1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 1992, 2010, Oracle and/or its affiliates. All rights reserved. 23 */ 24 /* 25 * Copyright (c) 2010, Intel Corporation. 26 * All rights reserved. 27 */ 28 /* 29 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 30 * Copyright 2018 Joyent, Inc. All rights reserved. 31 * Copyright (c) 2014, 2015 by Delphix. All rights reserved. 32 * Copyright 2022 Tintri by DDN, Inc. All rights reserved. 33 */ 34 35 /* 36 * VM - Hardware Address Translation management for i386 and amd64 37 * 38 * Implementation of the interfaces described in <common/vm/hat.h> 39 * 40 * Nearly all the details of how the hardware is managed should not be 41 * visible outside this layer except for misc. machine specific functions 42 * that work in conjunction with this code. 43 * 44 * Routines used only inside of i86pc/vm start with hati_ for HAT Internal. 45 */ 46 47 /* 48 * amd64 HAT Design 49 * 50 * ---------- 51 * Background 52 * ---------- 53 * 54 * On x86, the address space is shared between a user process and the kernel. 55 * This is different from SPARC. Conventionally, the kernel lives at the top of 56 * the address space and the user process gets to enjoy the rest of it. If you 57 * look at the image of the address map in uts/i86pc/os/startup.c, you'll get a 58 * rough sense of how the address space is laid out and used. 59 * 60 * Every unique address space is represented by an instance of a HAT structure 61 * called a 'hat_t'. In addition to a hat_t structure for each process, there is 62 * also one that is used for the kernel (kas.a_hat), and each CPU ultimately 63 * also has a HAT. 64 * 65 * Each HAT contains a pointer to its root page table. This root page table is 66 * what we call an L3 page table in illumos and Intel calls the PML4. It is the 67 * physical address of the L3 table that we place in the %cr3 register which the 68 * processor uses. 69 * 70 * Each of the many layers of the page table is represented by a structure 71 * called an htable_t. The htable_t manages a set of 512 8-byte entries. The 72 * number of entries in a given page table is constant across all different 73 * level page tables. Note, this is only true on amd64. This has not always been 74 * the case on x86. 75 * 76 * Each entry in a page table, generally referred to as a PTE, may refer to 77 * another page table or a memory location, depending on the level of the page 78 * table and the use of large pages. Importantly, the top-level L3 page table 79 * (PML4) only supports linking to further page tables. This is also true on 80 * systems which support a 5th level page table (which we do not currently 81 * support). 82 * 83 * Historically, on x86, when a process was running on CPU, the root of the page 84 * table was inserted into %cr3 on each CPU on which it was currently running. 85 * When processes would switch (by calling hat_switch()), then the value in %cr3 86 * on that CPU would change to that of the new HAT. While this behavior is still 87 * maintained in the xpv kernel, this is not what is done today. 88 * 89 * ------------------- 90 * Per-CPU Page Tables 91 * ------------------- 92 * 93 * Throughout the system the 64-bit kernel has a notion of what it calls a 94 * per-CPU page table or PCP. The notion of a per-CPU page table was originally 95 * introduced as part of the original work to support x86 PAE. On the 64-bit 96 * kernel, it was originally used for 32-bit processes running on the 64-bit 97 * kernel. The rationale behind this was that each 32-bit process could have all 98 * of its memory represented in a single L2 page table as each L2 page table 99 * entry represents 1 GbE of memory. 100 * 101 * Following on from this, the idea was that given that all of the L3 page table 102 * entries for 32-bit processes are basically going to be identical with the 103 * exception of the first entry in the page table, why not share those page 104 * table entries. This gave rise to the idea of a per-CPU page table. 105 * 106 * The way this works is that we have a member in the machcpu_t called the 107 * mcpu_hat_info. That structure contains two different 4k pages: one that 108 * represents the L3 page table and one that represents an L2 page table. When 109 * the CPU starts up, the L3 page table entries are copied in from the kernel's 110 * page table. The L3 kernel entries do not change throughout the lifetime of 111 * the kernel. The kernel portion of these L3 pages for each CPU have the same 112 * records, meaning that they point to the same L2 page tables and thus see a 113 * consistent view of the world. 114 * 115 * When a 32-bit process is loaded into this world, we copy the 32-bit process's 116 * four top-level page table entries into the CPU's L2 page table and then set 117 * the CPU's first L3 page table entry to point to the CPU's L2 page. 118 * Specifically, in hat_pcp_update(), we're copying from the process's 119 * HAT_COPIED_32 HAT into the page tables specific to this CPU. 120 * 121 * As part of the implementation of kernel page table isolation, this was also 122 * extended to 64-bit processes. When a 64-bit process runs, we'll copy their L3 123 * PTEs across into the current CPU's L3 page table. (As we can't do the 124 * first-L3-entry trick for 64-bit processes, ->hci_pcp_l2ptes is unused in this 125 * case.) 126 * 127 * The use of per-CPU page tables has a lot of implementation ramifications. A 128 * HAT that runs a user process will be flagged with the HAT_COPIED flag to 129 * indicate that it is using the per-CPU page table functionality. In tandem 130 * with the HAT, the top-level htable_t will be flagged with the HTABLE_COPIED 131 * flag. If the HAT represents a 32-bit process, then we will also set the 132 * HAT_COPIED_32 flag on that hat_t. 133 * 134 * These two flags work together. The top-level htable_t when using per-CPU page 135 * tables is 'virtual'. We never allocate a ptable for this htable_t (i.e. 136 * ht->ht_pfn is PFN_INVALID). Instead, when we need to modify a PTE in an 137 * HTABLE_COPIED ptable, x86pte_access_pagetable() will redirect any accesses to 138 * ht_hat->hat_copied_ptes. 139 * 140 * Of course, such a modification won't actually modify the HAT_PCP page tables 141 * that were copied from the HAT_COPIED htable. When we change the top level 142 * page table entries (L2 PTEs for a 32-bit process and L3 PTEs for a 64-bit 143 * process), we need to make sure to trigger hat_pcp_update() on all CPUs that 144 * are currently tied to this HAT (including the current CPU). 145 * 146 * To do this, PCP piggy-backs on TLB invalidation, specifically via the 147 * hat_tlb_inval() path from link_ptp() and unlink_ptp(). 148 * 149 * (Importantly, in all such cases, when this is in operation, the top-level 150 * entry should not be able to refer to an actual page table entry that can be 151 * changed and consolidated into a large page. If large page consolidation is 152 * required here, then there will be much that needs to be reconsidered.) 153 * 154 * ----------------------------------------------- 155 * Kernel Page Table Isolation and the Per-CPU HAT 156 * ----------------------------------------------- 157 * 158 * All Intel CPUs that support speculative execution and paging are subject to a 159 * series of bugs that have been termed 'Meltdown'. These exploits allow a user 160 * process to read kernel memory through cache side channels and speculative 161 * execution. To mitigate this on vulnerable CPUs, we need to use a technique 162 * called kernel page table isolation. What this requires is that we have two 163 * different page table roots. When executing in kernel mode, we will use a %cr3 164 * value that has both the user and kernel pages. However when executing in user 165 * mode, we will need to have a %cr3 that has all of the user pages; however, 166 * only a subset of the kernel pages required to operate. 167 * 168 * These kernel pages that we need mapped are: 169 * 170 * o Kernel Text that allows us to switch between the cr3 values. 171 * o The current global descriptor table (GDT) 172 * o The current interrupt descriptor table (IDT) 173 * o The current task switching state (TSS) 174 * o The current local descriptor table (LDT) 175 * o Stacks and scratch space used by the interrupt handlers 176 * 177 * For more information on the stack switching techniques, construction of the 178 * trampolines, and more, please see i86pc/ml/kpti_trampolines.s. The most 179 * important part of these mappings are the following two constraints: 180 * 181 * o The mappings are all per-CPU (except for read-only text) 182 * o The mappings are static. They are all established before the CPU is 183 * started (with the exception of the boot CPU). 184 * 185 * To facilitate the kernel page table isolation we employ our per-CPU 186 * page tables discussed in the previous section and add the notion of a per-CPU 187 * HAT. Fundamentally we have a second page table root. There is both a kernel 188 * page table (hci_pcp_l3ptes), and a user L3 page table (hci_user_l3ptes). 189 * Both will have the user page table entries copied into them, the same way 190 * that we discussed in the section 'Per-CPU Page Tables'. 191 * 192 * The complex part of this is how do we construct the set of kernel mappings 193 * that should be present when running with the user page table. To answer that, 194 * we add the notion of a per-CPU HAT. This HAT functions like a normal HAT, 195 * except that it's not really associated with an address space the same way 196 * that other HATs are. 197 * 198 * This HAT lives off of the 'struct hat_cpu_info' which is a member of the 199 * machcpu in the member hci_user_hat. We use this per-CPU HAT to create the set 200 * of kernel mappings that should be present on this CPU. The kernel mappings 201 * are added to the per-CPU HAT through the function hati_cpu_punchin(). Once a 202 * mapping has been punched in, it may not be punched out. The reason that we 203 * opt to leverage a HAT structure is that it knows how to allocate and manage 204 * all of the lower level page tables as required. 205 * 206 * Because all of the mappings are present at the beginning of time for this CPU 207 * and none of the mappings are in the kernel pageable segment, we don't have to 208 * worry about faulting on these HAT structures and thus the notion of the 209 * current HAT that we're using is always the appropriate HAT for the process 210 * (usually a user HAT or the kernel's HAT). 211 * 212 * A further constraint we place on the system with these per-CPU HATs is that 213 * they are not subject to htable_steal(). Because each CPU will have a rather 214 * fixed number of page tables, the same way that we don't steal from the 215 * kernel's HAT, it was determined that we should not steal from this HAT due to 216 * the complications involved and somewhat criminal nature of htable_steal(). 217 * 218 * The per-CPU HAT is initialized in hat_pcp_setup() which is called as part of 219 * onlining the CPU, but before the CPU is actually started. The per-CPU HAT is 220 * removed in hat_pcp_teardown() which is called when a CPU is being offlined to 221 * be removed from the system (which is different from what psradm usually 222 * does). 223 * 224 * Finally, once the CPU has been onlined, the set of mappings in the per-CPU 225 * HAT must not change. The HAT related functions that we call are not meant to 226 * be called when we're switching between processes. For example, it is quite 227 * possible that if they were, they would try to grab an htable mutex which 228 * another thread might have. One needs to treat hat_switch() as though they 229 * were above LOCK_LEVEL and therefore _must not_ block under any circumstance. 230 */ 231 232 #include <sys/machparam.h> 233 #include <sys/machsystm.h> 234 #include <sys/mman.h> 235 #include <sys/types.h> 236 #include <sys/systm.h> 237 #include <sys/cpuvar.h> 238 #include <sys/thread.h> 239 #include <sys/proc.h> 240 #include <sys/cpu.h> 241 #include <sys/kmem.h> 242 #include <sys/disp.h> 243 #include <sys/shm.h> 244 #include <sys/sysmacros.h> 245 #include <sys/machparam.h> 246 #include <sys/vmem.h> 247 #include <sys/vmsystm.h> 248 #include <sys/promif.h> 249 #include <sys/var.h> 250 #include <sys/x86_archext.h> 251 #include <sys/atomic.h> 252 #include <sys/bitmap.h> 253 #include <sys/controlregs.h> 254 #include <sys/bootconf.h> 255 #include <sys/bootsvcs.h> 256 #include <sys/bootinfo.h> 257 #include <sys/archsystm.h> 258 259 #include <vm/seg_kmem.h> 260 #include <vm/hat_i86.h> 261 #include <vm/as.h> 262 #include <vm/seg.h> 263 #include <vm/page.h> 264 #include <vm/seg_kp.h> 265 #include <vm/seg_kpm.h> 266 #include <vm/vm_dep.h> 267 #ifdef __xpv 268 #include <sys/hypervisor.h> 269 #endif 270 #include <vm/kboot_mmu.h> 271 #include <vm/seg_spt.h> 272 273 #include <sys/cmn_err.h> 274 275 /* 276 * Basic parameters for hat operation. 277 */ 278 struct hat_mmu_info mmu; 279 280 /* 281 * The page that is the kernel's top level pagetable. 282 * 283 * For 32 bit PAE support on i86pc, the kernel hat will use the 1st 4 entries 284 * on this 4K page for its top level page table. The remaining groups of 285 * 4 entries are used for per processor copies of user PCP pagetables for 286 * running threads. See hat_switch() and reload_pae32() for details. 287 * 288 * pcp_page[0..3] - level==2 PTEs for kernel HAT 289 * pcp_page[4..7] - level==2 PTEs for user thread on cpu 0 290 * pcp_page[8..11] - level==2 PTE for user thread on cpu 1 291 * etc... 292 * 293 * On the 64-bit kernel, this is the normal root of the page table and there is 294 * nothing special about it when used for other CPUs. 295 */ 296 static x86pte_t *pcp_page; 297 298 /* 299 * forward declaration of internal utility routines 300 */ 301 static x86pte_t hati_update_pte(htable_t *ht, uint_t entry, x86pte_t expected, 302 x86pte_t new); 303 304 /* 305 * The kernel address space exists in all non-HAT_COPIED HATs. To implement this 306 * the kernel reserves a fixed number of entries in the topmost level(s) of page 307 * tables. The values are setup during startup and then copied to every user hat 308 * created by hat_alloc(). This means that kernelbase must be: 309 * 310 * 4Meg aligned for 32 bit kernels 311 * 512Gig aligned for x86_64 64 bit kernel 312 * 313 * The hat_kernel_range_ts describe what needs to be copied from kernel hat 314 * to each user hat. 315 */ 316 typedef struct hat_kernel_range { 317 level_t hkr_level; 318 uintptr_t hkr_start_va; 319 uintptr_t hkr_end_va; /* zero means to end of memory */ 320 } hat_kernel_range_t; 321 #define NUM_KERNEL_RANGE 2 322 static hat_kernel_range_t kernel_ranges[NUM_KERNEL_RANGE]; 323 static int num_kernel_ranges; 324 325 uint_t use_boot_reserve = 1; /* cleared after early boot process */ 326 uint_t can_steal_post_boot = 0; /* set late in boot to enable stealing */ 327 328 /* 329 * enable_1gpg: controls 1g page support for user applications. 330 * By default, 1g pages are exported to user applications. enable_1gpg can 331 * be set to 0 to not export. 332 */ 333 int enable_1gpg = 1; 334 335 /* 336 * AMD shanghai processors provide better management of 1gb ptes in its tlb. 337 * By default, 1g page support will be disabled for pre-shanghai AMD 338 * processors that don't have optimal tlb support for the 1g page size. 339 * chk_optimal_1gtlb can be set to 0 to force 1g page support on sub-optimal 340 * processors. 341 */ 342 int chk_optimal_1gtlb = 1; 343 344 345 #ifdef DEBUG 346 uint_t map1gcnt; 347 #endif 348 349 350 /* 351 * A cpuset for all cpus. This is used for kernel address cross calls, since 352 * the kernel addresses apply to all cpus. 353 */ 354 cpuset_t khat_cpuset; 355 356 /* 357 * management stuff for hat structures 358 */ 359 kmutex_t hat_list_lock; 360 kcondvar_t hat_list_cv; 361 kmem_cache_t *hat_cache; 362 kmem_cache_t *hat_hash_cache; 363 kmem_cache_t *hat32_hash_cache; 364 365 /* 366 * Simple statistics 367 */ 368 struct hatstats hatstat; 369 370 /* 371 * Some earlier hypervisor versions do not emulate cmpxchg of PTEs 372 * correctly. For such hypervisors we must set PT_USER for kernel 373 * entries ourselves (normally the emulation would set PT_USER for 374 * kernel entries and PT_USER|PT_GLOBAL for user entries). pt_kern is 375 * thus set appropriately. Note that dboot/kbm is OK, as only the full 376 * HAT uses cmpxchg() and the other paths (hypercall etc.) were never 377 * incorrect. 378 */ 379 int pt_kern; 380 381 #ifndef __xpv 382 extern pfn_t memseg_get_start(struct memseg *); 383 #endif 384 385 #define PP_GETRM(pp, rmmask) (pp->p_nrm & rmmask) 386 #define PP_ISMOD(pp) PP_GETRM(pp, P_MOD) 387 #define PP_ISREF(pp) PP_GETRM(pp, P_REF) 388 #define PP_ISRO(pp) PP_GETRM(pp, P_RO) 389 390 #define PP_SETRM(pp, rm) atomic_orb(&(pp->p_nrm), rm) 391 #define PP_SETMOD(pp) PP_SETRM(pp, P_MOD) 392 #define PP_SETREF(pp) PP_SETRM(pp, P_REF) 393 #define PP_SETRO(pp) PP_SETRM(pp, P_RO) 394 395 #define PP_CLRRM(pp, rm) atomic_andb(&(pp->p_nrm), ~(rm)) 396 #define PP_CLRMOD(pp) PP_CLRRM(pp, P_MOD) 397 #define PP_CLRREF(pp) PP_CLRRM(pp, P_REF) 398 #define PP_CLRRO(pp) PP_CLRRM(pp, P_RO) 399 #define PP_CLRALL(pp) PP_CLRRM(pp, P_MOD | P_REF | P_RO) 400 401 /* 402 * kmem cache constructor for struct hat 403 */ 404 /*ARGSUSED*/ 405 static int 406 hati_constructor(void *buf, void *handle, int kmflags) 407 { 408 hat_t *hat = buf; 409 410 mutex_init(&hat->hat_mutex, NULL, MUTEX_DEFAULT, NULL); 411 bzero(hat->hat_pages_mapped, 412 sizeof (pgcnt_t) * (mmu.max_page_level + 1)); 413 hat->hat_ism_pgcnt = 0; 414 hat->hat_stats = 0; 415 hat->hat_flags = 0; 416 CPUSET_ZERO(hat->hat_cpus); 417 hat->hat_htable = NULL; 418 hat->hat_ht_hash = NULL; 419 return (0); 420 } 421 422 /* 423 * Put it at the start of the global list of all hats (used by stealing) 424 * 425 * kas.a_hat is not in the list but is instead used to find the 426 * first and last items in the list. 427 * 428 * - kas.a_hat->hat_next points to the start of the user hats. 429 * The list ends where hat->hat_next == NULL 430 * 431 * - kas.a_hat->hat_prev points to the last of the user hats. 432 * The list begins where hat->hat_prev == NULL 433 */ 434 static void 435 hat_list_append(hat_t *hat) 436 { 437 mutex_enter(&hat_list_lock); 438 hat->hat_prev = NULL; 439 hat->hat_next = kas.a_hat->hat_next; 440 if (hat->hat_next) 441 hat->hat_next->hat_prev = hat; 442 else 443 kas.a_hat->hat_prev = hat; 444 kas.a_hat->hat_next = hat; 445 mutex_exit(&hat_list_lock); 446 } 447 448 /* 449 * Allocate a hat structure for as. We also create the top level 450 * htable and initialize it to contain the kernel hat entries. 451 */ 452 hat_t * 453 hat_alloc(struct as *as) 454 { 455 hat_t *hat; 456 htable_t *ht; /* top level htable */ 457 uint_t use_copied; 458 uint_t r; 459 hat_kernel_range_t *rp; 460 uintptr_t va; 461 uintptr_t eva; 462 uint_t start; 463 uint_t cnt; 464 htable_t *src; 465 boolean_t use_hat32_cache; 466 467 /* 468 * Once we start creating user process HATs we can enable 469 * the htable_steal() code. 470 */ 471 if (can_steal_post_boot == 0) 472 can_steal_post_boot = 1; 473 474 ASSERT(AS_WRITE_HELD(as)); 475 hat = kmem_cache_alloc(hat_cache, KM_SLEEP); 476 hat->hat_as = as; 477 mutex_init(&hat->hat_mutex, NULL, MUTEX_DEFAULT, NULL); 478 ASSERT(hat->hat_flags == 0); 479 480 #if defined(__xpv) 481 /* 482 * No PCP stuff on the hypervisor due to the 64-bit split top level 483 * page tables. On 32-bit it's not needed as the hypervisor takes 484 * care of copying the top level PTEs to a below 4Gig page. 485 */ 486 use_copied = 0; 487 use_hat32_cache = B_FALSE; 488 hat->hat_max_level = mmu.max_level; 489 hat->hat_num_copied = 0; 490 hat->hat_flags = 0; 491 #else /* __xpv */ 492 493 /* 494 * All processes use HAT_COPIED on the 64-bit kernel if KPTI is 495 * turned on. 496 */ 497 if (ttoproc(curthread)->p_model == DATAMODEL_ILP32) { 498 use_copied = 1; 499 hat->hat_max_level = mmu.max_level32; 500 hat->hat_num_copied = mmu.num_copied_ents32; 501 use_hat32_cache = B_TRUE; 502 hat->hat_flags |= HAT_COPIED_32; 503 HATSTAT_INC(hs_hat_copied32); 504 } else if (kpti_enable == 1) { 505 use_copied = 1; 506 hat->hat_max_level = mmu.max_level; 507 hat->hat_num_copied = mmu.num_copied_ents; 508 use_hat32_cache = B_FALSE; 509 HATSTAT_INC(hs_hat_copied64); 510 } else { 511 use_copied = 0; 512 use_hat32_cache = B_FALSE; 513 hat->hat_max_level = mmu.max_level; 514 hat->hat_num_copied = 0; 515 hat->hat_flags = 0; 516 HATSTAT_INC(hs_hat_normal64); 517 } 518 #endif /* __xpv */ 519 if (use_copied) { 520 hat->hat_flags |= HAT_COPIED; 521 bzero(hat->hat_copied_ptes, sizeof (hat->hat_copied_ptes)); 522 } 523 524 /* 525 * Allocate the htable hash. For 32-bit PCP processes we use the 526 * hat32_hash_cache. However, for 64-bit PCP processes we do not as the 527 * number of entries that they have to handle is closer to 528 * hat_hash_cache in count (though there will be more wastage when we 529 * have more DRAM in the system and thus push down the user address 530 * range). 531 */ 532 if (use_hat32_cache) { 533 hat->hat_num_hash = mmu.hat32_hash_cnt; 534 hat->hat_ht_hash = kmem_cache_alloc(hat32_hash_cache, KM_SLEEP); 535 } else { 536 hat->hat_num_hash = mmu.hash_cnt; 537 hat->hat_ht_hash = kmem_cache_alloc(hat_hash_cache, KM_SLEEP); 538 } 539 bzero(hat->hat_ht_hash, hat->hat_num_hash * sizeof (htable_t *)); 540 541 /* 542 * Initialize Kernel HAT entries at the top of the top level page 543 * tables for the new hat. 544 */ 545 hat->hat_htable = NULL; 546 hat->hat_ht_cached = NULL; 547 XPV_DISALLOW_MIGRATE(); 548 ht = htable_create(hat, (uintptr_t)0, TOP_LEVEL(hat), NULL); 549 hat->hat_htable = ht; 550 551 if (hat->hat_flags & HAT_COPIED) 552 goto init_done; 553 554 for (r = 0; r < num_kernel_ranges; ++r) { 555 rp = &kernel_ranges[r]; 556 for (va = rp->hkr_start_va; va != rp->hkr_end_va; 557 va += cnt * LEVEL_SIZE(rp->hkr_level)) { 558 559 if (rp->hkr_level == TOP_LEVEL(hat)) 560 ht = hat->hat_htable; 561 else 562 ht = htable_create(hat, va, rp->hkr_level, 563 NULL); 564 565 start = htable_va2entry(va, ht); 566 cnt = HTABLE_NUM_PTES(ht) - start; 567 eva = va + 568 ((uintptr_t)cnt << LEVEL_SHIFT(rp->hkr_level)); 569 if (rp->hkr_end_va != 0 && 570 (eva > rp->hkr_end_va || eva == 0)) 571 cnt = htable_va2entry(rp->hkr_end_va, ht) - 572 start; 573 574 src = htable_lookup(kas.a_hat, va, rp->hkr_level); 575 ASSERT(src != NULL); 576 x86pte_copy(src, ht, start, cnt); 577 htable_release(src); 578 } 579 } 580 581 init_done: 582 583 #if defined(__xpv) 584 /* 585 * Pin top level page tables after initializing them 586 */ 587 xen_pin(hat->hat_htable->ht_pfn, mmu.max_level); 588 xen_pin(hat->hat_user_ptable, mmu.max_level); 589 #endif 590 XPV_ALLOW_MIGRATE(); 591 592 hat_list_append(hat); 593 594 return (hat); 595 } 596 597 #if !defined(__xpv) 598 /* 599 * Cons up a HAT for a CPU. This represents the user mappings. This will have 600 * various kernel pages punched into it manually. Importantly, this hat is 601 * ineligible for stealing. We really don't want to deal with this ever 602 * faulting and figuring out that this is happening, much like we don't with 603 * kas. 604 */ 605 static hat_t * 606 hat_cpu_alloc(cpu_t *cpu) 607 { 608 hat_t *hat; 609 htable_t *ht; 610 611 hat = kmem_cache_alloc(hat_cache, KM_SLEEP); 612 hat->hat_as = NULL; 613 mutex_init(&hat->hat_mutex, NULL, MUTEX_DEFAULT, NULL); 614 hat->hat_max_level = mmu.max_level; 615 hat->hat_num_copied = 0; 616 hat->hat_flags = HAT_PCP; 617 618 hat->hat_num_hash = mmu.hash_cnt; 619 hat->hat_ht_hash = kmem_cache_alloc(hat_hash_cache, KM_SLEEP); 620 bzero(hat->hat_ht_hash, hat->hat_num_hash * sizeof (htable_t *)); 621 622 hat->hat_next = hat->hat_prev = NULL; 623 624 /* 625 * Because this HAT will only ever be used by the current CPU, we'll go 626 * ahead and set the CPUSET up to only point to the CPU in question. 627 */ 628 CPUSET_ADD(hat->hat_cpus, cpu->cpu_id); 629 630 hat->hat_htable = NULL; 631 hat->hat_ht_cached = NULL; 632 ht = htable_create(hat, (uintptr_t)0, TOP_LEVEL(hat), NULL); 633 hat->hat_htable = ht; 634 635 hat_list_append(hat); 636 637 return (hat); 638 } 639 #endif /* !__xpv */ 640 641 /* 642 * process has finished executing but as has not been cleaned up yet. 643 */ 644 /*ARGSUSED*/ 645 void 646 hat_free_start(hat_t *hat) 647 { 648 ASSERT(AS_WRITE_HELD(hat->hat_as)); 649 650 /* 651 * If the hat is currently a stealing victim, wait for the stealing 652 * to finish. Once we mark it as HAT_FREEING, htable_steal() 653 * won't look at its pagetables anymore. 654 */ 655 mutex_enter(&hat_list_lock); 656 while (hat->hat_flags & HAT_VICTIM) 657 cv_wait(&hat_list_cv, &hat_list_lock); 658 hat->hat_flags |= HAT_FREEING; 659 mutex_exit(&hat_list_lock); 660 } 661 662 /* 663 * An address space is being destroyed, so we destroy the associated hat. 664 */ 665 void 666 hat_free_end(hat_t *hat) 667 { 668 kmem_cache_t *cache; 669 670 ASSERT(hat->hat_flags & HAT_FREEING); 671 672 /* 673 * must not be running on the given hat 674 */ 675 ASSERT(CPU->cpu_current_hat != hat); 676 677 /* 678 * Remove it from the list of HATs 679 */ 680 mutex_enter(&hat_list_lock); 681 if (hat->hat_prev) 682 hat->hat_prev->hat_next = hat->hat_next; 683 else 684 kas.a_hat->hat_next = hat->hat_next; 685 if (hat->hat_next) 686 hat->hat_next->hat_prev = hat->hat_prev; 687 else 688 kas.a_hat->hat_prev = hat->hat_prev; 689 mutex_exit(&hat_list_lock); 690 hat->hat_next = hat->hat_prev = NULL; 691 692 #if defined(__xpv) 693 /* 694 * On the hypervisor, unpin top level page table(s) 695 */ 696 VERIFY3U(hat->hat_flags & HAT_PCP, ==, 0); 697 xen_unpin(hat->hat_htable->ht_pfn); 698 xen_unpin(hat->hat_user_ptable); 699 #endif 700 701 /* 702 * Make a pass through the htables freeing them all up. 703 */ 704 htable_purge_hat(hat); 705 706 /* 707 * Decide which kmem cache the hash table came from, then free it. 708 */ 709 if (hat->hat_flags & HAT_COPIED) { 710 if (hat->hat_flags & HAT_COPIED_32) { 711 cache = hat32_hash_cache; 712 } else { 713 cache = hat_hash_cache; 714 } 715 } else { 716 cache = hat_hash_cache; 717 } 718 kmem_cache_free(cache, hat->hat_ht_hash); 719 hat->hat_ht_hash = NULL; 720 721 hat->hat_flags = 0; 722 hat->hat_max_level = 0; 723 hat->hat_num_copied = 0; 724 kmem_cache_free(hat_cache, hat); 725 } 726 727 /* 728 * round kernelbase down to a supported value to use for _userlimit 729 * 730 * userlimit must be aligned down to an entry in the top level htable. 731 * The one exception is for 32 bit HAT's running PAE. 732 */ 733 uintptr_t 734 hat_kernelbase(uintptr_t va) 735 { 736 if (IN_VA_HOLE(va)) 737 panic("_userlimit %p will fall in VA hole\n", (void *)va); 738 return (va); 739 } 740 741 /* 742 * 743 */ 744 static void 745 set_max_page_level() 746 { 747 level_t lvl; 748 749 if (!kbm_largepage_support) { 750 lvl = 0; 751 } else { 752 if (is_x86_feature(x86_featureset, X86FSET_1GPG)) { 753 lvl = 2; 754 if (chk_optimal_1gtlb && 755 cpuid_opteron_erratum(CPU, 6671130)) { 756 lvl = 1; 757 } 758 if (plat_mnode_xcheck(LEVEL_SIZE(2) >> 759 LEVEL_SHIFT(0))) { 760 lvl = 1; 761 } 762 } else { 763 lvl = 1; 764 } 765 } 766 mmu.max_page_level = lvl; 767 768 if ((lvl == 2) && (enable_1gpg == 0)) 769 mmu.umax_page_level = 1; 770 else 771 mmu.umax_page_level = lvl; 772 } 773 774 /* 775 * Determine the number of slots that are in used in the top-most level page 776 * table for user memory. This is based on _userlimit. In effect this is similar 777 * to htable_va2entry, but without the convenience of having an htable. 778 */ 779 void 780 mmu_calc_user_slots(void) 781 { 782 uint_t ent, nptes; 783 uintptr_t shift; 784 785 nptes = mmu.top_level_count; 786 shift = _userlimit >> mmu.level_shift[mmu.max_level]; 787 ent = shift & (nptes - 1); 788 789 /* 790 * Ent tells us the slot that the page for _userlimit would fit in. We 791 * need to add one to this to cover the total number of entries. 792 */ 793 mmu.top_level_uslots = ent + 1; 794 795 /* 796 * When running 32-bit compatability processes on a 64-bit kernel, we 797 * will only need to use one slot. 798 */ 799 mmu.top_level_uslots32 = 1; 800 801 /* 802 * Record the number of PCP page table entries that we'll need to copy 803 * around. For 64-bit processes this is the number of user slots. For 804 * 32-bit proceses, this is 4 1 GiB pages. 805 */ 806 mmu.num_copied_ents = mmu.top_level_uslots; 807 mmu.num_copied_ents32 = 4; 808 } 809 810 /* 811 * Initialize hat data structures based on processor MMU information. 812 */ 813 void 814 mmu_init(void) 815 { 816 uint_t max_htables; 817 uint_t pa_bits; 818 uint_t va_bits; 819 int i; 820 821 /* 822 * If CPU enabled the page table global bit, use it for the kernel 823 * This is bit 7 in CR4 (PGE - Page Global Enable). 824 */ 825 if (is_x86_feature(x86_featureset, X86FSET_PGE) && 826 (getcr4() & CR4_PGE) != 0) 827 mmu.pt_global = PT_GLOBAL; 828 829 #if !defined(__xpv) 830 /* 831 * The 64-bit x86 kernel has split user/kernel page tables. As such we 832 * cannot have the global bit set. The simplest way for us to deal with 833 * this is to just say that pt_global is zero, so the global bit isn't 834 * present. 835 */ 836 if (kpti_enable == 1) 837 mmu.pt_global = 0; 838 #endif 839 840 /* 841 * Detect NX and PAE usage. 842 */ 843 mmu.pae_hat = kbm_pae_support; 844 if (kbm_nx_support) 845 mmu.pt_nx = PT_NX; 846 else 847 mmu.pt_nx = 0; 848 849 /* 850 * Use CPU info to set various MMU parameters 851 */ 852 cpuid_get_addrsize(CPU, &pa_bits, &va_bits); 853 854 /* 855 * Check if 5 level paging is on, we dont support that (yet). 856 * X86_64 processors that support 5 level paging report 857 * the number of va bits for 5 level paging even if 858 * not in 5 level paging mode. So we need 859 * to adjust va_bits to max for 4 level paging if not in 5 level mode. 860 */ 861 if ((getcr4() & CR4_LA57) != 0) 862 panic("5 Level paging enabled but not yet supported"); 863 else if (va_bits > MMU_MAX4LEVELVABITS) 864 va_bits = MMU_MAX4LEVELVABITS; 865 866 if (va_bits < sizeof (void *) * NBBY) { 867 mmu.hole_start = (1ul << (va_bits - 1)); 868 mmu.hole_end = 0ul - mmu.hole_start - 1; 869 } else { 870 mmu.hole_end = 0; 871 mmu.hole_start = mmu.hole_end - 1; 872 } 873 #if defined(OPTERON_ERRATUM_121) 874 /* 875 * If erratum 121 has already been detected at this time, hole_start 876 * contains the value to be subtracted from mmu.hole_start. 877 */ 878 ASSERT(hole_start == 0 || opteron_erratum_121 != 0); 879 hole_start = mmu.hole_start - hole_start; 880 #else 881 hole_start = mmu.hole_start; 882 #endif 883 hole_end = mmu.hole_end; 884 885 mmu.highest_pfn = mmu_btop((1ull << pa_bits) - 1); 886 if (mmu.pae_hat == 0 && pa_bits > 32) 887 mmu.highest_pfn = PFN_4G - 1; 888 889 if (mmu.pae_hat) { 890 mmu.pte_size = 8; /* 8 byte PTEs */ 891 mmu.pte_size_shift = 3; 892 } else { 893 mmu.pte_size = 4; /* 4 byte PTEs */ 894 mmu.pte_size_shift = 2; 895 } 896 897 if (mmu.pae_hat && !is_x86_feature(x86_featureset, X86FSET_PAE)) 898 panic("Processor does not support PAE"); 899 900 if (!is_x86_feature(x86_featureset, X86FSET_CX8)) 901 panic("Processor does not support cmpxchg8b instruction"); 902 903 904 mmu.num_level = 4; 905 mmu.max_level = 3; 906 mmu.ptes_per_table = 512; 907 mmu.top_level_count = 512; 908 909 /* 910 * 32-bit processes only use 1 GB ptes. 911 */ 912 mmu.max_level32 = 2; 913 914 mmu.level_shift[0] = 12; 915 mmu.level_shift[1] = 21; 916 mmu.level_shift[2] = 30; 917 mmu.level_shift[3] = 39; 918 919 920 for (i = 0; i < mmu.num_level; ++i) { 921 mmu.level_size[i] = 1UL << mmu.level_shift[i]; 922 mmu.level_offset[i] = mmu.level_size[i] - 1; 923 mmu.level_mask[i] = ~mmu.level_offset[i]; 924 } 925 926 set_max_page_level(); 927 mmu_calc_user_slots(); 928 929 mmu_page_sizes = mmu.max_page_level + 1; 930 mmu_exported_page_sizes = mmu.umax_page_level + 1; 931 932 /* restrict legacy applications from using pagesizes 1g and above */ 933 mmu_legacy_page_sizes = 934 (mmu_exported_page_sizes > 2) ? 2 : mmu_exported_page_sizes; 935 936 937 for (i = 0; i <= mmu.max_page_level; ++i) { 938 mmu.pte_bits[i] = PT_VALID | pt_kern; 939 if (i > 0) 940 mmu.pte_bits[i] |= PT_PAGESIZE; 941 } 942 943 /* 944 * NOTE Legacy 32 bit PAE mode only has the P_VALID bit at top level. 945 */ 946 for (i = 1; i < mmu.num_level; ++i) 947 mmu.ptp_bits[i] = PT_PTPBITS; 948 949 /* 950 * Compute how many hash table entries to have per process for htables. 951 * We start with 1 page's worth of entries. 952 * 953 * If physical memory is small, reduce the amount need to cover it. 954 */ 955 max_htables = physmax / mmu.ptes_per_table; 956 mmu.hash_cnt = MMU_PAGESIZE / sizeof (htable_t *); 957 while (mmu.hash_cnt > 16 && mmu.hash_cnt >= max_htables) 958 mmu.hash_cnt >>= 1; 959 mmu.hat32_hash_cnt = mmu.hash_cnt; 960 961 /* 962 * If running in 64 bits and physical memory is large, 963 * increase the size of the cache to cover all of memory for 964 * a 64 bit process. 965 */ 966 #define HASH_MAX_LENGTH 4 967 while (mmu.hash_cnt * HASH_MAX_LENGTH < max_htables) 968 mmu.hash_cnt <<= 1; 969 } 970 971 972 /* 973 * initialize hat data structures 974 */ 975 void 976 hat_init() 977 { 978 cv_init(&hat_list_cv, NULL, CV_DEFAULT, NULL); 979 980 /* 981 * initialize kmem caches 982 */ 983 htable_init(); 984 hment_init(); 985 986 hat_cache = kmem_cache_create("hat_t", 987 sizeof (hat_t), 0, hati_constructor, NULL, NULL, 988 NULL, 0, 0); 989 990 hat_hash_cache = kmem_cache_create("HatHash", 991 mmu.hash_cnt * sizeof (htable_t *), 0, NULL, NULL, NULL, 992 NULL, 0, 0); 993 994 /* 995 * 32-bit PCP hats can use a smaller hash table size on large memory 996 * machines 997 */ 998 if (mmu.hash_cnt == mmu.hat32_hash_cnt) { 999 hat32_hash_cache = hat_hash_cache; 1000 } else { 1001 hat32_hash_cache = kmem_cache_create("Hat32Hash", 1002 mmu.hat32_hash_cnt * sizeof (htable_t *), 0, NULL, NULL, 1003 NULL, NULL, 0, 0); 1004 } 1005 1006 /* 1007 * Set up the kernel's hat 1008 */ 1009 AS_LOCK_ENTER(&kas, RW_WRITER); 1010 kas.a_hat = kmem_cache_alloc(hat_cache, KM_NOSLEEP); 1011 mutex_init(&kas.a_hat->hat_mutex, NULL, MUTEX_DEFAULT, NULL); 1012 kas.a_hat->hat_as = &kas; 1013 kas.a_hat->hat_flags = 0; 1014 AS_LOCK_EXIT(&kas); 1015 1016 CPUSET_ZERO(khat_cpuset); 1017 CPUSET_ADD(khat_cpuset, CPU->cpu_id); 1018 1019 /* 1020 * The kernel HAT doesn't use PCP regardless of architectures. 1021 */ 1022 ASSERT3U(mmu.max_level, >, 0); 1023 kas.a_hat->hat_max_level = mmu.max_level; 1024 kas.a_hat->hat_num_copied = 0; 1025 1026 /* 1027 * The kernel hat's next pointer serves as the head of the hat list . 1028 * The kernel hat's prev pointer tracks the last hat on the list for 1029 * htable_steal() to use. 1030 */ 1031 kas.a_hat->hat_next = NULL; 1032 kas.a_hat->hat_prev = NULL; 1033 1034 /* 1035 * Allocate an htable hash bucket for the kernel 1036 * XX64 - tune for 64 bit procs 1037 */ 1038 kas.a_hat->hat_num_hash = mmu.hash_cnt; 1039 kas.a_hat->hat_ht_hash = kmem_cache_alloc(hat_hash_cache, KM_NOSLEEP); 1040 bzero(kas.a_hat->hat_ht_hash, mmu.hash_cnt * sizeof (htable_t *)); 1041 1042 /* 1043 * zero out the top level and cached htable pointers 1044 */ 1045 kas.a_hat->hat_ht_cached = NULL; 1046 kas.a_hat->hat_htable = NULL; 1047 1048 /* 1049 * Pre-allocate hrm_hashtab before enabling the collection of 1050 * refmod statistics. Allocating on the fly would mean us 1051 * running the risk of suffering recursive mutex enters or 1052 * deadlocks. 1053 */ 1054 hrm_hashtab = kmem_zalloc(HRM_HASHSIZE * sizeof (struct hrmstat *), 1055 KM_SLEEP); 1056 } 1057 1058 1059 extern void kpti_tramp_start(); 1060 extern void kpti_tramp_end(); 1061 1062 extern void kdi_isr_start(); 1063 extern void kdi_isr_end(); 1064 1065 extern gate_desc_t kdi_idt[NIDT]; 1066 1067 /* 1068 * Prepare per-CPU pagetables for all processes on the 64 bit kernel. 1069 * 1070 * Each CPU has a set of 2 pagetables that are reused for any 32 bit 1071 * process it runs. They are the top level pagetable, hci_pcp_l3ptes, and 1072 * the next to top level table for the bottom 512 Gig, hci_pcp_l2ptes. 1073 */ 1074 /*ARGSUSED*/ 1075 static void 1076 hat_pcp_setup(struct cpu *cpu) 1077 { 1078 #if !defined(__xpv) 1079 struct hat_cpu_info *hci = cpu->cpu_hat_info; 1080 uintptr_t va; 1081 size_t len; 1082 1083 /* 1084 * allocate the level==2 page table for the bottom most 1085 * 512Gig of address space (this is where 32 bit apps live) 1086 */ 1087 ASSERT(hci != NULL); 1088 hci->hci_pcp_l2ptes = kmem_zalloc(MMU_PAGESIZE, KM_SLEEP); 1089 1090 /* 1091 * Allocate a top level pagetable and copy the kernel's 1092 * entries into it. Then link in hci_pcp_l2ptes in the 1st entry. 1093 */ 1094 hci->hci_pcp_l3ptes = kmem_zalloc(MMU_PAGESIZE, KM_SLEEP); 1095 hci->hci_pcp_l3pfn = 1096 hat_getpfnum(kas.a_hat, (caddr_t)hci->hci_pcp_l3ptes); 1097 ASSERT3U(hci->hci_pcp_l3pfn, !=, PFN_INVALID); 1098 bcopy(pcp_page, hci->hci_pcp_l3ptes, MMU_PAGESIZE); 1099 1100 hci->hci_pcp_l2pfn = 1101 hat_getpfnum(kas.a_hat, (caddr_t)hci->hci_pcp_l2ptes); 1102 ASSERT3U(hci->hci_pcp_l2pfn, !=, PFN_INVALID); 1103 1104 /* 1105 * Now go through and allocate the user version of these structures. 1106 * Unlike with the kernel version, we allocate a hat to represent the 1107 * top-level page table as that will make it much simpler when we need 1108 * to patch through user entries. 1109 */ 1110 hci->hci_user_hat = hat_cpu_alloc(cpu); 1111 hci->hci_user_l3pfn = hci->hci_user_hat->hat_htable->ht_pfn; 1112 ASSERT3U(hci->hci_user_l3pfn, !=, PFN_INVALID); 1113 hci->hci_user_l3ptes = 1114 (x86pte_t *)hat_kpm_mapin_pfn(hci->hci_user_l3pfn); 1115 1116 /* Skip the rest of this if KPTI is switched off at boot. */ 1117 if (kpti_enable != 1) 1118 return; 1119 1120 /* 1121 * OK, now that we have this we need to go through and punch the normal 1122 * holes in the CPU's hat for this. At this point we'll punch in the 1123 * following: 1124 * 1125 * o GDT 1126 * o IDT 1127 * o LDT 1128 * o Trampoline Code 1129 * o machcpu KPTI page 1130 * o kmdb ISR code page (just trampolines) 1131 * 1132 * If this is cpu0, then we also can initialize the following because 1133 * they'll have already been allocated. 1134 * 1135 * o TSS for CPU 0 1136 * o Double Fault for CPU 0 1137 * 1138 * The following items have yet to be allocated and have not been 1139 * punched in yet. They will be punched in later: 1140 * 1141 * o TSS (mach_cpucontext_alloc_tables()) 1142 * o Double Fault Stack (mach_cpucontext_alloc_tables()) 1143 */ 1144 hati_cpu_punchin(cpu, (uintptr_t)cpu->cpu_gdt, PROT_READ); 1145 hati_cpu_punchin(cpu, (uintptr_t)cpu->cpu_idt, PROT_READ); 1146 1147 /* 1148 * As the KDI IDT is only active during kmdb sessions (including single 1149 * stepping), typically we don't actually need this punched in (we 1150 * consider the routines that switch to the user cr3 to be toxic). But 1151 * if we ever accidentally end up on the user cr3 while on this IDT, 1152 * we'd prefer not to triple fault. 1153 */ 1154 hati_cpu_punchin(cpu, (uintptr_t)&kdi_idt, PROT_READ); 1155 1156 VERIFY0((uintptr_t)&kpti_tramp_start % MMU_PAGESIZE); 1157 VERIFY0((uintptr_t)&kpti_tramp_end % MMU_PAGESIZE); 1158 for (va = (uintptr_t)&kpti_tramp_start; 1159 va < (uintptr_t)&kpti_tramp_end; va += MMU_PAGESIZE) { 1160 hati_cpu_punchin(cpu, va, PROT_READ | PROT_EXEC); 1161 } 1162 1163 VERIFY3U(((uintptr_t)cpu->cpu_m.mcpu_ldt) % MMU_PAGESIZE, ==, 0); 1164 for (va = (uintptr_t)cpu->cpu_m.mcpu_ldt, len = LDT_CPU_SIZE; 1165 len >= MMU_PAGESIZE; va += MMU_PAGESIZE, len -= MMU_PAGESIZE) { 1166 hati_cpu_punchin(cpu, va, PROT_READ); 1167 } 1168 1169 /* mcpu_pad2 is the start of the page containing the kpti_frames. */ 1170 hati_cpu_punchin(cpu, (uintptr_t)&cpu->cpu_m.mcpu_pad2[0], 1171 PROT_READ | PROT_WRITE); 1172 1173 if (cpu == &cpus[0]) { 1174 /* 1175 * CPU0 uses a global for its double fault stack to deal with 1176 * the chicken and egg problem. We need to punch it into its 1177 * user HAT. 1178 */ 1179 extern char dblfault_stack0[]; 1180 1181 hati_cpu_punchin(cpu, (uintptr_t)cpu->cpu_m.mcpu_tss, 1182 PROT_READ); 1183 1184 for (va = (uintptr_t)dblfault_stack0, 1185 len = DEFAULTSTKSZ; len >= MMU_PAGESIZE; 1186 va += MMU_PAGESIZE, len -= MMU_PAGESIZE) { 1187 hati_cpu_punchin(cpu, va, PROT_READ | PROT_WRITE); 1188 } 1189 } 1190 1191 VERIFY0((uintptr_t)&kdi_isr_start % MMU_PAGESIZE); 1192 VERIFY0((uintptr_t)&kdi_isr_end % MMU_PAGESIZE); 1193 for (va = (uintptr_t)&kdi_isr_start; 1194 va < (uintptr_t)&kdi_isr_end; va += MMU_PAGESIZE) { 1195 hati_cpu_punchin(cpu, va, PROT_READ | PROT_EXEC); 1196 } 1197 #endif /* !__xpv */ 1198 } 1199 1200 /*ARGSUSED*/ 1201 static void 1202 hat_pcp_teardown(cpu_t *cpu) 1203 { 1204 #if !defined(__xpv) 1205 struct hat_cpu_info *hci; 1206 1207 if ((hci = cpu->cpu_hat_info) == NULL) 1208 return; 1209 if (hci->hci_pcp_l2ptes != NULL) 1210 kmem_free(hci->hci_pcp_l2ptes, MMU_PAGESIZE); 1211 if (hci->hci_pcp_l3ptes != NULL) 1212 kmem_free(hci->hci_pcp_l3ptes, MMU_PAGESIZE); 1213 if (hci->hci_user_hat != NULL) { 1214 hat_free_start(hci->hci_user_hat); 1215 hat_free_end(hci->hci_user_hat); 1216 } 1217 #endif 1218 } 1219 1220 #define NEXT_HKR(r, l, s, e) { \ 1221 kernel_ranges[r].hkr_level = l; \ 1222 kernel_ranges[r].hkr_start_va = s; \ 1223 kernel_ranges[r].hkr_end_va = e; \ 1224 ++r; \ 1225 } 1226 1227 /* 1228 * Finish filling in the kernel hat. 1229 * Pre fill in all top level kernel page table entries for the kernel's 1230 * part of the address range. From this point on we can't use any new 1231 * kernel large pages if they need PTE's at max_level 1232 * 1233 * create the kmap mappings. 1234 */ 1235 void 1236 hat_init_finish(void) 1237 { 1238 size_t size; 1239 uint_t r = 0; 1240 uintptr_t va; 1241 hat_kernel_range_t *rp; 1242 1243 1244 /* 1245 * We are now effectively running on the kernel hat. 1246 * Clearing use_boot_reserve shuts off using the pre-allocated boot 1247 * reserve for all HAT allocations. From here on, the reserves are 1248 * only used when avoiding recursion in kmem_alloc(). 1249 */ 1250 use_boot_reserve = 0; 1251 htable_adjust_reserve(); 1252 1253 /* 1254 * User HATs are initialized with copies of all kernel mappings in 1255 * higher level page tables. Ensure that those entries exist. 1256 */ 1257 1258 NEXT_HKR(r, 3, kernelbase, 0); 1259 #if defined(__xpv) 1260 NEXT_HKR(r, 3, HYPERVISOR_VIRT_START, HYPERVISOR_VIRT_END); 1261 #endif 1262 1263 num_kernel_ranges = r; 1264 1265 /* 1266 * Create all the kernel pagetables that will have entries 1267 * shared to user HATs. 1268 */ 1269 for (r = 0; r < num_kernel_ranges; ++r) { 1270 rp = &kernel_ranges[r]; 1271 for (va = rp->hkr_start_va; va != rp->hkr_end_va; 1272 va += LEVEL_SIZE(rp->hkr_level)) { 1273 htable_t *ht; 1274 1275 if (IN_HYPERVISOR_VA(va)) 1276 continue; 1277 1278 /* can/must skip if a page mapping already exists */ 1279 if (rp->hkr_level <= mmu.max_page_level && 1280 (ht = htable_getpage(kas.a_hat, va, NULL)) != 1281 NULL) { 1282 htable_release(ht); 1283 continue; 1284 } 1285 1286 (void) htable_create(kas.a_hat, va, rp->hkr_level - 1, 1287 NULL); 1288 } 1289 } 1290 1291 /* 1292 * 32 bit PAE metal kernels use only 4 of the 512 entries in the 1293 * page holding the top level pagetable. We use the remainder for 1294 * the "per CPU" page tables for PCP processes. 1295 * Map the top level kernel pagetable into the kernel to make 1296 * it easy to use bcopy access these tables. 1297 * 1298 * PAE is required for the 64-bit kernel which uses this as well to 1299 * perform the per-CPU pagetables. See the big theory statement. 1300 */ 1301 if (mmu.pae_hat) { 1302 pcp_page = vmem_alloc(heap_arena, MMU_PAGESIZE, VM_SLEEP); 1303 hat_devload(kas.a_hat, (caddr_t)pcp_page, MMU_PAGESIZE, 1304 kas.a_hat->hat_htable->ht_pfn, 1305 #if !defined(__xpv) 1306 PROT_WRITE | 1307 #endif 1308 PROT_READ | HAT_NOSYNC | HAT_UNORDERED_OK, 1309 HAT_LOAD | HAT_LOAD_NOCONSIST); 1310 } 1311 hat_pcp_setup(CPU); 1312 1313 /* 1314 * Create kmap (cached mappings of kernel PTEs) 1315 * for 32 bit we map from segmap_start .. ekernelheap 1316 * for 64 bit we map from segmap_start .. segmap_start + segmapsize; 1317 */ 1318 size = segmapsize; 1319 hat_kmap_init((uintptr_t)segmap_start, size); 1320 1321 #if !defined(__xpv) 1322 ASSERT3U(kas.a_hat->hat_htable->ht_pfn, !=, PFN_INVALID); 1323 ASSERT3U(kpti_safe_cr3, ==, 1324 MAKECR3(kas.a_hat->hat_htable->ht_pfn, PCID_KERNEL)); 1325 #endif 1326 } 1327 1328 /* 1329 * Update the PCP data on the CPU cpu to the one on the hat. If this is a 32-bit 1330 * process, then we must update the L2 pages and then the L3. If this is a 1331 * 64-bit process then we must update the L3 entries. 1332 */ 1333 static void 1334 hat_pcp_update(cpu_t *cpu, const hat_t *hat) 1335 { 1336 ASSERT3U(hat->hat_flags & HAT_COPIED, !=, 0); 1337 1338 if ((hat->hat_flags & HAT_COPIED_32) != 0) { 1339 const x86pte_t *l2src; 1340 x86pte_t *l2dst, *l3ptes, *l3uptes; 1341 /* 1342 * This is a 32-bit process. To set this up, we need to do the 1343 * following: 1344 * 1345 * - Copy the 4 L2 PTEs into the dedicated L2 table 1346 * - Zero the user L3 PTEs in the user and kernel page table 1347 * - Set the first L3 PTE to point to the CPU L2 table 1348 */ 1349 l2src = hat->hat_copied_ptes; 1350 l2dst = cpu->cpu_hat_info->hci_pcp_l2ptes; 1351 l3ptes = cpu->cpu_hat_info->hci_pcp_l3ptes; 1352 l3uptes = cpu->cpu_hat_info->hci_user_l3ptes; 1353 1354 l2dst[0] = l2src[0]; 1355 l2dst[1] = l2src[1]; 1356 l2dst[2] = l2src[2]; 1357 l2dst[3] = l2src[3]; 1358 1359 /* 1360 * Make sure to use the mmu to get the number of slots. The 1361 * number of PLP entries that this has will always be less as 1362 * it's a 32-bit process. 1363 */ 1364 bzero(l3ptes, sizeof (x86pte_t) * mmu.top_level_uslots); 1365 l3ptes[0] = MAKEPTP(cpu->cpu_hat_info->hci_pcp_l2pfn, 2); 1366 bzero(l3uptes, sizeof (x86pte_t) * mmu.top_level_uslots); 1367 l3uptes[0] = MAKEPTP(cpu->cpu_hat_info->hci_pcp_l2pfn, 2); 1368 } else { 1369 /* 1370 * This is a 64-bit process. To set this up, we need to do the 1371 * following: 1372 * 1373 * - Zero the 4 L2 PTEs in the CPU structure for safety 1374 * - Copy over the new user L3 PTEs into the kernel page table 1375 * - Copy over the new user L3 PTEs into the user page table 1376 */ 1377 ASSERT3S(kpti_enable, ==, 1); 1378 bzero(cpu->cpu_hat_info->hci_pcp_l2ptes, sizeof (x86pte_t) * 4); 1379 bcopy(hat->hat_copied_ptes, cpu->cpu_hat_info->hci_pcp_l3ptes, 1380 sizeof (x86pte_t) * mmu.top_level_uslots); 1381 bcopy(hat->hat_copied_ptes, cpu->cpu_hat_info->hci_user_l3ptes, 1382 sizeof (x86pte_t) * mmu.top_level_uslots); 1383 } 1384 } 1385 1386 static void 1387 reset_kpti(struct kpti_frame *fr, uint64_t kcr3, uint64_t ucr3) 1388 { 1389 ASSERT3U(fr->kf_tr_flag, ==, 0); 1390 #if DEBUG 1391 if (fr->kf_kernel_cr3 != 0) { 1392 ASSERT3U(fr->kf_lower_redzone, ==, 0xdeadbeefdeadbeef); 1393 ASSERT3U(fr->kf_middle_redzone, ==, 0xdeadbeefdeadbeef); 1394 ASSERT3U(fr->kf_upper_redzone, ==, 0xdeadbeefdeadbeef); 1395 } 1396 #endif 1397 1398 bzero(fr, offsetof(struct kpti_frame, kf_kernel_cr3)); 1399 bzero(&fr->kf_unused, sizeof (struct kpti_frame) - 1400 offsetof(struct kpti_frame, kf_unused)); 1401 1402 fr->kf_kernel_cr3 = kcr3; 1403 fr->kf_user_cr3 = ucr3; 1404 fr->kf_tr_ret_rsp = (uintptr_t)&fr->kf_tr_rsp; 1405 1406 fr->kf_lower_redzone = 0xdeadbeefdeadbeef; 1407 fr->kf_middle_redzone = 0xdeadbeefdeadbeef; 1408 fr->kf_upper_redzone = 0xdeadbeefdeadbeef; 1409 } 1410 1411 #ifdef __xpv 1412 static void 1413 hat_switch_xen(hat_t *hat) 1414 { 1415 struct mmuext_op t[2]; 1416 uint_t retcnt; 1417 uint_t opcnt = 1; 1418 uint64_t newcr3; 1419 1420 ASSERT(!(hat->hat_flags & HAT_COPIED)); 1421 ASSERT(!(getcr4() & CR4_PCIDE)); 1422 1423 newcr3 = MAKECR3((uint64_t)hat->hat_htable->ht_pfn, PCID_NONE); 1424 1425 t[0].cmd = MMUEXT_NEW_BASEPTR; 1426 t[0].arg1.mfn = mmu_btop(pa_to_ma(newcr3)); 1427 1428 /* 1429 * There's an interesting problem here, as to what to actually specify 1430 * when switching to the kernel hat. For now we'll reuse the kernel hat 1431 * again. 1432 */ 1433 t[1].cmd = MMUEXT_NEW_USER_BASEPTR; 1434 if (hat == kas.a_hat) 1435 t[1].arg1.mfn = mmu_btop(pa_to_ma(newcr3)); 1436 else 1437 t[1].arg1.mfn = pfn_to_mfn(hat->hat_user_ptable); 1438 ++opcnt; 1439 1440 if (HYPERVISOR_mmuext_op(t, opcnt, &retcnt, DOMID_SELF) < 0) 1441 panic("HYPERVISOR_mmu_update() failed"); 1442 ASSERT(retcnt == opcnt); 1443 } 1444 #endif /* __xpv */ 1445 1446 /* 1447 * Switch to a new active hat, maintaining bit masks to track active CPUs. 1448 * 1449 * With KPTI, all our HATs except kas should be using PCP. Thus, to switch 1450 * HATs, we need to copy over the new user PTEs, then set our trampoline context 1451 * as appropriate. 1452 * 1453 * If lacking PCID, we then load our new cr3, which will flush the TLB: we may 1454 * have established userspace TLB entries via kernel accesses, and these are no 1455 * longer valid. We have to do this eagerly, as we just deleted this CPU from 1456 * ->hat_cpus, so would no longer see any TLB shootdowns. 1457 * 1458 * With PCID enabled, things get a little more complicated. We would like to 1459 * keep TLB context around when entering and exiting the kernel, and to do this, 1460 * we partition the TLB into two different spaces: 1461 * 1462 * PCID_KERNEL is defined as zero, and used both by kas and all other address 1463 * spaces while in the kernel (post-trampoline). 1464 * 1465 * PCID_USER is used while in userspace. Therefore, userspace cannot use any 1466 * lingering PCID_KERNEL entries to kernel addresses it should not be able to 1467 * read. 1468 * 1469 * The trampoline cr3s are set not to invalidate on a mov to %cr3. This means if 1470 * we take a journey through the kernel without switching HATs, we have some 1471 * hope of keeping our TLB state around. 1472 * 1473 * On a hat switch, rather than deal with any necessary flushes on the way out 1474 * of the trampolines, we do them upfront here. If we're switching from kas, we 1475 * shouldn't need any invalidation. 1476 * 1477 * Otherwise, we can have stale userspace entries for both PCID_USER (what 1478 * happened before we move onto the kcr3) and PCID_KERNEL (any subsequent 1479 * userspace accesses such as ddi_copyin()). Since setcr3() won't do these 1480 * flushes on its own in PCIDE, we'll do a non-flushing load and then 1481 * invalidate everything. 1482 */ 1483 void 1484 hat_switch(hat_t *hat) 1485 { 1486 cpu_t *cpu = CPU; 1487 hat_t *old = cpu->cpu_current_hat; 1488 1489 /* 1490 * set up this information first, so we don't miss any cross calls 1491 */ 1492 if (old != NULL) { 1493 if (old == hat) 1494 return; 1495 if (old != kas.a_hat) 1496 CPUSET_ATOMIC_DEL(old->hat_cpus, cpu->cpu_id); 1497 } 1498 1499 /* 1500 * Add this CPU to the active set for this HAT. 1501 */ 1502 if (hat != kas.a_hat) { 1503 CPUSET_ATOMIC_ADD(hat->hat_cpus, cpu->cpu_id); 1504 } 1505 cpu->cpu_current_hat = hat; 1506 1507 #if defined(__xpv) 1508 hat_switch_xen(hat); 1509 #else 1510 struct hat_cpu_info *info = cpu->cpu_m.mcpu_hat_info; 1511 uint64_t pcide = getcr4() & CR4_PCIDE; 1512 uint64_t kcr3, ucr3; 1513 pfn_t tl_kpfn; 1514 ulong_t flag; 1515 1516 EQUIV(kpti_enable, !mmu.pt_global); 1517 1518 if (hat->hat_flags & HAT_COPIED) { 1519 hat_pcp_update(cpu, hat); 1520 tl_kpfn = info->hci_pcp_l3pfn; 1521 } else { 1522 IMPLY(kpti_enable, hat == kas.a_hat); 1523 tl_kpfn = hat->hat_htable->ht_pfn; 1524 } 1525 1526 if (pcide) { 1527 ASSERT(kpti_enable); 1528 1529 kcr3 = MAKECR3(tl_kpfn, PCID_KERNEL) | CR3_NOINVL_BIT; 1530 ucr3 = MAKECR3(info->hci_user_l3pfn, PCID_USER) | 1531 CR3_NOINVL_BIT; 1532 1533 setcr3(kcr3); 1534 if (old != kas.a_hat) 1535 mmu_flush_tlb(FLUSH_TLB_ALL, NULL); 1536 } else { 1537 kcr3 = MAKECR3(tl_kpfn, PCID_NONE); 1538 ucr3 = kpti_enable ? 1539 MAKECR3(info->hci_user_l3pfn, PCID_NONE) : 1540 0; 1541 1542 setcr3(kcr3); 1543 } 1544 1545 /* 1546 * We will already be taking shootdowns for our new HAT, and as KPTI 1547 * invpcid emulation needs to use kf_user_cr3, make sure we don't get 1548 * any cross calls while we're inconsistent. Note that it's harmless to 1549 * have a *stale* kf_user_cr3 (we just did a FLUSH_TLB_ALL), but a 1550 * *zero* kf_user_cr3 is not going to go very well. 1551 */ 1552 if (pcide) 1553 flag = intr_clear(); 1554 1555 reset_kpti(&cpu->cpu_m.mcpu_kpti, kcr3, ucr3); 1556 reset_kpti(&cpu->cpu_m.mcpu_kpti_flt, kcr3, ucr3); 1557 reset_kpti(&cpu->cpu_m.mcpu_kpti_dbg, kcr3, ucr3); 1558 1559 if (pcide) 1560 intr_restore(flag); 1561 1562 #endif /* !__xpv */ 1563 1564 ASSERT(cpu == CPU); 1565 } 1566 1567 /* 1568 * Utility to return a valid x86pte_t from protections, pfn, and level number 1569 */ 1570 static x86pte_t 1571 hati_mkpte(pfn_t pfn, uint_t attr, level_t level, uint_t flags) 1572 { 1573 x86pte_t pte; 1574 uint_t cache_attr = attr & HAT_ORDER_MASK; 1575 1576 pte = MAKEPTE(pfn, level); 1577 1578 if (attr & PROT_WRITE) 1579 PTE_SET(pte, PT_WRITABLE); 1580 1581 if (attr & PROT_USER) 1582 PTE_SET(pte, PT_USER); 1583 1584 if (!(attr & PROT_EXEC)) 1585 PTE_SET(pte, mmu.pt_nx); 1586 1587 /* 1588 * Set the software bits used track ref/mod sync's and hments. 1589 * If not using REF/MOD, set them to avoid h/w rewriting PTEs. 1590 */ 1591 if (flags & HAT_LOAD_NOCONSIST) 1592 PTE_SET(pte, PT_NOCONSIST | PT_REF | PT_MOD); 1593 else if (attr & HAT_NOSYNC) 1594 PTE_SET(pte, PT_NOSYNC | PT_REF | PT_MOD); 1595 1596 /* 1597 * Set the caching attributes in the PTE. The combination 1598 * of attributes are poorly defined, so we pay attention 1599 * to them in the given order. 1600 * 1601 * The test for HAT_STRICTORDER is different because it's defined 1602 * as "0" - which was a stupid thing to do, but is too late to change! 1603 */ 1604 if (cache_attr == HAT_STRICTORDER) { 1605 PTE_SET(pte, PT_NOCACHE); 1606 /*LINTED [Lint hates empty ifs, but it's the obvious way to do this] */ 1607 } else if (cache_attr & (HAT_UNORDERED_OK | HAT_STORECACHING_OK)) { 1608 /* nothing to set */; 1609 } else if (cache_attr & (HAT_MERGING_OK | HAT_LOADCACHING_OK)) { 1610 PTE_SET(pte, PT_NOCACHE); 1611 if (is_x86_feature(x86_featureset, X86FSET_PAT)) 1612 PTE_SET(pte, (level == 0) ? PT_PAT_4K : PT_PAT_LARGE); 1613 else 1614 PTE_SET(pte, PT_WRITETHRU); 1615 } else { 1616 panic("hati_mkpte(): bad caching attributes: %x\n", cache_attr); 1617 } 1618 1619 return (pte); 1620 } 1621 1622 /* 1623 * Duplicate address translations of the parent to the child. 1624 * This function really isn't used anymore. 1625 */ 1626 /*ARGSUSED*/ 1627 int 1628 hat_dup(hat_t *old, hat_t *new, caddr_t addr, size_t len, uint_t flag) 1629 { 1630 ASSERT((uintptr_t)addr < kernelbase); 1631 ASSERT(new != kas.a_hat); 1632 ASSERT(old != kas.a_hat); 1633 return (0); 1634 } 1635 1636 /* 1637 * Allocate any hat resources required for a process being swapped in. 1638 */ 1639 /*ARGSUSED*/ 1640 void 1641 hat_swapin(hat_t *hat) 1642 { 1643 /* do nothing - we let everything fault back in */ 1644 } 1645 1646 /* 1647 * Unload all translations associated with an address space of a process 1648 * that is being swapped out. 1649 */ 1650 void 1651 hat_swapout(hat_t *hat) 1652 { 1653 uintptr_t vaddr = (uintptr_t)0; 1654 uintptr_t eaddr = _userlimit; 1655 htable_t *ht = NULL; 1656 level_t l; 1657 1658 XPV_DISALLOW_MIGRATE(); 1659 /* 1660 * We can't just call hat_unload(hat, 0, _userlimit...) here, because 1661 * seg_spt and shared pagetables can't be swapped out. 1662 * Take a look at segspt_shmswapout() - it's a big no-op. 1663 * 1664 * Instead we'll walk through all the address space and unload 1665 * any mappings which we are sure are not shared, not locked. 1666 */ 1667 ASSERT(IS_PAGEALIGNED(vaddr)); 1668 ASSERT(IS_PAGEALIGNED(eaddr)); 1669 ASSERT(AS_LOCK_HELD(hat->hat_as)); 1670 if ((uintptr_t)hat->hat_as->a_userlimit < eaddr) 1671 eaddr = (uintptr_t)hat->hat_as->a_userlimit; 1672 1673 while (vaddr < eaddr) { 1674 (void) htable_walk(hat, &ht, &vaddr, eaddr); 1675 if (ht == NULL) 1676 break; 1677 1678 ASSERT(!IN_VA_HOLE(vaddr)); 1679 1680 /* 1681 * If the page table is shared skip its entire range. 1682 */ 1683 l = ht->ht_level; 1684 if (ht->ht_flags & HTABLE_SHARED_PFN) { 1685 vaddr = ht->ht_vaddr + LEVEL_SIZE(l + 1); 1686 htable_release(ht); 1687 ht = NULL; 1688 continue; 1689 } 1690 1691 /* 1692 * If the page table has no locked entries, unload this one. 1693 */ 1694 if (ht->ht_lock_cnt == 0) 1695 hat_unload(hat, (caddr_t)vaddr, LEVEL_SIZE(l), 1696 HAT_UNLOAD_UNMAP); 1697 1698 /* 1699 * If we have a level 0 page table with locked entries, 1700 * skip the entire page table, otherwise skip just one entry. 1701 */ 1702 if (ht->ht_lock_cnt > 0 && l == 0) 1703 vaddr = ht->ht_vaddr + LEVEL_SIZE(1); 1704 else 1705 vaddr += LEVEL_SIZE(l); 1706 } 1707 if (ht) 1708 htable_release(ht); 1709 1710 /* 1711 * We're in swapout because the system is low on memory, so 1712 * go back and flush all the htables off the cached list. 1713 */ 1714 htable_purge_hat(hat); 1715 XPV_ALLOW_MIGRATE(); 1716 } 1717 1718 /* 1719 * returns number of bytes that have valid mappings in hat. 1720 */ 1721 size_t 1722 hat_get_mapped_size(hat_t *hat) 1723 { 1724 size_t total = 0; 1725 int l; 1726 1727 for (l = 0; l <= mmu.max_page_level; l++) 1728 total += (hat->hat_pages_mapped[l] << LEVEL_SHIFT(l)); 1729 total += hat->hat_ism_pgcnt; 1730 1731 return (total); 1732 } 1733 1734 /* 1735 * enable/disable collection of stats for hat. 1736 */ 1737 int 1738 hat_stats_enable(hat_t *hat) 1739 { 1740 atomic_inc_32(&hat->hat_stats); 1741 return (1); 1742 } 1743 1744 void 1745 hat_stats_disable(hat_t *hat) 1746 { 1747 atomic_dec_32(&hat->hat_stats); 1748 } 1749 1750 /* 1751 * Utility to sync the ref/mod bits from a page table entry to the page_t 1752 * We must be holding the mapping list lock when this is called. 1753 */ 1754 static void 1755 hati_sync_pte_to_page(page_t *pp, x86pte_t pte, level_t level) 1756 { 1757 uint_t rm = 0; 1758 pgcnt_t pgcnt; 1759 1760 if (PTE_GET(pte, PT_SOFTWARE) >= PT_NOSYNC) 1761 return; 1762 1763 if (PTE_GET(pte, PT_REF)) 1764 rm |= P_REF; 1765 1766 if (PTE_GET(pte, PT_MOD)) 1767 rm |= P_MOD; 1768 1769 if (rm == 0) 1770 return; 1771 1772 /* 1773 * sync to all constituent pages of a large page 1774 */ 1775 ASSERT(x86_hm_held(pp)); 1776 pgcnt = page_get_pagecnt(level); 1777 ASSERT(IS_P2ALIGNED(pp->p_pagenum, pgcnt)); 1778 for (; pgcnt > 0; --pgcnt) { 1779 /* 1780 * hat_page_demote() can't decrease 1781 * pszc below this mapping size 1782 * since this large mapping existed after we 1783 * took mlist lock. 1784 */ 1785 ASSERT(pp->p_szc >= level); 1786 hat_page_setattr(pp, rm); 1787 ++pp; 1788 } 1789 } 1790 1791 /* 1792 * This the set of PTE bits for PFN, permissions and caching 1793 * that are allowed to change on a HAT_LOAD_REMAP 1794 */ 1795 #define PT_REMAP_BITS \ 1796 (PT_PADDR | PT_NX | PT_WRITABLE | PT_WRITETHRU | \ 1797 PT_NOCACHE | PT_PAT_4K | PT_PAT_LARGE | PT_IGNORE | PT_REF | PT_MOD) 1798 1799 #define REMAPASSERT(EX) if (!(EX)) panic("hati_pte_map: " #EX) 1800 /* 1801 * Do the low-level work to get a mapping entered into a HAT's pagetables 1802 * and in the mapping list of the associated page_t. 1803 */ 1804 static int 1805 hati_pte_map( 1806 htable_t *ht, 1807 uint_t entry, 1808 page_t *pp, 1809 x86pte_t pte, 1810 int flags, 1811 void *pte_ptr) 1812 { 1813 hat_t *hat = ht->ht_hat; 1814 x86pte_t old_pte; 1815 level_t l = ht->ht_level; 1816 hment_t *hm; 1817 uint_t is_consist; 1818 uint_t is_locked; 1819 int rv = 0; 1820 1821 /* 1822 * Is this a consistent (ie. need mapping list lock) mapping? 1823 */ 1824 is_consist = (pp != NULL && (flags & HAT_LOAD_NOCONSIST) == 0); 1825 1826 /* 1827 * Track locked mapping count in the htable. Do this first, 1828 * as we track locking even if there already is a mapping present. 1829 */ 1830 is_locked = (flags & HAT_LOAD_LOCK) != 0 && hat != kas.a_hat; 1831 if (is_locked) 1832 HTABLE_LOCK_INC(ht); 1833 1834 /* 1835 * Acquire the page's mapping list lock and get an hment to use. 1836 * Note that hment_prepare() might return NULL. 1837 */ 1838 if (is_consist) { 1839 x86_hm_enter(pp); 1840 hm = hment_prepare(ht, entry, pp); 1841 } 1842 1843 /* 1844 * Set the new pte, retrieving the old one at the same time. 1845 */ 1846 old_pte = x86pte_set(ht, entry, pte, pte_ptr); 1847 1848 /* 1849 * Did we get a large page / page table collision? 1850 */ 1851 if (old_pte == LPAGE_ERROR) { 1852 if (is_locked) 1853 HTABLE_LOCK_DEC(ht); 1854 rv = -1; 1855 goto done; 1856 } 1857 1858 /* 1859 * If the mapping didn't change there is nothing more to do. 1860 */ 1861 if (PTE_EQUIV(pte, old_pte)) 1862 goto done; 1863 1864 /* 1865 * Install a new mapping in the page's mapping list 1866 */ 1867 if (!PTE_ISVALID(old_pte)) { 1868 if (is_consist) { 1869 hment_assign(ht, entry, pp, hm); 1870 x86_hm_exit(pp); 1871 } else { 1872 ASSERT(flags & HAT_LOAD_NOCONSIST); 1873 } 1874 if (ht->ht_flags & HTABLE_COPIED) { 1875 cpu_t *cpu = CPU; 1876 hat_pcp_update(cpu, hat); 1877 } 1878 HTABLE_INC(ht->ht_valid_cnt); 1879 PGCNT_INC(hat, l); 1880 return (rv); 1881 } 1882 1883 /* 1884 * Remap's are more complicated: 1885 * - HAT_LOAD_REMAP must be specified if changing the pfn. 1886 * We also require that NOCONSIST be specified. 1887 * - Otherwise only permission or caching bits may change. 1888 */ 1889 if (!PTE_ISPAGE(old_pte, l)) 1890 panic("non-null/page mapping pte=" FMT_PTE, old_pte); 1891 1892 if (PTE2PFN(old_pte, l) != PTE2PFN(pte, l)) { 1893 REMAPASSERT(flags & HAT_LOAD_REMAP); 1894 REMAPASSERT(flags & HAT_LOAD_NOCONSIST); 1895 REMAPASSERT(PTE_GET(old_pte, PT_SOFTWARE) >= PT_NOCONSIST); 1896 REMAPASSERT(pf_is_memory(PTE2PFN(old_pte, l)) == 1897 pf_is_memory(PTE2PFN(pte, l))); 1898 REMAPASSERT(!is_consist); 1899 } 1900 1901 /* 1902 * We only let remaps change the certain bits in the PTE. 1903 */ 1904 if (PTE_GET(old_pte, ~PT_REMAP_BITS) != PTE_GET(pte, ~PT_REMAP_BITS)) 1905 panic("remap bits changed: old_pte="FMT_PTE", pte="FMT_PTE"\n", 1906 old_pte, pte); 1907 1908 /* 1909 * We don't create any mapping list entries on a remap, so release 1910 * any allocated hment after we drop the mapping list lock. 1911 */ 1912 done: 1913 if (is_consist) { 1914 x86_hm_exit(pp); 1915 if (hm != NULL) 1916 hment_free(hm); 1917 } 1918 return (rv); 1919 } 1920 1921 /* 1922 * Internal routine to load a single page table entry. This only fails if 1923 * we attempt to overwrite a page table link with a large page. 1924 */ 1925 static int 1926 hati_load_common( 1927 hat_t *hat, 1928 uintptr_t va, 1929 page_t *pp, 1930 uint_t attr, 1931 uint_t flags, 1932 level_t level, 1933 pfn_t pfn) 1934 { 1935 htable_t *ht; 1936 uint_t entry; 1937 x86pte_t pte; 1938 int rv = 0; 1939 1940 /* 1941 * The number 16 is arbitrary and here to catch a recursion problem 1942 * early before we blow out the kernel stack. 1943 */ 1944 ++curthread->t_hatdepth; 1945 ASSERT(curthread->t_hatdepth < 16); 1946 1947 ASSERT(hat == kas.a_hat || (hat->hat_flags & HAT_PCP) != 0 || 1948 AS_LOCK_HELD(hat->hat_as)); 1949 1950 if (flags & HAT_LOAD_SHARE) 1951 hat->hat_flags |= HAT_SHARED; 1952 1953 /* 1954 * Find the page table that maps this page if it already exists. 1955 */ 1956 ht = htable_lookup(hat, va, level); 1957 1958 /* 1959 * We must have HAT_LOAD_NOCONSIST if page_t is NULL. 1960 */ 1961 if (pp == NULL) 1962 flags |= HAT_LOAD_NOCONSIST; 1963 1964 if (ht == NULL) { 1965 ht = htable_create(hat, va, level, NULL); 1966 ASSERT(ht != NULL); 1967 } 1968 /* 1969 * htable_va2entry checks this condition as well, but it won't include 1970 * much useful info in the panic. So we do it in advance here to include 1971 * all the context. 1972 */ 1973 if (ht->ht_vaddr > va || va > HTABLE_LAST_PAGE(ht)) { 1974 panic("hati_load_common: bad htable: va=%p, last page=%p, " 1975 "ht->ht_vaddr=%p, ht->ht_level=%d", (void *)va, 1976 (void *)HTABLE_LAST_PAGE(ht), (void *)ht->ht_vaddr, 1977 (int)ht->ht_level); 1978 } 1979 entry = htable_va2entry(va, ht); 1980 1981 /* 1982 * a bunch of paranoid error checking 1983 */ 1984 ASSERT(ht->ht_busy > 0); 1985 ASSERT(ht->ht_level == level); 1986 1987 /* 1988 * construct the new PTE 1989 */ 1990 if (hat == kas.a_hat) 1991 attr &= ~PROT_USER; 1992 pte = hati_mkpte(pfn, attr, level, flags); 1993 if (hat == kas.a_hat && va >= kernelbase) 1994 PTE_SET(pte, mmu.pt_global); 1995 1996 /* 1997 * establish the mapping 1998 */ 1999 rv = hati_pte_map(ht, entry, pp, pte, flags, NULL); 2000 2001 /* 2002 * release the htable and any reserves 2003 */ 2004 htable_release(ht); 2005 --curthread->t_hatdepth; 2006 return (rv); 2007 } 2008 2009 /* 2010 * special case of hat_memload to deal with some kernel addrs for performance 2011 */ 2012 static void 2013 hat_kmap_load( 2014 caddr_t addr, 2015 page_t *pp, 2016 uint_t attr, 2017 uint_t flags) 2018 { 2019 uintptr_t va = (uintptr_t)addr; 2020 x86pte_t pte; 2021 pfn_t pfn = page_pptonum(pp); 2022 pgcnt_t pg_off = mmu_btop(va - mmu.kmap_addr); 2023 htable_t *ht; 2024 uint_t entry; 2025 void *pte_ptr; 2026 2027 /* 2028 * construct the requested PTE 2029 */ 2030 attr &= ~PROT_USER; 2031 attr |= HAT_STORECACHING_OK; 2032 pte = hati_mkpte(pfn, attr, 0, flags); 2033 PTE_SET(pte, mmu.pt_global); 2034 2035 /* 2036 * Figure out the pte_ptr and htable and use common code to finish up 2037 */ 2038 if (mmu.pae_hat) 2039 pte_ptr = mmu.kmap_ptes + pg_off; 2040 else 2041 pte_ptr = (x86pte32_t *)mmu.kmap_ptes + pg_off; 2042 ht = mmu.kmap_htables[(va - mmu.kmap_htables[0]->ht_vaddr) >> 2043 LEVEL_SHIFT(1)]; 2044 entry = htable_va2entry(va, ht); 2045 ++curthread->t_hatdepth; 2046 ASSERT(curthread->t_hatdepth < 16); 2047 (void) hati_pte_map(ht, entry, pp, pte, flags, pte_ptr); 2048 --curthread->t_hatdepth; 2049 } 2050 2051 /* 2052 * hat_memload() - load a translation to the given page struct 2053 * 2054 * Flags for hat_memload/hat_devload/hat_*attr. 2055 * 2056 * HAT_LOAD Default flags to load a translation to the page. 2057 * 2058 * HAT_LOAD_LOCK Lock down mapping resources; hat_map(), hat_memload(), 2059 * and hat_devload(). 2060 * 2061 * HAT_LOAD_NOCONSIST Do not add mapping to page_t mapping list. 2062 * sets PT_NOCONSIST 2063 * 2064 * HAT_LOAD_SHARE A flag to hat_memload() to indicate h/w page tables 2065 * that map some user pages (not kas) is shared by more 2066 * than one process (eg. ISM). 2067 * 2068 * HAT_LOAD_REMAP Reload a valid pte with a different page frame. 2069 * 2070 * HAT_NO_KALLOC Do not kmem_alloc while creating the mapping; at this 2071 * point, it's setting up mapping to allocate internal 2072 * hat layer data structures. This flag forces hat layer 2073 * to tap its reserves in order to prevent infinite 2074 * recursion. 2075 * 2076 * The following is a protection attribute (like PROT_READ, etc.) 2077 * 2078 * HAT_NOSYNC set PT_NOSYNC - this mapping's ref/mod bits 2079 * are never cleared. 2080 * 2081 * Installing new valid PTE's and creation of the mapping list 2082 * entry are controlled under the same lock. It's derived from the 2083 * page_t being mapped. 2084 */ 2085 static uint_t supported_memload_flags = 2086 HAT_LOAD | HAT_LOAD_LOCK | HAT_LOAD_ADV | HAT_LOAD_NOCONSIST | 2087 HAT_LOAD_SHARE | HAT_NO_KALLOC | HAT_LOAD_REMAP | HAT_LOAD_TEXT; 2088 2089 void 2090 hat_memload( 2091 hat_t *hat, 2092 caddr_t addr, 2093 page_t *pp, 2094 uint_t attr, 2095 uint_t flags) 2096 { 2097 uintptr_t va = (uintptr_t)addr; 2098 level_t level = 0; 2099 pfn_t pfn = page_pptonum(pp); 2100 2101 XPV_DISALLOW_MIGRATE(); 2102 ASSERT(IS_PAGEALIGNED(va)); 2103 ASSERT(hat == kas.a_hat || va < _userlimit); 2104 ASSERT(hat == kas.a_hat || AS_LOCK_HELD(hat->hat_as)); 2105 ASSERT((flags & supported_memload_flags) == flags); 2106 2107 ASSERT(!IN_VA_HOLE(va)); 2108 ASSERT(!PP_ISFREE(pp)); 2109 2110 /* 2111 * kernel address special case for performance. 2112 */ 2113 if (mmu.kmap_addr <= va && va < mmu.kmap_eaddr) { 2114 ASSERT(hat == kas.a_hat); 2115 hat_kmap_load(addr, pp, attr, flags); 2116 XPV_ALLOW_MIGRATE(); 2117 return; 2118 } 2119 2120 /* 2121 * This is used for memory with normal caching enabled, so 2122 * always set HAT_STORECACHING_OK. 2123 */ 2124 attr |= HAT_STORECACHING_OK; 2125 if (hati_load_common(hat, va, pp, attr, flags, level, pfn) != 0) 2126 panic("unexpected hati_load_common() failure"); 2127 XPV_ALLOW_MIGRATE(); 2128 } 2129 2130 /* ARGSUSED */ 2131 void 2132 hat_memload_region(struct hat *hat, caddr_t addr, struct page *pp, 2133 uint_t attr, uint_t flags, hat_region_cookie_t rcookie) 2134 { 2135 hat_memload(hat, addr, pp, attr, flags); 2136 } 2137 2138 /* 2139 * Load the given array of page structs using large pages when possible 2140 */ 2141 void 2142 hat_memload_array( 2143 hat_t *hat, 2144 caddr_t addr, 2145 size_t len, 2146 page_t **pages, 2147 uint_t attr, 2148 uint_t flags) 2149 { 2150 uintptr_t va = (uintptr_t)addr; 2151 uintptr_t eaddr = va + len; 2152 level_t level; 2153 size_t pgsize; 2154 pgcnt_t pgindx = 0; 2155 pfn_t pfn; 2156 pgcnt_t i; 2157 2158 XPV_DISALLOW_MIGRATE(); 2159 ASSERT(IS_PAGEALIGNED(va)); 2160 ASSERT(hat == kas.a_hat || va + len <= _userlimit); 2161 ASSERT(hat == kas.a_hat || AS_LOCK_HELD(hat->hat_as)); 2162 ASSERT((flags & supported_memload_flags) == flags); 2163 2164 /* 2165 * memload is used for memory with full caching enabled, so 2166 * set HAT_STORECACHING_OK. 2167 */ 2168 attr |= HAT_STORECACHING_OK; 2169 2170 /* 2171 * handle all pages using largest possible pagesize 2172 */ 2173 while (va < eaddr) { 2174 /* 2175 * decide what level mapping to use (ie. pagesize) 2176 */ 2177 pfn = page_pptonum(pages[pgindx]); 2178 for (level = mmu.max_page_level; ; --level) { 2179 pgsize = LEVEL_SIZE(level); 2180 if (level == 0) 2181 break; 2182 2183 if (!IS_P2ALIGNED(va, pgsize) || 2184 (eaddr - va) < pgsize || 2185 !IS_P2ALIGNED(pfn_to_pa(pfn), pgsize)) 2186 continue; 2187 2188 /* 2189 * To use a large mapping of this size, all the 2190 * pages we are passed must be sequential subpages 2191 * of the large page. 2192 * hat_page_demote() can't change p_szc because 2193 * all pages are locked. 2194 */ 2195 if (pages[pgindx]->p_szc >= level) { 2196 for (i = 0; i < mmu_btop(pgsize); ++i) { 2197 if (pfn + i != 2198 page_pptonum(pages[pgindx + i])) 2199 break; 2200 ASSERT(pages[pgindx + i]->p_szc >= 2201 level); 2202 ASSERT(pages[pgindx] + i == 2203 pages[pgindx + i]); 2204 } 2205 if (i == mmu_btop(pgsize)) { 2206 #ifdef DEBUG 2207 if (level == 2) 2208 map1gcnt++; 2209 #endif 2210 break; 2211 } 2212 } 2213 } 2214 2215 /* 2216 * Load this page mapping. If the load fails, try a smaller 2217 * pagesize. 2218 */ 2219 ASSERT(!IN_VA_HOLE(va)); 2220 while (hati_load_common(hat, va, pages[pgindx], attr, 2221 flags, level, pfn) != 0) { 2222 if (level == 0) 2223 panic("unexpected hati_load_common() failure"); 2224 --level; 2225 pgsize = LEVEL_SIZE(level); 2226 } 2227 2228 /* 2229 * move to next page 2230 */ 2231 va += pgsize; 2232 pgindx += mmu_btop(pgsize); 2233 } 2234 XPV_ALLOW_MIGRATE(); 2235 } 2236 2237 /* ARGSUSED */ 2238 void 2239 hat_memload_array_region(struct hat *hat, caddr_t addr, size_t len, 2240 struct page **pps, uint_t attr, uint_t flags, 2241 hat_region_cookie_t rcookie) 2242 { 2243 hat_memload_array(hat, addr, len, pps, attr, flags); 2244 } 2245 2246 /* 2247 * void hat_devload(hat, addr, len, pf, attr, flags) 2248 * load/lock the given page frame number 2249 * 2250 * Advisory ordering attributes. Apply only to device mappings. 2251 * 2252 * HAT_STRICTORDER: the CPU must issue the references in order, as the 2253 * programmer specified. This is the default. 2254 * HAT_UNORDERED_OK: the CPU may reorder the references (this is all kinds 2255 * of reordering; store or load with store or load). 2256 * HAT_MERGING_OK: merging and batching: the CPU may merge individual stores 2257 * to consecutive locations (for example, turn two consecutive byte 2258 * stores into one halfword store), and it may batch individual loads 2259 * (for example, turn two consecutive byte loads into one halfword load). 2260 * This also implies re-ordering. 2261 * HAT_LOADCACHING_OK: the CPU may cache the data it fetches and reuse it 2262 * until another store occurs. The default is to fetch new data 2263 * on every load. This also implies merging. 2264 * HAT_STORECACHING_OK: the CPU may keep the data in the cache and push it to 2265 * the device (perhaps with other data) at a later time. The default is 2266 * to push the data right away. This also implies load caching. 2267 * 2268 * Equivalent of hat_memload(), but can be used for device memory where 2269 * there are no page_t's and we support additional flags (write merging, etc). 2270 * Note that we can have large page mappings with this interface. 2271 */ 2272 int supported_devload_flags = HAT_LOAD | HAT_LOAD_LOCK | 2273 HAT_LOAD_NOCONSIST | HAT_STRICTORDER | HAT_UNORDERED_OK | 2274 HAT_MERGING_OK | HAT_LOADCACHING_OK | HAT_STORECACHING_OK; 2275 2276 void 2277 hat_devload( 2278 hat_t *hat, 2279 caddr_t addr, 2280 size_t len, 2281 pfn_t pfn, 2282 uint_t attr, 2283 int flags) 2284 { 2285 uintptr_t va = ALIGN2PAGE(addr); 2286 uintptr_t eva = va + len; 2287 level_t level; 2288 size_t pgsize; 2289 page_t *pp; 2290 int f; /* per PTE copy of flags - maybe modified */ 2291 uint_t a; /* per PTE copy of attr */ 2292 2293 XPV_DISALLOW_MIGRATE(); 2294 ASSERT(IS_PAGEALIGNED(va)); 2295 ASSERT(hat == kas.a_hat || eva <= _userlimit); 2296 ASSERT(hat == kas.a_hat || AS_LOCK_HELD(hat->hat_as)); 2297 ASSERT((flags & supported_devload_flags) == flags); 2298 2299 /* 2300 * handle all pages 2301 */ 2302 while (va < eva) { 2303 2304 /* 2305 * decide what level mapping to use (ie. pagesize) 2306 */ 2307 for (level = mmu.max_page_level; ; --level) { 2308 pgsize = LEVEL_SIZE(level); 2309 if (level == 0) 2310 break; 2311 if (IS_P2ALIGNED(va, pgsize) && 2312 (eva - va) >= pgsize && 2313 IS_P2ALIGNED(pfn, mmu_btop(pgsize))) { 2314 #ifdef DEBUG 2315 if (level == 2) 2316 map1gcnt++; 2317 #endif 2318 break; 2319 } 2320 } 2321 2322 /* 2323 * If this is just memory then allow caching (this happens 2324 * for the nucleus pages) - though HAT_PLAT_NOCACHE can be used 2325 * to override that. If we don't have a page_t then make sure 2326 * NOCONSIST is set. 2327 */ 2328 a = attr; 2329 f = flags; 2330 if (!pf_is_memory(pfn)) 2331 f |= HAT_LOAD_NOCONSIST; 2332 else if (!(a & HAT_PLAT_NOCACHE)) 2333 a |= HAT_STORECACHING_OK; 2334 2335 if (f & HAT_LOAD_NOCONSIST) 2336 pp = NULL; 2337 else 2338 pp = page_numtopp_nolock(pfn); 2339 2340 /* 2341 * Check to make sure we are really trying to map a valid 2342 * memory page. The caller wishing to intentionally map 2343 * free memory pages will have passed the HAT_LOAD_NOCONSIST 2344 * flag, then pp will be NULL. 2345 */ 2346 if (pp != NULL) { 2347 if (PP_ISFREE(pp)) { 2348 panic("hat_devload: loading " 2349 "a mapping to free page %p", (void *)pp); 2350 } 2351 2352 if (!PAGE_LOCKED(pp) && !PP_ISNORELOC(pp)) { 2353 panic("hat_devload: loading a mapping " 2354 "to an unlocked page %p", 2355 (void *)pp); 2356 } 2357 } 2358 2359 /* 2360 * load this page mapping 2361 */ 2362 ASSERT(!IN_VA_HOLE(va)); 2363 while (hati_load_common(hat, va, pp, a, f, level, pfn) != 0) { 2364 if (level == 0) 2365 panic("unexpected hati_load_common() failure"); 2366 --level; 2367 pgsize = LEVEL_SIZE(level); 2368 } 2369 2370 /* 2371 * move to next page 2372 */ 2373 va += pgsize; 2374 pfn += mmu_btop(pgsize); 2375 } 2376 XPV_ALLOW_MIGRATE(); 2377 } 2378 2379 /* 2380 * void hat_unlock(hat, addr, len) 2381 * unlock the mappings to a given range of addresses 2382 * 2383 * Locks are tracked by ht_lock_cnt in the htable. 2384 */ 2385 void 2386 hat_unlock(hat_t *hat, caddr_t addr, size_t len) 2387 { 2388 uintptr_t vaddr = (uintptr_t)addr; 2389 uintptr_t eaddr = vaddr + len; 2390 htable_t *ht = NULL; 2391 2392 /* 2393 * kernel entries are always locked, we don't track lock counts 2394 */ 2395 ASSERT(hat == kas.a_hat || eaddr <= _userlimit); 2396 ASSERT(IS_PAGEALIGNED(vaddr)); 2397 ASSERT(IS_PAGEALIGNED(eaddr)); 2398 if (hat == kas.a_hat) 2399 return; 2400 if (eaddr > _userlimit) 2401 panic("hat_unlock() address out of range - above _userlimit"); 2402 2403 XPV_DISALLOW_MIGRATE(); 2404 ASSERT(AS_LOCK_HELD(hat->hat_as)); 2405 while (vaddr < eaddr) { 2406 (void) htable_walk(hat, &ht, &vaddr, eaddr); 2407 if (ht == NULL) 2408 break; 2409 2410 ASSERT(!IN_VA_HOLE(vaddr)); 2411 2412 if (ht->ht_lock_cnt < 1) 2413 panic("hat_unlock(): lock_cnt < 1, " 2414 "htable=%p, vaddr=%p\n", (void *)ht, (void *)vaddr); 2415 HTABLE_LOCK_DEC(ht); 2416 2417 vaddr += LEVEL_SIZE(ht->ht_level); 2418 } 2419 if (ht) 2420 htable_release(ht); 2421 XPV_ALLOW_MIGRATE(); 2422 } 2423 2424 /* ARGSUSED */ 2425 void 2426 hat_unlock_region(struct hat *hat, caddr_t addr, size_t len, 2427 hat_region_cookie_t rcookie) 2428 { 2429 panic("No shared region support on x86"); 2430 } 2431 2432 #if !defined(__xpv) 2433 /* 2434 * Cross call service routine to demap a range of virtual 2435 * pages on the current CPU or flush all mappings in TLB. 2436 */ 2437 static int 2438 hati_demap_func(xc_arg_t a1, xc_arg_t a2, xc_arg_t a3) 2439 { 2440 _NOTE(ARGUNUSED(a3)); 2441 hat_t *hat = (hat_t *)a1; 2442 tlb_range_t *range = (tlb_range_t *)a2; 2443 2444 /* 2445 * If the target hat isn't the kernel and this CPU isn't operating 2446 * in the target hat, we can ignore the cross call. 2447 */ 2448 if (hat != kas.a_hat && hat != CPU->cpu_current_hat) 2449 return (0); 2450 2451 if (range->tr_va != DEMAP_ALL_ADDR) { 2452 mmu_flush_tlb(FLUSH_TLB_RANGE, range); 2453 return (0); 2454 } 2455 2456 /* 2457 * We are flushing all of userspace. 2458 * 2459 * When using PCP, we first need to update this CPU's idea of the PCP 2460 * PTEs. 2461 */ 2462 if (hat->hat_flags & HAT_COPIED) { 2463 hat_pcp_update(CPU, hat); 2464 } 2465 2466 mmu_flush_tlb(FLUSH_TLB_NONGLOBAL, NULL); 2467 return (0); 2468 } 2469 2470 #define TLBIDLE_CPU_HALTED (0x1UL) 2471 #define TLBIDLE_INVAL_ALL (0x2UL) 2472 #define CAS_TLB_INFO(cpu, old, new) \ 2473 atomic_cas_ulong((ulong_t *)&(cpu)->cpu_m.mcpu_tlb_info, (old), (new)) 2474 2475 /* 2476 * Record that a CPU is going idle 2477 */ 2478 void 2479 tlb_going_idle(void) 2480 { 2481 atomic_or_ulong((ulong_t *)&CPU->cpu_m.mcpu_tlb_info, 2482 TLBIDLE_CPU_HALTED); 2483 } 2484 2485 /* 2486 * Service a delayed TLB flush if coming out of being idle. 2487 * It will be called from cpu idle notification with interrupt disabled. 2488 */ 2489 void 2490 tlb_service(void) 2491 { 2492 ulong_t tlb_info; 2493 ulong_t found; 2494 2495 /* 2496 * We only have to do something if coming out of being idle. 2497 */ 2498 tlb_info = CPU->cpu_m.mcpu_tlb_info; 2499 if (tlb_info & TLBIDLE_CPU_HALTED) { 2500 ASSERT(CPU->cpu_current_hat == kas.a_hat); 2501 2502 /* 2503 * Atomic clear and fetch of old state. 2504 */ 2505 while ((found = CAS_TLB_INFO(CPU, tlb_info, 0)) != tlb_info) { 2506 ASSERT(found & TLBIDLE_CPU_HALTED); 2507 tlb_info = found; 2508 SMT_PAUSE(); 2509 } 2510 if (tlb_info & TLBIDLE_INVAL_ALL) 2511 mmu_flush_tlb(FLUSH_TLB_ALL, NULL); 2512 } 2513 } 2514 #endif /* !__xpv */ 2515 2516 /* 2517 * Internal routine to do cross calls to invalidate a range of pages on 2518 * all CPUs using a given hat. 2519 */ 2520 void 2521 hat_tlb_inval_range(hat_t *hat, tlb_range_t *in_range) 2522 { 2523 extern int flushes_require_xcalls; /* from mp_startup.c */ 2524 cpuset_t justme; 2525 cpuset_t cpus_to_shootdown; 2526 tlb_range_t range = *in_range; 2527 #ifndef __xpv 2528 cpuset_t check_cpus; 2529 cpu_t *cpup; 2530 int c; 2531 #endif 2532 2533 /* 2534 * If the hat is being destroyed, there are no more users, so 2535 * demap need not do anything. 2536 */ 2537 if (hat->hat_flags & HAT_FREEING) 2538 return; 2539 2540 /* 2541 * If demapping from a shared pagetable, we best demap the 2542 * entire set of user TLBs, since we don't know what addresses 2543 * these were shared at. 2544 */ 2545 if (hat->hat_flags & HAT_SHARED) { 2546 hat = kas.a_hat; 2547 range.tr_va = DEMAP_ALL_ADDR; 2548 } 2549 2550 /* 2551 * if not running with multiple CPUs, don't use cross calls 2552 */ 2553 if (panicstr || !flushes_require_xcalls) { 2554 #ifdef __xpv 2555 if (range.tr_va == DEMAP_ALL_ADDR) { 2556 xen_flush_tlb(); 2557 } else { 2558 for (size_t i = 0; i < TLB_RANGE_LEN(&range); 2559 i += MMU_PAGESIZE) { 2560 xen_flush_va((caddr_t)(range.tr_va + i)); 2561 } 2562 } 2563 #else 2564 (void) hati_demap_func((xc_arg_t)hat, (xc_arg_t)&range, 0); 2565 #endif 2566 return; 2567 } 2568 2569 2570 /* 2571 * Determine CPUs to shootdown. Kernel changes always do all CPUs. 2572 * Otherwise it's just CPUs currently executing in this hat. 2573 */ 2574 kpreempt_disable(); 2575 CPUSET_ONLY(justme, CPU->cpu_id); 2576 if (hat == kas.a_hat) 2577 cpus_to_shootdown = khat_cpuset; 2578 else 2579 cpus_to_shootdown = hat->hat_cpus; 2580 2581 #ifndef __xpv 2582 /* 2583 * If any CPUs in the set are idle, just request a delayed flush 2584 * and avoid waking them up. 2585 */ 2586 check_cpus = cpus_to_shootdown; 2587 for (c = 0; c < NCPU && !CPUSET_ISNULL(check_cpus); ++c) { 2588 ulong_t tlb_info; 2589 2590 if (!CPU_IN_SET(check_cpus, c)) 2591 continue; 2592 CPUSET_DEL(check_cpus, c); 2593 cpup = cpu[c]; 2594 if (cpup == NULL) 2595 continue; 2596 2597 tlb_info = cpup->cpu_m.mcpu_tlb_info; 2598 while (tlb_info == TLBIDLE_CPU_HALTED) { 2599 (void) CAS_TLB_INFO(cpup, TLBIDLE_CPU_HALTED, 2600 TLBIDLE_CPU_HALTED | TLBIDLE_INVAL_ALL); 2601 SMT_PAUSE(); 2602 tlb_info = cpup->cpu_m.mcpu_tlb_info; 2603 } 2604 if (tlb_info == (TLBIDLE_CPU_HALTED | TLBIDLE_INVAL_ALL)) { 2605 HATSTAT_INC(hs_tlb_inval_delayed); 2606 CPUSET_DEL(cpus_to_shootdown, c); 2607 } 2608 } 2609 #endif 2610 2611 if (CPUSET_ISNULL(cpus_to_shootdown) || 2612 CPUSET_ISEQUAL(cpus_to_shootdown, justme)) { 2613 2614 #ifdef __xpv 2615 if (range.tr_va == DEMAP_ALL_ADDR) { 2616 xen_flush_tlb(); 2617 } else { 2618 for (size_t i = 0; i < TLB_RANGE_LEN(&range); 2619 i += MMU_PAGESIZE) { 2620 xen_flush_va((caddr_t)(range.tr_va + i)); 2621 } 2622 } 2623 #else 2624 (void) hati_demap_func((xc_arg_t)hat, (xc_arg_t)&range, 0); 2625 #endif 2626 2627 } else { 2628 2629 CPUSET_ADD(cpus_to_shootdown, CPU->cpu_id); 2630 #ifdef __xpv 2631 if (range.tr_va == DEMAP_ALL_ADDR) { 2632 xen_gflush_tlb(cpus_to_shootdown); 2633 } else { 2634 for (size_t i = 0; i < TLB_RANGE_LEN(&range); 2635 i += MMU_PAGESIZE) { 2636 xen_gflush_va((caddr_t)(range.tr_va + i), 2637 cpus_to_shootdown); 2638 } 2639 } 2640 #else 2641 xc_call((xc_arg_t)hat, (xc_arg_t)&range, 0, 2642 CPUSET2BV(cpus_to_shootdown), hati_demap_func); 2643 #endif 2644 2645 } 2646 kpreempt_enable(); 2647 } 2648 2649 void 2650 hat_tlb_inval(hat_t *hat, uintptr_t va) 2651 { 2652 /* 2653 * Create range for a single page. 2654 */ 2655 tlb_range_t range; 2656 range.tr_va = va; 2657 range.tr_cnt = 1; /* one page */ 2658 range.tr_level = MIN_PAGE_LEVEL; /* pages are MMU_PAGESIZE */ 2659 2660 hat_tlb_inval_range(hat, &range); 2661 } 2662 2663 /* 2664 * Interior routine for HAT_UNLOADs from hat_unload_callback(), 2665 * hat_kmap_unload() OR from hat_steal() code. This routine doesn't 2666 * handle releasing of the htables. 2667 */ 2668 void 2669 hat_pte_unmap( 2670 htable_t *ht, 2671 uint_t entry, 2672 uint_t flags, 2673 x86pte_t old_pte, 2674 void *pte_ptr, 2675 boolean_t tlb) 2676 { 2677 hat_t *hat = ht->ht_hat; 2678 hment_t *hm = NULL; 2679 page_t *pp = NULL; 2680 level_t l = ht->ht_level; 2681 pfn_t pfn; 2682 2683 /* 2684 * We always track the locking counts, even if nothing is unmapped 2685 */ 2686 if ((flags & HAT_UNLOAD_UNLOCK) != 0 && hat != kas.a_hat) { 2687 ASSERT(ht->ht_lock_cnt > 0); 2688 HTABLE_LOCK_DEC(ht); 2689 } 2690 2691 /* 2692 * Figure out which page's mapping list lock to acquire using the PFN 2693 * passed in "old" PTE. We then attempt to invalidate the PTE. 2694 * If another thread, probably a hat_pageunload, has asynchronously 2695 * unmapped/remapped this address we'll loop here. 2696 */ 2697 ASSERT(ht->ht_busy > 0); 2698 while (PTE_ISVALID(old_pte)) { 2699 pfn = PTE2PFN(old_pte, l); 2700 if (PTE_GET(old_pte, PT_SOFTWARE) >= PT_NOCONSIST) { 2701 pp = NULL; 2702 } else { 2703 #ifdef __xpv 2704 if (pfn == PFN_INVALID) 2705 panic("Invalid PFN, but not PT_NOCONSIST"); 2706 #endif 2707 pp = page_numtopp_nolock(pfn); 2708 if (pp == NULL) { 2709 panic("no page_t, not NOCONSIST: old_pte=" 2710 FMT_PTE " ht=%lx entry=0x%x pte_ptr=%lx", 2711 old_pte, (uintptr_t)ht, entry, 2712 (uintptr_t)pte_ptr); 2713 } 2714 x86_hm_enter(pp); 2715 } 2716 2717 old_pte = x86pte_inval(ht, entry, old_pte, pte_ptr, tlb); 2718 2719 /* 2720 * If the page hadn't changed we've unmapped it and can proceed 2721 */ 2722 if (PTE_ISVALID(old_pte) && PTE2PFN(old_pte, l) == pfn) 2723 break; 2724 2725 /* 2726 * Otherwise, we'll have to retry with the current old_pte. 2727 * Drop the hment lock, since the pfn may have changed. 2728 */ 2729 if (pp != NULL) { 2730 x86_hm_exit(pp); 2731 pp = NULL; 2732 } else { 2733 ASSERT(PTE_GET(old_pte, PT_SOFTWARE) >= PT_NOCONSIST); 2734 } 2735 } 2736 2737 /* 2738 * If the old mapping wasn't valid, there's nothing more to do 2739 */ 2740 if (!PTE_ISVALID(old_pte)) { 2741 if (pp != NULL) 2742 x86_hm_exit(pp); 2743 return; 2744 } 2745 2746 /* 2747 * Take care of syncing any MOD/REF bits and removing the hment. 2748 */ 2749 if (pp != NULL) { 2750 if (!(flags & HAT_UNLOAD_NOSYNC)) 2751 hati_sync_pte_to_page(pp, old_pte, l); 2752 hm = hment_remove(pp, ht, entry); 2753 x86_hm_exit(pp); 2754 if (hm != NULL) 2755 hment_free(hm); 2756 } 2757 2758 /* 2759 * Handle book keeping in the htable and hat 2760 */ 2761 ASSERT(ht->ht_valid_cnt > 0); 2762 HTABLE_DEC(ht->ht_valid_cnt); 2763 PGCNT_DEC(hat, l); 2764 } 2765 2766 /* 2767 * very cheap unload implementation to special case some kernel addresses 2768 */ 2769 static void 2770 hat_kmap_unload(caddr_t addr, size_t len, uint_t flags) 2771 { 2772 uintptr_t va = (uintptr_t)addr; 2773 uintptr_t eva = va + len; 2774 pgcnt_t pg_index; 2775 htable_t *ht; 2776 uint_t entry; 2777 x86pte_t *pte_ptr; 2778 x86pte_t old_pte; 2779 2780 for (; va < eva; va += MMU_PAGESIZE) { 2781 /* 2782 * Get the PTE 2783 */ 2784 pg_index = mmu_btop(va - mmu.kmap_addr); 2785 pte_ptr = PT_INDEX_PTR(mmu.kmap_ptes, pg_index); 2786 old_pte = GET_PTE(pte_ptr); 2787 2788 /* 2789 * get the htable / entry 2790 */ 2791 ht = mmu.kmap_htables[(va - mmu.kmap_htables[0]->ht_vaddr) 2792 >> LEVEL_SHIFT(1)]; 2793 entry = htable_va2entry(va, ht); 2794 2795 /* 2796 * use mostly common code to unmap it. 2797 */ 2798 hat_pte_unmap(ht, entry, flags, old_pte, pte_ptr, B_TRUE); 2799 } 2800 } 2801 2802 2803 /* 2804 * unload a range of virtual address space (no callback) 2805 */ 2806 void 2807 hat_unload(hat_t *hat, caddr_t addr, size_t len, uint_t flags) 2808 { 2809 uintptr_t va = (uintptr_t)addr; 2810 2811 XPV_DISALLOW_MIGRATE(); 2812 ASSERT(hat == kas.a_hat || va + len <= _userlimit); 2813 2814 /* 2815 * special case for performance. 2816 */ 2817 if (mmu.kmap_addr <= va && va < mmu.kmap_eaddr) { 2818 ASSERT(hat == kas.a_hat); 2819 hat_kmap_unload(addr, len, flags); 2820 } else { 2821 hat_unload_callback(hat, addr, len, flags, NULL); 2822 } 2823 XPV_ALLOW_MIGRATE(); 2824 } 2825 2826 /* 2827 * Invalidate the TLB, and perform the callback to the upper level VM system, 2828 * for the specified ranges of contiguous pages. 2829 */ 2830 static void 2831 handle_ranges(hat_t *hat, hat_callback_t *cb, uint_t cnt, tlb_range_t *range) 2832 { 2833 while (cnt > 0) { 2834 --cnt; 2835 hat_tlb_inval_range(hat, &range[cnt]); 2836 2837 if (cb != NULL) { 2838 cb->hcb_start_addr = (caddr_t)range[cnt].tr_va; 2839 cb->hcb_end_addr = cb->hcb_start_addr; 2840 cb->hcb_end_addr += range[cnt].tr_cnt << 2841 LEVEL_SHIFT(range[cnt].tr_level); 2842 cb->hcb_function(cb); 2843 } 2844 } 2845 } 2846 2847 /* 2848 * Unload a given range of addresses (has optional callback) 2849 * 2850 * Flags: 2851 * define HAT_UNLOAD 0x00 2852 * define HAT_UNLOAD_NOSYNC 0x02 2853 * define HAT_UNLOAD_UNLOCK 0x04 2854 * define HAT_UNLOAD_OTHER 0x08 - not used 2855 * define HAT_UNLOAD_UNMAP 0x10 - same as HAT_UNLOAD 2856 */ 2857 #define MAX_UNLOAD_CNT (8) 2858 void 2859 hat_unload_callback( 2860 hat_t *hat, 2861 caddr_t addr, 2862 size_t len, 2863 uint_t flags, 2864 hat_callback_t *cb) 2865 { 2866 uintptr_t vaddr = (uintptr_t)addr; 2867 uintptr_t eaddr = vaddr + len; 2868 htable_t *ht = NULL; 2869 uint_t entry; 2870 uintptr_t contig_va = (uintptr_t)-1L; 2871 tlb_range_t r[MAX_UNLOAD_CNT]; 2872 uint_t r_cnt = 0; 2873 x86pte_t old_pte; 2874 2875 XPV_DISALLOW_MIGRATE(); 2876 ASSERT(hat == kas.a_hat || eaddr <= _userlimit); 2877 ASSERT(IS_PAGEALIGNED(vaddr)); 2878 ASSERT(IS_PAGEALIGNED(eaddr)); 2879 2880 /* 2881 * Special case a single page being unloaded for speed. This happens 2882 * quite frequently, COW faults after a fork() for example. 2883 */ 2884 if (cb == NULL && len == MMU_PAGESIZE) { 2885 ht = htable_getpte(hat, vaddr, &entry, &old_pte, 0); 2886 if (ht != NULL) { 2887 if (PTE_ISVALID(old_pte)) { 2888 hat_pte_unmap(ht, entry, flags, old_pte, 2889 NULL, B_TRUE); 2890 } 2891 htable_release(ht); 2892 } 2893 XPV_ALLOW_MIGRATE(); 2894 return; 2895 } 2896 2897 while (vaddr < eaddr) { 2898 old_pte = htable_walk(hat, &ht, &vaddr, eaddr); 2899 if (ht == NULL) 2900 break; 2901 2902 ASSERT(!IN_VA_HOLE(vaddr)); 2903 2904 if (vaddr < (uintptr_t)addr) 2905 panic("hat_unload_callback(): unmap inside large page"); 2906 2907 /* 2908 * We'll do the call backs for contiguous ranges 2909 */ 2910 if (vaddr != contig_va || 2911 (r_cnt > 0 && r[r_cnt - 1].tr_level != ht->ht_level)) { 2912 if (r_cnt == MAX_UNLOAD_CNT) { 2913 handle_ranges(hat, cb, r_cnt, r); 2914 r_cnt = 0; 2915 } 2916 r[r_cnt].tr_va = vaddr; 2917 r[r_cnt].tr_cnt = 0; 2918 r[r_cnt].tr_level = ht->ht_level; 2919 ++r_cnt; 2920 } 2921 2922 /* 2923 * Unload one mapping (for a single page) from the page tables. 2924 * Note that we do not remove the mapping from the TLB yet, 2925 * as indicated by the tlb=FALSE argument to hat_pte_unmap(). 2926 * handle_ranges() will clear the TLB entries with one call to 2927 * hat_tlb_inval_range() per contiguous range. This is 2928 * safe because the page can not be reused until the 2929 * callback is made (or we return). 2930 */ 2931 entry = htable_va2entry(vaddr, ht); 2932 hat_pte_unmap(ht, entry, flags, old_pte, NULL, B_FALSE); 2933 ASSERT(ht->ht_level <= mmu.max_page_level); 2934 vaddr += LEVEL_SIZE(ht->ht_level); 2935 contig_va = vaddr; 2936 ++r[r_cnt - 1].tr_cnt; 2937 } 2938 if (ht) 2939 htable_release(ht); 2940 2941 /* 2942 * handle last range for callbacks 2943 */ 2944 if (r_cnt > 0) 2945 handle_ranges(hat, cb, r_cnt, r); 2946 XPV_ALLOW_MIGRATE(); 2947 } 2948 2949 /* 2950 * Invalidate a virtual address translation on a slave CPU during 2951 * panic() dumps. 2952 */ 2953 void 2954 hat_flush_range(hat_t *hat, caddr_t va, size_t size) 2955 { 2956 ssize_t sz; 2957 caddr_t endva = va + size; 2958 2959 while (va < endva) { 2960 sz = hat_getpagesize(hat, va); 2961 if (sz < 0) { 2962 #ifdef __xpv 2963 xen_flush_tlb(); 2964 #else 2965 mmu_flush_tlb(FLUSH_TLB_ALL, NULL); 2966 #endif 2967 break; 2968 } 2969 #ifdef __xpv 2970 xen_flush_va(va); 2971 #else 2972 mmu_flush_tlb_kpage((uintptr_t)va); 2973 #endif 2974 va += sz; 2975 } 2976 } 2977 2978 /* 2979 * synchronize mapping with software data structures 2980 * 2981 * This interface is currently only used by the working set monitor 2982 * driver. 2983 */ 2984 /*ARGSUSED*/ 2985 void 2986 hat_sync(hat_t *hat, caddr_t addr, size_t len, uint_t flags) 2987 { 2988 uintptr_t vaddr = (uintptr_t)addr; 2989 uintptr_t eaddr = vaddr + len; 2990 htable_t *ht = NULL; 2991 uint_t entry; 2992 x86pte_t pte; 2993 x86pte_t save_pte; 2994 x86pte_t new; 2995 page_t *pp; 2996 2997 ASSERT(!IN_VA_HOLE(vaddr)); 2998 ASSERT(IS_PAGEALIGNED(vaddr)); 2999 ASSERT(IS_PAGEALIGNED(eaddr)); 3000 ASSERT(hat == kas.a_hat || eaddr <= _userlimit); 3001 3002 XPV_DISALLOW_MIGRATE(); 3003 for (; vaddr < eaddr; vaddr += LEVEL_SIZE(ht->ht_level)) { 3004 try_again: 3005 pte = htable_walk(hat, &ht, &vaddr, eaddr); 3006 if (ht == NULL) 3007 break; 3008 entry = htable_va2entry(vaddr, ht); 3009 3010 if (PTE_GET(pte, PT_SOFTWARE) >= PT_NOSYNC || 3011 PTE_GET(pte, PT_REF | PT_MOD) == 0) 3012 continue; 3013 3014 /* 3015 * We need to acquire the mapping list lock to protect 3016 * against hat_pageunload(), hat_unload(), etc. 3017 */ 3018 pp = page_numtopp_nolock(PTE2PFN(pte, ht->ht_level)); 3019 if (pp == NULL) 3020 break; 3021 x86_hm_enter(pp); 3022 save_pte = pte; 3023 pte = x86pte_get(ht, entry); 3024 if (pte != save_pte) { 3025 x86_hm_exit(pp); 3026 goto try_again; 3027 } 3028 if (PTE_GET(pte, PT_SOFTWARE) >= PT_NOSYNC || 3029 PTE_GET(pte, PT_REF | PT_MOD) == 0) { 3030 x86_hm_exit(pp); 3031 continue; 3032 } 3033 3034 /* 3035 * Need to clear ref or mod bits. We may compete with 3036 * hardware updating the R/M bits and have to try again. 3037 */ 3038 if (flags == HAT_SYNC_ZERORM) { 3039 new = pte; 3040 PTE_CLR(new, PT_REF | PT_MOD); 3041 pte = hati_update_pte(ht, entry, pte, new); 3042 if (pte != 0) { 3043 x86_hm_exit(pp); 3044 goto try_again; 3045 } 3046 } else { 3047 /* 3048 * sync the PTE to the page_t 3049 */ 3050 hati_sync_pte_to_page(pp, save_pte, ht->ht_level); 3051 } 3052 x86_hm_exit(pp); 3053 } 3054 if (ht) 3055 htable_release(ht); 3056 XPV_ALLOW_MIGRATE(); 3057 } 3058 3059 /* 3060 * void hat_map(hat, addr, len, flags) 3061 */ 3062 /*ARGSUSED*/ 3063 void 3064 hat_map(hat_t *hat, caddr_t addr, size_t len, uint_t flags) 3065 { 3066 /* does nothing */ 3067 } 3068 3069 /* 3070 * uint_t hat_getattr(hat, addr, *attr) 3071 * returns attr for <hat,addr> in *attr. returns 0 if there was a 3072 * mapping and *attr is valid, nonzero if there was no mapping and 3073 * *attr is not valid. 3074 */ 3075 uint_t 3076 hat_getattr(hat_t *hat, caddr_t addr, uint_t *attr) 3077 { 3078 uintptr_t vaddr = ALIGN2PAGE(addr); 3079 htable_t *ht = NULL; 3080 x86pte_t pte; 3081 3082 ASSERT(hat == kas.a_hat || vaddr <= _userlimit); 3083 3084 if (IN_VA_HOLE(vaddr)) 3085 return ((uint_t)-1); 3086 3087 ht = htable_getpte(hat, vaddr, NULL, &pte, mmu.max_page_level); 3088 if (ht == NULL) 3089 return ((uint_t)-1); 3090 3091 if (!PTE_ISVALID(pte) || !PTE_ISPAGE(pte, ht->ht_level)) { 3092 htable_release(ht); 3093 return ((uint_t)-1); 3094 } 3095 3096 *attr = PROT_READ; 3097 if (PTE_GET(pte, PT_WRITABLE)) 3098 *attr |= PROT_WRITE; 3099 if (PTE_GET(pte, PT_USER)) 3100 *attr |= PROT_USER; 3101 if (!PTE_GET(pte, mmu.pt_nx)) 3102 *attr |= PROT_EXEC; 3103 if (PTE_GET(pte, PT_SOFTWARE) >= PT_NOSYNC) 3104 *attr |= HAT_NOSYNC; 3105 htable_release(ht); 3106 return (0); 3107 } 3108 3109 /* 3110 * hat_updateattr() applies the given attribute change to an existing mapping 3111 */ 3112 #define HAT_LOAD_ATTR 1 3113 #define HAT_SET_ATTR 2 3114 #define HAT_CLR_ATTR 3 3115 3116 static void 3117 hat_updateattr(hat_t *hat, caddr_t addr, size_t len, uint_t attr, int what) 3118 { 3119 uintptr_t vaddr = (uintptr_t)addr; 3120 uintptr_t eaddr = (uintptr_t)addr + len; 3121 htable_t *ht = NULL; 3122 uint_t entry; 3123 x86pte_t oldpte, newpte; 3124 page_t *pp; 3125 3126 XPV_DISALLOW_MIGRATE(); 3127 ASSERT(IS_PAGEALIGNED(vaddr)); 3128 ASSERT(IS_PAGEALIGNED(eaddr)); 3129 ASSERT(hat == kas.a_hat || AS_LOCK_HELD(hat->hat_as)); 3130 for (; vaddr < eaddr; vaddr += LEVEL_SIZE(ht->ht_level)) { 3131 try_again: 3132 oldpte = htable_walk(hat, &ht, &vaddr, eaddr); 3133 if (ht == NULL) 3134 break; 3135 if (PTE_GET(oldpte, PT_SOFTWARE) >= PT_NOCONSIST) 3136 continue; 3137 3138 pp = page_numtopp_nolock(PTE2PFN(oldpte, ht->ht_level)); 3139 if (pp == NULL) 3140 continue; 3141 x86_hm_enter(pp); 3142 3143 newpte = oldpte; 3144 /* 3145 * We found a page table entry in the desired range, 3146 * figure out the new attributes. 3147 */ 3148 if (what == HAT_SET_ATTR || what == HAT_LOAD_ATTR) { 3149 if ((attr & PROT_WRITE) && 3150 !PTE_GET(oldpte, PT_WRITABLE)) 3151 newpte |= PT_WRITABLE; 3152 3153 if ((attr & HAT_NOSYNC) && 3154 PTE_GET(oldpte, PT_SOFTWARE) < PT_NOSYNC) 3155 newpte |= PT_NOSYNC; 3156 3157 if ((attr & PROT_EXEC) && PTE_GET(oldpte, mmu.pt_nx)) 3158 newpte &= ~mmu.pt_nx; 3159 } 3160 3161 if (what == HAT_LOAD_ATTR) { 3162 if (!(attr & PROT_WRITE) && 3163 PTE_GET(oldpte, PT_WRITABLE)) 3164 newpte &= ~PT_WRITABLE; 3165 3166 if (!(attr & HAT_NOSYNC) && 3167 PTE_GET(oldpte, PT_SOFTWARE) >= PT_NOSYNC) 3168 newpte &= ~PT_SOFTWARE; 3169 3170 if (!(attr & PROT_EXEC) && !PTE_GET(oldpte, mmu.pt_nx)) 3171 newpte |= mmu.pt_nx; 3172 } 3173 3174 if (what == HAT_CLR_ATTR) { 3175 if ((attr & PROT_WRITE) && PTE_GET(oldpte, PT_WRITABLE)) 3176 newpte &= ~PT_WRITABLE; 3177 3178 if ((attr & HAT_NOSYNC) && 3179 PTE_GET(oldpte, PT_SOFTWARE) >= PT_NOSYNC) 3180 newpte &= ~PT_SOFTWARE; 3181 3182 if ((attr & PROT_EXEC) && !PTE_GET(oldpte, mmu.pt_nx)) 3183 newpte |= mmu.pt_nx; 3184 } 3185 3186 /* 3187 * Ensure NOSYNC/NOCONSIST mappings have REF and MOD set. 3188 * x86pte_set() depends on this. 3189 */ 3190 if (PTE_GET(newpte, PT_SOFTWARE) >= PT_NOSYNC) 3191 newpte |= PT_REF | PT_MOD; 3192 3193 /* 3194 * what about PROT_READ or others? this code only handles: 3195 * EXEC, WRITE, NOSYNC 3196 */ 3197 3198 /* 3199 * If new PTE really changed, update the table. 3200 */ 3201 if (newpte != oldpte) { 3202 entry = htable_va2entry(vaddr, ht); 3203 oldpte = hati_update_pte(ht, entry, oldpte, newpte); 3204 if (oldpte != 0) { 3205 x86_hm_exit(pp); 3206 goto try_again; 3207 } 3208 } 3209 x86_hm_exit(pp); 3210 } 3211 if (ht) 3212 htable_release(ht); 3213 XPV_ALLOW_MIGRATE(); 3214 } 3215 3216 /* 3217 * Various wrappers for hat_updateattr() 3218 */ 3219 void 3220 hat_setattr(hat_t *hat, caddr_t addr, size_t len, uint_t attr) 3221 { 3222 ASSERT(hat == kas.a_hat || (uintptr_t)addr + len <= _userlimit); 3223 hat_updateattr(hat, addr, len, attr, HAT_SET_ATTR); 3224 } 3225 3226 void 3227 hat_clrattr(hat_t *hat, caddr_t addr, size_t len, uint_t attr) 3228 { 3229 ASSERT(hat == kas.a_hat || (uintptr_t)addr + len <= _userlimit); 3230 hat_updateattr(hat, addr, len, attr, HAT_CLR_ATTR); 3231 } 3232 3233 void 3234 hat_chgattr(hat_t *hat, caddr_t addr, size_t len, uint_t attr) 3235 { 3236 ASSERT(hat == kas.a_hat || (uintptr_t)addr + len <= _userlimit); 3237 hat_updateattr(hat, addr, len, attr, HAT_LOAD_ATTR); 3238 } 3239 3240 void 3241 hat_chgprot(hat_t *hat, caddr_t addr, size_t len, uint_t vprot) 3242 { 3243 ASSERT(hat == kas.a_hat || (uintptr_t)addr + len <= _userlimit); 3244 hat_updateattr(hat, addr, len, vprot & HAT_PROT_MASK, HAT_LOAD_ATTR); 3245 } 3246 3247 /* 3248 * size_t hat_getpagesize(hat, addr) 3249 * returns pagesize in bytes for <hat, addr>. returns -1 of there is 3250 * no mapping. This is an advisory call. 3251 */ 3252 ssize_t 3253 hat_getpagesize(hat_t *hat, caddr_t addr) 3254 { 3255 uintptr_t vaddr = ALIGN2PAGE(addr); 3256 htable_t *ht; 3257 size_t pagesize; 3258 3259 ASSERT(hat == kas.a_hat || vaddr <= _userlimit); 3260 if (IN_VA_HOLE(vaddr)) 3261 return (-1); 3262 ht = htable_getpage(hat, vaddr, NULL); 3263 if (ht == NULL) 3264 return (-1); 3265 pagesize = LEVEL_SIZE(ht->ht_level); 3266 htable_release(ht); 3267 return (pagesize); 3268 } 3269 3270 3271 3272 /* 3273 * pfn_t hat_getpfnum(hat, addr) 3274 * returns pfn for <hat, addr> or PFN_INVALID if mapping is invalid. 3275 */ 3276 pfn_t 3277 hat_getpfnum(hat_t *hat, caddr_t addr) 3278 { 3279 uintptr_t vaddr = ALIGN2PAGE(addr); 3280 htable_t *ht; 3281 uint_t entry; 3282 pfn_t pfn = PFN_INVALID; 3283 3284 ASSERT(hat == kas.a_hat || vaddr <= _userlimit); 3285 if (khat_running == 0) 3286 return (PFN_INVALID); 3287 3288 if (IN_VA_HOLE(vaddr)) 3289 return (PFN_INVALID); 3290 3291 XPV_DISALLOW_MIGRATE(); 3292 /* 3293 * A very common use of hat_getpfnum() is from the DDI for kernel pages. 3294 * Use the kmap_ptes (which also covers the 32 bit heap) to speed 3295 * this up. 3296 */ 3297 if (mmu.kmap_addr <= vaddr && vaddr < mmu.kmap_eaddr) { 3298 x86pte_t pte; 3299 pgcnt_t pg_index; 3300 3301 pg_index = mmu_btop(vaddr - mmu.kmap_addr); 3302 pte = GET_PTE(PT_INDEX_PTR(mmu.kmap_ptes, pg_index)); 3303 if (PTE_ISVALID(pte)) 3304 /*LINTED [use of constant 0 causes a lint warning] */ 3305 pfn = PTE2PFN(pte, 0); 3306 XPV_ALLOW_MIGRATE(); 3307 return (pfn); 3308 } 3309 3310 ht = htable_getpage(hat, vaddr, &entry); 3311 if (ht == NULL) { 3312 XPV_ALLOW_MIGRATE(); 3313 return (PFN_INVALID); 3314 } 3315 ASSERT(vaddr >= ht->ht_vaddr); 3316 ASSERT(vaddr <= HTABLE_LAST_PAGE(ht)); 3317 pfn = PTE2PFN(x86pte_get(ht, entry), ht->ht_level); 3318 if (ht->ht_level > 0) 3319 pfn += mmu_btop(vaddr & LEVEL_OFFSET(ht->ht_level)); 3320 htable_release(ht); 3321 XPV_ALLOW_MIGRATE(); 3322 return (pfn); 3323 } 3324 3325 /* 3326 * int hat_probe(hat, addr) 3327 * return 0 if no valid mapping is present. Faster version 3328 * of hat_getattr in certain architectures. 3329 */ 3330 int 3331 hat_probe(hat_t *hat, caddr_t addr) 3332 { 3333 uintptr_t vaddr = ALIGN2PAGE(addr); 3334 uint_t entry; 3335 htable_t *ht; 3336 pgcnt_t pg_off; 3337 3338 ASSERT(hat == kas.a_hat || vaddr <= _userlimit); 3339 ASSERT(hat == kas.a_hat || AS_LOCK_HELD(hat->hat_as)); 3340 if (IN_VA_HOLE(vaddr)) 3341 return (0); 3342 3343 /* 3344 * Most common use of hat_probe is from segmap. We special case it 3345 * for performance. 3346 */ 3347 if (mmu.kmap_addr <= vaddr && vaddr < mmu.kmap_eaddr) { 3348 pg_off = mmu_btop(vaddr - mmu.kmap_addr); 3349 if (mmu.pae_hat) 3350 return (PTE_ISVALID(mmu.kmap_ptes[pg_off])); 3351 else 3352 return (PTE_ISVALID( 3353 ((x86pte32_t *)mmu.kmap_ptes)[pg_off])); 3354 } 3355 3356 ht = htable_getpage(hat, vaddr, &entry); 3357 htable_release(ht); 3358 return (ht != NULL); 3359 } 3360 3361 /* 3362 * Find out if the segment for hat_share()/hat_unshare() is DISM or locked ISM. 3363 */ 3364 static int 3365 is_it_dism(hat_t *hat, caddr_t va) 3366 { 3367 struct seg *seg; 3368 struct shm_data *shmd; 3369 struct spt_data *sptd; 3370 3371 seg = as_findseg(hat->hat_as, va, 0); 3372 ASSERT(seg != NULL); 3373 ASSERT(seg->s_base <= va); 3374 shmd = (struct shm_data *)seg->s_data; 3375 ASSERT(shmd != NULL); 3376 sptd = (struct spt_data *)shmd->shm_sptseg->s_data; 3377 ASSERT(sptd != NULL); 3378 if (sptd->spt_flags & SHM_PAGEABLE) 3379 return (1); 3380 return (0); 3381 } 3382 3383 /* 3384 * Simple implementation of ISM. hat_share() is similar to hat_memload_array(), 3385 * except that we use the ism_hat's existing mappings to determine the pages 3386 * and protections to use for this hat. If we find a full properly aligned 3387 * and sized pagetable, we will attempt to share the pagetable itself. 3388 */ 3389 /*ARGSUSED*/ 3390 int 3391 hat_share( 3392 hat_t *hat, 3393 caddr_t addr, 3394 hat_t *ism_hat, 3395 caddr_t src_addr, 3396 size_t len, /* almost useless value, see below.. */ 3397 uint_t ismszc) 3398 { 3399 uintptr_t vaddr_start = (uintptr_t)addr; 3400 uintptr_t vaddr; 3401 uintptr_t eaddr = vaddr_start + len; 3402 uintptr_t ism_addr_start = (uintptr_t)src_addr; 3403 uintptr_t ism_addr = ism_addr_start; 3404 uintptr_t e_ism_addr = ism_addr + len; 3405 htable_t *ism_ht = NULL; 3406 htable_t *ht; 3407 x86pte_t pte; 3408 page_t *pp; 3409 pfn_t pfn; 3410 level_t l; 3411 pgcnt_t pgcnt; 3412 uint_t prot; 3413 int is_dism; 3414 int flags; 3415 3416 /* 3417 * We might be asked to share an empty DISM hat by as_dup() 3418 */ 3419 ASSERT(hat != kas.a_hat); 3420 ASSERT(eaddr <= _userlimit); 3421 if (!(ism_hat->hat_flags & HAT_SHARED)) { 3422 ASSERT(hat_get_mapped_size(ism_hat) == 0); 3423 return (0); 3424 } 3425 XPV_DISALLOW_MIGRATE(); 3426 3427 /* 3428 * The SPT segment driver often passes us a size larger than there are 3429 * valid mappings. That's because it rounds the segment size up to a 3430 * large pagesize, even if the actual memory mapped by ism_hat is less. 3431 */ 3432 ASSERT(IS_PAGEALIGNED(vaddr_start)); 3433 ASSERT(IS_PAGEALIGNED(ism_addr_start)); 3434 ASSERT(ism_hat->hat_flags & HAT_SHARED); 3435 is_dism = is_it_dism(hat, addr); 3436 while (ism_addr < e_ism_addr) { 3437 /* 3438 * use htable_walk to get the next valid ISM mapping 3439 */ 3440 pte = htable_walk(ism_hat, &ism_ht, &ism_addr, e_ism_addr); 3441 if (ism_ht == NULL) 3442 break; 3443 3444 /* 3445 * First check to see if we already share the page table. 3446 */ 3447 l = ism_ht->ht_level; 3448 vaddr = vaddr_start + (ism_addr - ism_addr_start); 3449 ht = htable_lookup(hat, vaddr, l); 3450 if (ht != NULL) { 3451 if (ht->ht_flags & HTABLE_SHARED_PFN) 3452 goto shared; 3453 htable_release(ht); 3454 goto not_shared; 3455 } 3456 3457 /* 3458 * Can't ever share top table. 3459 */ 3460 if (l == mmu.max_level) 3461 goto not_shared; 3462 3463 /* 3464 * Avoid level mismatches later due to DISM faults. 3465 */ 3466 if (is_dism && l > 0) 3467 goto not_shared; 3468 3469 /* 3470 * addresses and lengths must align 3471 * table must be fully populated 3472 * no lower level page tables 3473 */ 3474 if (ism_addr != ism_ht->ht_vaddr || 3475 (vaddr & LEVEL_OFFSET(l + 1)) != 0) 3476 goto not_shared; 3477 3478 /* 3479 * The range of address space must cover a full table. 3480 */ 3481 if (e_ism_addr - ism_addr < LEVEL_SIZE(l + 1)) 3482 goto not_shared; 3483 3484 /* 3485 * All entries in the ISM page table must be leaf PTEs. 3486 */ 3487 if (l > 0) { 3488 int e; 3489 3490 /* 3491 * We know the 0th is from htable_walk() above. 3492 */ 3493 for (e = 1; e < HTABLE_NUM_PTES(ism_ht); ++e) { 3494 x86pte_t pte; 3495 pte = x86pte_get(ism_ht, e); 3496 if (!PTE_ISPAGE(pte, l)) 3497 goto not_shared; 3498 } 3499 } 3500 3501 /* 3502 * share the page table 3503 */ 3504 ht = htable_create(hat, vaddr, l, ism_ht); 3505 shared: 3506 ASSERT(ht->ht_flags & HTABLE_SHARED_PFN); 3507 ASSERT(ht->ht_shares == ism_ht); 3508 hat->hat_ism_pgcnt += 3509 (ism_ht->ht_valid_cnt - ht->ht_valid_cnt) << 3510 (LEVEL_SHIFT(ht->ht_level) - MMU_PAGESHIFT); 3511 ht->ht_valid_cnt = ism_ht->ht_valid_cnt; 3512 htable_release(ht); 3513 ism_addr = ism_ht->ht_vaddr + LEVEL_SIZE(l + 1); 3514 htable_release(ism_ht); 3515 ism_ht = NULL; 3516 continue; 3517 3518 not_shared: 3519 /* 3520 * Unable to share the page table. Instead we will 3521 * create new mappings from the values in the ISM mappings. 3522 * Figure out what level size mappings to use; 3523 */ 3524 for (l = ism_ht->ht_level; l > 0; --l) { 3525 if (LEVEL_SIZE(l) <= eaddr - vaddr && 3526 (vaddr & LEVEL_OFFSET(l)) == 0) 3527 break; 3528 } 3529 3530 /* 3531 * The ISM mapping might be larger than the share area, 3532 * be careful to truncate it if needed. 3533 */ 3534 if (eaddr - vaddr >= LEVEL_SIZE(ism_ht->ht_level)) { 3535 pgcnt = mmu_btop(LEVEL_SIZE(ism_ht->ht_level)); 3536 } else { 3537 pgcnt = mmu_btop(eaddr - vaddr); 3538 l = 0; 3539 } 3540 3541 pfn = PTE2PFN(pte, ism_ht->ht_level); 3542 ASSERT(pfn != PFN_INVALID); 3543 while (pgcnt > 0) { 3544 /* 3545 * Make a new pte for the PFN for this level. 3546 * Copy protections for the pte from the ISM pte. 3547 */ 3548 pp = page_numtopp_nolock(pfn); 3549 ASSERT(pp != NULL); 3550 3551 prot = PROT_USER | PROT_READ | HAT_UNORDERED_OK; 3552 if (PTE_GET(pte, PT_WRITABLE)) 3553 prot |= PROT_WRITE; 3554 if (!PTE_GET(pte, PT_NX)) 3555 prot |= PROT_EXEC; 3556 3557 flags = HAT_LOAD; 3558 if (!is_dism) 3559 flags |= HAT_LOAD_LOCK | HAT_LOAD_NOCONSIST; 3560 while (hati_load_common(hat, vaddr, pp, prot, flags, 3561 l, pfn) != 0) { 3562 if (l == 0) 3563 panic("hati_load_common() failure"); 3564 --l; 3565 } 3566 3567 vaddr += LEVEL_SIZE(l); 3568 ism_addr += LEVEL_SIZE(l); 3569 pfn += mmu_btop(LEVEL_SIZE(l)); 3570 pgcnt -= mmu_btop(LEVEL_SIZE(l)); 3571 } 3572 } 3573 if (ism_ht != NULL) 3574 htable_release(ism_ht); 3575 XPV_ALLOW_MIGRATE(); 3576 return (0); 3577 } 3578 3579 3580 /* 3581 * hat_unshare() is similar to hat_unload_callback(), but 3582 * we have to look for empty shared pagetables. Note that 3583 * hat_unshare() is always invoked against an entire segment. 3584 */ 3585 /*ARGSUSED*/ 3586 void 3587 hat_unshare(hat_t *hat, caddr_t addr, size_t len, uint_t ismszc) 3588 { 3589 uint64_t vaddr = (uintptr_t)addr; 3590 uintptr_t eaddr = vaddr + len; 3591 htable_t *ht = NULL; 3592 uint_t need_demaps = 0; 3593 int flags = HAT_UNLOAD_UNMAP; 3594 level_t l; 3595 3596 ASSERT(hat != kas.a_hat); 3597 ASSERT(eaddr <= _userlimit); 3598 ASSERT(IS_PAGEALIGNED(vaddr)); 3599 ASSERT(IS_PAGEALIGNED(eaddr)); 3600 XPV_DISALLOW_MIGRATE(); 3601 3602 /* 3603 * First go through and remove any shared pagetables. 3604 * 3605 * Note that it's ok to delay the TLB shootdown till the entire range is 3606 * finished, because if hat_pageunload() were to unload a shared 3607 * pagetable page, its hat_tlb_inval() will do a global TLB invalidate. 3608 */ 3609 l = mmu.max_page_level; 3610 if (l == mmu.max_level) 3611 --l; 3612 for (; l >= 0; --l) { 3613 for (vaddr = (uintptr_t)addr; vaddr < eaddr; 3614 vaddr = (vaddr & LEVEL_MASK(l + 1)) + LEVEL_SIZE(l + 1)) { 3615 ASSERT(!IN_VA_HOLE(vaddr)); 3616 /* 3617 * find a pagetable that maps the current address 3618 */ 3619 ht = htable_lookup(hat, vaddr, l); 3620 if (ht == NULL) 3621 continue; 3622 if (ht->ht_flags & HTABLE_SHARED_PFN) { 3623 /* 3624 * clear page count, set valid_cnt to 0, 3625 * let htable_release() finish the job 3626 */ 3627 hat->hat_ism_pgcnt -= ht->ht_valid_cnt << 3628 (LEVEL_SHIFT(ht->ht_level) - MMU_PAGESHIFT); 3629 ht->ht_valid_cnt = 0; 3630 need_demaps = 1; 3631 } 3632 htable_release(ht); 3633 } 3634 } 3635 3636 /* 3637 * flush the TLBs - since we're probably dealing with MANY mappings 3638 * we just do a full invalidation. 3639 */ 3640 if (!(hat->hat_flags & HAT_FREEING) && need_demaps) 3641 hat_tlb_inval(hat, DEMAP_ALL_ADDR); 3642 3643 /* 3644 * Now go back and clean up any unaligned mappings that 3645 * couldn't share pagetables. 3646 */ 3647 if (!is_it_dism(hat, addr)) 3648 flags |= HAT_UNLOAD_UNLOCK; 3649 hat_unload(hat, addr, len, flags); 3650 XPV_ALLOW_MIGRATE(); 3651 } 3652 3653 3654 /* 3655 * hat_reserve() does nothing 3656 */ 3657 /*ARGSUSED*/ 3658 void 3659 hat_reserve(struct as *as, caddr_t addr, size_t len) 3660 { 3661 } 3662 3663 3664 /* 3665 * Called when all mappings to a page should have write permission removed. 3666 * Mostly stolen from hat_pagesync() 3667 */ 3668 static void 3669 hati_page_clrwrt(struct page *pp) 3670 { 3671 hment_t *hm = NULL; 3672 htable_t *ht; 3673 uint_t entry; 3674 x86pte_t old; 3675 x86pte_t new; 3676 uint_t pszc = 0; 3677 3678 XPV_DISALLOW_MIGRATE(); 3679 next_size: 3680 /* 3681 * walk thru the mapping list clearing write permission 3682 */ 3683 x86_hm_enter(pp); 3684 while ((hm = hment_walk(pp, &ht, &entry, hm)) != NULL) { 3685 if (ht->ht_level < pszc) 3686 continue; 3687 old = x86pte_get(ht, entry); 3688 3689 for (;;) { 3690 /* 3691 * Is this mapping of interest? 3692 */ 3693 if (PTE2PFN(old, ht->ht_level) != pp->p_pagenum || 3694 PTE_GET(old, PT_WRITABLE) == 0) 3695 break; 3696 3697 /* 3698 * Clear ref/mod writable bits. This requires cross 3699 * calls to ensure any executing TLBs see cleared bits. 3700 */ 3701 new = old; 3702 PTE_CLR(new, PT_REF | PT_MOD | PT_WRITABLE); 3703 old = hati_update_pte(ht, entry, old, new); 3704 if (old != 0) 3705 continue; 3706 3707 break; 3708 } 3709 } 3710 x86_hm_exit(pp); 3711 while (pszc < pp->p_szc) { 3712 page_t *tpp; 3713 pszc++; 3714 tpp = PP_GROUPLEADER(pp, pszc); 3715 if (pp != tpp) { 3716 pp = tpp; 3717 goto next_size; 3718 } 3719 } 3720 XPV_ALLOW_MIGRATE(); 3721 } 3722 3723 /* 3724 * void hat_page_setattr(pp, flag) 3725 * void hat_page_clrattr(pp, flag) 3726 * used to set/clr ref/mod bits. 3727 */ 3728 void 3729 hat_page_setattr(struct page *pp, uint_t flag) 3730 { 3731 vnode_t *vp = pp->p_vnode; 3732 kmutex_t *vphm = NULL; 3733 page_t **listp; 3734 int noshuffle; 3735 3736 noshuffle = flag & P_NSH; 3737 flag &= ~P_NSH; 3738 3739 if (PP_GETRM(pp, flag) == flag) 3740 return; 3741 3742 if ((flag & P_MOD) != 0 && vp != NULL && IS_VMODSORT(vp) && 3743 !noshuffle) { 3744 vphm = page_vnode_mutex(vp); 3745 mutex_enter(vphm); 3746 } 3747 3748 PP_SETRM(pp, flag); 3749 3750 if (vphm != NULL) { 3751 3752 /* 3753 * Some File Systems examine v_pages for NULL w/o 3754 * grabbing the vphm mutex. Must not let it become NULL when 3755 * pp is the only page on the list. 3756 */ 3757 if (pp->p_vpnext != pp) { 3758 page_vpsub(&vp->v_pages, pp); 3759 if (vp->v_pages != NULL) 3760 listp = &vp->v_pages->p_vpprev->p_vpnext; 3761 else 3762 listp = &vp->v_pages; 3763 page_vpadd(listp, pp); 3764 } 3765 mutex_exit(vphm); 3766 } 3767 } 3768 3769 void 3770 hat_page_clrattr(struct page *pp, uint_t flag) 3771 { 3772 vnode_t *vp = pp->p_vnode; 3773 ASSERT(!(flag & ~(P_MOD | P_REF | P_RO))); 3774 3775 /* 3776 * Caller is expected to hold page's io lock for VMODSORT to work 3777 * correctly with pvn_vplist_dirty() and pvn_getdirty() when mod 3778 * bit is cleared. 3779 * We don't have assert to avoid tripping some existing third party 3780 * code. The dirty page is moved back to top of the v_page list 3781 * after IO is done in pvn_write_done(). 3782 */ 3783 PP_CLRRM(pp, flag); 3784 3785 if ((flag & P_MOD) != 0 && vp != NULL && IS_VMODSORT(vp)) { 3786 3787 /* 3788 * VMODSORT works by removing write permissions and getting 3789 * a fault when a page is made dirty. At this point 3790 * we need to remove write permission from all mappings 3791 * to this page. 3792 */ 3793 hati_page_clrwrt(pp); 3794 } 3795 } 3796 3797 /* 3798 * If flag is specified, returns 0 if attribute is disabled 3799 * and non zero if enabled. If flag specifes multiple attributes 3800 * then returns 0 if ALL attributes are disabled. This is an advisory 3801 * call. 3802 */ 3803 uint_t 3804 hat_page_getattr(struct page *pp, uint_t flag) 3805 { 3806 return (PP_GETRM(pp, flag)); 3807 } 3808 3809 3810 /* 3811 * common code used by hat_pageunload() and hment_steal() 3812 */ 3813 hment_t * 3814 hati_page_unmap(page_t *pp, htable_t *ht, uint_t entry) 3815 { 3816 x86pte_t old_pte; 3817 pfn_t pfn = pp->p_pagenum; 3818 hment_t *hm; 3819 3820 /* 3821 * We need to acquire a hold on the htable in order to 3822 * do the invalidate. We know the htable must exist, since 3823 * unmap's don't release the htable until after removing any 3824 * hment. Having x86_hm_enter() keeps that from proceeding. 3825 */ 3826 htable_acquire(ht); 3827 3828 /* 3829 * Invalidate the PTE and remove the hment. 3830 */ 3831 old_pte = x86pte_inval(ht, entry, 0, NULL, B_TRUE); 3832 if (PTE2PFN(old_pte, ht->ht_level) != pfn) { 3833 panic("x86pte_inval() failure found PTE = " FMT_PTE 3834 " pfn being unmapped is %lx ht=0x%lx entry=0x%x", 3835 old_pte, pfn, (uintptr_t)ht, entry); 3836 } 3837 3838 /* 3839 * Clean up all the htable information for this mapping 3840 */ 3841 ASSERT(ht->ht_valid_cnt > 0); 3842 HTABLE_DEC(ht->ht_valid_cnt); 3843 PGCNT_DEC(ht->ht_hat, ht->ht_level); 3844 3845 /* 3846 * sync ref/mod bits to the page_t 3847 */ 3848 if (PTE_GET(old_pte, PT_SOFTWARE) < PT_NOSYNC) 3849 hati_sync_pte_to_page(pp, old_pte, ht->ht_level); 3850 3851 /* 3852 * Remove the mapping list entry for this page. 3853 */ 3854 hm = hment_remove(pp, ht, entry); 3855 3856 /* 3857 * drop the mapping list lock so that we might free the 3858 * hment and htable. 3859 */ 3860 x86_hm_exit(pp); 3861 htable_release(ht); 3862 return (hm); 3863 } 3864 3865 extern int vpm_enable; 3866 /* 3867 * Unload all translations to a page. If the page is a subpage of a large 3868 * page, the large page mappings are also removed. 3869 * 3870 * The forceflags are unused. 3871 */ 3872 3873 /*ARGSUSED*/ 3874 static int 3875 hati_pageunload(struct page *pp, uint_t pg_szcd, uint_t forceflag) 3876 { 3877 page_t *cur_pp = pp; 3878 hment_t *hm; 3879 hment_t *prev; 3880 htable_t *ht; 3881 uint_t entry; 3882 level_t level; 3883 3884 XPV_DISALLOW_MIGRATE(); 3885 3886 /* 3887 * prevent recursion due to kmem_free() 3888 */ 3889 ++curthread->t_hatdepth; 3890 ASSERT(curthread->t_hatdepth < 16); 3891 3892 /* 3893 * clear the vpm ref. 3894 */ 3895 if (vpm_enable) { 3896 pp->p_vpmref = 0; 3897 } 3898 /* 3899 * The loop with next_size handles pages with multiple pagesize mappings 3900 */ 3901 next_size: 3902 for (;;) { 3903 3904 /* 3905 * Get a mapping list entry 3906 */ 3907 x86_hm_enter(cur_pp); 3908 for (prev = NULL; ; prev = hm) { 3909 hm = hment_walk(cur_pp, &ht, &entry, prev); 3910 if (hm == NULL) { 3911 x86_hm_exit(cur_pp); 3912 3913 /* 3914 * If not part of a larger page, we're done. 3915 */ 3916 if (cur_pp->p_szc <= pg_szcd) { 3917 ASSERT(curthread->t_hatdepth > 0); 3918 --curthread->t_hatdepth; 3919 XPV_ALLOW_MIGRATE(); 3920 return (0); 3921 } 3922 3923 /* 3924 * Else check the next larger page size. 3925 * hat_page_demote() may decrease p_szc 3926 * but that's ok we'll just take an extra 3927 * trip discover there're no larger mappings 3928 * and return. 3929 */ 3930 ++pg_szcd; 3931 cur_pp = PP_GROUPLEADER(cur_pp, pg_szcd); 3932 goto next_size; 3933 } 3934 3935 /* 3936 * If this mapping size matches, remove it. 3937 */ 3938 level = ht->ht_level; 3939 if (level == pg_szcd) 3940 break; 3941 } 3942 3943 /* 3944 * Remove the mapping list entry for this page. 3945 * Note this does the x86_hm_exit() for us. 3946 */ 3947 hm = hati_page_unmap(cur_pp, ht, entry); 3948 if (hm != NULL) 3949 hment_free(hm); 3950 } 3951 } 3952 3953 int 3954 hat_pageunload(struct page *pp, uint_t forceflag) 3955 { 3956 ASSERT(PAGE_EXCL(pp)); 3957 return (hati_pageunload(pp, 0, forceflag)); 3958 } 3959 3960 /* 3961 * Unload all large mappings to pp and reduce by 1 p_szc field of every large 3962 * page level that included pp. 3963 * 3964 * pp must be locked EXCL. Even though no other constituent pages are locked 3965 * it's legal to unload large mappings to pp because all constituent pages of 3966 * large locked mappings have to be locked SHARED. therefore if we have EXCL 3967 * lock on one of constituent pages none of the large mappings to pp are 3968 * locked. 3969 * 3970 * Change (always decrease) p_szc field starting from the last constituent 3971 * page and ending with root constituent page so that root's pszc always shows 3972 * the area where hat_page_demote() may be active. 3973 * 3974 * This mechanism is only used for file system pages where it's not always 3975 * possible to get EXCL locks on all constituent pages to demote the size code 3976 * (as is done for anonymous or kernel large pages). 3977 */ 3978 void 3979 hat_page_demote(page_t *pp) 3980 { 3981 uint_t pszc; 3982 uint_t rszc; 3983 uint_t szc; 3984 page_t *rootpp; 3985 page_t *firstpp; 3986 page_t *lastpp; 3987 pgcnt_t pgcnt; 3988 3989 ASSERT(PAGE_EXCL(pp)); 3990 ASSERT(!PP_ISFREE(pp)); 3991 ASSERT(page_szc_lock_assert(pp)); 3992 3993 if (pp->p_szc == 0) 3994 return; 3995 3996 rootpp = PP_GROUPLEADER(pp, 1); 3997 (void) hati_pageunload(rootpp, 1, HAT_FORCE_PGUNLOAD); 3998 3999 /* 4000 * all large mappings to pp are gone 4001 * and no new can be setup since pp is locked exclusively. 4002 * 4003 * Lock the root to make sure there's only one hat_page_demote() 4004 * outstanding within the area of this root's pszc. 4005 * 4006 * Second potential hat_page_demote() is already eliminated by upper 4007 * VM layer via page_szc_lock() but we don't rely on it and use our 4008 * own locking (so that upper layer locking can be changed without 4009 * assumptions that hat depends on upper layer VM to prevent multiple 4010 * hat_page_demote() to be issued simultaneously to the same large 4011 * page). 4012 */ 4013 again: 4014 pszc = pp->p_szc; 4015 if (pszc == 0) 4016 return; 4017 rootpp = PP_GROUPLEADER(pp, pszc); 4018 x86_hm_enter(rootpp); 4019 /* 4020 * If root's p_szc is different from pszc we raced with another 4021 * hat_page_demote(). Drop the lock and try to find the root again. 4022 * If root's p_szc is greater than pszc previous hat_page_demote() is 4023 * not done yet. Take and release mlist lock of root's root to wait 4024 * for previous hat_page_demote() to complete. 4025 */ 4026 if ((rszc = rootpp->p_szc) != pszc) { 4027 x86_hm_exit(rootpp); 4028 if (rszc > pszc) { 4029 /* p_szc of a locked non free page can't increase */ 4030 ASSERT(pp != rootpp); 4031 4032 rootpp = PP_GROUPLEADER(rootpp, rszc); 4033 x86_hm_enter(rootpp); 4034 x86_hm_exit(rootpp); 4035 } 4036 goto again; 4037 } 4038 ASSERT(pp->p_szc == pszc); 4039 4040 /* 4041 * Decrement by 1 p_szc of every constituent page of a region that 4042 * covered pp. For example if original szc is 3 it gets changed to 2 4043 * everywhere except in region 2 that covered pp. Region 2 that 4044 * covered pp gets demoted to 1 everywhere except in region 1 that 4045 * covered pp. The region 1 that covered pp is demoted to region 4046 * 0. It's done this way because from region 3 we removed level 3 4047 * mappings, from region 2 that covered pp we removed level 2 mappings 4048 * and from region 1 that covered pp we removed level 1 mappings. All 4049 * changes are done from from high pfn's to low pfn's so that roots 4050 * are changed last allowing one to know the largest region where 4051 * hat_page_demote() is stil active by only looking at the root page. 4052 * 4053 * This algorithm is implemented in 2 while loops. First loop changes 4054 * p_szc of pages to the right of pp's level 1 region and second 4055 * loop changes p_szc of pages of level 1 region that covers pp 4056 * and all pages to the left of level 1 region that covers pp. 4057 * In the first loop p_szc keeps dropping with every iteration 4058 * and in the second loop it keeps increasing with every iteration. 4059 * 4060 * First loop description: Demote pages to the right of pp outside of 4061 * level 1 region that covers pp. In every iteration of the while 4062 * loop below find the last page of szc region and the first page of 4063 * (szc - 1) region that is immediately to the right of (szc - 1) 4064 * region that covers pp. From last such page to first such page 4065 * change every page's szc to szc - 1. Decrement szc and continue 4066 * looping until szc is 1. If pp belongs to the last (szc - 1) region 4067 * of szc region skip to the next iteration. 4068 */ 4069 szc = pszc; 4070 while (szc > 1) { 4071 lastpp = PP_GROUPLEADER(pp, szc); 4072 pgcnt = page_get_pagecnt(szc); 4073 lastpp += pgcnt - 1; 4074 firstpp = PP_GROUPLEADER(pp, (szc - 1)); 4075 pgcnt = page_get_pagecnt(szc - 1); 4076 if (lastpp - firstpp < pgcnt) { 4077 szc--; 4078 continue; 4079 } 4080 firstpp += pgcnt; 4081 while (lastpp != firstpp) { 4082 ASSERT(lastpp->p_szc == pszc); 4083 lastpp->p_szc = szc - 1; 4084 lastpp--; 4085 } 4086 firstpp->p_szc = szc - 1; 4087 szc--; 4088 } 4089 4090 /* 4091 * Second loop description: 4092 * First iteration changes p_szc to 0 of every 4093 * page of level 1 region that covers pp. 4094 * Subsequent iterations find last page of szc region 4095 * immediately to the left of szc region that covered pp 4096 * and first page of (szc + 1) region that covers pp. 4097 * From last to first page change p_szc of every page to szc. 4098 * Increment szc and continue looping until szc is pszc. 4099 * If pp belongs to the fist szc region of (szc + 1) region 4100 * skip to the next iteration. 4101 * 4102 */ 4103 szc = 0; 4104 while (szc < pszc) { 4105 firstpp = PP_GROUPLEADER(pp, (szc + 1)); 4106 if (szc == 0) { 4107 pgcnt = page_get_pagecnt(1); 4108 lastpp = firstpp + (pgcnt - 1); 4109 } else { 4110 lastpp = PP_GROUPLEADER(pp, szc); 4111 if (firstpp == lastpp) { 4112 szc++; 4113 continue; 4114 } 4115 lastpp--; 4116 pgcnt = page_get_pagecnt(szc); 4117 } 4118 while (lastpp != firstpp) { 4119 ASSERT(lastpp->p_szc == pszc); 4120 lastpp->p_szc = szc; 4121 lastpp--; 4122 } 4123 firstpp->p_szc = szc; 4124 if (firstpp == rootpp) 4125 break; 4126 szc++; 4127 } 4128 x86_hm_exit(rootpp); 4129 } 4130 4131 /* 4132 * get hw stats from hardware into page struct and reset hw stats 4133 * returns attributes of page 4134 * Flags for hat_pagesync, hat_getstat, hat_sync 4135 * 4136 * define HAT_SYNC_ZERORM 0x01 4137 * 4138 * Additional flags for hat_pagesync 4139 * 4140 * define HAT_SYNC_STOPON_REF 0x02 4141 * define HAT_SYNC_STOPON_MOD 0x04 4142 * define HAT_SYNC_STOPON_RM 0x06 4143 * define HAT_SYNC_STOPON_SHARED 0x08 4144 */ 4145 uint_t 4146 hat_pagesync(struct page *pp, uint_t flags) 4147 { 4148 hment_t *hm = NULL; 4149 htable_t *ht; 4150 uint_t entry; 4151 x86pte_t old, save_old; 4152 x86pte_t new; 4153 uchar_t nrmbits = P_REF|P_MOD|P_RO; 4154 extern ulong_t po_share; 4155 page_t *save_pp = pp; 4156 uint_t pszc = 0; 4157 4158 ASSERT(PAGE_LOCKED(pp) || panicstr); 4159 4160 if (PP_ISRO(pp) && (flags & HAT_SYNC_STOPON_MOD)) 4161 return (pp->p_nrm & nrmbits); 4162 4163 if ((flags & HAT_SYNC_ZERORM) == 0) { 4164 4165 if ((flags & HAT_SYNC_STOPON_REF) != 0 && PP_ISREF(pp)) 4166 return (pp->p_nrm & nrmbits); 4167 4168 if ((flags & HAT_SYNC_STOPON_MOD) != 0 && PP_ISMOD(pp)) 4169 return (pp->p_nrm & nrmbits); 4170 4171 if ((flags & HAT_SYNC_STOPON_SHARED) != 0 && 4172 hat_page_getshare(pp) > po_share) { 4173 if (PP_ISRO(pp)) 4174 PP_SETREF(pp); 4175 return (pp->p_nrm & nrmbits); 4176 } 4177 } 4178 4179 XPV_DISALLOW_MIGRATE(); 4180 next_size: 4181 /* 4182 * walk thru the mapping list syncing (and clearing) ref/mod bits. 4183 */ 4184 x86_hm_enter(pp); 4185 while ((hm = hment_walk(pp, &ht, &entry, hm)) != NULL) { 4186 if (ht->ht_level < pszc) 4187 continue; 4188 old = x86pte_get(ht, entry); 4189 try_again: 4190 4191 ASSERT(PTE2PFN(old, ht->ht_level) == pp->p_pagenum); 4192 4193 if (PTE_GET(old, PT_REF | PT_MOD) == 0) 4194 continue; 4195 4196 save_old = old; 4197 if ((flags & HAT_SYNC_ZERORM) != 0) { 4198 4199 /* 4200 * Need to clear ref or mod bits. Need to demap 4201 * to make sure any executing TLBs see cleared bits. 4202 */ 4203 new = old; 4204 PTE_CLR(new, PT_REF | PT_MOD); 4205 old = hati_update_pte(ht, entry, old, new); 4206 if (old != 0) 4207 goto try_again; 4208 4209 old = save_old; 4210 } 4211 4212 /* 4213 * Sync the PTE 4214 */ 4215 if (!(flags & HAT_SYNC_ZERORM) && 4216 PTE_GET(old, PT_SOFTWARE) <= PT_NOSYNC) 4217 hati_sync_pte_to_page(pp, old, ht->ht_level); 4218 4219 /* 4220 * can stop short if we found a ref'd or mod'd page 4221 */ 4222 if (((flags & HAT_SYNC_STOPON_MOD) && PP_ISMOD(save_pp)) || 4223 ((flags & HAT_SYNC_STOPON_REF) && PP_ISREF(save_pp))) { 4224 x86_hm_exit(pp); 4225 goto done; 4226 } 4227 } 4228 x86_hm_exit(pp); 4229 while (pszc < pp->p_szc) { 4230 page_t *tpp; 4231 pszc++; 4232 tpp = PP_GROUPLEADER(pp, pszc); 4233 if (pp != tpp) { 4234 pp = tpp; 4235 goto next_size; 4236 } 4237 } 4238 done: 4239 XPV_ALLOW_MIGRATE(); 4240 return (save_pp->p_nrm & nrmbits); 4241 } 4242 4243 /* 4244 * returns approx number of mappings to this pp. A return of 0 implies 4245 * there are no mappings to the page. 4246 */ 4247 ulong_t 4248 hat_page_getshare(page_t *pp) 4249 { 4250 uint_t cnt; 4251 cnt = hment_mapcnt(pp); 4252 if (vpm_enable && pp->p_vpmref) { 4253 cnt += 1; 4254 } 4255 return (cnt); 4256 } 4257 4258 /* 4259 * Return 1 the number of mappings exceeds sh_thresh. Return 0 4260 * otherwise. 4261 */ 4262 int 4263 hat_page_checkshare(page_t *pp, ulong_t sh_thresh) 4264 { 4265 return (hat_page_getshare(pp) > sh_thresh); 4266 } 4267 4268 /* 4269 * hat_softlock isn't supported anymore 4270 */ 4271 /*ARGSUSED*/ 4272 faultcode_t 4273 hat_softlock( 4274 hat_t *hat, 4275 caddr_t addr, 4276 size_t *len, 4277 struct page **page_array, 4278 uint_t flags) 4279 { 4280 return (FC_NOSUPPORT); 4281 } 4282 4283 4284 4285 /* 4286 * Routine to expose supported HAT features to platform independent code. 4287 */ 4288 /*ARGSUSED*/ 4289 int 4290 hat_supported(enum hat_features feature, void *arg) 4291 { 4292 switch (feature) { 4293 4294 case HAT_SHARED_PT: /* this is really ISM */ 4295 return (1); 4296 4297 case HAT_DYNAMIC_ISM_UNMAP: 4298 return (0); 4299 4300 case HAT_VMODSORT: 4301 return (1); 4302 4303 case HAT_SHARED_REGIONS: 4304 return (0); 4305 4306 default: 4307 panic("hat_supported() - unknown feature"); 4308 } 4309 return (0); 4310 } 4311 4312 /* 4313 * Called when a thread is exiting and has been switched to the kernel AS 4314 */ 4315 void 4316 hat_thread_exit(kthread_t *thd) 4317 { 4318 ASSERT(thd->t_procp->p_as == &kas); 4319 XPV_DISALLOW_MIGRATE(); 4320 hat_switch(thd->t_procp->p_as->a_hat); 4321 XPV_ALLOW_MIGRATE(); 4322 } 4323 4324 /* 4325 * Setup the given brand new hat structure as the new HAT on this cpu's mmu. 4326 */ 4327 /*ARGSUSED*/ 4328 void 4329 hat_setup(hat_t *hat, int flags) 4330 { 4331 XPV_DISALLOW_MIGRATE(); 4332 kpreempt_disable(); 4333 4334 hat_switch(hat); 4335 4336 kpreempt_enable(); 4337 XPV_ALLOW_MIGRATE(); 4338 } 4339 4340 /* 4341 * Prepare for a CPU private mapping for the given address. 4342 * 4343 * The address can only be used from a single CPU and can be remapped 4344 * using hat_mempte_remap(). Return the address of the PTE. 4345 * 4346 * We do the htable_create() if necessary and increment the valid count so 4347 * the htable can't disappear. We also hat_devload() the page table into 4348 * kernel so that the PTE is quickly accessed. 4349 */ 4350 hat_mempte_t 4351 hat_mempte_setup(caddr_t addr) 4352 { 4353 uintptr_t va = (uintptr_t)addr; 4354 htable_t *ht; 4355 uint_t entry; 4356 x86pte_t oldpte; 4357 hat_mempte_t p; 4358 4359 ASSERT(IS_PAGEALIGNED(va)); 4360 ASSERT(!IN_VA_HOLE(va)); 4361 ++curthread->t_hatdepth; 4362 XPV_DISALLOW_MIGRATE(); 4363 ht = htable_getpte(kas.a_hat, va, &entry, &oldpte, 0); 4364 if (ht == NULL) { 4365 ht = htable_create(kas.a_hat, va, 0, NULL); 4366 entry = htable_va2entry(va, ht); 4367 ASSERT(ht->ht_level == 0); 4368 oldpte = x86pte_get(ht, entry); 4369 } 4370 if (PTE_ISVALID(oldpte)) 4371 panic("hat_mempte_setup(): address already mapped" 4372 "ht=%p, entry=%d, pte=" FMT_PTE, (void *)ht, entry, oldpte); 4373 4374 /* 4375 * increment ht_valid_cnt so that the pagetable can't disappear 4376 */ 4377 HTABLE_INC(ht->ht_valid_cnt); 4378 4379 /* 4380 * return the PTE physical address to the caller. 4381 */ 4382 htable_release(ht); 4383 XPV_ALLOW_MIGRATE(); 4384 p = PT_INDEX_PHYSADDR(pfn_to_pa(ht->ht_pfn), entry); 4385 --curthread->t_hatdepth; 4386 return (p); 4387 } 4388 4389 /* 4390 * Release a CPU private mapping for the given address. 4391 * We decrement the htable valid count so it might be destroyed. 4392 */ 4393 /*ARGSUSED1*/ 4394 void 4395 hat_mempte_release(caddr_t addr, hat_mempte_t pte_pa) 4396 { 4397 htable_t *ht; 4398 4399 XPV_DISALLOW_MIGRATE(); 4400 /* 4401 * invalidate any left over mapping and decrement the htable valid count 4402 */ 4403 #ifdef __xpv 4404 if (HYPERVISOR_update_va_mapping((uintptr_t)addr, 0, 4405 UVMF_INVLPG | UVMF_LOCAL)) 4406 panic("HYPERVISOR_update_va_mapping() failed"); 4407 #else 4408 { 4409 x86pte_t *pteptr; 4410 4411 pteptr = x86pte_mapin(mmu_btop(pte_pa), 4412 (pte_pa & MMU_PAGEOFFSET) >> mmu.pte_size_shift, NULL); 4413 if (mmu.pae_hat) 4414 *pteptr = 0; 4415 else 4416 *(x86pte32_t *)pteptr = 0; 4417 mmu_flush_tlb_kpage((uintptr_t)addr); 4418 x86pte_mapout(); 4419 } 4420 #endif 4421 4422 ht = htable_getpte(kas.a_hat, ALIGN2PAGE(addr), NULL, NULL, 0); 4423 if (ht == NULL) 4424 panic("hat_mempte_release(): invalid address"); 4425 ASSERT(ht->ht_level == 0); 4426 HTABLE_DEC(ht->ht_valid_cnt); 4427 htable_release(ht); 4428 XPV_ALLOW_MIGRATE(); 4429 } 4430 4431 /* 4432 * Apply a temporary CPU private mapping to a page. We flush the TLB only 4433 * on this CPU, so this ought to have been called with preemption disabled. 4434 */ 4435 void 4436 hat_mempte_remap( 4437 pfn_t pfn, 4438 caddr_t addr, 4439 hat_mempte_t pte_pa, 4440 uint_t attr, 4441 uint_t flags) 4442 { 4443 uintptr_t va = (uintptr_t)addr; 4444 x86pte_t pte; 4445 4446 /* 4447 * Remap the given PTE to the new page's PFN. Invalidate only 4448 * on this CPU. 4449 */ 4450 #ifdef DEBUG 4451 htable_t *ht; 4452 uint_t entry; 4453 4454 ASSERT(IS_PAGEALIGNED(va)); 4455 ASSERT(!IN_VA_HOLE(va)); 4456 ht = htable_getpte(kas.a_hat, va, &entry, NULL, 0); 4457 ASSERT(ht != NULL); 4458 ASSERT(ht->ht_level == 0); 4459 ASSERT(ht->ht_valid_cnt > 0); 4460 ASSERT(ht->ht_pfn == mmu_btop(pte_pa)); 4461 htable_release(ht); 4462 #endif 4463 XPV_DISALLOW_MIGRATE(); 4464 pte = hati_mkpte(pfn, attr, 0, flags); 4465 #ifdef __xpv 4466 if (HYPERVISOR_update_va_mapping(va, pte, UVMF_INVLPG | UVMF_LOCAL)) 4467 panic("HYPERVISOR_update_va_mapping() failed"); 4468 #else 4469 { 4470 x86pte_t *pteptr; 4471 4472 pteptr = x86pte_mapin(mmu_btop(pte_pa), 4473 (pte_pa & MMU_PAGEOFFSET) >> mmu.pte_size_shift, NULL); 4474 if (mmu.pae_hat) 4475 *(x86pte_t *)pteptr = pte; 4476 else 4477 *(x86pte32_t *)pteptr = (x86pte32_t)pte; 4478 mmu_flush_tlb_kpage((uintptr_t)addr); 4479 x86pte_mapout(); 4480 } 4481 #endif 4482 XPV_ALLOW_MIGRATE(); 4483 } 4484 4485 4486 4487 /* 4488 * Hat locking functions 4489 * XXX - these two functions are currently being used by hatstats 4490 * they can be removed by using a per-as mutex for hatstats. 4491 */ 4492 void 4493 hat_enter(hat_t *hat) 4494 { 4495 mutex_enter(&hat->hat_mutex); 4496 } 4497 4498 void 4499 hat_exit(hat_t *hat) 4500 { 4501 mutex_exit(&hat->hat_mutex); 4502 } 4503 4504 /* 4505 * HAT part of cpu initialization. 4506 */ 4507 void 4508 hat_cpu_online(struct cpu *cpup) 4509 { 4510 if (cpup != CPU) { 4511 x86pte_cpu_init(cpup); 4512 hat_pcp_setup(cpup); 4513 } 4514 CPUSET_ATOMIC_ADD(khat_cpuset, cpup->cpu_id); 4515 } 4516 4517 /* 4518 * HAT part of cpu deletion. 4519 * (currently, we only call this after the cpu is safely passivated.) 4520 */ 4521 void 4522 hat_cpu_offline(struct cpu *cpup) 4523 { 4524 ASSERT(cpup != CPU); 4525 4526 CPUSET_ATOMIC_DEL(khat_cpuset, cpup->cpu_id); 4527 hat_pcp_teardown(cpup); 4528 x86pte_cpu_fini(cpup); 4529 } 4530 4531 /* 4532 * Function called after all CPUs are brought online. 4533 * Used to remove low address boot mappings. 4534 */ 4535 void 4536 clear_boot_mappings(uintptr_t low, uintptr_t high) 4537 { 4538 uintptr_t vaddr = low; 4539 htable_t *ht = NULL; 4540 level_t level; 4541 uint_t entry; 4542 x86pte_t pte; 4543 4544 /* 4545 * On 1st CPU we can unload the prom mappings, basically we blow away 4546 * all virtual mappings under _userlimit. 4547 */ 4548 while (vaddr < high) { 4549 pte = htable_walk(kas.a_hat, &ht, &vaddr, high); 4550 if (ht == NULL) 4551 break; 4552 4553 level = ht->ht_level; 4554 entry = htable_va2entry(vaddr, ht); 4555 ASSERT(level <= mmu.max_page_level); 4556 ASSERT(PTE_ISPAGE(pte, level)); 4557 4558 /* 4559 * Unload the mapping from the page tables. 4560 */ 4561 (void) x86pte_inval(ht, entry, 0, NULL, B_TRUE); 4562 ASSERT(ht->ht_valid_cnt > 0); 4563 HTABLE_DEC(ht->ht_valid_cnt); 4564 PGCNT_DEC(ht->ht_hat, ht->ht_level); 4565 4566 vaddr += LEVEL_SIZE(ht->ht_level); 4567 } 4568 if (ht) 4569 htable_release(ht); 4570 } 4571 4572 /* 4573 * Atomically update a new translation for a single page. If the 4574 * currently installed PTE doesn't match the value we expect to find, 4575 * it's not updated and we return the PTE we found. 4576 * 4577 * If activating nosync or NOWRITE and the page was modified we need to sync 4578 * with the page_t. Also sync with page_t if clearing ref/mod bits. 4579 */ 4580 static x86pte_t 4581 hati_update_pte(htable_t *ht, uint_t entry, x86pte_t expected, x86pte_t new) 4582 { 4583 page_t *pp; 4584 uint_t rm = 0; 4585 x86pte_t replaced; 4586 4587 if (PTE_GET(expected, PT_SOFTWARE) < PT_NOSYNC && 4588 PTE_GET(expected, PT_MOD | PT_REF) && 4589 (PTE_GET(new, PT_NOSYNC) || !PTE_GET(new, PT_WRITABLE) || 4590 !PTE_GET(new, PT_MOD | PT_REF))) { 4591 4592 ASSERT(!pfn_is_foreign(PTE2PFN(expected, ht->ht_level))); 4593 pp = page_numtopp_nolock(PTE2PFN(expected, ht->ht_level)); 4594 ASSERT(pp != NULL); 4595 if (PTE_GET(expected, PT_MOD)) 4596 rm |= P_MOD; 4597 if (PTE_GET(expected, PT_REF)) 4598 rm |= P_REF; 4599 PTE_CLR(new, PT_MOD | PT_REF); 4600 } 4601 4602 replaced = x86pte_update(ht, entry, expected, new); 4603 if (replaced != expected) 4604 return (replaced); 4605 4606 if (rm) { 4607 /* 4608 * sync to all constituent pages of a large page 4609 */ 4610 pgcnt_t pgcnt = page_get_pagecnt(ht->ht_level); 4611 ASSERT(IS_P2ALIGNED(pp->p_pagenum, pgcnt)); 4612 while (pgcnt-- > 0) { 4613 /* 4614 * hat_page_demote() can't decrease 4615 * pszc below this mapping size 4616 * since large mapping existed after we 4617 * took mlist lock. 4618 */ 4619 ASSERT(pp->p_szc >= ht->ht_level); 4620 hat_page_setattr(pp, rm); 4621 ++pp; 4622 } 4623 } 4624 4625 return (0); 4626 } 4627 4628 /* ARGSUSED */ 4629 void 4630 hat_join_srd(struct hat *hat, vnode_t *evp) 4631 { 4632 } 4633 4634 /* ARGSUSED */ 4635 hat_region_cookie_t 4636 hat_join_region(struct hat *hat, 4637 caddr_t r_saddr, 4638 size_t r_size, 4639 void *r_obj, 4640 u_offset_t r_objoff, 4641 uchar_t r_perm, 4642 uchar_t r_pgszc, 4643 hat_rgn_cb_func_t r_cb_function, 4644 uint_t flags) 4645 { 4646 panic("No shared region support on x86"); 4647 return (HAT_INVALID_REGION_COOKIE); 4648 } 4649 4650 /* ARGSUSED */ 4651 void 4652 hat_leave_region(struct hat *hat, hat_region_cookie_t rcookie, uint_t flags) 4653 { 4654 panic("No shared region support on x86"); 4655 } 4656 4657 /* ARGSUSED */ 4658 void 4659 hat_dup_region(struct hat *hat, hat_region_cookie_t rcookie) 4660 { 4661 panic("No shared region support on x86"); 4662 } 4663 4664 4665 /* 4666 * Kernel Physical Mapping (kpm) facility 4667 * 4668 * Most of the routines needed to support segkpm are almost no-ops on the 4669 * x86 platform. We map in the entire segment when it is created and leave 4670 * it mapped in, so there is no additional work required to set up and tear 4671 * down individual mappings. All of these routines were created to support 4672 * SPARC platforms that have to avoid aliasing in their virtually indexed 4673 * caches. 4674 * 4675 * Most of the routines have sanity checks in them (e.g. verifying that the 4676 * passed-in page is locked). We don't actually care about most of these 4677 * checks on x86, but we leave them in place to identify problems in the 4678 * upper levels. 4679 */ 4680 4681 /* 4682 * Map in a locked page and return the vaddr. 4683 */ 4684 /*ARGSUSED*/ 4685 caddr_t 4686 hat_kpm_mapin(struct page *pp, struct kpme *kpme) 4687 { 4688 caddr_t vaddr; 4689 4690 #ifdef DEBUG 4691 if (kpm_enable == 0) { 4692 cmn_err(CE_WARN, "hat_kpm_mapin: kpm_enable not set\n"); 4693 return ((caddr_t)NULL); 4694 } 4695 4696 if (pp == NULL || PAGE_LOCKED(pp) == 0) { 4697 cmn_err(CE_WARN, "hat_kpm_mapin: pp zero or not locked\n"); 4698 return ((caddr_t)NULL); 4699 } 4700 #endif 4701 4702 vaddr = hat_kpm_page2va(pp, 1); 4703 4704 return (vaddr); 4705 } 4706 4707 /* 4708 * Mapout a locked page. 4709 */ 4710 /*ARGSUSED*/ 4711 void 4712 hat_kpm_mapout(struct page *pp, struct kpme *kpme, caddr_t vaddr) 4713 { 4714 #ifdef DEBUG 4715 if (kpm_enable == 0) { 4716 cmn_err(CE_WARN, "hat_kpm_mapout: kpm_enable not set\n"); 4717 return; 4718 } 4719 4720 if (IS_KPM_ADDR(vaddr) == 0) { 4721 cmn_err(CE_WARN, "hat_kpm_mapout: no kpm address\n"); 4722 return; 4723 } 4724 4725 if (pp == NULL || PAGE_LOCKED(pp) == 0) { 4726 cmn_err(CE_WARN, "hat_kpm_mapout: page zero or not locked\n"); 4727 return; 4728 } 4729 #endif 4730 } 4731 4732 /* 4733 * hat_kpm_mapin_pfn is used to obtain a kpm mapping for physical 4734 * memory addresses that are not described by a page_t. It can 4735 * also be used for normal pages that are not locked, but beware 4736 * this is dangerous - no locking is performed, so the identity of 4737 * the page could change. hat_kpm_mapin_pfn is not supported when 4738 * vac_colors > 1, because the chosen va depends on the page identity, 4739 * which could change. 4740 * The caller must only pass pfn's for valid physical addresses; violation 4741 * of this rule will cause panic. 4742 */ 4743 caddr_t 4744 hat_kpm_mapin_pfn(pfn_t pfn) 4745 { 4746 caddr_t paddr, vaddr; 4747 4748 if (kpm_enable == 0) 4749 return ((caddr_t)NULL); 4750 4751 paddr = (caddr_t)ptob(pfn); 4752 vaddr = (uintptr_t)kpm_vbase + paddr; 4753 4754 return ((caddr_t)vaddr); 4755 } 4756 4757 /*ARGSUSED*/ 4758 void 4759 hat_kpm_mapout_pfn(pfn_t pfn) 4760 { 4761 /* empty */ 4762 } 4763 4764 /* 4765 * Return the kpm virtual address for a specific pfn 4766 */ 4767 caddr_t 4768 hat_kpm_pfn2va(pfn_t pfn) 4769 { 4770 uintptr_t vaddr = (uintptr_t)kpm_vbase + mmu_ptob(pfn); 4771 4772 ASSERT(!pfn_is_foreign(pfn)); 4773 return ((caddr_t)vaddr); 4774 } 4775 4776 /* 4777 * Return the kpm virtual address for the page at pp. 4778 */ 4779 /*ARGSUSED*/ 4780 caddr_t 4781 hat_kpm_page2va(struct page *pp, int checkswap) 4782 { 4783 return (hat_kpm_pfn2va(pp->p_pagenum)); 4784 } 4785 4786 /* 4787 * Return the page frame number for the kpm virtual address vaddr. 4788 */ 4789 pfn_t 4790 hat_kpm_va2pfn(caddr_t vaddr) 4791 { 4792 pfn_t pfn; 4793 4794 ASSERT(IS_KPM_ADDR(vaddr)); 4795 4796 pfn = (pfn_t)btop(vaddr - kpm_vbase); 4797 4798 return (pfn); 4799 } 4800 4801 4802 /* 4803 * Return the page for the kpm virtual address vaddr. 4804 */ 4805 page_t * 4806 hat_kpm_vaddr2page(caddr_t vaddr) 4807 { 4808 pfn_t pfn; 4809 4810 ASSERT(IS_KPM_ADDR(vaddr)); 4811 4812 pfn = hat_kpm_va2pfn(vaddr); 4813 4814 return (page_numtopp_nolock(pfn)); 4815 } 4816 4817 /* 4818 * hat_kpm_fault is called from segkpm_fault when we take a page fault on a 4819 * KPM page. This should never happen on x86 4820 */ 4821 int 4822 hat_kpm_fault(hat_t *hat, caddr_t vaddr) 4823 { 4824 panic("pagefault in seg_kpm. hat: 0x%p vaddr: 0x%p", 4825 (void *)hat, (void *)vaddr); 4826 4827 return (0); 4828 } 4829 4830 /*ARGSUSED*/ 4831 void 4832 hat_kpm_mseghash_clear(int nentries) 4833 {} 4834 4835 /*ARGSUSED*/ 4836 void 4837 hat_kpm_mseghash_update(pgcnt_t inx, struct memseg *msp) 4838 {} 4839 4840 #ifndef __xpv 4841 void 4842 hat_kpm_addmem_mseg_update(struct memseg *msp, pgcnt_t nkpmpgs, 4843 offset_t kpm_pages_off) 4844 { 4845 _NOTE(ARGUNUSED(nkpmpgs, kpm_pages_off)); 4846 pfn_t base, end; 4847 4848 /* 4849 * kphysm_add_memory_dynamic() does not set nkpmpgs 4850 * when page_t memory is externally allocated. That 4851 * code must properly calculate nkpmpgs in all cases 4852 * if nkpmpgs needs to be used at some point. 4853 */ 4854 4855 /* 4856 * The meta (page_t) pages for dynamically added memory are allocated 4857 * either from the incoming memory itself or from existing memory. 4858 * In the former case the base of the incoming pages will be different 4859 * than the base of the dynamic segment so call memseg_get_start() to 4860 * get the actual base of the incoming memory for each case. 4861 */ 4862 4863 base = memseg_get_start(msp); 4864 end = msp->pages_end; 4865 4866 hat_devload(kas.a_hat, kpm_vbase + mmu_ptob(base), 4867 mmu_ptob(end - base), base, PROT_READ | PROT_WRITE, 4868 HAT_LOAD | HAT_LOAD_LOCK | HAT_LOAD_NOCONSIST); 4869 } 4870 4871 void 4872 hat_kpm_addmem_mseg_insert(struct memseg *msp) 4873 { 4874 _NOTE(ARGUNUSED(msp)); 4875 } 4876 4877 void 4878 hat_kpm_addmem_memsegs_update(struct memseg *msp) 4879 { 4880 _NOTE(ARGUNUSED(msp)); 4881 } 4882 4883 /* 4884 * Return end of metadata for an already setup memseg. 4885 * X86 platforms don't need per-page meta data to support kpm. 4886 */ 4887 caddr_t 4888 hat_kpm_mseg_reuse(struct memseg *msp) 4889 { 4890 return ((caddr_t)msp->epages); 4891 } 4892 4893 void 4894 hat_kpm_delmem_mseg_update(struct memseg *msp, struct memseg **mspp) 4895 { 4896 _NOTE(ARGUNUSED(msp, mspp)); 4897 ASSERT(0); 4898 } 4899 4900 void 4901 hat_kpm_split_mseg_update(struct memseg *msp, struct memseg **mspp, 4902 struct memseg *lo, struct memseg *mid, struct memseg *hi) 4903 { 4904 _NOTE(ARGUNUSED(msp, mspp, lo, mid, hi)); 4905 ASSERT(0); 4906 } 4907 4908 /* 4909 * Walk the memsegs chain, applying func to each memseg span. 4910 */ 4911 void 4912 hat_kpm_walk(void (*func)(void *, void *, size_t), void *arg) 4913 { 4914 pfn_t pbase, pend; 4915 void *base; 4916 size_t size; 4917 struct memseg *msp; 4918 4919 for (msp = memsegs; msp; msp = msp->next) { 4920 pbase = msp->pages_base; 4921 pend = msp->pages_end; 4922 base = ptob(pbase) + kpm_vbase; 4923 size = ptob(pend - pbase); 4924 func(arg, base, size); 4925 } 4926 } 4927 4928 #else /* __xpv */ 4929 4930 /* 4931 * There are specific Hypervisor calls to establish and remove mappings 4932 * to grant table references and the privcmd driver. We have to ensure 4933 * that a page table actually exists. 4934 */ 4935 void 4936 hat_prepare_mapping(hat_t *hat, caddr_t addr, uint64_t *pte_ma) 4937 { 4938 maddr_t base_ma; 4939 htable_t *ht; 4940 uint_t entry; 4941 4942 ASSERT(IS_P2ALIGNED((uintptr_t)addr, MMU_PAGESIZE)); 4943 XPV_DISALLOW_MIGRATE(); 4944 ht = htable_create(hat, (uintptr_t)addr, 0, NULL); 4945 4946 /* 4947 * if an address for pte_ma is passed in, return the MA of the pte 4948 * for this specific address. This address is only valid as long 4949 * as the htable stays locked. 4950 */ 4951 if (pte_ma != NULL) { 4952 entry = htable_va2entry((uintptr_t)addr, ht); 4953 base_ma = pa_to_ma(ptob(ht->ht_pfn)); 4954 *pte_ma = base_ma + (entry << mmu.pte_size_shift); 4955 } 4956 XPV_ALLOW_MIGRATE(); 4957 } 4958 4959 void 4960 hat_release_mapping(hat_t *hat, caddr_t addr) 4961 { 4962 htable_t *ht; 4963 4964 ASSERT(IS_P2ALIGNED((uintptr_t)addr, MMU_PAGESIZE)); 4965 XPV_DISALLOW_MIGRATE(); 4966 ht = htable_lookup(hat, (uintptr_t)addr, 0); 4967 ASSERT(ht != NULL); 4968 ASSERT(ht->ht_busy >= 2); 4969 htable_release(ht); 4970 htable_release(ht); 4971 XPV_ALLOW_MIGRATE(); 4972 } 4973 #endif /* __xpv */ 4974 4975 /* 4976 * Helper function to punch in a mapping that we need with the specified 4977 * attributes. 4978 */ 4979 void 4980 hati_cpu_punchin(cpu_t *cpu, uintptr_t va, uint_t attrs) 4981 { 4982 int ret; 4983 pfn_t pfn; 4984 hat_t *cpu_hat = cpu->cpu_hat_info->hci_user_hat; 4985 4986 ASSERT3S(kpti_enable, ==, 1); 4987 ASSERT3P(cpu_hat, !=, NULL); 4988 ASSERT3U(cpu_hat->hat_flags & HAT_PCP, ==, HAT_PCP); 4989 ASSERT3U(va & MMU_PAGEOFFSET, ==, 0); 4990 4991 pfn = hat_getpfnum(kas.a_hat, (caddr_t)va); 4992 VERIFY3U(pfn, !=, PFN_INVALID); 4993 4994 /* 4995 * We purposefully don't try to find the page_t. This means that this 4996 * will be marked PT_NOCONSIST; however, given that this is pretty much 4997 * a static mapping that we're using we should be relatively OK. 4998 */ 4999 attrs |= HAT_STORECACHING_OK; 5000 ret = hati_load_common(cpu_hat, va, NULL, attrs, 0, 0, pfn); 5001 VERIFY3S(ret, ==, 0); 5002 } 5003