xref: /illumos-gate/usr/src/uts/i86pc/sys/rootnex.h (revision 8380b3cc879a715dff53a0564cd5b1c4bf9ade62)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #ifndef	_SYS_ROOTNEX_H
27 #define	_SYS_ROOTNEX_H
28 
29 /*
30  * x86 root nexus implementation specific state
31  */
32 
33 #include <sys/types.h>
34 #include <sys/conf.h>
35 #include <sys/modctl.h>
36 #include <sys/sunddi.h>
37 
38 #ifdef	__cplusplus
39 extern "C" {
40 #endif
41 
42 
43 /* size of buffer used for ctlop reportdev */
44 #define	REPORTDEV_BUFSIZE	1024
45 
46 /* min and max interrupt vectors */
47 #define	VEC_MIN			1
48 #define	VEC_MAX			255
49 
50 /* atomic increment/decrement to keep track of outstanding binds, etc */
51 #define	ROOTNEX_PROF_INC(addr)		atomic_inc_64(addr)
52 #define	ROOTNEX_PROF_DEC(addr)		atomic_add_64(addr, -1)
53 
54 /* set in dmac_type to signify that this cookie uses the copy buffer */
55 #define	ROOTNEX_USES_COPYBUF		0x80000000
56 
57 /*
58  * integer or boolean property name and value. A few static rootnex properties
59  * are created during rootnex attach from an array of rootnex_intprop_t..
60  */
61 typedef struct rootnex_intprop_s {
62 	char	*prop_name;
63 	int	prop_value;
64 } rootnex_intprop_t;
65 
66 /*
67  * sgl related information which is visible to rootnex_get_sgl(). Trying to
68  * isolate get_sgl() as much as possible so it can be easily replaced.
69  */
70 typedef struct rootnex_sglinfo_s {
71 	/*
72 	 * These are passed into rootnex_get_sgl().
73 	 *
74 	 * si_min_addr - the minimum physical address
75 	 * si_max_addr - the maximum physical address
76 	 * si_max_cookie_size - the maximum size of a physically contiguous
77 	 *    piece of memory that we can handle in a sgl.
78 	 * si_segmask - segment mask to determine if we cross a segment boundary
79 	 * si_max_pages - max number of pages this sgl could occupy (which
80 	 *    is also the maximum number of cookies we might see.
81 	 */
82 	uint64_t	si_min_addr;
83 	uint64_t	si_max_addr;
84 	uint64_t	si_max_cookie_size;
85 	uint64_t	si_segmask;
86 	uint_t		si_max_pages;
87 
88 	/*
89 	 * these are returned by rootnex_get_sgl()
90 	 *
91 	 * si_copybuf_req - amount of copy buffer needed by the buffer.
92 	 * si_buf_offset - The initial offset into the first page of the buffer.
93 	 *    It's set in get sgl and used in the bind slow path to help
94 	 *    calculate the current page index & offset from the current offset
95 	 *    which is relative to the start of the buffer.
96 	 * si_asp - address space of buffer passed in.
97 	 * si_sgl_size - The actual number of cookies in the sgl. This does
98 	 *    not reflect and sharing that we might do on window boundaries.
99 	 */
100 	size_t		si_copybuf_req;
101 	off_t		si_buf_offset;
102 	struct as	*si_asp;
103 	uint_t		si_sgl_size;
104 } rootnex_sglinfo_t;
105 
106 /*
107  * When we have to use the copy buffer, we allocate one of these structures per
108  * buffer page to track which pages need the copy buffer, what the kernel
109  * virtual address is (which the device can't reach), and what the copy buffer
110  * virtual address is (where the device dma's to/from). For 32-bit kernels,
111  * since we can't use seg kpm, we also need to keep the page_t around and state
112  * if we've currently mapped in the page into KVA space for buffers which don't
113  * have kva already and when we have multiple windows because we used up all our
114  * copy buffer space.
115  */
116 typedef struct rootnex_pgmap_s {
117 	boolean_t	pm_uses_copybuf;
118 #if !defined(__amd64)
119 	boolean_t	pm_mapped;
120 	page_t		*pm_pp;
121 	caddr_t		pm_vaddr;
122 #endif
123 	caddr_t		pm_kaddr;
124 	caddr_t		pm_cbaddr;
125 } rootnex_pgmap_t;
126 
127 /*
128  * We only need to trim a buffer when we have multiple windows. Each window has
129  * trim state. We might have trimmed the end of the previous window, leaving the
130  * first cookie of this window trimmed[tr_trim_first] (which basically means we
131  * won't start with a new cookie), or we might need to trim the end of the
132  * current window [tr_trim_last] (which basically means we won't end with a
133  * complete cookie). We keep the same state for the first & last cookie in a
134  * window (a window can have one or more cookies). However, when we trim the
135  * last cookie, we keep a pointer to the last cookie in the trim state since we
136  * only need this info when we trim. The pointer to the first cookie in the
137  * window is in the window state since we need to know what the first cookie in
138  * the window is in various places.
139  *
140  * If we do trim a cookie, we save away the physical address and size of the
141  * cookie so that we can over write the cookie when we switch windows (the
142  * space for a cookie which is in two windows is shared between the windows.
143  * We keep around the same information for the last page in a window.
144  *
145  * if we happened to trim on a page that uses the copy buffer, and that page
146  * is also in the middle of a window boundary because we have filled up the
147  * copy buffer, we need to remember the copy buffer address for both windows
148  * since the same page will have different copy buffer addresses in the two
149  * windows. We need to due the same for kaddr in the 32-bit kernel since we
150  * have a limited kva space which we map to.
151  */
152 typedef struct rootnex_trim_s {
153 	boolean_t		tr_trim_first;
154 	boolean_t		tr_trim_last;
155 	ddi_dma_cookie_t	*tr_last_cookie;
156 	uint64_t		tr_first_paddr;
157 	uint64_t		tr_last_paddr;
158 	size_t			tr_first_size;
159 	size_t			tr_last_size;
160 
161 	boolean_t		tr_first_copybuf_win;
162 	boolean_t		tr_last_copybuf_win;
163 	uint_t			tr_first_pidx;
164 	uint_t			tr_last_pidx;
165 	caddr_t			tr_first_cbaddr;
166 	caddr_t			tr_last_cbaddr;
167 #if !defined(__amd64)
168 	caddr_t			tr_first_kaddr;
169 	caddr_t			tr_last_kaddr;
170 #endif
171 } rootnex_trim_t;
172 
173 /*
174  * per window state. A bound DMA handle can have multiple windows. Each window
175  * will have the following state. We track if this window needs to sync,
176  * the offset into the buffer where the window starts, the size of the window.
177  * a pointer to the first cookie in the window, the number of cookies in the
178  * window, and the trim state for the window. For the 32-bit kernel, we keep
179  * track of if we need to remap the copy buffer when we switch to a this window
180  */
181 typedef struct rootnex_window_s {
182 	boolean_t		wd_dosync;
183 	uint_t			wd_cookie_cnt;
184 	off_t			wd_offset;
185 	size_t			wd_size;
186 	ddi_dma_cookie_t	*wd_first_cookie;
187 	rootnex_trim_t		wd_trim;
188 #if !defined(__amd64)
189 	boolean_t		wd_remap_copybuf;
190 #endif
191 } rootnex_window_t;
192 
193 /* per dma handle private state */
194 typedef struct rootnex_dma_s {
195 	/*
196 	 * sgl related state used to build and describe the sgl.
197 	 *
198 	 * dp_partial_required - used in the bind slow path to identify if we
199 	 *    need to do a partial mapping or not.
200 	 * dp_trim_required - used in the bind slow path to identify if we
201 	 *    need to trim when switching to a new window. This should only be
202 	 *    set when partial is set.
203 	 * dp_granularity_power_2 - set in alloc handle and used in bind slow
204 	 *    path to determine if we & or % to calculate the trim.
205 	 * dp_dma - copy of dma "object" passed in during bind
206 	 * dp_maxxfer - trimmed dma_attr_maxxfer so that it is a whole
207 	 *    multiple of granularity
208 	 * dp_sglinfo - See rootnex_sglinfo_t above.
209 	 */
210 	boolean_t		dp_partial_required;
211 	boolean_t		dp_trim_required;
212 	boolean_t		dp_granularity_power_2;
213 	uint64_t		dp_maxxfer;
214 	ddi_dma_obj_t		dp_dma;
215 	rootnex_sglinfo_t	dp_sglinfo;
216 
217 	/*
218 	 * Copy buffer related state
219 	 *
220 	 * dp_copybuf_size - the actual size of the copy buffer that we are
221 	 *    using. This can be smaller that dp_copybuf_req, i.e. bind size >
222 	 *    max copy buffer size.
223 	 * dp_cbaddr - kernel address of copy buffer. Used to determine where
224 	 *    where to copy to/from.
225 	 * dp_cbsize - the "real" size returned from the copy buffer alloc.
226 	 *    Set in the copybuf alloc and used to free copybuf.
227 	 * dp_pgmap - page map used in sync to determine which pages in the
228 	 *    buffer use the copy buffer and what addresses to use to copy to/
229 	 *    from.
230 	 * dp_cb_remaping - status if this bind causes us to have to remap
231 	 *    the copybuf when switching to new windows. This is only used in
232 	 *    the 32-bit kernel since we use seg kpm in the 64-bit kernel for
233 	 *    this case.
234 	 * dp_kva - kernel heap arena vmem space for mapping to buffers which
235 	 *    we don't have a kernel VA to bcopy to/from. This is only used in
236 	 *    the 32-bit kernel since we use seg kpm in the 64-bit kernel for
237 	 *    this case.
238 	 */
239 	size_t			dp_copybuf_size;
240 	caddr_t			dp_cbaddr;
241 	size_t			dp_cbsize;
242 	rootnex_pgmap_t		*dp_pgmap;
243 #if !defined(__amd64)
244 	boolean_t		dp_cb_remaping;
245 	caddr_t			dp_kva;
246 #endif
247 
248 	/*
249 	 * window related state. The pointer to the window state array which may
250 	 * be a pointer into the pre allocated state, or we may have had to
251 	 * allocate the window array on the fly because it wouldn't fit. If
252 	 * we allocate it, we'll use dp_need_to_free_window and dp_window_size
253 	 * during cleanup. dp_current_win keeps track of the current window.
254 	 * dp_max_win is the maximum number of windows we could have.
255 	 */
256 	uint_t			dp_current_win;
257 	rootnex_window_t	*dp_window;
258 	boolean_t		dp_need_to_free_window;
259 	uint_t			dp_window_size;
260 	uint_t			dp_max_win;
261 
262 	/* dip of driver which "owns" handle. set to rdip in alloc_handle() */
263 	dev_info_t		*dp_dip;
264 
265 	/*
266 	 * dp_mutex and dp_inuse are only used to see if a driver is trying to
267 	 * bind to an already bound dma handle. dp_mutex only used for dp_inuse
268 	 */
269 	kmutex_t		dp_mutex;
270 	boolean_t		dp_inuse;
271 
272 	/*
273 	 * cookie related state. The pointer to the cookies (dp_cookies) may
274 	 * be a pointer into the pre allocated state, or we may have had to
275 	 * allocate the cookie array on the fly because it wouldn't fit. If
276 	 * we allocate it, we'll use dp_need_to_free_cookie and dp_cookie_size
277 	 * during cleanup. dp_current_cookie is only used in the obsoleted
278 	 * interfaces to determine when we've used up all the cookies in a
279 	 * window during nextseg()..
280 	 */
281 	size_t			dp_cookie_size;
282 	ddi_dma_cookie_t	*dp_cookies;
283 	boolean_t		dp_need_to_free_cookie;
284 	uint_t			dp_current_cookie; /* for obsoleted I/Fs */
285 
286 	/*
287 	 * pre allocated space for the bind state, allocated during alloc
288 	 * handle. For a lot of devices, this will save us from having to do
289 	 * kmem_alloc's during the bind most of the time. kmem_alloc's can be
290 	 * expensive on x86 when the cpu count goes up since xcalls are
291 	 * expensive on x86.
292 	 */
293 	uchar_t			*dp_prealloc_buffer;
294 
295 	/*
296 	 * intel iommu related state
297 	 * dvma_cookies saves the dvma allocated for this handler, it has the
298 	 * size of si_max_pages, set when bind handler and freed when unbind
299 	 */
300 	void			*dp_dvma_cookies;
301 } rootnex_dma_t;
302 
303 /*
304  * profile/performance counters. Most things will be dtrace probes, but there
305  * are a couple of things we want to keep track all the time. We track the
306  * total number of active handles and binds (i.e. an alloc without a free or
307  * a bind without an unbind) since rootnex attach. We also track the total
308  * number of binds which have failed since rootnex attach.
309  */
310 typedef enum {
311 	ROOTNEX_CNT_ACTIVE_HDLS = 0,
312 	ROOTNEX_CNT_ACTIVE_BINDS = 1,
313 	ROOTNEX_CNT_ALLOC_FAIL = 2,
314 	ROOTNEX_CNT_BIND_FAIL = 3,
315 	ROOTNEX_CNT_SYNC_FAIL = 4,
316 	ROOTNEX_CNT_GETWIN_FAIL = 5,
317 
318 	/* This one must be last */
319 	ROOTNEX_CNT_LAST
320 } rootnex_cnt_t;
321 
322 /*
323  * global driver state.
324  *   r_dmahdl_cache - dma_handle kmem_cache
325  *   r_dvma_call_list_id - ddi_set_callback() id
326  *   r_peekpoke_mutex - serialize peeks and pokes.
327  *   r_dip - rootnex dip
328  *   r_reserved_msg_printed - ctlops reserve message threshold
329  *   r_counters - profile/performance counters
330  *   r_intel_iommu_enabled - intel iommu enabled
331  */
332 typedef struct rootnex_state_s {
333 	uint_t			r_prealloc_cookies;
334 	uint_t			r_prealloc_size;
335 	kmem_cache_t		*r_dmahdl_cache;
336 	uintptr_t		r_dvma_call_list_id;
337 	kmutex_t		r_peekpoke_mutex;
338 	dev_info_t		*r_dip;
339 	ddi_iblock_cookie_t	r_err_ibc;
340 	boolean_t		r_reserved_msg_printed;
341 	uint64_t		r_counters[ROOTNEX_CNT_LAST];
342 	boolean_t		r_intel_iommu_enabled;
343 } rootnex_state_t;
344 
345 
346 #ifdef	__cplusplus
347 }
348 #endif
349 
350 #endif	/* _SYS_ROOTNEX_H */
351