1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 /* Copyright (c) 1990, 1991 UNIX System Laboratories, Inc. */ 28 /* Copyright (c) 1984, 1986, 1987, 1988, 1989, 1990 AT&T */ 29 /* All Rights Reserved */ 30 /* */ 31 /* Copyright (c) 1987, 1988 Microsoft Corporation */ 32 /* All Rights Reserved */ 33 /* */ 34 35 #pragma ident "%Z%%M% %I% %E% SMI" 36 37 #include <sys/types.h> 38 #include <sys/sysmacros.h> 39 #include <sys/param.h> 40 #include <sys/signal.h> 41 #include <sys/systm.h> 42 #include <sys/user.h> 43 #include <sys/proc.h> 44 #include <sys/disp.h> 45 #include <sys/class.h> 46 #include <sys/core.h> 47 #include <sys/syscall.h> 48 #include <sys/cpuvar.h> 49 #include <sys/vm.h> 50 #include <sys/sysinfo.h> 51 #include <sys/fault.h> 52 #include <sys/stack.h> 53 #include <sys/psw.h> 54 #include <sys/regset.h> 55 #include <sys/fp.h> 56 #include <sys/trap.h> 57 #include <sys/kmem.h> 58 #include <sys/vtrace.h> 59 #include <sys/cmn_err.h> 60 #include <sys/prsystm.h> 61 #include <sys/mutex_impl.h> 62 #include <sys/machsystm.h> 63 #include <sys/archsystm.h> 64 #include <sys/sdt.h> 65 #include <sys/avintr.h> 66 #include <sys/kobj.h> 67 68 #include <vm/hat.h> 69 70 #include <vm/seg_kmem.h> 71 #include <vm/as.h> 72 #include <vm/seg.h> 73 #include <vm/hat_pte.h> 74 #include <vm/hat_i86.h> 75 76 #include <sys/procfs.h> 77 78 #include <sys/reboot.h> 79 #include <sys/debug.h> 80 #include <sys/debugreg.h> 81 #include <sys/modctl.h> 82 #include <sys/aio_impl.h> 83 #include <sys/tnf.h> 84 #include <sys/tnf_probe.h> 85 #include <sys/cred.h> 86 #include <sys/mman.h> 87 #include <sys/x86_archext.h> 88 #include <sys/copyops.h> 89 #include <c2/audit.h> 90 #include <sys/ftrace.h> 91 #include <sys/panic.h> 92 #include <sys/traptrace.h> 93 #include <sys/ontrap.h> 94 #include <sys/cpc_impl.h> 95 #include <sys/bootconf.h> 96 #include <sys/bootinfo.h> 97 #include <sys/promif.h> 98 #include <sys/mach_mmu.h> 99 100 #define USER 0x10000 /* user-mode flag added to trap type */ 101 102 static const char *trap_type_mnemonic[] = { 103 "de", "db", "2", "bp", 104 "of", "br", "ud", "nm", 105 "df", "9", "ts", "np", 106 "ss", "gp", "pf", "15", 107 "mf", "ac", "mc", "xf" 108 }; 109 110 static const char *trap_type[] = { 111 "Divide error", /* trap id 0 */ 112 "Debug", /* trap id 1 */ 113 "NMI interrupt", /* trap id 2 */ 114 "Breakpoint", /* trap id 3 */ 115 "Overflow", /* trap id 4 */ 116 "BOUND range exceeded", /* trap id 5 */ 117 "Invalid opcode", /* trap id 6 */ 118 "Device not available", /* trap id 7 */ 119 "Double fault", /* trap id 8 */ 120 "Coprocessor segment overrun", /* trap id 9 */ 121 "Invalid TSS", /* trap id 10 */ 122 "Segment not present", /* trap id 11 */ 123 "Stack segment fault", /* trap id 12 */ 124 "General protection", /* trap id 13 */ 125 "Page fault", /* trap id 14 */ 126 "Reserved", /* trap id 15 */ 127 "x87 floating point error", /* trap id 16 */ 128 "Alignment check", /* trap id 17 */ 129 "Machine check", /* trap id 18 */ 130 "SIMD floating point exception", /* trap id 19 */ 131 }; 132 133 #define TRAP_TYPES (sizeof (trap_type) / sizeof (trap_type[0])) 134 135 int tudebug = 0; 136 int tudebugbpt = 0; 137 int tudebugfpe = 0; 138 int tudebugsse = 0; 139 140 #if defined(TRAPDEBUG) || defined(lint) 141 int tdebug = 0; 142 int lodebug = 0; 143 int faultdebug = 0; 144 #else 145 #define tdebug 0 146 #define lodebug 0 147 #define faultdebug 0 148 #endif /* defined(TRAPDEBUG) || defined(lint) */ 149 150 #if defined(TRAPTRACE) 151 static void dump_ttrace(void); 152 #endif /* TRAPTRACE */ 153 static void dumpregs(struct regs *); 154 static void showregs(uint_t, struct regs *, caddr_t); 155 static void dump_tss(void); 156 static int kern_gpfault(struct regs *); 157 158 struct trap_info { 159 struct regs *trap_regs; 160 uint_t trap_type; 161 caddr_t trap_addr; 162 }; 163 164 /*ARGSUSED*/ 165 static int 166 die(uint_t type, struct regs *rp, caddr_t addr, processorid_t cpuid) 167 { 168 struct trap_info ti; 169 const char *trap_name, *trap_mnemonic; 170 171 if (type < TRAP_TYPES) { 172 trap_name = trap_type[type]; 173 trap_mnemonic = trap_type_mnemonic[type]; 174 } else { 175 trap_name = "trap"; 176 trap_mnemonic = "-"; 177 } 178 179 #ifdef TRAPTRACE 180 TRAPTRACE_FREEZE; 181 #endif 182 183 ti.trap_regs = rp; 184 ti.trap_type = type & ~USER; 185 ti.trap_addr = addr; 186 187 curthread->t_panic_trap = &ti; 188 189 if (type == T_PGFLT && addr < (caddr_t)KERNELBASE) { 190 panic("BAD TRAP: type=%x (#%s %s) rp=%p addr=%p " 191 "occurred in module \"%s\" due to %s", 192 type, trap_mnemonic, trap_name, (void *)rp, (void *)addr, 193 mod_containing_pc((caddr_t)rp->r_pc), 194 addr < (caddr_t)PAGESIZE ? 195 "a NULL pointer dereference" : 196 "an illegal access to a user address"); 197 } else 198 panic("BAD TRAP: type=%x (#%s %s) rp=%p addr=%p", 199 type, trap_mnemonic, trap_name, (void *)rp, (void *)addr); 200 return (0); 201 } 202 203 /* 204 * Rewrite the instruction at pc to be an int $T_SYSCALLINT instruction. 205 * 206 * int <vector> is two bytes: 0xCD <vector> 207 */ 208 209 #define SLOW_SCALL_SIZE 2 210 211 static int 212 rewrite_syscall(caddr_t pc) 213 { 214 uchar_t instr[SLOW_SCALL_SIZE] = { 0xCD, T_SYSCALLINT }; 215 216 if (uwrite(curthread->t_procp, instr, SLOW_SCALL_SIZE, 217 (uintptr_t)pc) != 0) 218 return (1); 219 220 return (0); 221 } 222 223 /* 224 * Test to see if the instruction at pc is sysenter or syscall. The second 225 * argument should be the x86 feature flag corresponding to the expected 226 * instruction. 227 * 228 * sysenter is two bytes: 0x0F 0x34 229 * syscall is two bytes: 0x0F 0x05 230 */ 231 232 #define FAST_SCALL_SIZE 2 233 234 static int 235 instr_is_fast_syscall(caddr_t pc, int which) 236 { 237 uchar_t instr[FAST_SCALL_SIZE]; 238 239 ASSERT(which == X86_SEP || which == X86_ASYSC); 240 241 if (copyin_nowatch(pc, (caddr_t)instr, FAST_SCALL_SIZE) != 0 || 242 instr[0] != 0x0F) 243 return (0); 244 245 if ((which == X86_SEP && instr[1] == 0x34) || 246 (which == X86_ASYSC && instr[1] == 0x05)) 247 return (1); 248 249 return (0); 250 } 251 252 /* 253 * Test to see if the instruction at pc is a system call instruction. 254 * 255 * The bytes of an lcall instruction used for the syscall trap. 256 * static uchar_t lcall[7] = { 0x9a, 0, 0, 0, 0, 0x7, 0 }; 257 * static uchar_t lcallalt[7] = { 0x9a, 0, 0, 0, 0, 0x27, 0 }; 258 */ 259 260 #define LCALLSIZE 7 261 262 static int 263 instr_is_syscall(caddr_t pc) 264 { 265 uchar_t instr[LCALLSIZE]; 266 267 if (copyin_nowatch(pc, (caddr_t)instr, LCALLSIZE) == 0 && 268 instr[0] == 0x9a && 269 instr[1] == 0 && 270 instr[2] == 0 && 271 instr[3] == 0 && 272 instr[4] == 0 && 273 (instr[5] == 0x7 || instr[5] == 0x27) && 274 instr[6] == 0) 275 return (1); 276 277 return (0); 278 } 279 280 #ifdef __amd64 281 282 /* 283 * In the first revisions of amd64 CPUs produced by AMD, the LAHF and 284 * SAHF instructions were not implemented in 64-bit mode. Later revisions 285 * did implement these instructions. An extension to the cpuid instruction 286 * was added to check for the capability of executing these instructions 287 * in 64-bit mode. 288 * 289 * Intel originally did not implement these instructions in EM64T either, 290 * but added them in later revisions. 291 * 292 * So, there are different chip revisions by both vendors out there that 293 * may or may not implement these instructions. The easy solution is to 294 * just always emulate these instructions on demand. 295 * 296 * SAHF == store %ah in the lower 8 bits of %rflags (opcode 0x9e) 297 * LAHF == load the lower 8 bits of %rflags into %ah (opcode 0x9f) 298 */ 299 300 #define LSAHFSIZE 1 301 302 static int 303 instr_is_lsahf(caddr_t pc, uchar_t *instr) 304 { 305 if (copyin_nowatch(pc, (caddr_t)instr, LSAHFSIZE) == 0 && 306 (*instr == 0x9e || *instr == 0x9f)) 307 return (1); 308 return (0); 309 } 310 311 /* 312 * Emulate the LAHF and SAHF instructions. The reference manuals define 313 * these instructions to always load/store bit 1 as a 1, and bits 3 and 5 314 * as a 0. The other, defined, bits are copied (the PS_ICC bits and PS_P). 315 * 316 * Note that %ah is bits 8-15 of %rax. 317 */ 318 static void 319 emulate_lsahf(struct regs *rp, uchar_t instr) 320 { 321 if (instr == 0x9e) { 322 /* sahf. Copy bits from %ah to flags. */ 323 rp->r_ps = (rp->r_ps & ~0xff) | 324 ((rp->r_rax >> 8) & PSL_LSAHFMASK) | PS_MB1; 325 } else { 326 /* lahf. Copy bits from flags to %ah. */ 327 rp->r_rax = (rp->r_rax & ~0xff00) | 328 (((rp->r_ps & PSL_LSAHFMASK) | PS_MB1) << 8); 329 } 330 rp->r_pc += LSAHFSIZE; 331 } 332 #endif /* __amd64 */ 333 334 #ifdef OPTERON_ERRATUM_91 335 336 /* 337 * Test to see if the instruction at pc is a prefetch instruction. 338 * 339 * The first byte of prefetch instructions is always 0x0F. 340 * The second byte is 0x18 for regular prefetch or 0x0D for AMD 3dnow prefetch. 341 * The third byte is between 0 and 3 inclusive. 342 */ 343 344 #define PREFETCHSIZE 3 345 346 static int 347 cmp_to_prefetch(uchar_t *p) 348 { 349 if (*p == 0x0F && (*(p+1) == 0x18 || *(p+1) == 0x0D) && *(p+2) <= 3) 350 return (1); 351 return (0); 352 } 353 354 static int 355 instr_is_prefetch(caddr_t pc) 356 { 357 uchar_t instr[PREFETCHSIZE]; 358 int error; 359 360 error = copyin_nowatch(pc, (caddr_t)instr, PREFETCHSIZE); 361 362 if (error == 0 && cmp_to_prefetch(instr)) 363 return (1); 364 return (0); 365 } 366 367 #endif /* OPTERON_ERRATUM_91 */ 368 369 /* 370 * Called from the trap handler when a processor trap occurs. 371 * 372 * Note: All user-level traps that might call stop() must exit 373 * trap() by 'goto out' or by falling through. 374 * Note Also: trap() is usually called with interrupts enabled, (PS_IE == 1) 375 * however, there are paths that arrive here with PS_IE == 0 so special care 376 * must be taken in those cases. 377 */ 378 void 379 trap(struct regs *rp, caddr_t addr, processorid_t cpuid) 380 { 381 kthread_t *ct = curthread; 382 enum seg_rw rw; 383 unsigned type; 384 proc_t *p = ttoproc(ct); 385 klwp_t *lwp = ttolwp(ct); 386 uintptr_t lofault; 387 faultcode_t pagefault(), res, errcode; 388 enum fault_type fault_type; 389 k_siginfo_t siginfo; 390 uint_t fault = 0; 391 int mstate; 392 int sicode = 0; 393 int watchcode; 394 int watchpage; 395 caddr_t vaddr; 396 int singlestep_twiddle; 397 size_t sz; 398 int ta; 399 #ifdef __amd64 400 uchar_t instr; 401 #endif 402 403 ASSERT_STACK_ALIGNED(); 404 405 type = rp->r_trapno; 406 CPU_STATS_ADDQ(CPU, sys, trap, 1); 407 ASSERT(ct->t_schedflag & TS_DONT_SWAP); 408 409 if (type == T_PGFLT) { 410 411 errcode = rp->r_err; 412 if (errcode & PF_ERR_WRITE) 413 rw = S_WRITE; 414 else if ((caddr_t)rp->r_pc == addr || 415 (mmu.pt_nx != 0 && (errcode & PF_ERR_EXEC))) 416 rw = S_EXEC; 417 else 418 rw = S_READ; 419 420 #if defined(__i386) 421 /* 422 * Pentium Pro work-around 423 */ 424 if ((errcode & PF_ERR_PROT) && pentiumpro_bug4046376) { 425 uint_t attr; 426 uint_t priv_violation; 427 uint_t access_violation; 428 429 if (hat_getattr(addr < (caddr_t)kernelbase ? 430 curproc->p_as->a_hat : kas.a_hat, addr, &attr) 431 == -1) { 432 errcode &= ~PF_ERR_PROT; 433 } else { 434 priv_violation = (errcode & PF_ERR_USER) && 435 !(attr & PROT_USER); 436 access_violation = (errcode & PF_ERR_WRITE) && 437 !(attr & PROT_WRITE); 438 if (!priv_violation && !access_violation) 439 goto cleanup; 440 } 441 } 442 #endif /* __i386 */ 443 444 } else if (type == T_SGLSTP && lwp != NULL) 445 lwp->lwp_pcb.pcb_drstat = (uintptr_t)addr; 446 447 if (tdebug) 448 showregs(type, rp, addr); 449 450 if (USERMODE(rp->r_cs)) { 451 /* 452 * Set up the current cred to use during this trap. u_cred 453 * no longer exists. t_cred is used instead. 454 * The current process credential applies to the thread for 455 * the entire trap. If trapping from the kernel, this 456 * should already be set up. 457 */ 458 if (ct->t_cred != p->p_cred) { 459 cred_t *oldcred = ct->t_cred; 460 /* 461 * DTrace accesses t_cred in probe context. t_cred 462 * must always be either NULL, or point to a valid, 463 * allocated cred structure. 464 */ 465 ct->t_cred = crgetcred(); 466 crfree(oldcred); 467 } 468 ASSERT(lwp != NULL); 469 type |= USER; 470 ASSERT(lwptoregs(lwp) == rp); 471 lwp->lwp_state = LWP_SYS; 472 473 switch (type) { 474 case T_PGFLT + USER: 475 if ((caddr_t)rp->r_pc == addr) 476 mstate = LMS_TFAULT; 477 else 478 mstate = LMS_DFAULT; 479 break; 480 default: 481 mstate = LMS_TRAP; 482 break; 483 } 484 /* Kernel probe */ 485 TNF_PROBE_1(thread_state, "thread", /* CSTYLED */, 486 tnf_microstate, state, mstate); 487 mstate = new_mstate(ct, mstate); 488 489 bzero(&siginfo, sizeof (siginfo)); 490 } 491 492 switch (type) { 493 case T_PGFLT + USER: 494 case T_SGLSTP: 495 case T_SGLSTP + USER: 496 case T_BPTFLT + USER: 497 break; 498 499 default: 500 FTRACE_2("trap(): type=0x%lx, regs=0x%lx", 501 (ulong_t)type, (ulong_t)rp); 502 break; 503 } 504 505 switch (type) { 506 default: 507 if (type & USER) { 508 if (tudebug) 509 showregs(type, rp, (caddr_t)0); 510 printf("trap: Unknown trap type %d in user mode\n", 511 type & ~USER); 512 siginfo.si_signo = SIGILL; 513 siginfo.si_code = ILL_ILLTRP; 514 siginfo.si_addr = (caddr_t)rp->r_pc; 515 siginfo.si_trapno = type & ~USER; 516 fault = FLTILL; 517 break; 518 } else { 519 (void) die(type, rp, addr, cpuid); 520 /*NOTREACHED*/ 521 } 522 523 case T_PGFLT: /* system page fault */ 524 /* 525 * If we're under on_trap() protection (see <sys/ontrap.h>), 526 * set ot_trap and longjmp back to the on_trap() call site. 527 */ 528 if ((ct->t_ontrap != NULL) && 529 (ct->t_ontrap->ot_prot & OT_DATA_ACCESS)) { 530 ct->t_ontrap->ot_trap |= OT_DATA_ACCESS; 531 longjmp(&curthread->t_ontrap->ot_jmpbuf); 532 } 533 534 /* 535 * See if we can handle as pagefault. Save lofault 536 * across this. Here we assume that an address 537 * less than KERNELBASE is a user fault. 538 * We can do this as copy.s routines verify that the 539 * starting address is less than KERNELBASE before 540 * starting and because we know that we always have 541 * KERNELBASE mapped as invalid to serve as a "barrier". 542 */ 543 lofault = ct->t_lofault; 544 ct->t_lofault = 0; 545 546 mstate = new_mstate(ct, LMS_KFAULT); 547 548 if (addr < (caddr_t)kernelbase) { 549 res = pagefault(addr, 550 (errcode & PF_ERR_PROT)? F_PROT: F_INVAL, rw, 0); 551 if (res == FC_NOMAP && 552 addr < p->p_usrstack && 553 grow(addr)) 554 res = 0; 555 } else { 556 res = pagefault(addr, 557 (errcode & PF_ERR_PROT)? F_PROT: F_INVAL, rw, 1); 558 } 559 (void) new_mstate(ct, mstate); 560 561 /* 562 * Restore lofault. If we resolved the fault, exit. 563 * If we didn't and lofault wasn't set, die. 564 */ 565 ct->t_lofault = lofault; 566 if (res == 0) 567 goto cleanup; 568 569 #if defined(OPTERON_ERRATUM_93) && defined(_LP64) 570 if (lofault == 0 && opteron_erratum_93) { 571 /* 572 * Workaround for Opteron Erratum 93. On return from 573 * a System Managment Interrupt at a HLT instruction 574 * the %rip might be truncated to a 32 bit value. 575 * BIOS is supposed to fix this, but some don't. 576 * If this occurs we simply restore the high order bits. 577 * The HLT instruction is 1 byte of 0xf4. 578 */ 579 uintptr_t rip = rp->r_pc; 580 581 if ((rip & 0xfffffffful) == rip) { 582 rip |= 0xfffffffful << 32; 583 if (hat_getpfnum(kas.a_hat, (caddr_t)rip) != 584 PFN_INVALID && 585 (*(uchar_t *)rip == 0xf4 || 586 *(uchar_t *)(rip - 1) == 0xf4)) { 587 rp->r_pc = rip; 588 goto cleanup; 589 } 590 } 591 } 592 #endif /* OPTERON_ERRATUM_93 && _LP64 */ 593 594 #ifdef OPTERON_ERRATUM_91 595 if (lofault == 0 && opteron_erratum_91) { 596 /* 597 * Workaround for Opteron Erratum 91. Prefetches may 598 * generate a page fault (they're not supposed to do 599 * that!). If this occurs we simply return back to the 600 * instruction. 601 */ 602 caddr_t pc = (caddr_t)rp->r_pc; 603 604 /* 605 * If the faulting PC is not mapped, this is a 606 * legitimate kernel page fault that must result in a 607 * panic. If the faulting PC is mapped, it could contain 608 * a prefetch instruction. Check for that here. 609 */ 610 if (hat_getpfnum(kas.a_hat, pc) != PFN_INVALID) { 611 if (cmp_to_prefetch((uchar_t *)pc)) { 612 #ifdef DEBUG 613 cmn_err(CE_WARN, "Opteron erratum 91 " 614 "occurred: kernel prefetch" 615 " at %p generated a page fault!", 616 (void *)rp->r_pc); 617 #endif /* DEBUG */ 618 goto cleanup; 619 } 620 } 621 (void) die(type, rp, addr, cpuid); 622 } 623 #endif /* OPTERON_ERRATUM_91 */ 624 625 if (lofault == 0) 626 (void) die(type, rp, addr, cpuid); 627 628 /* 629 * Cannot resolve fault. Return to lofault. 630 */ 631 if (lodebug) { 632 showregs(type, rp, addr); 633 traceregs(rp); 634 } 635 if (FC_CODE(res) == FC_OBJERR) 636 res = FC_ERRNO(res); 637 else 638 res = EFAULT; 639 rp->r_r0 = res; 640 rp->r_pc = ct->t_lofault; 641 goto cleanup; 642 643 case T_PGFLT + USER: /* user page fault */ 644 if (faultdebug) { 645 char *fault_str; 646 647 switch (rw) { 648 case S_READ: 649 fault_str = "read"; 650 break; 651 case S_WRITE: 652 fault_str = "write"; 653 break; 654 case S_EXEC: 655 fault_str = "exec"; 656 break; 657 default: 658 fault_str = ""; 659 break; 660 } 661 printf("user %s fault: addr=0x%lx errcode=0x%x\n", 662 fault_str, (uintptr_t)addr, errcode); 663 } 664 665 #if defined(OPTERON_ERRATUM_100) && defined(_LP64) 666 /* 667 * Workaround for AMD erratum 100 668 * 669 * A 32-bit process may receive a page fault on a non 670 * 32-bit address by mistake. The range of the faulting 671 * address will be 672 * 673 * 0xffffffff80000000 .. 0xffffffffffffffff or 674 * 0x0000000100000000 .. 0x000000017fffffff 675 * 676 * The fault is always due to an instruction fetch, however 677 * the value of r_pc should be correct (in 32 bit range), 678 * so we ignore the page fault on the bogus address. 679 */ 680 if (p->p_model == DATAMODEL_ILP32 && 681 (0xffffffff80000000 <= (uintptr_t)addr || 682 (0x100000000 <= (uintptr_t)addr && 683 (uintptr_t)addr <= 0x17fffffff))) { 684 if (!opteron_erratum_100) 685 panic("unexpected erratum #100"); 686 if (rp->r_pc <= 0xffffffff) 687 goto out; 688 } 689 #endif /* OPTERON_ERRATUM_100 && _LP64 */ 690 691 ASSERT(!(curthread->t_flag & T_WATCHPT)); 692 watchpage = (pr_watch_active(p) && pr_is_watchpage(addr, rw)); 693 #ifdef __i386 694 /* 695 * In 32-bit mode, the lcall (system call) instruction fetches 696 * one word from the stack, at the stack pointer, because of the 697 * way the call gate is constructed. This is a bogus 698 * read and should not be counted as a read watchpoint. 699 * We work around the problem here by testing to see if 700 * this situation applies and, if so, simply jumping to 701 * the code in locore.s that fields the system call trap. 702 * The registers on the stack are already set up properly 703 * due to the match between the call gate sequence and the 704 * trap gate sequence. We just have to adjust the pc. 705 */ 706 if (watchpage && addr == (caddr_t)rp->r_sp && 707 rw == S_READ && instr_is_syscall((caddr_t)rp->r_pc)) { 708 extern void watch_syscall(void); 709 710 rp->r_pc += LCALLSIZE; 711 watch_syscall(); /* never returns */ 712 /* NOTREACHED */ 713 } 714 #endif /* __i386 */ 715 vaddr = addr; 716 if (!watchpage || (sz = instr_size(rp, &vaddr, rw)) <= 0) 717 fault_type = (errcode & PF_ERR_PROT)? F_PROT: F_INVAL; 718 else if ((watchcode = pr_is_watchpoint(&vaddr, &ta, 719 sz, NULL, rw)) != 0) { 720 if (ta) { 721 do_watch_step(vaddr, sz, rw, 722 watchcode, rp->r_pc); 723 fault_type = F_INVAL; 724 } else { 725 bzero(&siginfo, sizeof (siginfo)); 726 siginfo.si_signo = SIGTRAP; 727 siginfo.si_code = watchcode; 728 siginfo.si_addr = vaddr; 729 siginfo.si_trapafter = 0; 730 siginfo.si_pc = (caddr_t)rp->r_pc; 731 fault = FLTWATCH; 732 break; 733 } 734 } else { 735 /* XXX pr_watch_emul() never succeeds (for now) */ 736 if (rw != S_EXEC && pr_watch_emul(rp, vaddr, rw)) 737 goto out; 738 do_watch_step(vaddr, sz, rw, 0, 0); 739 fault_type = F_INVAL; 740 } 741 742 res = pagefault(addr, fault_type, rw, 0); 743 744 /* 745 * If pagefault() succeeded, ok. 746 * Otherwise attempt to grow the stack. 747 */ 748 if (res == 0 || 749 (res == FC_NOMAP && 750 addr < p->p_usrstack && 751 grow(addr))) { 752 lwp->lwp_lastfault = FLTPAGE; 753 lwp->lwp_lastfaddr = addr; 754 if (prismember(&p->p_fltmask, FLTPAGE)) { 755 bzero(&siginfo, sizeof (siginfo)); 756 siginfo.si_addr = addr; 757 (void) stop_on_fault(FLTPAGE, &siginfo); 758 } 759 goto out; 760 } else if (res == FC_PROT && addr < p->p_usrstack && 761 (mmu.pt_nx != 0 && (errcode & PF_ERR_EXEC))) { 762 report_stack_exec(p, addr); 763 } 764 765 #ifdef OPTERON_ERRATUM_91 766 /* 767 * Workaround for Opteron Erratum 91. Prefetches may generate a 768 * page fault (they're not supposed to do that!). If this 769 * occurs we simply return back to the instruction. 770 * 771 * We rely on copyin to properly fault in the page with r_pc. 772 */ 773 if (opteron_erratum_91 && 774 addr != (caddr_t)rp->r_pc && 775 instr_is_prefetch((caddr_t)rp->r_pc)) { 776 #ifdef DEBUG 777 cmn_err(CE_WARN, "Opteron erratum 91 occurred: " 778 "prefetch at %p in pid %d generated a trap!", 779 (void *)rp->r_pc, p->p_pid); 780 #endif /* DEBUG */ 781 goto out; 782 } 783 #endif /* OPTERON_ERRATUM_91 */ 784 785 if (tudebug) 786 showregs(type, rp, addr); 787 /* 788 * In the case where both pagefault and grow fail, 789 * set the code to the value provided by pagefault. 790 * We map all errors returned from pagefault() to SIGSEGV. 791 */ 792 bzero(&siginfo, sizeof (siginfo)); 793 siginfo.si_addr = addr; 794 switch (FC_CODE(res)) { 795 case FC_HWERR: 796 case FC_NOSUPPORT: 797 siginfo.si_signo = SIGBUS; 798 siginfo.si_code = BUS_ADRERR; 799 fault = FLTACCESS; 800 break; 801 case FC_ALIGN: 802 siginfo.si_signo = SIGBUS; 803 siginfo.si_code = BUS_ADRALN; 804 fault = FLTACCESS; 805 break; 806 case FC_OBJERR: 807 if ((siginfo.si_errno = FC_ERRNO(res)) != EINTR) { 808 siginfo.si_signo = SIGBUS; 809 siginfo.si_code = BUS_OBJERR; 810 fault = FLTACCESS; 811 } 812 break; 813 default: /* FC_NOMAP or FC_PROT */ 814 siginfo.si_signo = SIGSEGV; 815 siginfo.si_code = 816 (res == FC_NOMAP)? SEGV_MAPERR : SEGV_ACCERR; 817 fault = FLTBOUNDS; 818 break; 819 } 820 break; 821 822 case T_ILLINST + USER: /* invalid opcode fault */ 823 /* 824 * If the syscall instruction is disabled due to LDT usage, a 825 * user program that attempts to execute it will trigger a #ud 826 * trap. Check for that case here. If this occurs on a CPU which 827 * doesn't even support syscall, the result of all of this will 828 * be to emulate that particular instruction. 829 */ 830 if (p->p_ldt != NULL && 831 instr_is_fast_syscall((caddr_t)rp->r_pc, X86_ASYSC)) { 832 if (rewrite_syscall((caddr_t)rp->r_pc) == 0) 833 goto out; 834 #ifdef DEBUG 835 else 836 cmn_err(CE_WARN, "failed to rewrite syscall " 837 "instruction in process %d", 838 curthread->t_procp->p_pid); 839 #endif /* DEBUG */ 840 } 841 842 #ifdef __amd64 843 /* 844 * Emulate the LAHF and SAHF instructions if needed. 845 * See the instr_is_lsahf function for details. 846 */ 847 if (p->p_model == DATAMODEL_LP64 && 848 instr_is_lsahf((caddr_t)rp->r_pc, &instr)) { 849 emulate_lsahf(rp, instr); 850 goto out; 851 } 852 #endif 853 854 /*FALLTHROUGH*/ 855 856 if (tudebug) 857 showregs(type, rp, (caddr_t)0); 858 siginfo.si_signo = SIGILL; 859 siginfo.si_code = ILL_ILLOPC; 860 siginfo.si_addr = (caddr_t)rp->r_pc; 861 fault = FLTILL; 862 break; 863 864 case T_ZERODIV + USER: /* integer divide by zero */ 865 if (tudebug && tudebugfpe) 866 showregs(type, rp, (caddr_t)0); 867 siginfo.si_signo = SIGFPE; 868 siginfo.si_code = FPE_INTDIV; 869 siginfo.si_addr = (caddr_t)rp->r_pc; 870 fault = FLTIZDIV; 871 break; 872 873 case T_OVFLW + USER: /* integer overflow */ 874 if (tudebug && tudebugfpe) 875 showregs(type, rp, (caddr_t)0); 876 siginfo.si_signo = SIGFPE; 877 siginfo.si_code = FPE_INTOVF; 878 siginfo.si_addr = (caddr_t)rp->r_pc; 879 fault = FLTIOVF; 880 break; 881 882 case T_NOEXTFLT + USER: /* math coprocessor not available */ 883 if (tudebug && tudebugfpe) 884 showregs(type, rp, addr); 885 if (fpnoextflt(rp)) { 886 siginfo.si_signo = SIGFPE; 887 siginfo.si_code = ILL_ILLOPC; 888 siginfo.si_addr = (caddr_t)rp->r_pc; 889 fault = FLTFPE; 890 } 891 break; 892 893 case T_EXTOVRFLT: /* extension overrun fault */ 894 /* check if we took a kernel trap on behalf of user */ 895 { 896 extern void ndptrap_frstor(void); 897 if (rp->r_pc != (uintptr_t)ndptrap_frstor) 898 (void) die(type, rp, addr, cpuid); 899 type |= USER; 900 } 901 /*FALLTHROUGH*/ 902 case T_EXTOVRFLT + USER: /* extension overrun fault */ 903 if (tudebug && tudebugfpe) 904 showregs(type, rp, addr); 905 if (fpextovrflt(rp)) { 906 siginfo.si_signo = SIGSEGV; 907 siginfo.si_code = SEGV_MAPERR; 908 siginfo.si_addr = (caddr_t)rp->r_pc; 909 fault = FLTBOUNDS; 910 } 911 break; 912 913 case T_EXTERRFLT: /* x87 floating point exception pending */ 914 /* check if we took a kernel trap on behalf of user */ 915 { 916 extern void ndptrap_frstor(void); 917 if (rp->r_pc != (uintptr_t)ndptrap_frstor) 918 (void) die(type, rp, addr, cpuid); 919 type |= USER; 920 } 921 /*FALLTHROUGH*/ 922 923 case T_EXTERRFLT + USER: /* x87 floating point exception pending */ 924 if (tudebug && tudebugfpe) 925 showregs(type, rp, addr); 926 if (sicode = fpexterrflt(rp)) { 927 siginfo.si_signo = SIGFPE; 928 siginfo.si_code = sicode; 929 siginfo.si_addr = (caddr_t)rp->r_pc; 930 fault = FLTFPE; 931 } 932 break; 933 934 case T_SIMDFPE + USER: /* SSE and SSE2 exceptions */ 935 if (tudebug && tudebugsse) 936 showregs(type, rp, addr); 937 if ((x86_feature & (X86_SSE|X86_SSE2)) == 0) { 938 /* 939 * There are rumours that some user instructions 940 * on older CPUs can cause this trap to occur; in 941 * which case send a SIGILL instead of a SIGFPE. 942 */ 943 siginfo.si_signo = SIGILL; 944 siginfo.si_code = ILL_ILLTRP; 945 siginfo.si_addr = (caddr_t)rp->r_pc; 946 siginfo.si_trapno = type & ~USER; 947 fault = FLTILL; 948 } else if ((sicode = fpsimderrflt(rp)) != 0) { 949 siginfo.si_signo = SIGFPE; 950 siginfo.si_code = sicode; 951 siginfo.si_addr = (caddr_t)rp->r_pc; 952 fault = FLTFPE; 953 } 954 break; 955 956 case T_BPTFLT: /* breakpoint trap */ 957 /* 958 * Kernel breakpoint traps should only happen when kmdb is 959 * active, and even then, it'll have interposed on the IDT, so 960 * control won't get here. If it does, we've hit a breakpoint 961 * without the debugger, which is very strange, and very 962 * fatal. 963 */ 964 if (tudebug && tudebugbpt) 965 showregs(type, rp, (caddr_t)0); 966 967 (void) die(type, rp, addr, cpuid); 968 break; 969 970 case T_SGLSTP: /* single step/hw breakpoint exception */ 971 972 /* Now evaluate how we got here */ 973 if (lwp != NULL && (lwp->lwp_pcb.pcb_drstat & DR_SINGLESTEP)) { 974 /* 975 * i386 single-steps even through lcalls which 976 * change the privilege level. So we take a trap at 977 * the first instruction in privileged mode. 978 * 979 * Set a flag to indicate that upon completion of 980 * the system call, deal with the single-step trap. 981 * 982 * The same thing happens for sysenter, too. 983 */ 984 singlestep_twiddle = 0; 985 if (rp->r_pc == (uintptr_t)sys_sysenter || 986 rp->r_pc == (uintptr_t)brand_sys_sysenter) { 987 singlestep_twiddle = 1; 988 #if defined(__amd64) 989 /* 990 * Since we are already on the kernel's 991 * %gs, on 64-bit systems the sysenter case 992 * needs to adjust the pc to avoid 993 * executing the swapgs instruction at the 994 * top of the handler. 995 */ 996 if (rp->r_pc == (uintptr_t)sys_sysenter) 997 rp->r_pc = (uintptr_t) 998 _sys_sysenter_post_swapgs; 999 else 1000 rp->r_pc = (uintptr_t) 1001 _brand_sys_sysenter_post_swapgs; 1002 #endif 1003 } 1004 #if defined(__i386) 1005 else if (rp->r_pc == (uintptr_t)sys_call || 1006 rp->r_pc == (uintptr_t)brand_sys_call) { 1007 singlestep_twiddle = 1; 1008 } 1009 #endif 1010 else { 1011 /* not on sysenter/syscall; uregs available */ 1012 if (tudebug && tudebugbpt) 1013 showregs(type, rp, (caddr_t)0); 1014 } 1015 if (singlestep_twiddle) { 1016 rp->r_ps &= ~PS_T; /* turn off trace */ 1017 lwp->lwp_pcb.pcb_flags |= DEBUG_PENDING; 1018 ct->t_post_sys = 1; 1019 aston(curthread); 1020 goto cleanup; 1021 } 1022 } 1023 /* XXX - needs review on debugger interface? */ 1024 if (boothowto & RB_DEBUG) 1025 debug_enter((char *)NULL); 1026 else 1027 (void) die(type, rp, addr, cpuid); 1028 break; 1029 1030 case T_NMIFLT: /* NMI interrupt */ 1031 printf("Unexpected NMI in system mode\n"); 1032 goto cleanup; 1033 1034 case T_NMIFLT + USER: /* NMI interrupt */ 1035 printf("Unexpected NMI in user mode\n"); 1036 break; 1037 1038 case T_GPFLT: /* general protection violation */ 1039 #if defined(__amd64) 1040 /* 1041 * On amd64, we can get a #gp from referencing addresses 1042 * in the virtual address hole e.g. from a copyin 1043 * or in update_sregs while updating user semgent registers. 1044 */ 1045 1046 /* 1047 * If we're under on_trap() protection (see <sys/ontrap.h>), 1048 * set ot_trap and longjmp back to the on_trap() call site. 1049 */ 1050 if (ct->t_ontrap != NULL) { 1051 if (ct->t_ontrap->ot_prot & OT_DATA_ACCESS) 1052 ct->t_ontrap->ot_trap |= OT_DATA_ACCESS; 1053 1054 if (ct->t_ontrap->ot_prot & OT_SEGMENT_ACCESS) 1055 ct->t_ontrap->ot_trap |= OT_SEGMENT_ACCESS; 1056 longjmp(&curthread->t_ontrap->ot_jmpbuf); 1057 } 1058 1059 /* 1060 * If we're under lofault protection (copyin etc.), 1061 * longjmp back to lofault with an EFAULT. 1062 */ 1063 if (ct->t_lofault) { 1064 /* 1065 * Fault is not resolvable, so just return to lofault 1066 */ 1067 if (lodebug) { 1068 showregs(type, rp, addr); 1069 traceregs(rp); 1070 } 1071 rp->r_r0 = EFAULT; 1072 rp->r_pc = ct->t_lofault; 1073 goto cleanup; 1074 } 1075 /*FALLTHROUGH*/ 1076 #endif 1077 case T_SEGFLT: /* segment not present fault */ 1078 #if defined(__amd64) 1079 /* 1080 * One example of this is #NP in update_sregs while 1081 * attempting to update a user segment register 1082 * that points to a descriptor that is marked not 1083 * present. 1084 */ 1085 if (ct->t_ontrap != NULL && 1086 ct->t_ontrap->ot_prot & OT_SEGMENT_ACCESS) { 1087 ct->t_ontrap->ot_trap |= OT_SEGMENT_ACCESS; 1088 longjmp(&curthread->t_ontrap->ot_jmpbuf); 1089 } 1090 #endif /* __amd64 */ 1091 /*FALLTHROUGH*/ 1092 case T_STKFLT: /* stack fault */ 1093 case T_TSSFLT: /* invalid TSS fault */ 1094 if (tudebug) 1095 showregs(type, rp, (caddr_t)0); 1096 if (kern_gpfault(rp)) 1097 (void) die(type, rp, addr, cpuid); 1098 goto cleanup; 1099 /*FALLTHROUGH*/ 1100 1101 /* 1102 * ONLY 32-bit PROCESSES can USE a PRIVATE LDT! 64-bit apps 1103 * should have no need for them, so we put a stop to it here. 1104 * 1105 * So: not-present fault is ONLY valid for 32-bit processes with 1106 * a private LDT trying to do a system call. Emulate it. 1107 * 1108 * #gp fault is ONLY valid for 32-bit processes also, which DO NOT 1109 * have a private LDT, and are trying to do a system call. Emulate it. 1110 */ 1111 1112 case T_SEGFLT + USER: /* segment not present fault */ 1113 case T_GPFLT + USER: /* general protection violation */ 1114 #ifdef _SYSCALL32_IMPL 1115 if (p->p_model != DATAMODEL_NATIVE) { 1116 #endif /* _SYSCALL32_IMPL */ 1117 if (instr_is_syscall((caddr_t)rp->r_pc)) { 1118 if (type == T_SEGFLT + USER) 1119 ASSERT(p->p_ldt != NULL); 1120 1121 if ((p->p_ldt == NULL && type == T_GPFLT + USER) || 1122 type == T_SEGFLT + USER) { 1123 1124 /* 1125 * The user attempted a system call via the obsolete 1126 * call gate mechanism. Because the process doesn't have 1127 * an LDT (i.e. the ldtr contains 0), a #gp results. 1128 * Emulate the syscall here, just as we do above for a 1129 * #np trap. 1130 */ 1131 1132 /* 1133 * Since this is a not-present trap, rp->r_pc points to 1134 * the trapping lcall instruction. We need to bump it 1135 * to the next insn so the app can continue on. 1136 */ 1137 rp->r_pc += LCALLSIZE; 1138 lwp->lwp_regs = rp; 1139 1140 /* 1141 * Normally the microstate of the LWP is forced back to 1142 * LMS_USER by the syscall handlers. Emulate that 1143 * behavior here. 1144 */ 1145 mstate = LMS_USER; 1146 1147 dosyscall(); 1148 goto out; 1149 } 1150 } 1151 #ifdef _SYSCALL32_IMPL 1152 } 1153 #endif /* _SYSCALL32_IMPL */ 1154 /* 1155 * If the current process is using a private LDT and the 1156 * trapping instruction is sysenter, the sysenter instruction 1157 * has been disabled on the CPU because it destroys segment 1158 * registers. If this is the case, rewrite the instruction to 1159 * be a safe system call and retry it. If this occurs on a CPU 1160 * which doesn't even support sysenter, the result of all of 1161 * this will be to emulate that particular instruction. 1162 */ 1163 if (p->p_ldt != NULL && 1164 instr_is_fast_syscall((caddr_t)rp->r_pc, X86_SEP)) { 1165 if (rewrite_syscall((caddr_t)rp->r_pc) == 0) 1166 goto out; 1167 #ifdef DEBUG 1168 else 1169 cmn_err(CE_WARN, "failed to rewrite sysenter " 1170 "instruction in process %d", 1171 curthread->t_procp->p_pid); 1172 #endif /* DEBUG */ 1173 } 1174 /*FALLTHROUGH*/ 1175 1176 case T_BOUNDFLT + USER: /* bound fault */ 1177 case T_STKFLT + USER: /* stack fault */ 1178 case T_TSSFLT + USER: /* invalid TSS fault */ 1179 if (tudebug) 1180 showregs(type, rp, (caddr_t)0); 1181 siginfo.si_signo = SIGSEGV; 1182 siginfo.si_code = SEGV_MAPERR; 1183 siginfo.si_addr = (caddr_t)rp->r_pc; 1184 fault = FLTBOUNDS; 1185 break; 1186 1187 case T_ALIGNMENT + USER: /* user alignment error (486) */ 1188 if (tudebug) 1189 showregs(type, rp, (caddr_t)0); 1190 bzero(&siginfo, sizeof (siginfo)); 1191 siginfo.si_signo = SIGBUS; 1192 siginfo.si_code = BUS_ADRALN; 1193 siginfo.si_addr = (caddr_t)rp->r_pc; 1194 fault = FLTACCESS; 1195 break; 1196 1197 case T_SGLSTP + USER: /* single step/hw breakpoint exception */ 1198 if (tudebug && tudebugbpt) 1199 showregs(type, rp, (caddr_t)0); 1200 1201 /* Was it single-stepping? */ 1202 if (lwp->lwp_pcb.pcb_drstat & DR_SINGLESTEP) { 1203 pcb_t *pcb = &lwp->lwp_pcb; 1204 1205 rp->r_ps &= ~PS_T; 1206 /* 1207 * If both NORMAL_STEP and WATCH_STEP are in effect, 1208 * give precedence to WATCH_STEP. If neither is set, 1209 * user must have set the PS_T bit in %efl; treat this 1210 * as NORMAL_STEP. 1211 */ 1212 if ((fault = undo_watch_step(&siginfo)) == 0 && 1213 ((pcb->pcb_flags & NORMAL_STEP) || 1214 !(pcb->pcb_flags & WATCH_STEP))) { 1215 siginfo.si_signo = SIGTRAP; 1216 siginfo.si_code = TRAP_TRACE; 1217 siginfo.si_addr = (caddr_t)rp->r_pc; 1218 fault = FLTTRACE; 1219 } 1220 pcb->pcb_flags &= ~(NORMAL_STEP|WATCH_STEP); 1221 } else { 1222 cmn_err(CE_WARN, 1223 "Unexpected INT 1 in user mode, dr6=%lx", 1224 lwp->lwp_pcb.pcb_drstat); 1225 } 1226 break; 1227 1228 case T_BPTFLT + USER: /* breakpoint trap */ 1229 if (tudebug && tudebugbpt) 1230 showregs(type, rp, (caddr_t)0); 1231 /* 1232 * int 3 (the breakpoint instruction) leaves the pc referring 1233 * to the address one byte after the breakpointed address. 1234 * If the P_PR_BPTADJ flag has been set via /proc, We adjust 1235 * it back so it refers to the breakpointed address. 1236 */ 1237 if (p->p_proc_flag & P_PR_BPTADJ) 1238 rp->r_pc--; 1239 siginfo.si_signo = SIGTRAP; 1240 siginfo.si_code = TRAP_BRKPT; 1241 siginfo.si_addr = (caddr_t)rp->r_pc; 1242 fault = FLTBPT; 1243 break; 1244 1245 case T_AST: 1246 /* 1247 * This occurs only after the cs register has been made to 1248 * look like a kernel selector, either through debugging or 1249 * possibly by functions like setcontext(). The thread is 1250 * about to cause a general protection fault at common_iret() 1251 * in locore. We let that happen immediately instead of 1252 * doing the T_AST processing. 1253 */ 1254 goto cleanup; 1255 1256 case T_AST + USER: /* profiling or resched pseudo trap */ 1257 if (lwp->lwp_pcb.pcb_flags & CPC_OVERFLOW) { 1258 lwp->lwp_pcb.pcb_flags &= ~CPC_OVERFLOW; 1259 if (kcpc_overflow_ast()) { 1260 /* 1261 * Signal performance counter overflow 1262 */ 1263 if (tudebug) 1264 showregs(type, rp, (caddr_t)0); 1265 bzero(&siginfo, sizeof (siginfo)); 1266 siginfo.si_signo = SIGEMT; 1267 siginfo.si_code = EMT_CPCOVF; 1268 siginfo.si_addr = (caddr_t)rp->r_pc; 1269 fault = FLTCPCOVF; 1270 } 1271 } 1272 break; 1273 } 1274 1275 /* 1276 * We can't get here from a system trap 1277 */ 1278 ASSERT(type & USER); 1279 1280 if (fault) { 1281 /* 1282 * Remember the fault and fault adddress 1283 * for real-time (SIGPROF) profiling. 1284 */ 1285 lwp->lwp_lastfault = fault; 1286 lwp->lwp_lastfaddr = siginfo.si_addr; 1287 1288 DTRACE_PROC2(fault, int, fault, ksiginfo_t *, &siginfo); 1289 1290 /* 1291 * If a debugger has declared this fault to be an 1292 * event of interest, stop the lwp. Otherwise just 1293 * deliver the associated signal. 1294 */ 1295 if (siginfo.si_signo != SIGKILL && 1296 prismember(&p->p_fltmask, fault) && 1297 stop_on_fault(fault, &siginfo) == 0) 1298 siginfo.si_signo = 0; 1299 } 1300 1301 if (siginfo.si_signo) 1302 trapsig(&siginfo, (fault == FLTCPCOVF)? 0 : 1); 1303 1304 if (lwp->lwp_oweupc) 1305 profil_tick(rp->r_pc); 1306 1307 if (ct->t_astflag | ct->t_sig_check) { 1308 /* 1309 * Turn off the AST flag before checking all the conditions that 1310 * may have caused an AST. This flag is on whenever a signal or 1311 * unusual condition should be handled after the next trap or 1312 * syscall. 1313 */ 1314 astoff(ct); 1315 /* 1316 * If a single-step trap occurred on a syscall (see above) 1317 * recognize it now. Do this before checking for signals 1318 * because deferred_singlestep_trap() may generate a SIGTRAP to 1319 * the LWP or may otherwise mark the LWP to call issig(FORREAL). 1320 */ 1321 if (lwp->lwp_pcb.pcb_flags & DEBUG_PENDING) 1322 deferred_singlestep_trap((caddr_t)rp->r_pc); 1323 1324 ct->t_sig_check = 0; 1325 1326 mutex_enter(&p->p_lock); 1327 if (curthread->t_proc_flag & TP_CHANGEBIND) { 1328 timer_lwpbind(); 1329 curthread->t_proc_flag &= ~TP_CHANGEBIND; 1330 } 1331 mutex_exit(&p->p_lock); 1332 1333 /* 1334 * for kaio requests that are on the per-process poll queue, 1335 * aiop->aio_pollq, they're AIO_POLL bit is set, the kernel 1336 * should copyout their result_t to user memory. by copying 1337 * out the result_t, the user can poll on memory waiting 1338 * for the kaio request to complete. 1339 */ 1340 if (p->p_aio) 1341 aio_cleanup(0); 1342 /* 1343 * If this LWP was asked to hold, call holdlwp(), which will 1344 * stop. holdlwps() sets this up and calls pokelwps() which 1345 * sets the AST flag. 1346 * 1347 * Also check TP_EXITLWP, since this is used by fresh new LWPs 1348 * through lwp_rtt(). That flag is set if the lwp_create(2) 1349 * syscall failed after creating the LWP. 1350 */ 1351 if (ISHOLD(p)) 1352 holdlwp(); 1353 1354 /* 1355 * All code that sets signals and makes ISSIG evaluate true must 1356 * set t_astflag afterwards. 1357 */ 1358 if (ISSIG_PENDING(ct, lwp, p)) { 1359 if (issig(FORREAL)) 1360 psig(); 1361 ct->t_sig_check = 1; 1362 } 1363 1364 if (ct->t_rprof != NULL) { 1365 realsigprof(0, 0); 1366 ct->t_sig_check = 1; 1367 } 1368 1369 /* 1370 * /proc can't enable/disable the trace bit itself 1371 * because that could race with the call gate used by 1372 * system calls via "lcall". If that happened, an 1373 * invalid EFLAGS would result. prstep()/prnostep() 1374 * therefore schedule an AST for the purpose. 1375 */ 1376 if (lwp->lwp_pcb.pcb_flags & REQUEST_STEP) { 1377 lwp->lwp_pcb.pcb_flags &= ~REQUEST_STEP; 1378 rp->r_ps |= PS_T; 1379 } 1380 if (lwp->lwp_pcb.pcb_flags & REQUEST_NOSTEP) { 1381 lwp->lwp_pcb.pcb_flags &= ~REQUEST_NOSTEP; 1382 rp->r_ps &= ~PS_T; 1383 } 1384 } 1385 1386 out: /* We can't get here from a system trap */ 1387 ASSERT(type & USER); 1388 1389 if (ISHOLD(p)) 1390 holdlwp(); 1391 1392 /* 1393 * Set state to LWP_USER here so preempt won't give us a kernel 1394 * priority if it occurs after this point. Call CL_TRAPRET() to 1395 * restore the user-level priority. 1396 * 1397 * It is important that no locks (other than spinlocks) be entered 1398 * after this point before returning to user mode (unless lwp_state 1399 * is set back to LWP_SYS). 1400 */ 1401 lwp->lwp_state = LWP_USER; 1402 1403 if (ct->t_trapret) { 1404 ct->t_trapret = 0; 1405 thread_lock(ct); 1406 CL_TRAPRET(ct); 1407 thread_unlock(ct); 1408 } 1409 if (CPU->cpu_runrun) 1410 preempt(); 1411 (void) new_mstate(ct, mstate); 1412 1413 /* Kernel probe */ 1414 TNF_PROBE_1(thread_state, "thread", /* CSTYLED */, 1415 tnf_microstate, state, LMS_USER); 1416 1417 return; 1418 1419 cleanup: /* system traps end up here */ 1420 ASSERT(!(type & USER)); 1421 } 1422 1423 /* 1424 * Patch non-zero to disable preemption of threads in the kernel. 1425 */ 1426 int IGNORE_KERNEL_PREEMPTION = 0; /* XXX - delete this someday */ 1427 1428 struct kpreempt_cnts { /* kernel preemption statistics */ 1429 int kpc_idle; /* executing idle thread */ 1430 int kpc_intr; /* executing interrupt thread */ 1431 int kpc_clock; /* executing clock thread */ 1432 int kpc_blocked; /* thread has blocked preemption (t_preempt) */ 1433 int kpc_notonproc; /* thread is surrendering processor */ 1434 int kpc_inswtch; /* thread has ratified scheduling decision */ 1435 int kpc_prilevel; /* processor interrupt level is too high */ 1436 int kpc_apreempt; /* asynchronous preemption */ 1437 int kpc_spreempt; /* synchronous preemption */ 1438 } kpreempt_cnts; 1439 1440 /* 1441 * kernel preemption: forced rescheduling, preempt the running kernel thread. 1442 * the argument is old PIL for an interrupt, 1443 * or the distingished value KPREEMPT_SYNC. 1444 */ 1445 void 1446 kpreempt(int asyncspl) 1447 { 1448 kthread_t *ct = curthread; 1449 1450 if (IGNORE_KERNEL_PREEMPTION) { 1451 aston(CPU->cpu_dispthread); 1452 return; 1453 } 1454 1455 /* 1456 * Check that conditions are right for kernel preemption 1457 */ 1458 do { 1459 if (ct->t_preempt) { 1460 /* 1461 * either a privileged thread (idle, panic, interrupt) 1462 * or will check when t_preempt is lowered 1463 */ 1464 if (ct->t_pri < 0) 1465 kpreempt_cnts.kpc_idle++; 1466 else if (ct->t_flag & T_INTR_THREAD) { 1467 kpreempt_cnts.kpc_intr++; 1468 if (ct->t_pil == CLOCK_LEVEL) 1469 kpreempt_cnts.kpc_clock++; 1470 } else 1471 kpreempt_cnts.kpc_blocked++; 1472 aston(CPU->cpu_dispthread); 1473 return; 1474 } 1475 if (ct->t_state != TS_ONPROC || 1476 ct->t_disp_queue != CPU->cpu_disp) { 1477 /* this thread will be calling swtch() shortly */ 1478 kpreempt_cnts.kpc_notonproc++; 1479 if (CPU->cpu_thread != CPU->cpu_dispthread) { 1480 /* already in swtch(), force another */ 1481 kpreempt_cnts.kpc_inswtch++; 1482 siron(); 1483 } 1484 return; 1485 } 1486 if (getpil() >= DISP_LEVEL) { 1487 /* 1488 * We can't preempt this thread if it is at 1489 * a PIL >= DISP_LEVEL since it may be holding 1490 * a spin lock (like sched_lock). 1491 */ 1492 siron(); /* check back later */ 1493 kpreempt_cnts.kpc_prilevel++; 1494 return; 1495 } 1496 if (!interrupts_enabled()) { 1497 /* 1498 * Can't preempt while running with ints disabled 1499 */ 1500 kpreempt_cnts.kpc_prilevel++; 1501 return; 1502 } 1503 if (asyncspl != KPREEMPT_SYNC) 1504 kpreempt_cnts.kpc_apreempt++; 1505 else 1506 kpreempt_cnts.kpc_spreempt++; 1507 1508 ct->t_preempt++; 1509 preempt(); 1510 ct->t_preempt--; 1511 } while (CPU->cpu_kprunrun); 1512 } 1513 1514 /* 1515 * Print out debugging info. 1516 */ 1517 static void 1518 showregs(uint_t type, struct regs *rp, caddr_t addr) 1519 { 1520 int s; 1521 1522 s = spl7(); 1523 type &= ~USER; 1524 if (PTOU(curproc)->u_comm[0]) 1525 printf("%s: ", PTOU(curproc)->u_comm); 1526 if (type < TRAP_TYPES) 1527 printf("#%s %s\n", trap_type_mnemonic[type], trap_type[type]); 1528 else 1529 switch (type) { 1530 case T_SYSCALL: 1531 printf("Syscall Trap:\n"); 1532 break; 1533 case T_AST: 1534 printf("AST\n"); 1535 break; 1536 default: 1537 printf("Bad Trap = %d\n", type); 1538 break; 1539 } 1540 if (type == T_PGFLT) { 1541 printf("Bad %s fault at addr=0x%lx\n", 1542 USERMODE(rp->r_cs) ? "user": "kernel", (uintptr_t)addr); 1543 } else if (addr) { 1544 printf("addr=0x%lx\n", (uintptr_t)addr); 1545 } 1546 1547 printf("pid=%d, pc=0x%lx, sp=0x%lx, eflags=0x%lx\n", 1548 (ttoproc(curthread) && ttoproc(curthread)->p_pidp) ? 1549 ttoproc(curthread)->p_pid : 0, rp->r_pc, rp->r_sp, rp->r_ps); 1550 1551 #if defined(__lint) 1552 /* 1553 * this clause can be deleted when lint bug 4870403 is fixed 1554 * (lint thinks that bit 32 is illegal in a %b format string) 1555 */ 1556 printf("cr0: %x cr4: %b\n", 1557 (uint_t)getcr0(), (uint_t)getcr4(), FMT_CR4); 1558 #else 1559 printf("cr0: %b cr4: %b\n", 1560 (uint_t)getcr0(), FMT_CR0, (uint_t)getcr4(), FMT_CR4); 1561 #endif /* __lint */ 1562 1563 #if defined(__amd64) 1564 printf("cr2: %lx cr3: %lx cr8: %lx\n", getcr2(), getcr3(), getcr8()); 1565 #elif defined(__i386) 1566 printf("cr2: %lx cr3: %lx\n", getcr2(), getcr3()); 1567 #endif 1568 1569 dumpregs(rp); 1570 splx(s); 1571 } 1572 1573 static void 1574 dumpregs(struct regs *rp) 1575 { 1576 #if defined(__amd64) 1577 const char fmt[] = "\t%3s: %16lx %3s: %16lx %3s: %16lx\n"; 1578 1579 printf(fmt, "rdi", rp->r_rdi, "rsi", rp->r_rsi, "rdx", rp->r_rdx); 1580 printf(fmt, "rcx", rp->r_rcx, " r8", rp->r_r8, " r9", rp->r_r9); 1581 printf(fmt, "rax", rp->r_rax, "rbx", rp->r_rbx, "rbp", rp->r_rbp); 1582 printf(fmt, "r10", rp->r_r10, "r11", rp->r_r11, "r12", rp->r_r12); 1583 printf(fmt, "r13", rp->r_r13, "r14", rp->r_r14, "r15", rp->r_r15); 1584 1585 printf(fmt, "fsb", rdmsr(MSR_AMD_FSBASE), "gsb", rdmsr(MSR_AMD_GSBASE), 1586 " ds", rp->r_ds); 1587 printf(fmt, " es", rp->r_es, " fs", rp->r_fs, " gs", rp->r_gs); 1588 1589 printf(fmt, "trp", rp->r_trapno, "err", rp->r_err, "rip", rp->r_rip); 1590 printf(fmt, " cs", rp->r_cs, "rfl", rp->r_rfl, "rsp", rp->r_rsp); 1591 1592 printf("\t%3s: %16lx\n", " ss", rp->r_ss); 1593 1594 #elif defined(__i386) 1595 const char fmt[] = "\t%3s: %8lx %3s: %8lx %3s: %8lx %3s: %8lx\n"; 1596 1597 printf(fmt, " gs", rp->r_gs, " fs", rp->r_fs, 1598 " es", rp->r_es, " ds", rp->r_ds); 1599 printf(fmt, "edi", rp->r_edi, "esi", rp->r_esi, 1600 "ebp", rp->r_ebp, "esp", rp->r_esp); 1601 printf(fmt, "ebx", rp->r_ebx, "edx", rp->r_edx, 1602 "ecx", rp->r_ecx, "eax", rp->r_eax); 1603 printf(fmt, "trp", rp->r_trapno, "err", rp->r_err, 1604 "eip", rp->r_eip, " cs", rp->r_cs); 1605 printf("\t%3s: %8lx %3s: %8lx %3s: %8lx\n", 1606 "efl", rp->r_efl, "usp", rp->r_uesp, " ss", rp->r_ss); 1607 1608 #endif /* __i386 */ 1609 } 1610 1611 /* 1612 * Handle #gp faults in kernel mode. 1613 * 1614 * One legitimate way this can happen is if we attempt to update segment 1615 * registers to naughty values on the way out of the kernel. 1616 * 1617 * This can happen in a couple of ways: someone - either accidentally or 1618 * on purpose - creates (setcontext(2), lwp_create(2)) or modifies 1619 * (signal(2)) a ucontext that contains silly segment register values. 1620 * Or someone - either accidentally or on purpose - modifies the prgregset_t 1621 * of a subject process via /proc to contain silly segment register values. 1622 * 1623 * (The unfortunate part is that we can end up discovering the bad segment 1624 * register value in the middle of an 'iret' after we've popped most of the 1625 * stack. So it becomes quite difficult to associate an accurate ucontext 1626 * with the lwp, because the act of taking the #gp trap overwrites most of 1627 * what we were going to send the lwp.) 1628 * 1629 * OTOH if it turns out that's -not- the problem, and we're -not- an lwp 1630 * trying to return to user mode and we get a #gp fault, then we need 1631 * to die() -- which will happen if we return non-zero from this routine. 1632 */ 1633 static int 1634 kern_gpfault(struct regs *rp) 1635 { 1636 kthread_t *t = curthread; 1637 proc_t *p = ttoproc(t); 1638 klwp_t *lwp = ttolwp(t); 1639 struct regs tmpregs, *trp = NULL; 1640 caddr_t pc = (caddr_t)rp->r_pc; 1641 int v; 1642 1643 extern void _sys_rtt(), sr_sup(); 1644 1645 #if defined(__amd64) 1646 static const uint8_t iretq_insn[2] = { 0x48, 0xcf }; 1647 1648 #elif defined(__i386) 1649 static const uint8_t iret_insn[1] = { 0xcf }; 1650 1651 /* 1652 * Note carefully the appallingly awful dependency between 1653 * the instruction sequence used in __SEGREGS_POP and these 1654 * instructions encoded here. 1655 * 1656 * XX64 Add some commentary to locore.s/privregs.h to document this. 1657 */ 1658 static const uint8_t movw_0_esp_gs[4] = { 0x8e, 0x6c, 0x24, 0x0 }; 1659 static const uint8_t movw_4_esp_fs[4] = { 0x8e, 0x64, 0x24, 0x4 }; 1660 static const uint8_t movw_8_esp_es[4] = { 0x8e, 0x44, 0x24, 0x8 }; 1661 static const uint8_t movw_c_esp_ds[4] = { 0x8e, 0x5c, 0x24, 0xc }; 1662 #endif 1663 /* 1664 * if we're not an lwp, or the pc range is outside _sys_rtt, then 1665 * we should immediately be die()ing horribly 1666 */ 1667 if (lwp == NULL || 1668 (uintptr_t)pc < (uintptr_t)_sys_rtt || 1669 (uintptr_t)pc > (uintptr_t)sr_sup) 1670 return (1); 1671 1672 /* 1673 * So at least we're in the right part of the kernel. 1674 * 1675 * Disassemble the instruction at the faulting pc. 1676 * Once we know what it is, we carefully reconstruct the stack 1677 * based on the order in which the stack is deconstructed in 1678 * _sys_rtt. Ew. 1679 */ 1680 1681 #if defined(__amd64) 1682 1683 if (bcmp(pc, iretq_insn, sizeof (iretq_insn)) == 0) { 1684 /* 1685 * We took the #gp while trying to perform the iretq. 1686 * This means that either %cs or %ss are bad. 1687 * All we know for sure is that most of the general 1688 * registers have been restored, including the 1689 * segment registers, and all we have left on the 1690 * topmost part of the lwp's stack are the 1691 * registers that the iretq was unable to consume. 1692 * 1693 * All the rest of the state was crushed by the #gp 1694 * which pushed -its- registers atop our old save area 1695 * (because we had to decrement the stack pointer, sigh) so 1696 * all that we can try and do is to reconstruct the 1697 * crushed frame from the #gp trap frame itself. 1698 */ 1699 trp = &tmpregs; 1700 trp->r_ss = lwptoregs(lwp)->r_ss; 1701 trp->r_sp = lwptoregs(lwp)->r_sp; 1702 trp->r_ps = lwptoregs(lwp)->r_ps; 1703 trp->r_cs = lwptoregs(lwp)->r_cs; 1704 trp->r_pc = lwptoregs(lwp)->r_pc; 1705 bcopy(rp, trp, offsetof(struct regs, r_pc)); 1706 1707 /* 1708 * Validate simple math 1709 */ 1710 ASSERT(trp->r_pc == lwptoregs(lwp)->r_pc); 1711 ASSERT(trp->r_err == rp->r_err); 1712 1713 } 1714 1715 #elif defined(__i386) 1716 1717 if (bcmp(pc, iret_insn, sizeof (iret_insn)) == 0) { 1718 /* 1719 * We took the #gp while trying to perform the iret. 1720 * This means that either %cs or %ss are bad. 1721 * All we know for sure is that most of the general 1722 * registers have been restored, including the 1723 * segment registers, and all we have left on the 1724 * topmost part of the lwp's stack are the registers that 1725 * the iret was unable to consume. 1726 * 1727 * All the rest of the state was crushed by the #gp 1728 * which pushed -its- registers atop our old save area 1729 * (because we had to decrement the stack pointer, sigh) so 1730 * all that we can try and do is to reconstruct the 1731 * crushed frame from the #gp trap frame itself. 1732 */ 1733 trp = &tmpregs; 1734 trp->r_ss = lwptoregs(lwp)->r_ss; 1735 trp->r_sp = lwptoregs(lwp)->r_sp; 1736 trp->r_ps = lwptoregs(lwp)->r_ps; 1737 trp->r_cs = lwptoregs(lwp)->r_cs; 1738 trp->r_pc = lwptoregs(lwp)->r_pc; 1739 bcopy(rp, trp, offsetof(struct regs, r_pc)); 1740 1741 ASSERT(trp->r_pc == lwptoregs(lwp)->r_pc); 1742 ASSERT(trp->r_err == rp->r_err); 1743 1744 } else { 1745 /* 1746 * Segment registers are reloaded in _sys_rtt 1747 * via the following sequence: 1748 * 1749 * movw 0(%esp), %gs 1750 * movw 4(%esp), %fs 1751 * movw 8(%esp), %es 1752 * movw 12(%esp), %ds 1753 * addl $16, %esp 1754 * 1755 * Thus if any of them fault, we know the user 1756 * registers are left unharmed on the stack. 1757 */ 1758 if (bcmp(pc, movw_0_esp_gs, sizeof (movw_0_esp_gs)) == 0 || 1759 bcmp(pc, movw_4_esp_fs, sizeof (movw_4_esp_fs)) == 0 || 1760 bcmp(pc, movw_8_esp_es, sizeof (movw_8_esp_es)) == 0 || 1761 bcmp(pc, movw_c_esp_ds, sizeof (movw_c_esp_ds)) == 0) 1762 trp = lwptoregs(lwp); 1763 } 1764 #endif /* __amd64 */ 1765 1766 if (trp == NULL) 1767 return (1); 1768 1769 /* 1770 * If we get to here, we're reasonably confident that we've 1771 * correctly decoded what happened on the way out of the kernel. 1772 * Rewrite the lwp's registers so that we can create a core dump 1773 * the (at least vaguely) represents the mcontext we were 1774 * being asked to restore when things went so terribly wrong. 1775 */ 1776 1777 /* 1778 * Make sure that we have a meaningful %trapno and %err. 1779 */ 1780 trp->r_trapno = rp->r_trapno; 1781 trp->r_err = rp->r_err; 1782 1783 if ((caddr_t)trp != (caddr_t)lwptoregs(lwp)) 1784 bcopy(trp, lwptoregs(lwp), sizeof (*trp)); 1785 1786 mutex_enter(&p->p_lock); 1787 lwp->lwp_cursig = SIGSEGV; 1788 mutex_exit(&p->p_lock); 1789 1790 /* 1791 * Terminate all LWPs but don't discard them. If another lwp beat us to 1792 * the punch by calling exit(), evaporate now. 1793 */ 1794 proc_is_exiting(p); 1795 if (exitlwps(1) != 0) { 1796 mutex_enter(&p->p_lock); 1797 lwp_exit(); 1798 } 1799 1800 #ifdef C2_AUDIT 1801 if (audit_active) /* audit core dump */ 1802 audit_core_start(SIGSEGV); 1803 #endif 1804 v = core(SIGSEGV, B_FALSE); 1805 #ifdef C2_AUDIT 1806 if (audit_active) /* audit core dump */ 1807 audit_core_finish(v ? CLD_KILLED : CLD_DUMPED); 1808 #endif 1809 exit(v ? CLD_KILLED : CLD_DUMPED, SIGSEGV); 1810 return (0); 1811 } 1812 1813 /* 1814 * dump_tss() - Display the TSS structure 1815 */ 1816 1817 #if defined(__amd64) 1818 1819 static void 1820 dump_tss(void) 1821 { 1822 const char tss_fmt[] = "tss.%s:\t0x%p\n"; /* Format string */ 1823 struct tss *tss = CPU->cpu_tss; 1824 1825 printf(tss_fmt, "tss_rsp0", (void *)tss->tss_rsp0); 1826 printf(tss_fmt, "tss_rsp1", (void *)tss->tss_rsp1); 1827 printf(tss_fmt, "tss_rsp2", (void *)tss->tss_rsp2); 1828 1829 printf(tss_fmt, "tss_ist1", (void *)tss->tss_ist1); 1830 printf(tss_fmt, "tss_ist2", (void *)tss->tss_ist2); 1831 printf(tss_fmt, "tss_ist3", (void *)tss->tss_ist3); 1832 printf(tss_fmt, "tss_ist4", (void *)tss->tss_ist4); 1833 printf(tss_fmt, "tss_ist5", (void *)tss->tss_ist5); 1834 printf(tss_fmt, "tss_ist6", (void *)tss->tss_ist6); 1835 printf(tss_fmt, "tss_ist7", (void *)tss->tss_ist7); 1836 } 1837 1838 #elif defined(__i386) 1839 1840 static void 1841 dump_tss(void) 1842 { 1843 const char tss_fmt[] = "tss.%s:\t0x%p\n"; /* Format string */ 1844 struct tss *tss = CPU->cpu_tss; 1845 1846 printf(tss_fmt, "tss_link", (void *)(uintptr_t)tss->tss_link); 1847 printf(tss_fmt, "tss_esp0", (void *)(uintptr_t)tss->tss_esp0); 1848 printf(tss_fmt, "tss_ss0", (void *)(uintptr_t)tss->tss_ss0); 1849 printf(tss_fmt, "tss_esp1", (void *)(uintptr_t)tss->tss_esp1); 1850 printf(tss_fmt, "tss_ss1", (void *)(uintptr_t)tss->tss_ss1); 1851 printf(tss_fmt, "tss_esp2", (void *)(uintptr_t)tss->tss_esp2); 1852 printf(tss_fmt, "tss_ss2", (void *)(uintptr_t)tss->tss_ss2); 1853 printf(tss_fmt, "tss_cr3", (void *)(uintptr_t)tss->tss_cr3); 1854 printf(tss_fmt, "tss_eip", (void *)(uintptr_t)tss->tss_eip); 1855 printf(tss_fmt, "tss_eflags", (void *)(uintptr_t)tss->tss_eflags); 1856 printf(tss_fmt, "tss_eax", (void *)(uintptr_t)tss->tss_eax); 1857 printf(tss_fmt, "tss_ebx", (void *)(uintptr_t)tss->tss_ebx); 1858 printf(tss_fmt, "tss_ecx", (void *)(uintptr_t)tss->tss_ecx); 1859 printf(tss_fmt, "tss_edx", (void *)(uintptr_t)tss->tss_edx); 1860 printf(tss_fmt, "tss_esp", (void *)(uintptr_t)tss->tss_esp); 1861 } 1862 1863 #endif /* __amd64 */ 1864 1865 #if defined(TRAPTRACE) 1866 1867 int ttrace_nrec = 0; /* number of records to dump out */ 1868 int ttrace_dump_nregs = 5; /* dump out this many records with regs too */ 1869 1870 /* 1871 * Dump out the last ttrace_nrec traptrace records on each CPU 1872 */ 1873 static void 1874 dump_ttrace(void) 1875 { 1876 trap_trace_ctl_t *ttc; 1877 trap_trace_rec_t *rec; 1878 uintptr_t current; 1879 int i, j, k; 1880 int n = NCPU; 1881 #if defined(__amd64) 1882 const char banner[] = 1883 "\ncpu address timestamp " 1884 "type vc handler pc\n"; 1885 const char fmt1[] = "%3d %016lx %12llx "; 1886 #elif defined(__i386) 1887 const char banner[] = 1888 "\ncpu address timestamp type vc handler pc\n"; 1889 const char fmt1[] = "%3d %08lx %12llx "; 1890 #endif 1891 const char fmt2[] = "%4s %3x "; 1892 const char fmt3[] = "%8s "; 1893 1894 if (ttrace_nrec == 0) 1895 return; 1896 1897 printf(banner); 1898 1899 for (i = 0; i < n; i++) { 1900 ttc = &trap_trace_ctl[i]; 1901 if (ttc->ttc_first == NULL) 1902 continue; 1903 1904 current = ttc->ttc_next - sizeof (trap_trace_rec_t); 1905 for (j = 0; j < ttrace_nrec; j++) { 1906 struct sysent *sys; 1907 struct autovec *vec; 1908 extern struct av_head autovect[]; 1909 int type; 1910 ulong_t off; 1911 char *sym, *stype; 1912 1913 if (current < ttc->ttc_first) 1914 current = 1915 ttc->ttc_limit - sizeof (trap_trace_rec_t); 1916 1917 if (current == NULL) 1918 continue; 1919 1920 rec = (trap_trace_rec_t *)current; 1921 1922 if (rec->ttr_stamp == 0) 1923 break; 1924 1925 printf(fmt1, i, (uintptr_t)rec, rec->ttr_stamp); 1926 1927 switch (rec->ttr_marker) { 1928 case TT_SYSCALL: 1929 case TT_SYSENTER: 1930 case TT_SYSC: 1931 case TT_SYSC64: 1932 #if defined(__amd64) 1933 sys = &sysent32[rec->ttr_sysnum]; 1934 switch (rec->ttr_marker) { 1935 case TT_SYSC64: 1936 sys = &sysent[rec->ttr_sysnum]; 1937 /*FALLTHROUGH*/ 1938 #elif defined(__i386) 1939 sys = &sysent[rec->ttr_sysnum]; 1940 switch (rec->ttr_marker) { 1941 case TT_SYSC64: 1942 #endif 1943 case TT_SYSC: 1944 stype = "sysc"; /* syscall */ 1945 break; 1946 case TT_SYSCALL: 1947 stype = "lcal"; /* lcall */ 1948 break; 1949 case TT_SYSENTER: 1950 stype = "syse"; /* sysenter */ 1951 break; 1952 default: 1953 break; 1954 } 1955 printf(fmt2, "sysc", rec->ttr_sysnum); 1956 if (sys != NULL) { 1957 sym = kobj_getsymname( 1958 (uintptr_t)sys->sy_callc, 1959 &off); 1960 if (sym != NULL) 1961 printf(fmt3, sym); 1962 else 1963 printf("%p ", sys->sy_callc); 1964 } else { 1965 printf(fmt3, "unknown"); 1966 } 1967 break; 1968 1969 case TT_INTERRUPT: 1970 printf(fmt2, "intr", rec->ttr_vector); 1971 vec = (&autovect[rec->ttr_vector])->avh_link; 1972 if (vec != NULL) { 1973 sym = kobj_getsymname( 1974 (uintptr_t)vec->av_vector, &off); 1975 if (sym != NULL) 1976 printf(fmt3, sym); 1977 else 1978 printf("%p ", vec->av_vector); 1979 } else { 1980 printf(fmt3, "unknown "); 1981 } 1982 break; 1983 1984 case TT_TRAP: 1985 case TT_EVENT: 1986 type = rec->ttr_regs.r_trapno; 1987 printf(fmt2, "trap", type); 1988 if (type < TRAP_TYPES) 1989 printf(" #%s ", 1990 trap_type_mnemonic[type]); 1991 else 1992 switch (type) { 1993 case T_AST: 1994 printf(fmt3, "ast"); 1995 break; 1996 default: 1997 printf(fmt3, ""); 1998 break; 1999 } 2000 break; 2001 2002 case TT_XCALL: 2003 printf(fmt2, "xcal", 2004 rec->ttr_info.xc_entry.xce_marker); 2005 printf(fmt3, ""); 2006 break; 2007 2008 default: 2009 break; 2010 } 2011 2012 sym = kobj_getsymname(rec->ttr_regs.r_pc, &off); 2013 if (sym != NULL) 2014 printf("%s+%lx\n", sym, off); 2015 else 2016 printf("%lx\n", rec->ttr_regs.r_pc); 2017 2018 if (ttrace_dump_nregs-- > 0) { 2019 int s; 2020 2021 if (rec->ttr_marker == TT_INTERRUPT) 2022 printf( 2023 "\t\tipl %x spl %x pri %x\n", 2024 rec->ttr_ipl, 2025 rec->ttr_spl, 2026 rec->ttr_pri); 2027 2028 dumpregs(&rec->ttr_regs); 2029 2030 printf("\t%3s: %p\n\n", " ct", 2031 (void *)rec->ttr_curthread); 2032 2033 /* 2034 * print out the pc stack that we recorded 2035 * at trap time (if any) 2036 */ 2037 for (s = 0; s < rec->ttr_sdepth; s++) { 2038 uintptr_t fullpc; 2039 2040 if (s >= TTR_STACK_DEPTH) { 2041 printf("ttr_sdepth corrupt\n"); 2042 break; 2043 } 2044 2045 fullpc = (uintptr_t)rec->ttr_stack[s]; 2046 2047 sym = kobj_getsymname(fullpc, &off); 2048 if (sym != NULL) 2049 printf("-> %s+0x%lx()\n", 2050 sym, off); 2051 else 2052 printf("-> 0x%lx()\n", fullpc); 2053 } 2054 printf("\n"); 2055 } 2056 current -= sizeof (trap_trace_rec_t); 2057 } 2058 } 2059 } 2060 2061 /* 2062 * Help with constructing traptrace records in C 2063 */ 2064 trap_trace_rec_t * 2065 trap_trace_get_traceptr(uint8_t marker, ulong_t pc, ulong_t sp) 2066 { 2067 trap_trace_rec_t *ttr; 2068 2069 if (trap_trace_freeze) 2070 ttr = &trap_trace_postmort; 2071 else { 2072 trap_trace_ctl_t *ttc = &trap_trace_ctl[CPU->cpu_id]; 2073 2074 ttr = (void *)ttc->ttc_next; 2075 2076 if (ttc->ttc_next >= ttc->ttc_limit) 2077 ttc->ttc_next = ttc->ttc_first; 2078 else 2079 ttc->ttc_next += sizeof (trap_trace_rec_t); 2080 } 2081 2082 ttr->ttr_regs.r_sp = sp; 2083 ttr->ttr_regs.r_pc = pc; 2084 ttr->ttr_cr2 = getcr2(); 2085 ttr->ttr_curthread = (uintptr_t)curthread; 2086 ttr->ttr_stamp = tsc_read(); 2087 ttr->ttr_marker = marker; 2088 return (ttr); 2089 } 2090 2091 #endif /* TRAPTRACE */ 2092 2093 void 2094 panic_showtrap(struct trap_info *tip) 2095 { 2096 showregs(tip->trap_type, tip->trap_regs, tip->trap_addr); 2097 2098 #if defined(TRAPTRACE) 2099 dump_ttrace(); 2100 #endif /* TRAPTRACE */ 2101 2102 if (tip->trap_type == T_DBLFLT) 2103 dump_tss(); 2104 } 2105 2106 void 2107 panic_savetrap(panic_data_t *pdp, struct trap_info *tip) 2108 { 2109 panic_saveregs(pdp, tip->trap_regs); 2110 } 2111