1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 /* 29 * Facilities for cross-processor subroutine calls using "mailbox" interrupts. 30 * 31 */ 32 33 #include <sys/types.h> 34 #include <sys/param.h> 35 #include <sys/t_lock.h> 36 #include <sys/thread.h> 37 #include <sys/cpuvar.h> 38 #include <sys/x_call.h> 39 #include <sys/cpu.h> 40 #include <sys/psw.h> 41 #include <sys/sunddi.h> 42 #include <sys/debug.h> 43 #include <sys/systm.h> 44 #include <sys/archsystm.h> 45 #include <sys/machsystm.h> 46 #include <sys/mutex_impl.h> 47 #include <sys/traptrace.h> 48 49 50 static struct xc_mbox xc_mboxes[X_CALL_LEVELS]; 51 static kmutex_t xc_mbox_lock[X_CALL_LEVELS]; 52 static uint_t xc_xlat_xcptoipl[X_CALL_LEVELS] = { 53 XC_LO_PIL, 54 XC_MED_PIL, 55 XC_HI_PIL 56 }; 57 58 static void xc_common(xc_func_t, xc_arg_t, xc_arg_t, xc_arg_t, 59 int, cpuset_t, int); 60 61 static int xc_initialized = 0; 62 63 void 64 xc_init() 65 { 66 /* 67 * By making these mutexes type MUTEX_DRIVER, the ones below 68 * LOCK_LEVEL will be implemented as adaptive mutexes, and the 69 * ones above LOCK_LEVEL will be spin mutexes. 70 */ 71 mutex_init(&xc_mbox_lock[0], NULL, MUTEX_DRIVER, 72 (void *)ipltospl(XC_LO_PIL)); 73 mutex_init(&xc_mbox_lock[1], NULL, MUTEX_DRIVER, 74 (void *)ipltospl(XC_MED_PIL)); 75 mutex_init(&xc_mbox_lock[2], NULL, MUTEX_DRIVER, 76 (void *)ipltospl(XC_HI_PIL)); 77 78 xc_initialized = 1; 79 } 80 81 #if defined(TRAPTRACE) 82 83 /* 84 * When xc_traptrace is on, put x-call records into the trap trace buffer. 85 */ 86 int xc_traptrace; 87 88 void 89 xc_make_trap_trace_entry(uint8_t marker, int pri, ulong_t arg) 90 { 91 trap_trace_rec_t *ttr; 92 struct _xc_entry *xce; 93 94 if (xc_traptrace == 0) 95 return; 96 97 ttr = trap_trace_get_traceptr(TT_XCALL, 98 (ulong_t)caller(), (ulong_t)getfp()); 99 xce = &(ttr->ttr_info.xc_entry); 100 101 xce->xce_marker = marker; 102 xce->xce_pri = pri; 103 xce->xce_arg = arg; 104 105 if ((uint_t)pri < X_CALL_LEVELS) { 106 struct machcpu *mcpu = &CPU->cpu_m; 107 108 xce->xce_pend = mcpu->xc_pend[pri]; 109 xce->xce_ack = mcpu->xc_ack[pri]; 110 xce->xce_state = mcpu->xc_state[pri]; 111 xce->xce_retval = mcpu->xc_retval[pri]; 112 xce->xce_func = (uintptr_t)xc_mboxes[pri].func; 113 } 114 } 115 #endif 116 117 #define CAPTURE_CPU_ARG ~0UL 118 119 /* 120 * X-call interrupt service routine. 121 * 122 * arg == X_CALL_MEDPRI - capture cpus. 123 * 124 * We're protected against changing CPUs by being a high-priority interrupt. 125 */ 126 /*ARGSUSED*/ 127 uint_t 128 xc_serv(caddr_t arg1, caddr_t arg2) 129 { 130 int op; 131 int pri = (int)(uintptr_t)arg1; 132 struct cpu *cpup = CPU; 133 xc_arg_t arg2val; 134 135 XC_TRACE(TT_XC_SVC_BEGIN, pri, (ulong_t)arg2); 136 137 if (pri == X_CALL_MEDPRI) { 138 139 arg2val = xc_mboxes[X_CALL_MEDPRI].arg2; 140 141 if (arg2val != CAPTURE_CPU_ARG && 142 !CPU_IN_SET((cpuset_t)arg2val, cpup->cpu_id)) 143 goto unclaimed; 144 145 ASSERT(arg2val == CAPTURE_CPU_ARG); 146 147 if (cpup->cpu_m.xc_pend[pri] == 0) 148 goto unclaimed; 149 150 cpup->cpu_m.xc_pend[X_CALL_MEDPRI] = 0; 151 cpup->cpu_m.xc_ack[X_CALL_MEDPRI] = 1; 152 153 for (;;) { 154 if ((cpup->cpu_m.xc_state[X_CALL_MEDPRI] == XC_DONE) || 155 (cpup->cpu_m.xc_pend[X_CALL_MEDPRI])) 156 break; 157 SMT_PAUSE(); 158 } 159 XC_TRACE(TT_XC_SVC_END, pri, DDI_INTR_CLAIMED); 160 return (DDI_INTR_CLAIMED); 161 } 162 163 if (cpup->cpu_m.xc_pend[pri] == 0) 164 goto unclaimed; 165 166 cpup->cpu_m.xc_pend[pri] = 0; 167 op = cpup->cpu_m.xc_state[pri]; 168 169 /* 170 * Don't invoke a null function. 171 */ 172 if (xc_mboxes[pri].func != NULL) { 173 cpup->cpu_m.xc_retval[pri] = 174 (*xc_mboxes[pri].func)(xc_mboxes[pri].arg1, 175 xc_mboxes[pri].arg2, xc_mboxes[pri].arg3); 176 } else 177 cpup->cpu_m.xc_retval[pri] = 0; 178 179 /* 180 * Acknowledge that we have completed the x-call operation. 181 */ 182 cpup->cpu_m.xc_ack[pri] = 1; 183 184 if (op != XC_CALL_OP) { 185 /* 186 * for (op == XC_SYNC_OP) 187 * Wait for the initiator of the x-call to indicate 188 * that all CPUs involved can proceed. 189 */ 190 while (cpup->cpu_m.xc_wait[pri]) 191 SMT_PAUSE(); 192 193 while (cpup->cpu_m.xc_state[pri] != XC_DONE) 194 SMT_PAUSE(); 195 196 /* 197 * Acknowledge that we have received the directive to continue. 198 */ 199 ASSERT(cpup->cpu_m.xc_ack[pri] == 0); 200 cpup->cpu_m.xc_ack[pri] = 1; 201 } 202 203 XC_TRACE(TT_XC_SVC_END, pri, DDI_INTR_CLAIMED); 204 return (DDI_INTR_CLAIMED); 205 206 unclaimed: 207 XC_TRACE(TT_XC_SVC_END, pri, DDI_INTR_UNCLAIMED); 208 return (DDI_INTR_UNCLAIMED); 209 } 210 211 212 /* 213 * xc_do_call: 214 */ 215 static void 216 xc_do_call( 217 xc_arg_t arg1, 218 xc_arg_t arg2, 219 xc_arg_t arg3, 220 int pri, 221 cpuset_t set, 222 xc_func_t func, 223 int sync) 224 { 225 /* 226 * If the pri indicates a low priority lock (below LOCK_LEVEL), 227 * we must disable preemption to avoid migrating to another CPU 228 * during the call. 229 */ 230 if (pri == X_CALL_LOPRI) { 231 kpreempt_disable(); 232 } else { 233 pri = X_CALL_HIPRI; 234 } 235 236 /* always grab highest mutex to avoid deadlock */ 237 mutex_enter(&xc_mbox_lock[X_CALL_HIPRI]); 238 xc_common(func, arg1, arg2, arg3, pri, set, sync); 239 mutex_exit(&xc_mbox_lock[X_CALL_HIPRI]); 240 if (pri == X_CALL_LOPRI) 241 kpreempt_enable(); 242 } 243 244 245 /* 246 * xc_call: call specified function on all processors 247 * remotes may continue after service 248 * we wait here until everybody has completed. 249 */ 250 void 251 xc_call( 252 xc_arg_t arg1, 253 xc_arg_t arg2, 254 xc_arg_t arg3, 255 int pri, 256 cpuset_t set, 257 xc_func_t func) 258 { 259 xc_do_call(arg1, arg2, arg3, pri, set, func, 0); 260 } 261 262 /* 263 * xc_sync: call specified function on all processors 264 * after doing work, each remote waits until we let 265 * it continue; send the contiunue after everyone has 266 * informed us that they are done. 267 */ 268 void 269 xc_sync( 270 xc_arg_t arg1, 271 xc_arg_t arg2, 272 xc_arg_t arg3, 273 int pri, 274 cpuset_t set, 275 xc_func_t func) 276 { 277 xc_do_call(arg1, arg2, arg3, pri, set, func, 1); 278 } 279 280 /* 281 * The routines xc_capture_cpus and xc_release_cpus 282 * can be used in place of xc_sync in order to implement a critical 283 * code section where all CPUs in the system can be controlled. 284 * xc_capture_cpus is used to start the critical code section, and 285 * xc_release_cpus is used to end the critical code section. 286 */ 287 288 /* 289 * Capture the CPUs specified in order to start a x-call session, 290 * and/or to begin a critical section. 291 */ 292 void 293 xc_capture_cpus(cpuset_t set) 294 { 295 int cix; 296 int lcx; 297 struct cpu *cpup; 298 int i; 299 cpuset_t *cpus; 300 cpuset_t c; 301 302 CPU_STATS_ADDQ(CPU, sys, xcalls, 1); 303 304 /* 305 * Prevent deadlocks where we take an interrupt and are waiting 306 * for a mutex owned by one of the CPUs that is captured for 307 * the x-call, while that CPU is waiting for some x-call signal 308 * to be set by us. 309 * 310 * This mutex also prevents preemption, since it raises SPL above 311 * LOCK_LEVEL (it is a spin-type driver mutex). 312 */ 313 /* always grab highest mutex to avoid deadlock */ 314 mutex_enter(&xc_mbox_lock[X_CALL_HIPRI]); 315 lcx = CPU->cpu_id; /* now we're safe */ 316 317 ASSERT(CPU->cpu_flags & CPU_READY); 318 319 /* 320 * Wait for all cpus 321 */ 322 cpus = (cpuset_t *)&xc_mboxes[X_CALL_MEDPRI].arg2; 323 if (CPU_IN_SET(*cpus, CPU->cpu_id)) 324 CPUSET_ATOMIC_DEL(*cpus, CPU->cpu_id); 325 for (;;) { 326 c = *(volatile cpuset_t *)cpus; 327 CPUSET_AND(c, cpu_ready_set); 328 if (CPUSET_ISNULL(c)) 329 break; 330 SMT_PAUSE(); 331 } 332 333 /* 334 * Store the set of CPUs involved in the x-call session, so that 335 * xc_release_cpus will know what CPUs to act upon. 336 */ 337 xc_mboxes[X_CALL_MEDPRI].set = set; 338 xc_mboxes[X_CALL_MEDPRI].arg2 = CAPTURE_CPU_ARG; 339 340 /* 341 * Now capture each CPU in the set and cause it to go into a 342 * holding pattern. 343 */ 344 i = 0; 345 for (cix = 0; cix < NCPU; cix++) { 346 if ((cpup = cpu[cix]) == NULL || 347 (cpup->cpu_flags & CPU_READY) == 0) { 348 /* 349 * In case CPU wasn't ready, but becomes ready later, 350 * take the CPU out of the set now. 351 */ 352 CPUSET_DEL(set, cix); 353 continue; 354 } 355 if (cix != lcx && CPU_IN_SET(set, cix)) { 356 cpup->cpu_m.xc_ack[X_CALL_MEDPRI] = 0; 357 cpup->cpu_m.xc_state[X_CALL_MEDPRI] = XC_HOLD; 358 cpup->cpu_m.xc_pend[X_CALL_MEDPRI] = 1; 359 XC_TRACE(TT_XC_CAPTURE, X_CALL_MEDPRI, cix); 360 send_dirint(cix, XC_MED_PIL); 361 } 362 i++; 363 if (i >= ncpus) 364 break; 365 } 366 367 /* 368 * Wait here until all remote calls to acknowledge. 369 */ 370 i = 0; 371 for (cix = 0; cix < NCPU; cix++) { 372 if (lcx != cix && CPU_IN_SET(set, cix)) { 373 cpup = cpu[cix]; 374 while (cpup->cpu_m.xc_ack[X_CALL_MEDPRI] == 0) 375 SMT_PAUSE(); 376 cpup->cpu_m.xc_ack[X_CALL_MEDPRI] = 0; 377 } 378 i++; 379 if (i >= ncpus) 380 break; 381 } 382 383 } 384 385 /* 386 * Release the CPUs captured by xc_capture_cpus, thus terminating the 387 * x-call session and exiting the critical section. 388 */ 389 void 390 xc_release_cpus(void) 391 { 392 int cix; 393 int lcx = (int)(CPU->cpu_id); 394 cpuset_t set = xc_mboxes[X_CALL_MEDPRI].set; 395 struct cpu *cpup; 396 int i; 397 398 ASSERT(MUTEX_HELD(&xc_mbox_lock[X_CALL_HIPRI])); 399 400 /* 401 * Allow each CPU to exit its holding pattern. 402 */ 403 i = 0; 404 for (cix = 0; cix < NCPU; cix++) { 405 if ((cpup = cpu[cix]) == NULL) 406 continue; 407 if ((cpup->cpu_flags & CPU_READY) && 408 (cix != lcx) && CPU_IN_SET(set, cix)) { 409 /* 410 * Clear xc_ack since we will be waiting for it 411 * to be set again after we set XC_DONE. 412 */ 413 XC_TRACE(TT_XC_RELEASE, X_CALL_MEDPRI, cix); 414 cpup->cpu_m.xc_state[X_CALL_MEDPRI] = XC_DONE; 415 } 416 i++; 417 if (i >= ncpus) 418 break; 419 } 420 421 xc_mboxes[X_CALL_MEDPRI].arg2 = 0; 422 mutex_exit(&xc_mbox_lock[X_CALL_HIPRI]); 423 } 424 425 /* 426 * Common code to call a specified function on a set of processors. 427 * sync specifies what kind of waiting is done. 428 * -1 - no waiting, don't release remotes 429 * 0 - no waiting, release remotes immediately 430 * 1 - run service locally w/o waiting for remotes. 431 */ 432 static void 433 xc_common( 434 xc_func_t func, 435 xc_arg_t arg1, 436 xc_arg_t arg2, 437 xc_arg_t arg3, 438 int pri, 439 cpuset_t set, 440 int sync) 441 { 442 int cix; 443 int lcx = (int)(CPU->cpu_id); 444 struct cpu *cpup; 445 446 ASSERT(panicstr == NULL); 447 448 ASSERT(MUTEX_HELD(&xc_mbox_lock[X_CALL_HIPRI])); 449 ASSERT(CPU->cpu_flags & CPU_READY); 450 451 /* 452 * Set up the service definition mailbox. 453 */ 454 xc_mboxes[pri].func = func; 455 xc_mboxes[pri].arg1 = arg1; 456 xc_mboxes[pri].arg2 = arg2; 457 xc_mboxes[pri].arg3 = arg3; 458 459 /* 460 * Request service on all remote processors. 461 */ 462 for (cix = 0; cix < NCPU; cix++) { 463 if ((cpup = cpu[cix]) == NULL || 464 (cpup->cpu_flags & CPU_READY) == 0) { 465 /* 466 * In case the non-local CPU is not ready but becomes 467 * ready later, take it out of the set now. The local 468 * CPU needs to remain in the set to complete the 469 * requested function. 470 */ 471 if (cix != lcx) 472 CPUSET_DEL(set, cix); 473 } else if (cix != lcx && CPU_IN_SET(set, cix)) { 474 CPU_STATS_ADDQ(CPU, sys, xcalls, 1); 475 cpup->cpu_m.xc_ack[pri] = 0; 476 cpup->cpu_m.xc_wait[pri] = sync; 477 if (sync > 0) 478 cpup->cpu_m.xc_state[pri] = XC_SYNC_OP; 479 else 480 cpup->cpu_m.xc_state[pri] = XC_CALL_OP; 481 cpup->cpu_m.xc_pend[pri] = 1; 482 XC_TRACE(TT_XC_START, pri, cix); 483 send_dirint(cix, xc_xlat_xcptoipl[pri]); 484 } 485 } 486 487 /* 488 * Run service locally 489 */ 490 if (CPU_IN_SET(set, lcx) && func != NULL) { 491 XC_TRACE(TT_XC_START, pri, CPU->cpu_id); 492 CPU->cpu_m.xc_retval[pri] = (*func)(arg1, arg2, arg3); 493 } 494 495 if (sync == -1) 496 return; 497 498 /* 499 * Wait here until all remote calls acknowledge. 500 */ 501 for (cix = 0; cix < NCPU; cix++) { 502 if (lcx != cix && CPU_IN_SET(set, cix)) { 503 cpup = cpu[cix]; 504 while (cpup->cpu_m.xc_ack[pri] == 0) 505 SMT_PAUSE(); 506 XC_TRACE(TT_XC_WAIT, pri, cix); 507 cpup->cpu_m.xc_ack[pri] = 0; 508 } 509 } 510 511 if (sync == 0) 512 return; 513 514 /* 515 * Release any waiting CPUs 516 */ 517 for (cix = 0; cix < NCPU; cix++) { 518 if (lcx != cix && CPU_IN_SET(set, cix)) { 519 cpup = cpu[cix]; 520 if (cpup != NULL && (cpup->cpu_flags & CPU_READY)) { 521 cpup->cpu_m.xc_wait[pri] = 0; 522 cpup->cpu_m.xc_state[pri] = XC_DONE; 523 } 524 } 525 } 526 527 /* 528 * Wait for all CPUs to acknowledge completion before we continue. 529 * Without this check it's possible (on a VM or hyper-threaded CPUs 530 * or in the presence of Service Management Interrupts which can all 531 * cause delays) for the remote processor to still be waiting by 532 * the time xc_common() is next invoked with the sync flag set 533 * resulting in a deadlock. 534 */ 535 for (cix = 0; cix < NCPU; cix++) { 536 if (lcx != cix && CPU_IN_SET(set, cix)) { 537 cpup = cpu[cix]; 538 if (cpup != NULL && (cpup->cpu_flags & CPU_READY)) { 539 while (cpup->cpu_m.xc_ack[pri] == 0) 540 SMT_PAUSE(); 541 XC_TRACE(TT_XC_ACK, pri, cix); 542 cpup->cpu_m.xc_ack[pri] = 0; 543 } 544 } 545 } 546 } 547 548 /* 549 * xc_trycall: attempt to call specified function on all processors 550 * remotes may wait for a long time 551 * we continue immediately 552 */ 553 void 554 xc_trycall( 555 xc_arg_t arg1, 556 xc_arg_t arg2, 557 xc_arg_t arg3, 558 cpuset_t set, 559 xc_func_t func) 560 { 561 int save_kernel_preemption; 562 extern int IGNORE_KERNEL_PREEMPTION; 563 564 /* 565 * If we can grab the mutex, we'll do the cross-call. If not -- if 566 * someone else is already doing a cross-call -- we won't. 567 */ 568 569 save_kernel_preemption = IGNORE_KERNEL_PREEMPTION; 570 IGNORE_KERNEL_PREEMPTION = 1; 571 if (mutex_tryenter(&xc_mbox_lock[X_CALL_HIPRI])) { 572 xc_common(func, arg1, arg2, arg3, X_CALL_HIPRI, set, -1); 573 mutex_exit(&xc_mbox_lock[X_CALL_HIPRI]); 574 } 575 IGNORE_KERNEL_PREEMPTION = save_kernel_preemption; 576 } 577 578 /* 579 * Used by the debugger to cross-call the other CPUs, thus causing them to 580 * enter the debugger. We can't hold locks, so we spin on the cross-call 581 * lock until we get it. When we get it, we send the cross-call, and assume 582 * that we successfully stopped the other CPUs. 583 */ 584 void 585 kdi_xc_others(int this_cpu, void (*func)(void)) 586 { 587 extern int IGNORE_KERNEL_PREEMPTION; 588 int save_kernel_preemption; 589 mutex_impl_t *lp; 590 cpuset_t set; 591 int x; 592 593 if (!xc_initialized) 594 return; 595 596 CPUSET_ALL_BUT(set, this_cpu); 597 598 save_kernel_preemption = IGNORE_KERNEL_PREEMPTION; 599 IGNORE_KERNEL_PREEMPTION = 1; 600 601 lp = (mutex_impl_t *)&xc_mbox_lock[X_CALL_HIPRI]; 602 for (x = 0; x < 0x400000; x++) { 603 if (lock_spin_try(&lp->m_spin.m_spinlock)) { 604 xc_common((xc_func_t)func, 0, 0, 0, X_CALL_HIPRI, 605 set, -1); 606 lp->m_spin.m_spinlock = 0; /* XXX */ 607 break; 608 } 609 (void) xc_serv((caddr_t)X_CALL_MEDPRI, NULL); 610 } 611 IGNORE_KERNEL_PREEMPTION = save_kernel_preemption; 612 } 613