pteptr = pte;
4589 		else
4590 			*(x86pte32_t *)pteptr = (x86pte32_t)pte;
4591 		mmu_flush_tlb_kpage((uintptr_t)addr);
4592 		x86pte_mapout();
4593 	}
4594 #endif
4595 	XPV_ALLOW_MIGRATE();
4596 }
4597 
4598 
4599 
4600 /*
4601  * Hat locking functions
4602  * XXX - these two functions are currently being used by hatstats
4603  * 	they can be removed by using a per-as mutex for hatstats.
4604  */
4605 void
4606 hat_enter(hat_t *hat)
4607 {
4608 	mutex_enter(&hat->hat_mutex);
4609 }
4610 
4611 void
4612 hat_exit(hat_t *hat)
4613 {
4614 	mutex_exit(&hat->hat_mutex);
4615 }
4616 
4617 /*
4618  * HAT part of cpu initialization.
4619  */
4620 void
4621 hat_cpu_online(struct cpu *cpup)
4622 {
4623 	if (cpup != CPU) {
4624 		x86pte_cpu_init(cpup);
4625 		hat_pcp_setup(cpup);
4626 	}
4627 	CPUSET_ATOMIC_ADD(khat_cpuset, cpup->cpu_id);
4628 }
4629 
4630 /*
4631  * HAT part of cpu deletion.
4632  * (currently, we only call this after the cpu is safely passivated.)
4633  */
4634 void
4635 hat_cpu_offline(struct cpu *cpup)
4636 {
4637 	ASSERT(cpup != CPU);
4638 
4639 	CPUSET_ATOMIC_DEL(khat_cpuset, cpup->cpu_id);
4640 	hat_pcp_teardown(cpup);
4641 	x86pte_cpu_fini(cpup);
4642 }
4643 
4644 /*
4645  * Function called after all CPUs are brought online.
4646  * Used to remove low address boot mappings.
4647  */
4648 void
4649 clear_boot_mappings(uintptr_t low, uintptr_t high)
4650 {
4651 	uintptr_t vaddr = low;
4652 	htable_t *ht = NULL;
4653 	level_t level;
4654 	uint_t entry;
4655 	x86pte_t pte;
4656 
4657 	/*
4658 	 * On 1st CPU we can unload the prom mappings, basically we blow away
4659 	 * all virtual mappings under _userlimit.
4660 	 */
4661 	while (vaddr < high) {
4662 		pte = htable_walk(kas.a_hat, &ht, &vaddr, high);
4663 		if (ht == NULL)
4664 			break;
4665 
4666 		level = ht->ht_level;
4667 		entry = htable_va2entry(vaddr, ht);
4668 		ASSERT(level <= mmu.max_page_level);
4669 		ASSERT(PTE_ISPAGE(pte, level));
4670 
4671 		/*
4672 		 * Unload the mapping from the page tables.
4673 		 */
4674 		(void) x86pte_inval(ht, entry, 0, NULL, B_TRUE);
4675 		ASSERT(ht->ht_valid_cnt > 0);
4676 		HTABLE_DEC(ht->ht_valid_cnt);
4677 		PGCNT_DEC(ht->ht_hat, ht->ht_level);
4678 
4679 		vaddr += LEVEL_SIZE(ht->ht_level);
4680 	}
4681 	if (ht)
4682 		htable_release(ht);
4683 }
4684 
4685 /*
4686  * Atomically update a new translation for a single page.  If the
4687  * currently installed PTE doesn't match the value we expect to find,
4688  * it's not updated and we return the PTE we found.
4689  *
4690  * If activating nosync or NOWRITE and the page was modified we need to sync
4691  * with the page_t. Also sync with page_t if clearing ref/mod bits.
4692  */
4693 static x86pte_t
4694 hati_update_pte(htable_t *ht, uint_t entry, x86pte_t expected, x86pte_t new)
4695 {
4696 	page_t		*pp;
4697 	uint_t		rm = 0;
4698 	x86pte_t	replaced;
4699 
4700 	if (PTE_GET(expected, PT_SOFTWARE) < PT_NOSYNC &&
4701 	    PTE_GET(expected, PT_MOD | PT_REF) &&
4702 	    (PTE_GET(new, PT_NOSYNC) || !PTE_GET(new, PT_WRITABLE) ||
4703 	    !PTE_GET(new, PT_MOD | PT_REF))) {
4704 
4705 		ASSERT(!pfn_is_foreign(PTE2PFN(expected, ht->ht_level)));
4706 		pp = page_numtopp_nolock(PTE2PFN(expected, ht->ht_level));
4707 		ASSERT(pp != NULL);
4708 		if (PTE_GET(expected, PT_MOD))
4709 			rm |= P_MOD;
4710 		if (PTE_GET(expected, PT_REF))
4711 			rm |= P_REF;
4712 		PTE_CLR(new, PT_MOD | PT_REF);
4713 	}
4714 
4715 	replaced = x86pte_update(ht, entry, expected, new);
4716 	if (replaced != expected)
4717 		return (replaced);
4718 
4719 	if (rm) {
4720 		/*
4721 		 * sync to all constituent pages of a large page
4722 		 */
4723 		pgcnt_t pgcnt = page_get_pagecnt(ht->ht_level);
4724 		ASSERT(IS_P2ALIGNED(pp->p_pagenum, pgcnt));
4725 		while (pgcnt-- > 0) {
4726 			/*
4727 			 * hat_page_demote() can't decrease
4728 			 * pszc below this mapping size
4729 			 * since large mapping existed after we
4730 			 * took mlist lock.
4731 			 */
4732 			ASSERT(pp->p_szc >= ht->ht_level);
4733 			hat_page_setattr(pp, rm);
4734 			++pp;
4735 		}
4736 	}
4737 
4738 	return (0);
4739 }
4740 
4741 /* ARGSUSED */
4742 void
4743 hat_join_srd(struct hat *hat, vnode_t *evp)
4744 {
4745 }
4746 
4747 /* ARGSUSED */
4748 hat_region_cookie_t
4749 hat_join_region(struct hat *hat,
4750     caddr_t r_saddr,
4751     size_t r_size,
4752     void *r_obj,
4753     u_offset_t r_objoff,
4754     uchar_t r_perm,
4755     uchar_t r_pgszc,
4756     hat_rgn_cb_func_t r_cb_function,
4757     uint_t flags)
4758 {
4759 	panic("No shared region support on x86");
4760 	return (HAT_INVALID_REGION_COOKIE);
4761 }
4762 
4763 /* ARGSUSED */
4764 void
4765 hat_leave_region(struct hat *hat, hat_region_cookie_t rcookie, uint_t flags)
4766 {
4767 	panic("No shared region support on x86");
4768 }
4769 
4770 /* ARGSUSED */
4771 void
4772 hat_dup_region(struct hat *hat, hat_region_cookie_t rcookie)
4773 {
4774 	panic("No shared region support on x86");
4775 }
4776 
4777 
4778 /*
4779  * Kernel Physical Mapping (kpm) facility
4780  *
4781  * Most of the routines needed to support segkpm are almost no-ops on the
4782  * x86 platform.  We map in the entire segment when it is created and leave
4783  * it mapped in, so there is no additional work required to set up and tear
4784  * down individual mappings.  All of these routines were created to support
4785  * SPARC platforms that have to avoid aliasing in their virtually indexed
4786  * caches.
4787  *
4788  * Most of the routines have sanity checks in them (e.g. verifying that the
4789  * passed-in page is locked).  We don't actually care about most of these
4790  * checks on x86, but we leave them in place to identify problems in the
4791  * upper levels.
4792  */
4793 
4794 /*
4795  * Map in a locked page and return the vaddr.
4796  */
4797 /*ARGSUSED*/
4798 caddr_t
4799 hat_kpm_mapin(struct page *pp, struct kpme *kpme)
4800 {
4801 	caddr_t		vaddr;
4802 
4803 #ifdef DEBUG
4804 	if (kpm_enable == 0) {
4805 		cmn_err(CE_WARN, "hat_kpm_mapin: kpm_enable not set\n");
4806 		return ((caddr_t)NULL);
4807 	}
4808 
4809 	if (pp == NULL || PAGE_LOCKED(pp) == 0) {
4810 		cmn_err(CE_WARN, "hat_kpm_mapin: pp zero or not locked\n");
4811 		return ((caddr_t)NULL);
4812 	}
4813 #endif
4814 
4815 	vaddr = hat_kpm_page2va(pp, 1);
4816 
4817 	return (vaddr);
4818 }
4819 
4820 /*
4821  * Mapout a locked page.
4822  */
4823 /*ARGSUSED*/
4824 void
4825 hat_kpm_mapout(struct page *pp, struct kpme *kpme, caddr_t vaddr)
4826 {
4827 #ifdef DEBUG
4828 	if (kpm_enable == 0) {
4829 		cmn_err(CE_WARN, "hat_kpm_mapout: kpm_enable not set\n");
4830 		return;
4831 	}
4832 
4833 	if (IS_KPM_ADDR(vaddr) == 0) {
4834 		cmn_err(CE_WARN, "hat_kpm_mapout: no kpm address\n");
4835 		return;
4836 	}
4837 
4838 	if (pp == NULL || PAGE_LOCKED(pp) == 0) {
4839 		cmn_err(CE_WARN, "hat_kpm_mapout: page zero or not locked\n");
4840 		return;
4841 	}
4842 #endif
4843 }
4844 
4845 /*
4846  * hat_kpm_mapin_pfn is used to obtain a kpm mapping for physical
4847  * memory addresses that are not described by a page_t.  It can
4848  * also be used for normal pages that are not locked, but beware
4849  * this is dangerous - no locking is performed, so the identity of
4850  * the page could change.  hat_kpm_mapin_pfn is not supported when
4851  * vac_colors > 1, because the chosen va depends on the page identity,
4852  * which could change.
4853  * The caller must only pass pfn's for valid physical addresses; violation
4854  * of this rule will cause panic.
4855  */
4856 caddr_t
4857 hat_kpm_mapin_pfn(pfn_t pfn)
4858 {
4859 	caddr_t paddr, vaddr;
4860 
4861 	if (kpm_enable == 0)
4862 		return ((caddr_t)NULL);
4863 
4864 	paddr = (caddr_t)ptob(pfn);
4865 	vaddr = (uintptr_t)kpm_vbase + paddr;
4866 
4867 	return ((caddr_t)vaddr);
4868 }
4869 
4870 /*ARGSUSED*/
4871 void
4872 hat_kpm_mapout_pfn(pfn_t pfn)
4873 {
4874 	/* empty */
4875 }
4876 
4877 /*
4878  * Return the kpm virtual address for a specific pfn
4879  */
4880 caddr_t
4881 hat_kpm_pfn2va(pfn_t pfn)
4882 {
4883 	uintptr_t vaddr = (uintptr_t)kpm_vbase + mmu_ptob(pfn);
4884 
4885 	ASSERT(!pfn_is_foreign(pfn));
4886 	return ((caddr_t)vaddr);
4887 }
4888 
4889 /*
4890  * Return the kpm virtual address for the page at pp.
4891  */
4892 /*ARGSUSED*/
4893 caddr_t
4894 hat_kpm_page2va(struct page *pp, int checkswap)
4895 {
4896 	return (hat_kpm_pfn2va(pp->p_pagenum));
4897 }
4898 
4899 /*
4900  * Return the page frame number for the kpm virtual address vaddr.
4901  */
4902 pfn_t
4903 hat_kpm_va2pfn(caddr_t vaddr)
4904 {
4905 	pfn_t		pfn;
4906 
4907 	ASSERT(IS_KPM_ADDR(vaddr));
4908 
4909 	pfn = (pfn_t)btop(vaddr - kpm_vbase);
4910 
4911 	return (pfn);
4912 }
4913 
4914 
4915 /*
4916  * Return the page for the kpm virtual address vaddr.
4917  */
4918 page_t *
4919 hat_kpm_vaddr2page(caddr_t vaddr)
4920 {
4921 	pfn_t		pfn;
4922 
4923 	ASSERT(IS_KPM_ADDR(vaddr));
4924 
4925 	pfn = hat_kpm_va2pfn(vaddr);
4926 
4927 	return (page_numtopp_nolock(pfn));
4928 }
4929 
4930 /*
4931  * hat_kpm_fault is called from segkpm_fault when we take a page fault on a
4932  * KPM page.  This should never happen on x86
4933  */
4934 int
4935 hat_kpm_fault(hat_t *hat, caddr_t vaddr)
4936 {
4937 	panic("pagefault in seg_kpm.  hat: 0x%p  vaddr: 0x%p",
4938 	    (void *)hat, (void *)vaddr);
4939 
4940 	return (0);
4941 }
4942 
4943 /*ARGSUSED*/
4944 void
4945 hat_kpm_mseghash_clear(int nentries)
4946 {}
4947 
4948 /*ARGSUSED*/
4949 void
4950 hat_kpm_mseghash_update(pgcnt_t inx, struct memseg *msp)
4951 {}
4952 
4953 #ifndef	__xpv
4954 void
4955 hat_kpm_addmem_mseg_update(struct memseg *msp, pgcnt_t nkpmpgs,
4956     offset_t kpm_pages_off)
4957 {
4958 	_NOTE(ARGUNUSED(nkpmpgs, kpm_pages_off));
4959 	pfn_t base, end;
4960 
4961 	/*
4962 	 * kphysm_add_memory_dynamic() does not set nkpmpgs
4963 	 * when page_t memory is externally allocated.  That
4964 	 * code must properly calculate nkpmpgs in all cases
4965 	 * if nkpmpgs needs to be used at some point.
4966 	 */
4967 
4968 	/*
4969 	 * The meta (page_t) pages for dynamically added memory are allocated
4970 	 * either from the incoming memory itself or from existing memory.
4971 	 * In the former case the base of the incoming pages will be different
4972 	 * than the base of the dynamic segment so call memseg_get_start() to
4973 	 * get the actual base of the incoming memory for each case.
4974 	 */
4975 
4976 	base = memseg_get_start(msp);
4977 	end = msp->pages_end;
4978 
4979 	hat_devload(kas.a_hat, kpm_vbase + mmu_ptob(base),
4980 	    mmu_ptob(end - base), base, PROT_READ | PROT_WRITE,
4981 	    HAT_LOAD | HAT_LOAD_LOCK | HAT_LOAD_NOCONSIST);
4982 }
4983 
4984 void
4985 hat_kpm_addmem_mseg_insert(struct memseg *msp)
4986 {
4987 	_NOTE(ARGUNUSED(msp));
4988 }
4989 
4990 void
4991 hat_kpm_addmem_memsegs_update(struct memseg *msp)
4992 {
4993 	_NOTE(ARGUNUSED(msp));
4994 }
4995 
4996 /*
4997  * Return end of metadata for an already setup memseg.
4998  * X86 platforms don't need per-page meta data to support kpm.
4999  */
5000 caddr_t
5001 hat_kpm_mseg_reuse(struct memseg *msp)
5002 {
5003 	return ((caddr_t)msp->epages);
5004 }
5005 
5006 void
5007 hat_kpm_delmem_mseg_update(struct memseg *msp, struct memseg **mspp)
5008 {
5009 	_NOTE(ARGUNUSED(msp, mspp));
5010 	ASSERT(0);
5011 }
5012 
5013 void
5014 hat_kpm_split_mseg_update(struct memseg *msp, struct memseg **mspp,
5015     struct memseg *lo, struct memseg *mid, struct memseg *hi)
5016 {
5017 	_NOTE(ARGUNUSED(msp, mspp, lo, mid, hi));
5018 	ASSERT(0);
5019 }
5020 
5021 /*
5022  * Walk the memsegs chain, applying func to each memseg span.
5023  */
5024 void
5025 hat_kpm_walk(void (*func)(void *, void *, size_t), void *arg)
5026 {
5027 	pfn_t	pbase, pend;
5028 	void	*base;
5029 	size_t	size;
5030 	struct memseg *msp;
5031 
5032 	for (msp = memsegs; msp; msp = msp->next) {
5033 		pbase = msp->pages_base;
5034 		pend = msp->pages_end;
5035 		base = ptob(pbase) + kpm_vbase;
5036 		size = ptob(pend - pbase);
5037 		func(arg, base, size);
5038 	}
5039 }
5040 
5041 #else	/* __xpv */
5042 
5043 /*
5044  * There are specific Hypervisor calls to establish and remove mappings
5045  * to grant table references and the privcmd driver. We have to ensure
5046  * that a page table actually exists.
5047  */
5048 void
5049 hat_prepare_mapping(hat_t *hat, caddr_t addr, uint64_t *pte_ma)
5050 {
5051 	maddr_t base_ma;
5052 	htable_t *ht;
5053 	uint_t entry;
5054 
5055 	ASSERT(IS_P2ALIGNED((uintptr_t)addr, MMU_PAGESIZE));
5056 	XPV_DISALLOW_MIGRATE();
5057 	ht = htable_create(hat, (uintptr_t)addr, 0, NULL);
5058 
5059 	/*
5060 	 * if an address for pte_ma is passed in, return the MA of the pte
5061 	 * for this specific address.  This address is only valid as long
5062 	 * as the htable stays locked.
5063 	 */
5064 	if (pte_ma != NULL) {
5065 		entry = htable_va2entry((uintptr_t)addr, ht);
5066 		base_ma = pa_to_ma(ptob(ht->ht_pfn));
5067 		*pte_ma = base_ma + (entry << mmu.pte_size_shift);
5068 	}
5069 	XPV_ALLOW_MIGRATE();
5070 }
5071 
5072 void
5073 hat_release_mapping(hat_t *hat, caddr_t addr)
5074 {
5075 	htable_t *ht;
5076 
5077 	ASSERT(IS_P2ALIGNED((uintptr_t)addr, MMU_PAGESIZE));
5078 	XPV_DISALLOW_MIGRATE();
5079 	ht = htable_lookup(hat, (uintptr_t)addr, 0);
5080 	ASSERT(ht != NULL);
5081 	ASSERT(ht->ht_busy >= 2);
5082 	htable_release(ht);
5083 	htable_release(ht);
5084 	XPV_ALLOW_MIGRATE();
5085 }
5086 #endif	/* __xpv */
5087 
5088 /*
5089  * Helper function to punch in a mapping that we need with the specified
5090  * attributes.
5091  */
5092 void
5093 hati_cpu_punchin(cpu_t *cpu, uintptr_t va, uint_t attrs)
5094 {
5095 	int ret;
5096 	pfn_t pfn;
5097 	hat_t *cpu_hat = cpu->cpu_hat_info->hci_user_hat;
5098 
5099 	ASSERT3S(kpti_enable, ==, 1);
5100 	ASSERT3P(cpu_hat, !=, NULL);
5101 	ASSERT3U(cpu_hat->hat_flags & HAT_PCP, ==, HAT_PCP);
5102 	ASSERT3U(va & MMU_PAGEOFFSET, ==, 0);
5103 
5104 	pfn = hat_getpfnum(kas.a_hat, (caddr_t)va);
5105 	VERIFY3U(pfn, !=, PFN_INVALID);
5106 
5107 	/*
5108 	 * We purposefully don't try to find the page_t. This means that this
5109 	 * will be marked PT_NOCONSIST; however, given that this is pretty much
5110 	 * a static mapping that we're using we should be relatively OK.
5111 	 */
5112 	attrs |= HAT_STORECACHING_OK;
5113 	ret = hati_load_common(cpu_hat, va, NULL, attrs, 0, 0, pfn);
5114 	VERIFY3S(ret, ==, 0);
5115 }
5116