xref: /illumos-gate/usr/src/uts/i86pc/os/trap.c (revision 3cf7d3e96c394bb30710bd264c0bb61f4646639f)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 1992, 2010, Oracle and/or its affiliates. All rights reserved.
24  */
25 
26 /*	Copyright (c) 1990, 1991 UNIX System Laboratories, Inc. */
27 /*	Copyright (c) 1984, 1986, 1987, 1988, 1989, 1990 AT&T   */
28 /*		All Rights Reserved   				*/
29 /*								*/
30 /*	Copyright (c) 1987, 1988 Microsoft Corporation  	*/
31 /*		All Rights Reserved   				*/
32 /*								*/
33 
34 /*
35  * Copyright 2012 Joyent, Inc. All rights reserved.
36  */
37 
38 #include <sys/types.h>
39 #include <sys/sysmacros.h>
40 #include <sys/param.h>
41 #include <sys/signal.h>
42 #include <sys/systm.h>
43 #include <sys/user.h>
44 #include <sys/proc.h>
45 #include <sys/disp.h>
46 #include <sys/class.h>
47 #include <sys/core.h>
48 #include <sys/syscall.h>
49 #include <sys/cpuvar.h>
50 #include <sys/vm.h>
51 #include <sys/sysinfo.h>
52 #include <sys/fault.h>
53 #include <sys/stack.h>
54 #include <sys/psw.h>
55 #include <sys/regset.h>
56 #include <sys/fp.h>
57 #include <sys/trap.h>
58 #include <sys/kmem.h>
59 #include <sys/vtrace.h>
60 #include <sys/cmn_err.h>
61 #include <sys/prsystm.h>
62 #include <sys/mutex_impl.h>
63 #include <sys/machsystm.h>
64 #include <sys/archsystm.h>
65 #include <sys/sdt.h>
66 #include <sys/avintr.h>
67 #include <sys/kobj.h>
68 
69 #include <vm/hat.h>
70 
71 #include <vm/seg_kmem.h>
72 #include <vm/as.h>
73 #include <vm/seg.h>
74 #include <vm/hat_pte.h>
75 #include <vm/hat_i86.h>
76 
77 #include <sys/procfs.h>
78 
79 #include <sys/reboot.h>
80 #include <sys/debug.h>
81 #include <sys/debugreg.h>
82 #include <sys/modctl.h>
83 #include <sys/aio_impl.h>
84 #include <sys/tnf.h>
85 #include <sys/tnf_probe.h>
86 #include <sys/cred.h>
87 #include <sys/mman.h>
88 #include <sys/x86_archext.h>
89 #include <sys/copyops.h>
90 #include <c2/audit.h>
91 #include <sys/ftrace.h>
92 #include <sys/panic.h>
93 #include <sys/traptrace.h>
94 #include <sys/ontrap.h>
95 #include <sys/cpc_impl.h>
96 #include <sys/bootconf.h>
97 #include <sys/bootinfo.h>
98 #include <sys/promif.h>
99 #include <sys/mach_mmu.h>
100 #if defined(__xpv)
101 #include <sys/hypervisor.h>
102 #endif
103 #include <sys/contract/process_impl.h>
104 
105 #define	USER	0x10000		/* user-mode flag added to trap type */
106 
107 static const char *trap_type_mnemonic[] = {
108 	"de",	"db",	"2",	"bp",
109 	"of",	"br",	"ud",	"nm",
110 	"df",	"9",	"ts",	"np",
111 	"ss",	"gp",	"pf",	"15",
112 	"mf",	"ac",	"mc",	"xf"
113 };
114 
115 static const char *trap_type[] = {
116 	"Divide error",				/* trap id 0 	*/
117 	"Debug",				/* trap id 1	*/
118 	"NMI interrupt",			/* trap id 2	*/
119 	"Breakpoint",				/* trap id 3 	*/
120 	"Overflow",				/* trap id 4 	*/
121 	"BOUND range exceeded",			/* trap id 5 	*/
122 	"Invalid opcode",			/* trap id 6 	*/
123 	"Device not available",			/* trap id 7 	*/
124 	"Double fault",				/* trap id 8 	*/
125 	"Coprocessor segment overrun",		/* trap id 9 	*/
126 	"Invalid TSS",				/* trap id 10 	*/
127 	"Segment not present",			/* trap id 11 	*/
128 	"Stack segment fault",			/* trap id 12 	*/
129 	"General protection",			/* trap id 13 	*/
130 	"Page fault",				/* trap id 14 	*/
131 	"Reserved",				/* trap id 15 	*/
132 	"x87 floating point error",		/* trap id 16 	*/
133 	"Alignment check",			/* trap id 17 	*/
134 	"Machine check",			/* trap id 18	*/
135 	"SIMD floating point exception",	/* trap id 19	*/
136 };
137 
138 #define	TRAP_TYPES	(sizeof (trap_type) / sizeof (trap_type[0]))
139 
140 #define	SLOW_SCALL_SIZE	2
141 #define	FAST_SCALL_SIZE	2
142 
143 int tudebug = 0;
144 int tudebugbpt = 0;
145 int tudebugfpe = 0;
146 int tudebugsse = 0;
147 
148 #if defined(TRAPDEBUG) || defined(lint)
149 int tdebug = 0;
150 int lodebug = 0;
151 int faultdebug = 0;
152 #else
153 #define	tdebug	0
154 #define	lodebug	0
155 #define	faultdebug	0
156 #endif /* defined(TRAPDEBUG) || defined(lint) */
157 
158 #if defined(TRAPTRACE)
159 /*
160  * trap trace record for cpu0 is allocated here.
161  * trap trace records for non-boot cpus are allocated in mp_startup_init().
162  */
163 static trap_trace_rec_t trap_tr0[TRAPTR_NENT];
164 trap_trace_ctl_t trap_trace_ctl[NCPU] = {
165 	{
166 	    (uintptr_t)trap_tr0,			/* next record */
167 	    (uintptr_t)trap_tr0,			/* first record */
168 	    (uintptr_t)(trap_tr0 + TRAPTR_NENT),	/* limit */
169 	    (uintptr_t)0				/* current */
170 	},
171 };
172 
173 /*
174  * default trap buffer size
175  */
176 size_t trap_trace_bufsize = TRAPTR_NENT * sizeof (trap_trace_rec_t);
177 int trap_trace_freeze = 0;
178 int trap_trace_off = 0;
179 
180 /*
181  * A dummy TRAPTRACE entry to use after death.
182  */
183 trap_trace_rec_t trap_trace_postmort;
184 
185 static void dump_ttrace(void);
186 #endif	/* TRAPTRACE */
187 static void dumpregs(struct regs *);
188 static void showregs(uint_t, struct regs *, caddr_t);
189 static int kern_gpfault(struct regs *);
190 
191 /*ARGSUSED*/
192 static int
193 die(uint_t type, struct regs *rp, caddr_t addr, processorid_t cpuid)
194 {
195 	struct panic_trap_info ti;
196 	const char *trap_name, *trap_mnemonic;
197 
198 	if (type < TRAP_TYPES) {
199 		trap_name = trap_type[type];
200 		trap_mnemonic = trap_type_mnemonic[type];
201 	} else {
202 		trap_name = "trap";
203 		trap_mnemonic = "-";
204 	}
205 
206 #ifdef TRAPTRACE
207 	TRAPTRACE_FREEZE;
208 #endif
209 
210 	ti.trap_regs = rp;
211 	ti.trap_type = type & ~USER;
212 	ti.trap_addr = addr;
213 
214 	curthread->t_panic_trap = &ti;
215 
216 	if (type == T_PGFLT && addr < (caddr_t)KERNELBASE) {
217 		panic("BAD TRAP: type=%x (#%s %s) rp=%p addr=%p "
218 		    "occurred in module \"%s\" due to %s",
219 		    type, trap_mnemonic, trap_name, (void *)rp, (void *)addr,
220 		    mod_containing_pc((caddr_t)rp->r_pc),
221 		    addr < (caddr_t)PAGESIZE ?
222 		    "a NULL pointer dereference" :
223 		    "an illegal access to a user address");
224 	} else
225 		panic("BAD TRAP: type=%x (#%s %s) rp=%p addr=%p",
226 		    type, trap_mnemonic, trap_name, (void *)rp, (void *)addr);
227 	return (0);
228 }
229 
230 /*
231  * Rewrite the instruction at pc to be an int $T_SYSCALLINT instruction.
232  *
233  * int <vector> is two bytes: 0xCD <vector>
234  */
235 
236 static int
237 rewrite_syscall(caddr_t pc)
238 {
239 	uchar_t instr[SLOW_SCALL_SIZE] = { 0xCD, T_SYSCALLINT };
240 
241 	if (uwrite(curthread->t_procp, instr, SLOW_SCALL_SIZE,
242 	    (uintptr_t)pc) != 0)
243 		return (1);
244 
245 	return (0);
246 }
247 
248 /*
249  * Test to see if the instruction at pc is sysenter or syscall. The second
250  * argument should be the x86 feature flag corresponding to the expected
251  * instruction.
252  *
253  * sysenter is two bytes: 0x0F 0x34
254  * syscall is two bytes:  0x0F 0x05
255  * int $T_SYSCALLINT is two bytes: 0xCD 0x91
256  */
257 
258 static int
259 instr_is_other_syscall(caddr_t pc, int which)
260 {
261 	uchar_t instr[FAST_SCALL_SIZE];
262 
263 	ASSERT(which == X86FSET_SEP || which == X86FSET_ASYSC || which == 0xCD);
264 
265 	if (copyin_nowatch(pc, (caddr_t)instr, FAST_SCALL_SIZE) != 0)
266 		return (0);
267 
268 	switch (which) {
269 	case X86FSET_SEP:
270 		if (instr[0] == 0x0F && instr[1] == 0x34)
271 			return (1);
272 		break;
273 	case X86FSET_ASYSC:
274 		if (instr[0] == 0x0F && instr[1] == 0x05)
275 			return (1);
276 		break;
277 	case 0xCD:
278 		if (instr[0] == 0xCD && instr[1] == T_SYSCALLINT)
279 			return (1);
280 		break;
281 	}
282 
283 	return (0);
284 }
285 
286 static const char *
287 syscall_insn_string(int syscall_insn)
288 {
289 	switch (syscall_insn) {
290 	case X86FSET_SEP:
291 		return ("sysenter");
292 	case X86FSET_ASYSC:
293 		return ("syscall");
294 	case 0xCD:
295 		return ("int");
296 	default:
297 		return ("Unknown");
298 	}
299 }
300 
301 static int
302 ldt_rewrite_syscall(struct regs *rp, proc_t *p, int syscall_insn)
303 {
304 	caddr_t	linearpc;
305 	int return_code = 0;
306 
307 	mutex_enter(&p->p_ldtlock);	/* Must be held across linear_pc() */
308 
309 	if (linear_pc(rp, p, &linearpc) == 0) {
310 
311 		/*
312 		 * If another thread beat us here, it already changed
313 		 * this site to the slower (int) syscall instruction.
314 		 */
315 		if (instr_is_other_syscall(linearpc, 0xCD)) {
316 			return_code = 1;
317 		} else if (instr_is_other_syscall(linearpc, syscall_insn)) {
318 
319 			if (rewrite_syscall(linearpc) == 0) {
320 				return_code = 1;
321 			}
322 #ifdef DEBUG
323 			else
324 				cmn_err(CE_WARN, "failed to rewrite %s "
325 				    "instruction in process %d",
326 				    syscall_insn_string(syscall_insn),
327 				    p->p_pid);
328 #endif /* DEBUG */
329 		}
330 	}
331 
332 	mutex_exit(&p->p_ldtlock);	/* Must be held across linear_pc() */
333 
334 	return (return_code);
335 }
336 
337 /*
338  * Test to see if the instruction at pc is a system call instruction.
339  *
340  * The bytes of an lcall instruction used for the syscall trap.
341  * static uchar_t lcall[7] = { 0x9a, 0, 0, 0, 0, 0x7, 0 };
342  * static uchar_t lcallalt[7] = { 0x9a, 0, 0, 0, 0, 0x27, 0 };
343  */
344 
345 #define	LCALLSIZE	7
346 
347 static int
348 instr_is_lcall_syscall(caddr_t pc)
349 {
350 	uchar_t instr[LCALLSIZE];
351 
352 	if (copyin_nowatch(pc, (caddr_t)instr, LCALLSIZE) == 0 &&
353 	    instr[0] == 0x9a &&
354 	    instr[1] == 0 &&
355 	    instr[2] == 0 &&
356 	    instr[3] == 0 &&
357 	    instr[4] == 0 &&
358 	    (instr[5] == 0x7 || instr[5] == 0x27) &&
359 	    instr[6] == 0)
360 		return (1);
361 
362 	return (0);
363 }
364 
365 #ifdef __amd64
366 
367 /*
368  * In the first revisions of amd64 CPUs produced by AMD, the LAHF and
369  * SAHF instructions were not implemented in 64-bit mode. Later revisions
370  * did implement these instructions. An extension to the cpuid instruction
371  * was added to check for the capability of executing these instructions
372  * in 64-bit mode.
373  *
374  * Intel originally did not implement these instructions in EM64T either,
375  * but added them in later revisions.
376  *
377  * So, there are different chip revisions by both vendors out there that
378  * may or may not implement these instructions. The easy solution is to
379  * just always emulate these instructions on demand.
380  *
381  * SAHF == store %ah in the lower 8 bits of %rflags (opcode 0x9e)
382  * LAHF == load the lower 8 bits of %rflags into %ah (opcode 0x9f)
383  */
384 
385 #define	LSAHFSIZE 1
386 
387 static int
388 instr_is_lsahf(caddr_t pc, uchar_t *instr)
389 {
390 	if (copyin_nowatch(pc, (caddr_t)instr, LSAHFSIZE) == 0 &&
391 	    (*instr == 0x9e || *instr == 0x9f))
392 		return (1);
393 	return (0);
394 }
395 
396 /*
397  * Emulate the LAHF and SAHF instructions. The reference manuals define
398  * these instructions to always load/store bit 1 as a 1, and bits 3 and 5
399  * as a 0. The other, defined, bits are copied (the PS_ICC bits and PS_P).
400  *
401  * Note that %ah is bits 8-15 of %rax.
402  */
403 static void
404 emulate_lsahf(struct regs *rp, uchar_t instr)
405 {
406 	if (instr == 0x9e) {
407 		/* sahf. Copy bits from %ah to flags. */
408 		rp->r_ps = (rp->r_ps & ~0xff) |
409 		    ((rp->r_rax >> 8) & PSL_LSAHFMASK) | PS_MB1;
410 	} else {
411 		/* lahf. Copy bits from flags to %ah. */
412 		rp->r_rax = (rp->r_rax & ~0xff00) |
413 		    (((rp->r_ps & PSL_LSAHFMASK) | PS_MB1) << 8);
414 	}
415 	rp->r_pc += LSAHFSIZE;
416 }
417 #endif /* __amd64 */
418 
419 #ifdef OPTERON_ERRATUM_91
420 
421 /*
422  * Test to see if the instruction at pc is a prefetch instruction.
423  *
424  * The first byte of prefetch instructions is always 0x0F.
425  * The second byte is 0x18 for regular prefetch or 0x0D for AMD 3dnow prefetch.
426  * The third byte (ModRM) contains the register field bits (bits 3-5).
427  * These bits must be between 0 and 3 inclusive for regular prefetch and
428  * 0 and 1 inclusive for AMD 3dnow prefetch.
429  *
430  * In 64-bit mode, there may be a one-byte REX prefex (0x40-0x4F).
431  */
432 
433 static int
434 cmp_to_prefetch(uchar_t *p)
435 {
436 #ifdef _LP64
437 	if ((p[0] & 0xF0) == 0x40)	/* 64-bit REX prefix */
438 		p++;
439 #endif
440 	return ((p[0] == 0x0F && p[1] == 0x18 && ((p[2] >> 3) & 7) <= 3) ||
441 	    (p[0] == 0x0F && p[1] == 0x0D && ((p[2] >> 3) & 7) <= 1));
442 }
443 
444 static int
445 instr_is_prefetch(caddr_t pc)
446 {
447 	uchar_t instr[4];	/* optional REX prefix plus 3-byte opcode */
448 
449 	return (copyin_nowatch(pc, instr, sizeof (instr)) == 0 &&
450 	    cmp_to_prefetch(instr));
451 }
452 
453 #endif /* OPTERON_ERRATUM_91 */
454 
455 /*
456  * Called from the trap handler when a processor trap occurs.
457  *
458  * Note: All user-level traps that might call stop() must exit
459  * trap() by 'goto out' or by falling through.
460  * Note Also: trap() is usually called with interrupts enabled, (PS_IE == 1)
461  * however, there are paths that arrive here with PS_IE == 0 so special care
462  * must be taken in those cases.
463  */
464 void
465 trap(struct regs *rp, caddr_t addr, processorid_t cpuid)
466 {
467 	kthread_t *ct = curthread;
468 	enum seg_rw rw;
469 	unsigned type;
470 	proc_t *p = ttoproc(ct);
471 	klwp_t *lwp = ttolwp(ct);
472 	uintptr_t lofault;
473 	label_t *onfault;
474 	faultcode_t pagefault(), res, errcode;
475 	enum fault_type fault_type;
476 	k_siginfo_t siginfo;
477 	uint_t fault = 0;
478 	int mstate;
479 	int sicode = 0;
480 	int watchcode;
481 	int watchpage;
482 	caddr_t vaddr;
483 	int singlestep_twiddle;
484 	size_t sz;
485 	int ta;
486 #ifdef __amd64
487 	uchar_t instr;
488 #endif
489 
490 	ASSERT_STACK_ALIGNED();
491 
492 	type = rp->r_trapno;
493 	CPU_STATS_ADDQ(CPU, sys, trap, 1);
494 	ASSERT(ct->t_schedflag & TS_DONT_SWAP);
495 
496 	if (type == T_PGFLT) {
497 
498 		errcode = rp->r_err;
499 		if (errcode & PF_ERR_WRITE)
500 			rw = S_WRITE;
501 		else if ((caddr_t)rp->r_pc == addr ||
502 		    (mmu.pt_nx != 0 && (errcode & PF_ERR_EXEC)))
503 			rw = S_EXEC;
504 		else
505 			rw = S_READ;
506 
507 #if defined(__i386)
508 		/*
509 		 * Pentium Pro work-around
510 		 */
511 		if ((errcode & PF_ERR_PROT) && pentiumpro_bug4046376) {
512 			uint_t	attr;
513 			uint_t	priv_violation;
514 			uint_t	access_violation;
515 
516 			if (hat_getattr(addr < (caddr_t)kernelbase ?
517 			    curproc->p_as->a_hat : kas.a_hat, addr, &attr)
518 			    == -1) {
519 				errcode &= ~PF_ERR_PROT;
520 			} else {
521 				priv_violation = (errcode & PF_ERR_USER) &&
522 				    !(attr & PROT_USER);
523 				access_violation = (errcode & PF_ERR_WRITE) &&
524 				    !(attr & PROT_WRITE);
525 				if (!priv_violation && !access_violation)
526 					goto cleanup;
527 			}
528 		}
529 #endif /* __i386 */
530 
531 	} else if (type == T_SGLSTP && lwp != NULL)
532 		lwp->lwp_pcb.pcb_drstat = (uintptr_t)addr;
533 
534 	if (tdebug)
535 		showregs(type, rp, addr);
536 
537 	if (USERMODE(rp->r_cs)) {
538 		/*
539 		 * Set up the current cred to use during this trap. u_cred
540 		 * no longer exists.  t_cred is used instead.
541 		 * The current process credential applies to the thread for
542 		 * the entire trap.  If trapping from the kernel, this
543 		 * should already be set up.
544 		 */
545 		if (ct->t_cred != p->p_cred) {
546 			cred_t *oldcred = ct->t_cred;
547 			/*
548 			 * DTrace accesses t_cred in probe context.  t_cred
549 			 * must always be either NULL, or point to a valid,
550 			 * allocated cred structure.
551 			 */
552 			ct->t_cred = crgetcred();
553 			crfree(oldcred);
554 		}
555 		ASSERT(lwp != NULL);
556 		type |= USER;
557 		ASSERT(lwptoregs(lwp) == rp);
558 		lwp->lwp_state = LWP_SYS;
559 
560 		switch (type) {
561 		case T_PGFLT + USER:
562 			if ((caddr_t)rp->r_pc == addr)
563 				mstate = LMS_TFAULT;
564 			else
565 				mstate = LMS_DFAULT;
566 			break;
567 		default:
568 			mstate = LMS_TRAP;
569 			break;
570 		}
571 		/* Kernel probe */
572 		TNF_PROBE_1(thread_state, "thread", /* CSTYLED */,
573 		    tnf_microstate, state, mstate);
574 		mstate = new_mstate(ct, mstate);
575 
576 		bzero(&siginfo, sizeof (siginfo));
577 	}
578 
579 	switch (type) {
580 	case T_PGFLT + USER:
581 	case T_SGLSTP:
582 	case T_SGLSTP + USER:
583 	case T_BPTFLT + USER:
584 		break;
585 
586 	default:
587 		FTRACE_2("trap(): type=0x%lx, regs=0x%lx",
588 		    (ulong_t)type, (ulong_t)rp);
589 		break;
590 	}
591 
592 	switch (type) {
593 	case T_SIMDFPE:
594 		/* Make sure we enable interrupts before die()ing */
595 		sti();	/* The SIMD exception comes in via cmninttrap */
596 		/*FALLTHROUGH*/
597 	default:
598 		if (type & USER) {
599 			if (tudebug)
600 				showregs(type, rp, (caddr_t)0);
601 			printf("trap: Unknown trap type %d in user mode\n",
602 			    type & ~USER);
603 			siginfo.si_signo = SIGILL;
604 			siginfo.si_code  = ILL_ILLTRP;
605 			siginfo.si_addr  = (caddr_t)rp->r_pc;
606 			siginfo.si_trapno = type & ~USER;
607 			fault = FLTILL;
608 			break;
609 		} else {
610 			(void) die(type, rp, addr, cpuid);
611 			/*NOTREACHED*/
612 		}
613 
614 	case T_PGFLT:		/* system page fault */
615 		/*
616 		 * If we're under on_trap() protection (see <sys/ontrap.h>),
617 		 * set ot_trap and bounce back to the on_trap() call site
618 		 * via the installed trampoline.
619 		 */
620 		if ((ct->t_ontrap != NULL) &&
621 		    (ct->t_ontrap->ot_prot & OT_DATA_ACCESS)) {
622 			ct->t_ontrap->ot_trap |= OT_DATA_ACCESS;
623 			rp->r_pc = ct->t_ontrap->ot_trampoline;
624 			goto cleanup;
625 		}
626 
627 		/*
628 		 * If we have an Instruction fault in kernel mode, then that
629 		 * means we've tried to execute a user page (SMEP) or both of
630 		 * PAE and NXE are enabled. In either case, given that it's a
631 		 * kernel fault, we should panic immediately and not try to make
632 		 * any more forward progress. This indicates a bug in the
633 		 * kernel, which if execution continued, could be exploited to
634 		 * wreak havoc on the system.
635 		 */
636 		if (errcode & PF_ERR_EXEC) {
637 			(void) die(type, rp, addr, cpuid);
638 		}
639 
640 		/*
641 		 * We need to check if SMAP is in play. If SMAP is in play, then
642 		 * any access to a user page will show up as a protection
643 		 * violation. To see if SMAP is enabled we first check if it's a
644 		 * user address and whether we have the feature flag set. If we
645 		 * do and the interrupted registers do not allow for user
646 		 * accesses (PS_ACHK is not enabled), then we need to die
647 		 * immediately.
648 		 */
649 		if (addr < (caddr_t)kernelbase &&
650 		    is_x86_feature(x86_featureset, X86FSET_SMAP) == B_TRUE &&
651 		    (rp->r_ps & PS_ACHK) == 0) {
652 			(void) die(type, rp, addr, cpuid);
653 		}
654 
655 		/*
656 		 * See if we can handle as pagefault. Save lofault and onfault
657 		 * across this. Here we assume that an address less than
658 		 * KERNELBASE is a user fault.  We can do this as copy.s
659 		 * routines verify that the starting address is less than
660 		 * KERNELBASE before starting and because we know that we
661 		 * always have KERNELBASE mapped as invalid to serve as a
662 		 * "barrier".
663 		 */
664 		lofault = ct->t_lofault;
665 		onfault = ct->t_onfault;
666 		ct->t_lofault = 0;
667 
668 		mstate = new_mstate(ct, LMS_KFAULT);
669 
670 		if (addr < (caddr_t)kernelbase) {
671 			res = pagefault(addr,
672 			    (errcode & PF_ERR_PROT)? F_PROT: F_INVAL, rw, 0);
673 			if (res == FC_NOMAP &&
674 			    addr < p->p_usrstack &&
675 			    grow(addr))
676 				res = 0;
677 		} else {
678 			res = pagefault(addr,
679 			    (errcode & PF_ERR_PROT)? F_PROT: F_INVAL, rw, 1);
680 		}
681 		(void) new_mstate(ct, mstate);
682 
683 		/*
684 		 * Restore lofault and onfault. If we resolved the fault, exit.
685 		 * If we didn't and lofault wasn't set, die.
686 		 */
687 		ct->t_lofault = lofault;
688 		ct->t_onfault = onfault;
689 		if (res == 0)
690 			goto cleanup;
691 
692 #if defined(OPTERON_ERRATUM_93) && defined(_LP64)
693 		if (lofault == 0 && opteron_erratum_93) {
694 			/*
695 			 * Workaround for Opteron Erratum 93. On return from
696 			 * a System Managment Interrupt at a HLT instruction
697 			 * the %rip might be truncated to a 32 bit value.
698 			 * BIOS is supposed to fix this, but some don't.
699 			 * If this occurs we simply restore the high order bits.
700 			 * The HLT instruction is 1 byte of 0xf4.
701 			 */
702 			uintptr_t	rip = rp->r_pc;
703 
704 			if ((rip & 0xfffffffful) == rip) {
705 				rip |= 0xfffffffful << 32;
706 				if (hat_getpfnum(kas.a_hat, (caddr_t)rip) !=
707 				    PFN_INVALID &&
708 				    (*(uchar_t *)rip == 0xf4 ||
709 				    *(uchar_t *)(rip - 1) == 0xf4)) {
710 					rp->r_pc = rip;
711 					goto cleanup;
712 				}
713 			}
714 		}
715 #endif /* OPTERON_ERRATUM_93 && _LP64 */
716 
717 #ifdef OPTERON_ERRATUM_91
718 		if (lofault == 0 && opteron_erratum_91) {
719 			/*
720 			 * Workaround for Opteron Erratum 91. Prefetches may
721 			 * generate a page fault (they're not supposed to do
722 			 * that!). If this occurs we simply return back to the
723 			 * instruction.
724 			 */
725 			caddr_t		pc = (caddr_t)rp->r_pc;
726 
727 			/*
728 			 * If the faulting PC is not mapped, this is a
729 			 * legitimate kernel page fault that must result in a
730 			 * panic. If the faulting PC is mapped, it could contain
731 			 * a prefetch instruction. Check for that here.
732 			 */
733 			if (hat_getpfnum(kas.a_hat, pc) != PFN_INVALID) {
734 				if (cmp_to_prefetch((uchar_t *)pc)) {
735 #ifdef DEBUG
736 					cmn_err(CE_WARN, "Opteron erratum 91 "
737 					    "occurred: kernel prefetch"
738 					    " at %p generated a page fault!",
739 					    (void *)rp->r_pc);
740 #endif /* DEBUG */
741 					goto cleanup;
742 				}
743 			}
744 			(void) die(type, rp, addr, cpuid);
745 		}
746 #endif /* OPTERON_ERRATUM_91 */
747 
748 		if (lofault == 0)
749 			(void) die(type, rp, addr, cpuid);
750 
751 		/*
752 		 * Cannot resolve fault.  Return to lofault.
753 		 */
754 		if (lodebug) {
755 			showregs(type, rp, addr);
756 			traceregs(rp);
757 		}
758 		if (FC_CODE(res) == FC_OBJERR)
759 			res = FC_ERRNO(res);
760 		else
761 			res = EFAULT;
762 		rp->r_r0 = res;
763 		rp->r_pc = ct->t_lofault;
764 		goto cleanup;
765 
766 	case T_PGFLT + USER:	/* user page fault */
767 		if (faultdebug) {
768 			char *fault_str;
769 
770 			switch (rw) {
771 			case S_READ:
772 				fault_str = "read";
773 				break;
774 			case S_WRITE:
775 				fault_str = "write";
776 				break;
777 			case S_EXEC:
778 				fault_str = "exec";
779 				break;
780 			default:
781 				fault_str = "";
782 				break;
783 			}
784 			printf("user %s fault:  addr=0x%lx errcode=0x%x\n",
785 			    fault_str, (uintptr_t)addr, errcode);
786 		}
787 
788 #if defined(OPTERON_ERRATUM_100) && defined(_LP64)
789 		/*
790 		 * Workaround for AMD erratum 100
791 		 *
792 		 * A 32-bit process may receive a page fault on a non
793 		 * 32-bit address by mistake. The range of the faulting
794 		 * address will be
795 		 *
796 		 *	0xffffffff80000000 .. 0xffffffffffffffff or
797 		 *	0x0000000100000000 .. 0x000000017fffffff
798 		 *
799 		 * The fault is always due to an instruction fetch, however
800 		 * the value of r_pc should be correct (in 32 bit range),
801 		 * so we ignore the page fault on the bogus address.
802 		 */
803 		if (p->p_model == DATAMODEL_ILP32 &&
804 		    (0xffffffff80000000 <= (uintptr_t)addr ||
805 		    (0x100000000 <= (uintptr_t)addr &&
806 		    (uintptr_t)addr <= 0x17fffffff))) {
807 			if (!opteron_erratum_100)
808 				panic("unexpected erratum #100");
809 			if (rp->r_pc <= 0xffffffff)
810 				goto out;
811 		}
812 #endif /* OPTERON_ERRATUM_100 && _LP64 */
813 
814 		ASSERT(!(curthread->t_flag & T_WATCHPT));
815 		watchpage = (pr_watch_active(p) && pr_is_watchpage(addr, rw));
816 #ifdef __i386
817 		/*
818 		 * In 32-bit mode, the lcall (system call) instruction fetches
819 		 * one word from the stack, at the stack pointer, because of the
820 		 * way the call gate is constructed.  This is a bogus
821 		 * read and should not be counted as a read watchpoint.
822 		 * We work around the problem here by testing to see if
823 		 * this situation applies and, if so, simply jumping to
824 		 * the code in locore.s that fields the system call trap.
825 		 * The registers on the stack are already set up properly
826 		 * due to the match between the call gate sequence and the
827 		 * trap gate sequence.  We just have to adjust the pc.
828 		 */
829 		if (watchpage && addr == (caddr_t)rp->r_sp &&
830 		    rw == S_READ && instr_is_lcall_syscall((caddr_t)rp->r_pc)) {
831 			extern void watch_syscall(void);
832 
833 			rp->r_pc += LCALLSIZE;
834 			watch_syscall();	/* never returns */
835 			/* NOTREACHED */
836 		}
837 #endif /* __i386 */
838 		vaddr = addr;
839 		if (!watchpage || (sz = instr_size(rp, &vaddr, rw)) <= 0)
840 			fault_type = (errcode & PF_ERR_PROT)? F_PROT: F_INVAL;
841 		else if ((watchcode = pr_is_watchpoint(&vaddr, &ta,
842 		    sz, NULL, rw)) != 0) {
843 			if (ta) {
844 				do_watch_step(vaddr, sz, rw,
845 				    watchcode, rp->r_pc);
846 				fault_type = F_INVAL;
847 			} else {
848 				bzero(&siginfo, sizeof (siginfo));
849 				siginfo.si_signo = SIGTRAP;
850 				siginfo.si_code = watchcode;
851 				siginfo.si_addr = vaddr;
852 				siginfo.si_trapafter = 0;
853 				siginfo.si_pc = (caddr_t)rp->r_pc;
854 				fault = FLTWATCH;
855 				break;
856 			}
857 		} else {
858 			/* XXX pr_watch_emul() never succeeds (for now) */
859 			if (rw != S_EXEC && pr_watch_emul(rp, vaddr, rw))
860 				goto out;
861 			do_watch_step(vaddr, sz, rw, 0, 0);
862 			fault_type = F_INVAL;
863 		}
864 
865 		res = pagefault(addr, fault_type, rw, 0);
866 
867 		/*
868 		 * If pagefault() succeeded, ok.
869 		 * Otherwise attempt to grow the stack.
870 		 */
871 		if (res == 0 ||
872 		    (res == FC_NOMAP &&
873 		    addr < p->p_usrstack &&
874 		    grow(addr))) {
875 			lwp->lwp_lastfault = FLTPAGE;
876 			lwp->lwp_lastfaddr = addr;
877 			if (prismember(&p->p_fltmask, FLTPAGE)) {
878 				bzero(&siginfo, sizeof (siginfo));
879 				siginfo.si_addr = addr;
880 				(void) stop_on_fault(FLTPAGE, &siginfo);
881 			}
882 			goto out;
883 		} else if (res == FC_PROT && addr < p->p_usrstack &&
884 		    (mmu.pt_nx != 0 && (errcode & PF_ERR_EXEC))) {
885 			report_stack_exec(p, addr);
886 		}
887 
888 #ifdef OPTERON_ERRATUM_91
889 		/*
890 		 * Workaround for Opteron Erratum 91. Prefetches may generate a
891 		 * page fault (they're not supposed to do that!). If this
892 		 * occurs we simply return back to the instruction.
893 		 *
894 		 * We rely on copyin to properly fault in the page with r_pc.
895 		 */
896 		if (opteron_erratum_91 &&
897 		    addr != (caddr_t)rp->r_pc &&
898 		    instr_is_prefetch((caddr_t)rp->r_pc)) {
899 #ifdef DEBUG
900 			cmn_err(CE_WARN, "Opteron erratum 91 occurred: "
901 			    "prefetch at %p in pid %d generated a trap!",
902 			    (void *)rp->r_pc, p->p_pid);
903 #endif /* DEBUG */
904 			goto out;
905 		}
906 #endif /* OPTERON_ERRATUM_91 */
907 
908 		if (tudebug)
909 			showregs(type, rp, addr);
910 		/*
911 		 * In the case where both pagefault and grow fail,
912 		 * set the code to the value provided by pagefault.
913 		 * We map all errors returned from pagefault() to SIGSEGV.
914 		 */
915 		bzero(&siginfo, sizeof (siginfo));
916 		siginfo.si_addr = addr;
917 		switch (FC_CODE(res)) {
918 		case FC_HWERR:
919 		case FC_NOSUPPORT:
920 			siginfo.si_signo = SIGBUS;
921 			siginfo.si_code = BUS_ADRERR;
922 			fault = FLTACCESS;
923 			break;
924 		case FC_ALIGN:
925 			siginfo.si_signo = SIGBUS;
926 			siginfo.si_code = BUS_ADRALN;
927 			fault = FLTACCESS;
928 			break;
929 		case FC_OBJERR:
930 			if ((siginfo.si_errno = FC_ERRNO(res)) != EINTR) {
931 				siginfo.si_signo = SIGBUS;
932 				siginfo.si_code = BUS_OBJERR;
933 				fault = FLTACCESS;
934 			}
935 			break;
936 		default:	/* FC_NOMAP or FC_PROT */
937 			siginfo.si_signo = SIGSEGV;
938 			siginfo.si_code =
939 			    (res == FC_NOMAP)? SEGV_MAPERR : SEGV_ACCERR;
940 			fault = FLTBOUNDS;
941 			break;
942 		}
943 		break;
944 
945 	case T_ILLINST + USER:	/* invalid opcode fault */
946 		/*
947 		 * If the syscall instruction is disabled due to LDT usage, a
948 		 * user program that attempts to execute it will trigger a #ud
949 		 * trap. Check for that case here. If this occurs on a CPU which
950 		 * doesn't even support syscall, the result of all of this will
951 		 * be to emulate that particular instruction.
952 		 */
953 		if (p->p_ldt != NULL &&
954 		    ldt_rewrite_syscall(rp, p, X86FSET_ASYSC))
955 			goto out;
956 
957 #ifdef __amd64
958 		/*
959 		 * Emulate the LAHF and SAHF instructions if needed.
960 		 * See the instr_is_lsahf function for details.
961 		 */
962 		if (p->p_model == DATAMODEL_LP64 &&
963 		    instr_is_lsahf((caddr_t)rp->r_pc, &instr)) {
964 			emulate_lsahf(rp, instr);
965 			goto out;
966 		}
967 #endif
968 
969 		/*FALLTHROUGH*/
970 
971 		if (tudebug)
972 			showregs(type, rp, (caddr_t)0);
973 		siginfo.si_signo = SIGILL;
974 		siginfo.si_code  = ILL_ILLOPC;
975 		siginfo.si_addr  = (caddr_t)rp->r_pc;
976 		fault = FLTILL;
977 		break;
978 
979 	case T_ZERODIV + USER:		/* integer divide by zero */
980 		if (tudebug && tudebugfpe)
981 			showregs(type, rp, (caddr_t)0);
982 		siginfo.si_signo = SIGFPE;
983 		siginfo.si_code  = FPE_INTDIV;
984 		siginfo.si_addr  = (caddr_t)rp->r_pc;
985 		fault = FLTIZDIV;
986 		break;
987 
988 	case T_OVFLW + USER:	/* integer overflow */
989 		if (tudebug && tudebugfpe)
990 			showregs(type, rp, (caddr_t)0);
991 		siginfo.si_signo = SIGFPE;
992 		siginfo.si_code  = FPE_INTOVF;
993 		siginfo.si_addr  = (caddr_t)rp->r_pc;
994 		fault = FLTIOVF;
995 		break;
996 
997 	case T_NOEXTFLT + USER:	/* math coprocessor not available */
998 		if (tudebug && tudebugfpe)
999 			showregs(type, rp, addr);
1000 		if (fpnoextflt(rp)) {
1001 			siginfo.si_signo = SIGILL;
1002 			siginfo.si_code  = ILL_ILLOPC;
1003 			siginfo.si_addr  = (caddr_t)rp->r_pc;
1004 			fault = FLTILL;
1005 		}
1006 		break;
1007 
1008 	case T_EXTOVRFLT:	/* extension overrun fault */
1009 		/* check if we took a kernel trap on behalf of user */
1010 		{
1011 			extern  void ndptrap_frstor(void);
1012 			if (rp->r_pc != (uintptr_t)ndptrap_frstor) {
1013 				sti(); /* T_EXTOVRFLT comes in via cmninttrap */
1014 				(void) die(type, rp, addr, cpuid);
1015 			}
1016 			type |= USER;
1017 		}
1018 		/*FALLTHROUGH*/
1019 	case T_EXTOVRFLT + USER:	/* extension overrun fault */
1020 		if (tudebug && tudebugfpe)
1021 			showregs(type, rp, addr);
1022 		if (fpextovrflt(rp)) {
1023 			siginfo.si_signo = SIGSEGV;
1024 			siginfo.si_code  = SEGV_MAPERR;
1025 			siginfo.si_addr  = (caddr_t)rp->r_pc;
1026 			fault = FLTBOUNDS;
1027 		}
1028 		break;
1029 
1030 	case T_EXTERRFLT:	/* x87 floating point exception pending */
1031 		/* check if we took a kernel trap on behalf of user */
1032 		{
1033 			extern  void ndptrap_frstor(void);
1034 			if (rp->r_pc != (uintptr_t)ndptrap_frstor) {
1035 				sti(); /* T_EXTERRFLT comes in via cmninttrap */
1036 				(void) die(type, rp, addr, cpuid);
1037 			}
1038 			type |= USER;
1039 		}
1040 		/*FALLTHROUGH*/
1041 
1042 	case T_EXTERRFLT + USER: /* x87 floating point exception pending */
1043 		if (tudebug && tudebugfpe)
1044 			showregs(type, rp, addr);
1045 		if (sicode = fpexterrflt(rp)) {
1046 			siginfo.si_signo = SIGFPE;
1047 			siginfo.si_code  = sicode;
1048 			siginfo.si_addr  = (caddr_t)rp->r_pc;
1049 			fault = FLTFPE;
1050 		}
1051 		break;
1052 
1053 	case T_SIMDFPE + USER:		/* SSE and SSE2 exceptions */
1054 		if (tudebug && tudebugsse)
1055 			showregs(type, rp, addr);
1056 		if (!is_x86_feature(x86_featureset, X86FSET_SSE) &&
1057 		    !is_x86_feature(x86_featureset, X86FSET_SSE2)) {
1058 			/*
1059 			 * There are rumours that some user instructions
1060 			 * on older CPUs can cause this trap to occur; in
1061 			 * which case send a SIGILL instead of a SIGFPE.
1062 			 */
1063 			siginfo.si_signo = SIGILL;
1064 			siginfo.si_code  = ILL_ILLTRP;
1065 			siginfo.si_addr  = (caddr_t)rp->r_pc;
1066 			siginfo.si_trapno = type & ~USER;
1067 			fault = FLTILL;
1068 		} else if ((sicode = fpsimderrflt(rp)) != 0) {
1069 			siginfo.si_signo = SIGFPE;
1070 			siginfo.si_code = sicode;
1071 			siginfo.si_addr = (caddr_t)rp->r_pc;
1072 			fault = FLTFPE;
1073 		}
1074 
1075 		sti();	/* The SIMD exception comes in via cmninttrap */
1076 		break;
1077 
1078 	case T_BPTFLT:	/* breakpoint trap */
1079 		/*
1080 		 * Kernel breakpoint traps should only happen when kmdb is
1081 		 * active, and even then, it'll have interposed on the IDT, so
1082 		 * control won't get here.  If it does, we've hit a breakpoint
1083 		 * without the debugger, which is very strange, and very
1084 		 * fatal.
1085 		 */
1086 		if (tudebug && tudebugbpt)
1087 			showregs(type, rp, (caddr_t)0);
1088 
1089 		(void) die(type, rp, addr, cpuid);
1090 		break;
1091 
1092 	case T_SGLSTP: /* single step/hw breakpoint exception */
1093 
1094 		/* Now evaluate how we got here */
1095 		if (lwp != NULL && (lwp->lwp_pcb.pcb_drstat & DR_SINGLESTEP)) {
1096 			/*
1097 			 * i386 single-steps even through lcalls which
1098 			 * change the privilege level. So we take a trap at
1099 			 * the first instruction in privileged mode.
1100 			 *
1101 			 * Set a flag to indicate that upon completion of
1102 			 * the system call, deal with the single-step trap.
1103 			 *
1104 			 * The same thing happens for sysenter, too.
1105 			 */
1106 			singlestep_twiddle = 0;
1107 			if (rp->r_pc == (uintptr_t)sys_sysenter ||
1108 			    rp->r_pc == (uintptr_t)brand_sys_sysenter) {
1109 				singlestep_twiddle = 1;
1110 #if defined(__amd64)
1111 				/*
1112 				 * Since we are already on the kernel's
1113 				 * %gs, on 64-bit systems the sysenter case
1114 				 * needs to adjust the pc to avoid
1115 				 * executing the swapgs instruction at the
1116 				 * top of the handler.
1117 				 */
1118 				if (rp->r_pc == (uintptr_t)sys_sysenter)
1119 					rp->r_pc = (uintptr_t)
1120 					    _sys_sysenter_post_swapgs;
1121 				else
1122 					rp->r_pc = (uintptr_t)
1123 					    _brand_sys_sysenter_post_swapgs;
1124 #endif
1125 			}
1126 #if defined(__i386)
1127 			else if (rp->r_pc == (uintptr_t)sys_call ||
1128 			    rp->r_pc == (uintptr_t)brand_sys_call) {
1129 				singlestep_twiddle = 1;
1130 			}
1131 #endif
1132 			else {
1133 				/* not on sysenter/syscall; uregs available */
1134 				if (tudebug && tudebugbpt)
1135 					showregs(type, rp, (caddr_t)0);
1136 			}
1137 			if (singlestep_twiddle) {
1138 				rp->r_ps &= ~PS_T; /* turn off trace */
1139 				lwp->lwp_pcb.pcb_flags |= DEBUG_PENDING;
1140 				ct->t_post_sys = 1;
1141 				aston(curthread);
1142 				goto cleanup;
1143 			}
1144 		}
1145 		/* XXX - needs review on debugger interface? */
1146 		if (boothowto & RB_DEBUG)
1147 			debug_enter((char *)NULL);
1148 		else
1149 			(void) die(type, rp, addr, cpuid);
1150 		break;
1151 
1152 	case T_NMIFLT:	/* NMI interrupt */
1153 		printf("Unexpected NMI in system mode\n");
1154 		goto cleanup;
1155 
1156 	case T_NMIFLT + USER:	/* NMI interrupt */
1157 		printf("Unexpected NMI in user mode\n");
1158 		break;
1159 
1160 	case T_GPFLT:	/* general protection violation */
1161 		/*
1162 		 * Any #GP that occurs during an on_trap .. no_trap bracket
1163 		 * with OT_DATA_ACCESS or OT_SEGMENT_ACCESS protection,
1164 		 * or in a on_fault .. no_fault bracket, is forgiven
1165 		 * and we trampoline.  This protection is given regardless
1166 		 * of whether we are 32/64 bit etc - if a distinction is
1167 		 * required then define new on_trap protection types.
1168 		 *
1169 		 * On amd64, we can get a #gp from referencing addresses
1170 		 * in the virtual address hole e.g. from a copyin or in
1171 		 * update_sregs while updating user segment registers.
1172 		 *
1173 		 * On the 32-bit hypervisor we could also generate one in
1174 		 * mfn_to_pfn by reaching around or into where the hypervisor
1175 		 * lives which is protected by segmentation.
1176 		 */
1177 
1178 		/*
1179 		 * If we're under on_trap() protection (see <sys/ontrap.h>),
1180 		 * set ot_trap and trampoline back to the on_trap() call site
1181 		 * for OT_DATA_ACCESS or OT_SEGMENT_ACCESS.
1182 		 */
1183 		if (ct->t_ontrap != NULL) {
1184 			int ttype =  ct->t_ontrap->ot_prot &
1185 			    (OT_DATA_ACCESS | OT_SEGMENT_ACCESS);
1186 
1187 			if (ttype != 0) {
1188 				ct->t_ontrap->ot_trap |= ttype;
1189 				if (tudebug)
1190 					showregs(type, rp, (caddr_t)0);
1191 				rp->r_pc = ct->t_ontrap->ot_trampoline;
1192 				goto cleanup;
1193 			}
1194 		}
1195 
1196 		/*
1197 		 * If we're under lofault protection (copyin etc.),
1198 		 * longjmp back to lofault with an EFAULT.
1199 		 */
1200 		if (ct->t_lofault) {
1201 			/*
1202 			 * Fault is not resolvable, so just return to lofault
1203 			 */
1204 			if (lodebug) {
1205 				showregs(type, rp, addr);
1206 				traceregs(rp);
1207 			}
1208 			rp->r_r0 = EFAULT;
1209 			rp->r_pc = ct->t_lofault;
1210 			goto cleanup;
1211 		}
1212 
1213 		/*
1214 		 * We fall through to the next case, which repeats
1215 		 * the OT_SEGMENT_ACCESS check which we've already
1216 		 * done, so we'll always fall through to the
1217 		 * T_STKFLT case.
1218 		 */
1219 		/*FALLTHROUGH*/
1220 	case T_SEGFLT:	/* segment not present fault */
1221 		/*
1222 		 * One example of this is #NP in update_sregs while
1223 		 * attempting to update a user segment register
1224 		 * that points to a descriptor that is marked not
1225 		 * present.
1226 		 */
1227 		if (ct->t_ontrap != NULL &&
1228 		    ct->t_ontrap->ot_prot & OT_SEGMENT_ACCESS) {
1229 			ct->t_ontrap->ot_trap |= OT_SEGMENT_ACCESS;
1230 			if (tudebug)
1231 				showregs(type, rp, (caddr_t)0);
1232 			rp->r_pc = ct->t_ontrap->ot_trampoline;
1233 			goto cleanup;
1234 		}
1235 		/*FALLTHROUGH*/
1236 	case T_STKFLT:	/* stack fault */
1237 	case T_TSSFLT:	/* invalid TSS fault */
1238 		if (tudebug)
1239 			showregs(type, rp, (caddr_t)0);
1240 		if (kern_gpfault(rp))
1241 			(void) die(type, rp, addr, cpuid);
1242 		goto cleanup;
1243 
1244 	/*
1245 	 * ONLY 32-bit PROCESSES can USE a PRIVATE LDT! 64-bit apps
1246 	 * should have no need for them, so we put a stop to it here.
1247 	 *
1248 	 * So: not-present fault is ONLY valid for 32-bit processes with
1249 	 * a private LDT trying to do a system call. Emulate it.
1250 	 *
1251 	 * #gp fault is ONLY valid for 32-bit processes also, which DO NOT
1252 	 * have a private LDT, and are trying to do a system call. Emulate it.
1253 	 */
1254 
1255 	case T_SEGFLT + USER:	/* segment not present fault */
1256 	case T_GPFLT + USER:	/* general protection violation */
1257 #ifdef _SYSCALL32_IMPL
1258 		if (p->p_model != DATAMODEL_NATIVE) {
1259 #endif /* _SYSCALL32_IMPL */
1260 		if (instr_is_lcall_syscall((caddr_t)rp->r_pc)) {
1261 			if (type == T_SEGFLT + USER)
1262 				ASSERT(p->p_ldt != NULL);
1263 
1264 			if ((p->p_ldt == NULL && type == T_GPFLT + USER) ||
1265 			    type == T_SEGFLT + USER) {
1266 
1267 			/*
1268 			 * The user attempted a system call via the obsolete
1269 			 * call gate mechanism. Because the process doesn't have
1270 			 * an LDT (i.e. the ldtr contains 0), a #gp results.
1271 			 * Emulate the syscall here, just as we do above for a
1272 			 * #np trap.
1273 			 */
1274 
1275 			/*
1276 			 * Since this is a not-present trap, rp->r_pc points to
1277 			 * the trapping lcall instruction. We need to bump it
1278 			 * to the next insn so the app can continue on.
1279 			 */
1280 			rp->r_pc += LCALLSIZE;
1281 			lwp->lwp_regs = rp;
1282 
1283 			/*
1284 			 * Normally the microstate of the LWP is forced back to
1285 			 * LMS_USER by the syscall handlers. Emulate that
1286 			 * behavior here.
1287 			 */
1288 			mstate = LMS_USER;
1289 
1290 			dosyscall();
1291 			goto out;
1292 			}
1293 		}
1294 #ifdef _SYSCALL32_IMPL
1295 		}
1296 #endif /* _SYSCALL32_IMPL */
1297 		/*
1298 		 * If the current process is using a private LDT and the
1299 		 * trapping instruction is sysenter, the sysenter instruction
1300 		 * has been disabled on the CPU because it destroys segment
1301 		 * registers. If this is the case, rewrite the instruction to
1302 		 * be a safe system call and retry it. If this occurs on a CPU
1303 		 * which doesn't even support sysenter, the result of all of
1304 		 * this will be to emulate that particular instruction.
1305 		 */
1306 		if (p->p_ldt != NULL &&
1307 		    ldt_rewrite_syscall(rp, p, X86FSET_SEP))
1308 			goto out;
1309 
1310 		/*FALLTHROUGH*/
1311 
1312 	case T_BOUNDFLT + USER:	/* bound fault */
1313 	case T_STKFLT + USER:	/* stack fault */
1314 	case T_TSSFLT + USER:	/* invalid TSS fault */
1315 		if (tudebug)
1316 			showregs(type, rp, (caddr_t)0);
1317 		siginfo.si_signo = SIGSEGV;
1318 		siginfo.si_code  = SEGV_MAPERR;
1319 		siginfo.si_addr  = (caddr_t)rp->r_pc;
1320 		fault = FLTBOUNDS;
1321 		break;
1322 
1323 	case T_ALIGNMENT + USER:	/* user alignment error (486) */
1324 		if (tudebug)
1325 			showregs(type, rp, (caddr_t)0);
1326 		bzero(&siginfo, sizeof (siginfo));
1327 		siginfo.si_signo = SIGBUS;
1328 		siginfo.si_code = BUS_ADRALN;
1329 		siginfo.si_addr = (caddr_t)rp->r_pc;
1330 		fault = FLTACCESS;
1331 		break;
1332 
1333 	case T_SGLSTP + USER: /* single step/hw breakpoint exception */
1334 		if (tudebug && tudebugbpt)
1335 			showregs(type, rp, (caddr_t)0);
1336 
1337 		/* Was it single-stepping? */
1338 		if (lwp->lwp_pcb.pcb_drstat & DR_SINGLESTEP) {
1339 			pcb_t *pcb = &lwp->lwp_pcb;
1340 
1341 			rp->r_ps &= ~PS_T;
1342 			/*
1343 			 * If both NORMAL_STEP and WATCH_STEP are in effect,
1344 			 * give precedence to WATCH_STEP.  If neither is set,
1345 			 * user must have set the PS_T bit in %efl; treat this
1346 			 * as NORMAL_STEP.
1347 			 */
1348 			if ((fault = undo_watch_step(&siginfo)) == 0 &&
1349 			    ((pcb->pcb_flags & NORMAL_STEP) ||
1350 			    !(pcb->pcb_flags & WATCH_STEP))) {
1351 				siginfo.si_signo = SIGTRAP;
1352 				siginfo.si_code = TRAP_TRACE;
1353 				siginfo.si_addr = (caddr_t)rp->r_pc;
1354 				fault = FLTTRACE;
1355 			}
1356 			pcb->pcb_flags &= ~(NORMAL_STEP|WATCH_STEP);
1357 		}
1358 		break;
1359 
1360 	case T_BPTFLT + USER:	/* breakpoint trap */
1361 		if (tudebug && tudebugbpt)
1362 			showregs(type, rp, (caddr_t)0);
1363 		/*
1364 		 * int 3 (the breakpoint instruction) leaves the pc referring
1365 		 * to the address one byte after the breakpointed address.
1366 		 * If the P_PR_BPTADJ flag has been set via /proc, We adjust
1367 		 * it back so it refers to the breakpointed address.
1368 		 */
1369 		if (p->p_proc_flag & P_PR_BPTADJ)
1370 			rp->r_pc--;
1371 		siginfo.si_signo = SIGTRAP;
1372 		siginfo.si_code  = TRAP_BRKPT;
1373 		siginfo.si_addr  = (caddr_t)rp->r_pc;
1374 		fault = FLTBPT;
1375 		break;
1376 
1377 	case T_AST:
1378 		/*
1379 		 * This occurs only after the cs register has been made to
1380 		 * look like a kernel selector, either through debugging or
1381 		 * possibly by functions like setcontext().  The thread is
1382 		 * about to cause a general protection fault at common_iret()
1383 		 * in locore.  We let that happen immediately instead of
1384 		 * doing the T_AST processing.
1385 		 */
1386 		goto cleanup;
1387 
1388 	case T_AST + USER:	/* profiling, resched, h/w error pseudo trap */
1389 		if (lwp->lwp_pcb.pcb_flags & ASYNC_HWERR) {
1390 			proc_t *p = ttoproc(curthread);
1391 			extern void print_msg_hwerr(ctid_t ct_id, proc_t *p);
1392 
1393 			lwp->lwp_pcb.pcb_flags &= ~ASYNC_HWERR;
1394 			print_msg_hwerr(p->p_ct_process->conp_contract.ct_id,
1395 			    p);
1396 			contract_process_hwerr(p->p_ct_process, p);
1397 			siginfo.si_signo = SIGKILL;
1398 			siginfo.si_code = SI_NOINFO;
1399 		} else if (lwp->lwp_pcb.pcb_flags & CPC_OVERFLOW) {
1400 			lwp->lwp_pcb.pcb_flags &= ~CPC_OVERFLOW;
1401 			if (kcpc_overflow_ast()) {
1402 				/*
1403 				 * Signal performance counter overflow
1404 				 */
1405 				if (tudebug)
1406 					showregs(type, rp, (caddr_t)0);
1407 				bzero(&siginfo, sizeof (siginfo));
1408 				siginfo.si_signo = SIGEMT;
1409 				siginfo.si_code = EMT_CPCOVF;
1410 				siginfo.si_addr = (caddr_t)rp->r_pc;
1411 				fault = FLTCPCOVF;
1412 			}
1413 		}
1414 
1415 		break;
1416 	}
1417 
1418 	/*
1419 	 * We can't get here from a system trap
1420 	 */
1421 	ASSERT(type & USER);
1422 
1423 	if (fault) {
1424 		/* We took a fault so abort single step. */
1425 		lwp->lwp_pcb.pcb_flags &= ~(NORMAL_STEP|WATCH_STEP);
1426 		/*
1427 		 * Remember the fault and fault adddress
1428 		 * for real-time (SIGPROF) profiling.
1429 		 */
1430 		lwp->lwp_lastfault = fault;
1431 		lwp->lwp_lastfaddr = siginfo.si_addr;
1432 
1433 		DTRACE_PROC2(fault, int, fault, ksiginfo_t *, &siginfo);
1434 
1435 		/*
1436 		 * If a debugger has declared this fault to be an
1437 		 * event of interest, stop the lwp.  Otherwise just
1438 		 * deliver the associated signal.
1439 		 */
1440 		if (siginfo.si_signo != SIGKILL &&
1441 		    prismember(&p->p_fltmask, fault) &&
1442 		    stop_on_fault(fault, &siginfo) == 0)
1443 			siginfo.si_signo = 0;
1444 	}
1445 
1446 	if (siginfo.si_signo)
1447 		trapsig(&siginfo, (fault != FLTFPE && fault != FLTCPCOVF));
1448 
1449 	if (lwp->lwp_oweupc)
1450 		profil_tick(rp->r_pc);
1451 
1452 	if (ct->t_astflag | ct->t_sig_check) {
1453 		/*
1454 		 * Turn off the AST flag before checking all the conditions that
1455 		 * may have caused an AST.  This flag is on whenever a signal or
1456 		 * unusual condition should be handled after the next trap or
1457 		 * syscall.
1458 		 */
1459 		astoff(ct);
1460 		/*
1461 		 * If a single-step trap occurred on a syscall (see above)
1462 		 * recognize it now.  Do this before checking for signals
1463 		 * because deferred_singlestep_trap() may generate a SIGTRAP to
1464 		 * the LWP or may otherwise mark the LWP to call issig(FORREAL).
1465 		 */
1466 		if (lwp->lwp_pcb.pcb_flags & DEBUG_PENDING)
1467 			deferred_singlestep_trap((caddr_t)rp->r_pc);
1468 
1469 		ct->t_sig_check = 0;
1470 
1471 		/*
1472 		 * As in other code paths that check against TP_CHANGEBIND,
1473 		 * we perform the check first without p_lock held -- only
1474 		 * acquiring p_lock in the unlikely event that it is indeed
1475 		 * set.  This is safe because we are doing this after the
1476 		 * astoff(); if we are racing another thread setting
1477 		 * TP_CHANGEBIND on us, we will pick it up on a subsequent
1478 		 * lap through.
1479 		 */
1480 		if (curthread->t_proc_flag & TP_CHANGEBIND) {
1481 			mutex_enter(&p->p_lock);
1482 			if (curthread->t_proc_flag & TP_CHANGEBIND) {
1483 				timer_lwpbind();
1484 				curthread->t_proc_flag &= ~TP_CHANGEBIND;
1485 			}
1486 			mutex_exit(&p->p_lock);
1487 		}
1488 
1489 		/*
1490 		 * for kaio requests that are on the per-process poll queue,
1491 		 * aiop->aio_pollq, they're AIO_POLL bit is set, the kernel
1492 		 * should copyout their result_t to user memory. by copying
1493 		 * out the result_t, the user can poll on memory waiting
1494 		 * for the kaio request to complete.
1495 		 */
1496 		if (p->p_aio)
1497 			aio_cleanup(0);
1498 		/*
1499 		 * If this LWP was asked to hold, call holdlwp(), which will
1500 		 * stop.  holdlwps() sets this up and calls pokelwps() which
1501 		 * sets the AST flag.
1502 		 *
1503 		 * Also check TP_EXITLWP, since this is used by fresh new LWPs
1504 		 * through lwp_rtt().  That flag is set if the lwp_create(2)
1505 		 * syscall failed after creating the LWP.
1506 		 */
1507 		if (ISHOLD(p))
1508 			holdlwp();
1509 
1510 		/*
1511 		 * All code that sets signals and makes ISSIG evaluate true must
1512 		 * set t_astflag afterwards.
1513 		 */
1514 		if (ISSIG_PENDING(ct, lwp, p)) {
1515 			if (issig(FORREAL))
1516 				psig();
1517 			ct->t_sig_check = 1;
1518 		}
1519 
1520 		if (ct->t_rprof != NULL) {
1521 			realsigprof(0, 0, 0);
1522 			ct->t_sig_check = 1;
1523 		}
1524 
1525 		/*
1526 		 * /proc can't enable/disable the trace bit itself
1527 		 * because that could race with the call gate used by
1528 		 * system calls via "lcall". If that happened, an
1529 		 * invalid EFLAGS would result. prstep()/prnostep()
1530 		 * therefore schedule an AST for the purpose.
1531 		 */
1532 		if (lwp->lwp_pcb.pcb_flags & REQUEST_STEP) {
1533 			lwp->lwp_pcb.pcb_flags &= ~REQUEST_STEP;
1534 			rp->r_ps |= PS_T;
1535 		}
1536 		if (lwp->lwp_pcb.pcb_flags & REQUEST_NOSTEP) {
1537 			lwp->lwp_pcb.pcb_flags &= ~REQUEST_NOSTEP;
1538 			rp->r_ps &= ~PS_T;
1539 		}
1540 	}
1541 
1542 out:	/* We can't get here from a system trap */
1543 	ASSERT(type & USER);
1544 
1545 	if (ISHOLD(p))
1546 		holdlwp();
1547 
1548 	/*
1549 	 * Set state to LWP_USER here so preempt won't give us a kernel
1550 	 * priority if it occurs after this point.  Call CL_TRAPRET() to
1551 	 * restore the user-level priority.
1552 	 *
1553 	 * It is important that no locks (other than spinlocks) be entered
1554 	 * after this point before returning to user mode (unless lwp_state
1555 	 * is set back to LWP_SYS).
1556 	 */
1557 	lwp->lwp_state = LWP_USER;
1558 
1559 	if (ct->t_trapret) {
1560 		ct->t_trapret = 0;
1561 		thread_lock(ct);
1562 		CL_TRAPRET(ct);
1563 		thread_unlock(ct);
1564 	}
1565 	if (CPU->cpu_runrun || curthread->t_schedflag & TS_ANYWAITQ)
1566 		preempt();
1567 	prunstop();
1568 	(void) new_mstate(ct, mstate);
1569 
1570 	/* Kernel probe */
1571 	TNF_PROBE_1(thread_state, "thread", /* CSTYLED */,
1572 	    tnf_microstate, state, LMS_USER);
1573 
1574 	return;
1575 
1576 cleanup:	/* system traps end up here */
1577 	ASSERT(!(type & USER));
1578 }
1579 
1580 /*
1581  * Patch non-zero to disable preemption of threads in the kernel.
1582  */
1583 int IGNORE_KERNEL_PREEMPTION = 0;	/* XXX - delete this someday */
1584 
1585 struct kpreempt_cnts {		/* kernel preemption statistics */
1586 	int	kpc_idle;	/* executing idle thread */
1587 	int	kpc_intr;	/* executing interrupt thread */
1588 	int	kpc_clock;	/* executing clock thread */
1589 	int	kpc_blocked;	/* thread has blocked preemption (t_preempt) */
1590 	int	kpc_notonproc;	/* thread is surrendering processor */
1591 	int	kpc_inswtch;	/* thread has ratified scheduling decision */
1592 	int	kpc_prilevel;	/* processor interrupt level is too high */
1593 	int	kpc_apreempt;	/* asynchronous preemption */
1594 	int	kpc_spreempt;	/* synchronous preemption */
1595 } kpreempt_cnts;
1596 
1597 /*
1598  * kernel preemption: forced rescheduling, preempt the running kernel thread.
1599  *	the argument is old PIL for an interrupt,
1600  *	or the distingished value KPREEMPT_SYNC.
1601  */
1602 void
1603 kpreempt(int asyncspl)
1604 {
1605 	kthread_t *ct = curthread;
1606 
1607 	if (IGNORE_KERNEL_PREEMPTION) {
1608 		aston(CPU->cpu_dispthread);
1609 		return;
1610 	}
1611 
1612 	/*
1613 	 * Check that conditions are right for kernel preemption
1614 	 */
1615 	do {
1616 		if (ct->t_preempt) {
1617 			/*
1618 			 * either a privileged thread (idle, panic, interrupt)
1619 			 * or will check when t_preempt is lowered
1620 			 * We need to specifically handle the case where
1621 			 * the thread is in the middle of swtch (resume has
1622 			 * been called) and has its t_preempt set
1623 			 * [idle thread and a thread which is in kpreempt
1624 			 * already] and then a high priority thread is
1625 			 * available in the local dispatch queue.
1626 			 * In this case the resumed thread needs to take a
1627 			 * trap so that it can call kpreempt. We achieve
1628 			 * this by using siron().
1629 			 * How do we detect this condition:
1630 			 * idle thread is running and is in the midst of
1631 			 * resume: curthread->t_pri == -1 && CPU->dispthread
1632 			 * != CPU->thread
1633 			 * Need to ensure that this happens only at high pil
1634 			 * resume is called at high pil
1635 			 * Only in resume_from_idle is the pil changed.
1636 			 */
1637 			if (ct->t_pri < 0) {
1638 				kpreempt_cnts.kpc_idle++;
1639 				if (CPU->cpu_dispthread != CPU->cpu_thread)
1640 					siron();
1641 			} else if (ct->t_flag & T_INTR_THREAD) {
1642 				kpreempt_cnts.kpc_intr++;
1643 				if (ct->t_pil == CLOCK_LEVEL)
1644 					kpreempt_cnts.kpc_clock++;
1645 			} else {
1646 				kpreempt_cnts.kpc_blocked++;
1647 				if (CPU->cpu_dispthread != CPU->cpu_thread)
1648 					siron();
1649 			}
1650 			aston(CPU->cpu_dispthread);
1651 			return;
1652 		}
1653 		if (ct->t_state != TS_ONPROC ||
1654 		    ct->t_disp_queue != CPU->cpu_disp) {
1655 			/* this thread will be calling swtch() shortly */
1656 			kpreempt_cnts.kpc_notonproc++;
1657 			if (CPU->cpu_thread != CPU->cpu_dispthread) {
1658 				/* already in swtch(), force another */
1659 				kpreempt_cnts.kpc_inswtch++;
1660 				siron();
1661 			}
1662 			return;
1663 		}
1664 		if (getpil() >= DISP_LEVEL) {
1665 			/*
1666 			 * We can't preempt this thread if it is at
1667 			 * a PIL >= DISP_LEVEL since it may be holding
1668 			 * a spin lock (like sched_lock).
1669 			 */
1670 			siron();	/* check back later */
1671 			kpreempt_cnts.kpc_prilevel++;
1672 			return;
1673 		}
1674 		if (!interrupts_enabled()) {
1675 			/*
1676 			 * Can't preempt while running with ints disabled
1677 			 */
1678 			kpreempt_cnts.kpc_prilevel++;
1679 			return;
1680 		}
1681 		if (asyncspl != KPREEMPT_SYNC)
1682 			kpreempt_cnts.kpc_apreempt++;
1683 		else
1684 			kpreempt_cnts.kpc_spreempt++;
1685 
1686 		ct->t_preempt++;
1687 		preempt();
1688 		ct->t_preempt--;
1689 	} while (CPU->cpu_kprunrun);
1690 }
1691 
1692 /*
1693  * Print out debugging info.
1694  */
1695 static void
1696 showregs(uint_t type, struct regs *rp, caddr_t addr)
1697 {
1698 	int s;
1699 
1700 	s = spl7();
1701 	type &= ~USER;
1702 	if (PTOU(curproc)->u_comm[0])
1703 		printf("%s: ", PTOU(curproc)->u_comm);
1704 	if (type < TRAP_TYPES)
1705 		printf("#%s %s\n", trap_type_mnemonic[type], trap_type[type]);
1706 	else
1707 		switch (type) {
1708 		case T_SYSCALL:
1709 			printf("Syscall Trap:\n");
1710 			break;
1711 		case T_AST:
1712 			printf("AST\n");
1713 			break;
1714 		default:
1715 			printf("Bad Trap = %d\n", type);
1716 			break;
1717 		}
1718 	if (type == T_PGFLT) {
1719 		printf("Bad %s fault at addr=0x%lx\n",
1720 		    USERMODE(rp->r_cs) ? "user": "kernel", (uintptr_t)addr);
1721 	} else if (addr) {
1722 		printf("addr=0x%lx\n", (uintptr_t)addr);
1723 	}
1724 
1725 	printf("pid=%d, pc=0x%lx, sp=0x%lx, eflags=0x%lx\n",
1726 	    (ttoproc(curthread) && ttoproc(curthread)->p_pidp) ?
1727 	    ttoproc(curthread)->p_pid : 0, rp->r_pc, rp->r_sp, rp->r_ps);
1728 
1729 #if defined(__lint)
1730 	/*
1731 	 * this clause can be deleted when lint bug 4870403 is fixed
1732 	 * (lint thinks that bit 32 is illegal in a %b format string)
1733 	 */
1734 	printf("cr0: %x cr4: %b\n",
1735 	    (uint_t)getcr0(), (uint_t)getcr4(), FMT_CR4);
1736 #else
1737 	printf("cr0: %b cr4: %b\n",
1738 	    (uint_t)getcr0(), FMT_CR0, (uint_t)getcr4(), FMT_CR4);
1739 #endif	/* __lint */
1740 
1741 	printf("cr2: %lx", getcr2());
1742 #if !defined(__xpv)
1743 	printf("cr3: %lx", getcr3());
1744 #if defined(__amd64)
1745 	printf("cr8: %lx\n", getcr8());
1746 #endif
1747 #endif
1748 	printf("\n");
1749 
1750 	dumpregs(rp);
1751 	splx(s);
1752 }
1753 
1754 static void
1755 dumpregs(struct regs *rp)
1756 {
1757 #if defined(__amd64)
1758 	const char fmt[] = "\t%3s: %16lx %3s: %16lx %3s: %16lx\n";
1759 
1760 	printf(fmt, "rdi", rp->r_rdi, "rsi", rp->r_rsi, "rdx", rp->r_rdx);
1761 	printf(fmt, "rcx", rp->r_rcx, " r8", rp->r_r8, " r9", rp->r_r9);
1762 	printf(fmt, "rax", rp->r_rax, "rbx", rp->r_rbx, "rbp", rp->r_rbp);
1763 	printf(fmt, "r10", rp->r_r10, "r11", rp->r_r11, "r12", rp->r_r12);
1764 	printf(fmt, "r13", rp->r_r13, "r14", rp->r_r14, "r15", rp->r_r15);
1765 
1766 	printf(fmt, "fsb", rdmsr(MSR_AMD_FSBASE), "gsb", rdmsr(MSR_AMD_GSBASE),
1767 	    " ds", rp->r_ds);
1768 	printf(fmt, " es", rp->r_es, " fs", rp->r_fs, " gs", rp->r_gs);
1769 
1770 	printf(fmt, "trp", rp->r_trapno, "err", rp->r_err, "rip", rp->r_rip);
1771 	printf(fmt, " cs", rp->r_cs, "rfl", rp->r_rfl, "rsp", rp->r_rsp);
1772 
1773 	printf("\t%3s: %16lx\n", " ss", rp->r_ss);
1774 
1775 #elif defined(__i386)
1776 	const char fmt[] = "\t%3s: %8lx %3s: %8lx %3s: %8lx %3s: %8lx\n";
1777 
1778 	printf(fmt, " gs", rp->r_gs, " fs", rp->r_fs,
1779 	    " es", rp->r_es, " ds", rp->r_ds);
1780 	printf(fmt, "edi", rp->r_edi, "esi", rp->r_esi,
1781 	    "ebp", rp->r_ebp, "esp", rp->r_esp);
1782 	printf(fmt, "ebx", rp->r_ebx, "edx", rp->r_edx,
1783 	    "ecx", rp->r_ecx, "eax", rp->r_eax);
1784 	printf(fmt, "trp", rp->r_trapno, "err", rp->r_err,
1785 	    "eip", rp->r_eip, " cs", rp->r_cs);
1786 	printf("\t%3s: %8lx %3s: %8lx %3s: %8lx\n",
1787 	    "efl", rp->r_efl, "usp", rp->r_uesp, " ss", rp->r_ss);
1788 
1789 #endif	/* __i386 */
1790 }
1791 
1792 /*
1793  * Test to see if the instruction is iret on i386 or iretq on amd64.
1794  *
1795  * On the hypervisor we can only test for nopop_sys_rtt_syscall. If true
1796  * then we are in the context of hypervisor's failsafe handler because it
1797  * tried to iret and failed due to a bad selector. See xen_failsafe_callback.
1798  */
1799 static int
1800 instr_is_iret(caddr_t pc)
1801 {
1802 
1803 #if defined(__xpv)
1804 	extern void nopop_sys_rtt_syscall(void);
1805 	return ((pc == (caddr_t)nopop_sys_rtt_syscall) ? 1 : 0);
1806 
1807 #else
1808 
1809 #if defined(__amd64)
1810 	static const uint8_t iret_insn[2] = { 0x48, 0xcf };	/* iretq */
1811 
1812 #elif defined(__i386)
1813 	static const uint8_t iret_insn[1] = { 0xcf };		/* iret */
1814 #endif	/* __i386 */
1815 	return (bcmp(pc, iret_insn, sizeof (iret_insn)) == 0);
1816 
1817 #endif	/* __xpv */
1818 }
1819 
1820 #if defined(__i386)
1821 
1822 /*
1823  * Test to see if the instruction is part of __SEGREGS_POP
1824  *
1825  * Note carefully the appallingly awful dependency between
1826  * the instruction sequence used in __SEGREGS_POP and these
1827  * instructions encoded here.
1828  */
1829 static int
1830 instr_is_segregs_pop(caddr_t pc)
1831 {
1832 	static const uint8_t movw_0_esp_gs[4] = { 0x8e, 0x6c, 0x24, 0x0 };
1833 	static const uint8_t movw_4_esp_fs[4] = { 0x8e, 0x64, 0x24, 0x4 };
1834 	static const uint8_t movw_8_esp_es[4] = { 0x8e, 0x44, 0x24, 0x8 };
1835 	static const uint8_t movw_c_esp_ds[4] = { 0x8e, 0x5c, 0x24, 0xc };
1836 
1837 	if (bcmp(pc, movw_0_esp_gs, sizeof (movw_0_esp_gs)) == 0 ||
1838 	    bcmp(pc, movw_4_esp_fs, sizeof (movw_4_esp_fs)) == 0 ||
1839 	    bcmp(pc, movw_8_esp_es, sizeof (movw_8_esp_es)) == 0 ||
1840 	    bcmp(pc, movw_c_esp_ds, sizeof (movw_c_esp_ds)) == 0)
1841 		return (1);
1842 
1843 	return (0);
1844 }
1845 
1846 #endif	/* __i386 */
1847 
1848 /*
1849  * Test to see if the instruction is part of _sys_rtt.
1850  *
1851  * Again on the hypervisor if we try to IRET to user land with a bad code
1852  * or stack selector we will get vectored through xen_failsafe_callback.
1853  * In which case we assume we got here via _sys_rtt since we only allow
1854  * IRET to user land to take place in _sys_rtt.
1855  */
1856 static int
1857 instr_is_sys_rtt(caddr_t pc)
1858 {
1859 	extern void _sys_rtt(), _sys_rtt_end();
1860 
1861 	if ((uintptr_t)pc < (uintptr_t)_sys_rtt ||
1862 	    (uintptr_t)pc > (uintptr_t)_sys_rtt_end)
1863 		return (0);
1864 
1865 	return (1);
1866 }
1867 
1868 /*
1869  * Handle #gp faults in kernel mode.
1870  *
1871  * One legitimate way this can happen is if we attempt to update segment
1872  * registers to naughty values on the way out of the kernel.
1873  *
1874  * This can happen in a couple of ways: someone - either accidentally or
1875  * on purpose - creates (setcontext(2), lwp_create(2)) or modifies
1876  * (signal(2)) a ucontext that contains silly segment register values.
1877  * Or someone - either accidentally or on purpose - modifies the prgregset_t
1878  * of a subject process via /proc to contain silly segment register values.
1879  *
1880  * (The unfortunate part is that we can end up discovering the bad segment
1881  * register value in the middle of an 'iret' after we've popped most of the
1882  * stack.  So it becomes quite difficult to associate an accurate ucontext
1883  * with the lwp, because the act of taking the #gp trap overwrites most of
1884  * what we were going to send the lwp.)
1885  *
1886  * OTOH if it turns out that's -not- the problem, and we're -not- an lwp
1887  * trying to return to user mode and we get a #gp fault, then we need
1888  * to die() -- which will happen if we return non-zero from this routine.
1889  */
1890 static int
1891 kern_gpfault(struct regs *rp)
1892 {
1893 	kthread_t *t = curthread;
1894 	proc_t *p = ttoproc(t);
1895 	klwp_t *lwp = ttolwp(t);
1896 	struct regs tmpregs, *trp = NULL;
1897 	caddr_t pc = (caddr_t)rp->r_pc;
1898 	int v;
1899 	uint32_t auditing = AU_AUDITING();
1900 
1901 	/*
1902 	 * if we're not an lwp, or in the case of running native the
1903 	 * pc range is outside _sys_rtt, then we should immediately
1904 	 * be die()ing horribly.
1905 	 */
1906 	if (lwp == NULL || !instr_is_sys_rtt(pc))
1907 		return (1);
1908 
1909 	/*
1910 	 * So at least we're in the right part of the kernel.
1911 	 *
1912 	 * Disassemble the instruction at the faulting pc.
1913 	 * Once we know what it is, we carefully reconstruct the stack
1914 	 * based on the order in which the stack is deconstructed in
1915 	 * _sys_rtt. Ew.
1916 	 */
1917 	if (instr_is_iret(pc)) {
1918 		/*
1919 		 * We took the #gp while trying to perform the IRET.
1920 		 * This means that either %cs or %ss are bad.
1921 		 * All we know for sure is that most of the general
1922 		 * registers have been restored, including the
1923 		 * segment registers, and all we have left on the
1924 		 * topmost part of the lwp's stack are the
1925 		 * registers that the iretq was unable to consume.
1926 		 *
1927 		 * All the rest of the state was crushed by the #gp
1928 		 * which pushed -its- registers atop our old save area
1929 		 * (because we had to decrement the stack pointer, sigh) so
1930 		 * all that we can try and do is to reconstruct the
1931 		 * crushed frame from the #gp trap frame itself.
1932 		 */
1933 		trp = &tmpregs;
1934 		trp->r_ss = lwptoregs(lwp)->r_ss;
1935 		trp->r_sp = lwptoregs(lwp)->r_sp;
1936 		trp->r_ps = lwptoregs(lwp)->r_ps;
1937 		trp->r_cs = lwptoregs(lwp)->r_cs;
1938 		trp->r_pc = lwptoregs(lwp)->r_pc;
1939 		bcopy(rp, trp, offsetof(struct regs, r_pc));
1940 
1941 		/*
1942 		 * Validate simple math
1943 		 */
1944 		ASSERT(trp->r_pc == lwptoregs(lwp)->r_pc);
1945 		ASSERT(trp->r_err == rp->r_err);
1946 
1947 
1948 
1949 	}
1950 
1951 #if defined(__amd64)
1952 	if (trp == NULL && lwp->lwp_pcb.pcb_rupdate != 0) {
1953 
1954 		/*
1955 		 * This is the common case -- we're trying to load
1956 		 * a bad segment register value in the only section
1957 		 * of kernel code that ever loads segment registers.
1958 		 *
1959 		 * We don't need to do anything at this point because
1960 		 * the pcb contains all the pending segment register
1961 		 * state, and the regs are still intact because we
1962 		 * didn't adjust the stack pointer yet.  Given the fidelity
1963 		 * of all this, we could conceivably send a signal
1964 		 * to the lwp, rather than core-ing.
1965 		 */
1966 		trp = lwptoregs(lwp);
1967 		ASSERT((caddr_t)trp == (caddr_t)rp->r_sp);
1968 	}
1969 
1970 #elif defined(__i386)
1971 
1972 	if (trp == NULL && instr_is_segregs_pop(pc))
1973 		trp = lwptoregs(lwp);
1974 
1975 #endif	/* __i386 */
1976 
1977 	if (trp == NULL)
1978 		return (1);
1979 
1980 	/*
1981 	 * If we get to here, we're reasonably confident that we've
1982 	 * correctly decoded what happened on the way out of the kernel.
1983 	 * Rewrite the lwp's registers so that we can create a core dump
1984 	 * the (at least vaguely) represents the mcontext we were
1985 	 * being asked to restore when things went so terribly wrong.
1986 	 */
1987 
1988 	/*
1989 	 * Make sure that we have a meaningful %trapno and %err.
1990 	 */
1991 	trp->r_trapno = rp->r_trapno;
1992 	trp->r_err = rp->r_err;
1993 
1994 	if ((caddr_t)trp != (caddr_t)lwptoregs(lwp))
1995 		bcopy(trp, lwptoregs(lwp), sizeof (*trp));
1996 
1997 
1998 	mutex_enter(&p->p_lock);
1999 	lwp->lwp_cursig = SIGSEGV;
2000 	mutex_exit(&p->p_lock);
2001 
2002 	/*
2003 	 * Terminate all LWPs but don't discard them.  If another lwp beat
2004 	 * us to the punch by calling exit(), evaporate now.
2005 	 */
2006 	proc_is_exiting(p);
2007 	if (exitlwps(1) != 0) {
2008 		mutex_enter(&p->p_lock);
2009 		lwp_exit();
2010 	}
2011 
2012 	if (auditing)		/* audit core dump */
2013 		audit_core_start(SIGSEGV);
2014 	v = core(SIGSEGV, B_FALSE);
2015 	if (auditing)		/* audit core dump */
2016 		audit_core_finish(v ? CLD_KILLED : CLD_DUMPED);
2017 	exit(v ? CLD_KILLED : CLD_DUMPED, SIGSEGV);
2018 	return (0);
2019 }
2020 
2021 /*
2022  * dump_tss() - Display the TSS structure
2023  */
2024 
2025 #if !defined(__xpv)
2026 #if defined(__amd64)
2027 
2028 static void
2029 dump_tss(void)
2030 {
2031 	const char tss_fmt[] = "tss.%s:\t0x%p\n";  /* Format string */
2032 	tss_t *tss = CPU->cpu_tss;
2033 
2034 	printf(tss_fmt, "tss_rsp0", (void *)tss->tss_rsp0);
2035 	printf(tss_fmt, "tss_rsp1", (void *)tss->tss_rsp1);
2036 	printf(tss_fmt, "tss_rsp2", (void *)tss->tss_rsp2);
2037 
2038 	printf(tss_fmt, "tss_ist1", (void *)tss->tss_ist1);
2039 	printf(tss_fmt, "tss_ist2", (void *)tss->tss_ist2);
2040 	printf(tss_fmt, "tss_ist3", (void *)tss->tss_ist3);
2041 	printf(tss_fmt, "tss_ist4", (void *)tss->tss_ist4);
2042 	printf(tss_fmt, "tss_ist5", (void *)tss->tss_ist5);
2043 	printf(tss_fmt, "tss_ist6", (void *)tss->tss_ist6);
2044 	printf(tss_fmt, "tss_ist7", (void *)tss->tss_ist7);
2045 }
2046 
2047 #elif defined(__i386)
2048 
2049 static void
2050 dump_tss(void)
2051 {
2052 	const char tss_fmt[] = "tss.%s:\t0x%p\n";  /* Format string */
2053 	tss_t *tss = CPU->cpu_tss;
2054 
2055 	printf(tss_fmt, "tss_link", (void *)(uintptr_t)tss->tss_link);
2056 	printf(tss_fmt, "tss_esp0", (void *)(uintptr_t)tss->tss_esp0);
2057 	printf(tss_fmt, "tss_ss0", (void *)(uintptr_t)tss->tss_ss0);
2058 	printf(tss_fmt, "tss_esp1", (void *)(uintptr_t)tss->tss_esp1);
2059 	printf(tss_fmt, "tss_ss1", (void *)(uintptr_t)tss->tss_ss1);
2060 	printf(tss_fmt, "tss_esp2", (void *)(uintptr_t)tss->tss_esp2);
2061 	printf(tss_fmt, "tss_ss2", (void *)(uintptr_t)tss->tss_ss2);
2062 	printf(tss_fmt, "tss_cr3", (void *)(uintptr_t)tss->tss_cr3);
2063 	printf(tss_fmt, "tss_eip", (void *)(uintptr_t)tss->tss_eip);
2064 	printf(tss_fmt, "tss_eflags", (void *)(uintptr_t)tss->tss_eflags);
2065 	printf(tss_fmt, "tss_eax", (void *)(uintptr_t)tss->tss_eax);
2066 	printf(tss_fmt, "tss_ebx", (void *)(uintptr_t)tss->tss_ebx);
2067 	printf(tss_fmt, "tss_ecx", (void *)(uintptr_t)tss->tss_ecx);
2068 	printf(tss_fmt, "tss_edx", (void *)(uintptr_t)tss->tss_edx);
2069 	printf(tss_fmt, "tss_esp", (void *)(uintptr_t)tss->tss_esp);
2070 }
2071 
2072 #endif	/* __amd64 */
2073 #endif	/* !__xpv */
2074 
2075 #if defined(TRAPTRACE)
2076 
2077 int ttrace_nrec = 10;		/* number of records to dump out */
2078 int ttrace_dump_nregs = 0;	/* dump out this many records with regs too */
2079 
2080 /*
2081  * Dump out the last ttrace_nrec traptrace records on each CPU
2082  */
2083 static void
2084 dump_ttrace(void)
2085 {
2086 	trap_trace_ctl_t *ttc;
2087 	trap_trace_rec_t *rec;
2088 	uintptr_t current;
2089 	int i, j, k;
2090 	int n = NCPU;
2091 #if defined(__amd64)
2092 	const char banner[] =
2093 	    "CPU          ADDRESS    TIMESTAMP TYPE  VC HANDLER          PC\n";
2094 	/* Define format for the CPU, ADDRESS, and TIMESTAMP fields */
2095 	const char fmt1[] = "%3d %016lx %12llx";
2096 	char data1[34];	/* length of string formatted by fmt1 + 1 */
2097 #elif defined(__i386)
2098 	const char banner[] =
2099 	    "CPU  ADDRESS     TIMESTAMP TYPE  VC HANDLER          PC\n";
2100 	/* Define format for the CPU, ADDRESS, and TIMESTAMP fields */
2101 	const char fmt1[] = "%3d %08lx %12llx";
2102 	char data1[26];	/* length of string formatted by fmt1 + 1 */
2103 #endif
2104 	/* Define format for the TYPE and VC fields */
2105 	const char fmt2[] = "%4s %3x";
2106 	char data2[9];	/* length of string formatted by fmt2 + 1 */
2107 	/*
2108 	 * Define format for the HANDLER field. Width is arbitrary, but should
2109 	 * be enough for common handler's names, and leave enough space for
2110 	 * the PC field, especially when we are in kmdb.
2111 	 */
2112 	const char fmt3h[] = "#%-15s";
2113 	const char fmt3p[] = "%-16p";
2114 	const char fmt3s[] = "%-16s";
2115 	char data3[17];	/* length of string formatted by fmt3* + 1 */
2116 
2117 	if (ttrace_nrec == 0)
2118 		return;
2119 
2120 	printf("\n");
2121 	printf(banner);
2122 
2123 	for (i = 0; i < n; i++) {
2124 		ttc = &trap_trace_ctl[i];
2125 		if (ttc->ttc_first == NULL)
2126 			continue;
2127 
2128 		current = ttc->ttc_next - sizeof (trap_trace_rec_t);
2129 		for (j = 0; j < ttrace_nrec; j++) {
2130 			struct sysent	*sys;
2131 			struct autovec	*vec;
2132 			extern struct av_head autovect[];
2133 			int type;
2134 			ulong_t	off;
2135 			char *sym, *stype;
2136 
2137 			if (current < ttc->ttc_first)
2138 				current =
2139 				    ttc->ttc_limit - sizeof (trap_trace_rec_t);
2140 
2141 			if (current == NULL)
2142 				continue;
2143 
2144 			rec = (trap_trace_rec_t *)current;
2145 
2146 			if (rec->ttr_stamp == 0)
2147 				break;
2148 
2149 			(void) snprintf(data1, sizeof (data1), fmt1, i,
2150 			    (uintptr_t)rec, rec->ttr_stamp);
2151 
2152 			switch (rec->ttr_marker) {
2153 			case TT_SYSCALL:
2154 			case TT_SYSENTER:
2155 			case TT_SYSC:
2156 			case TT_SYSC64:
2157 #if defined(__amd64)
2158 				sys = &sysent32[rec->ttr_sysnum];
2159 				switch (rec->ttr_marker) {
2160 				case TT_SYSC64:
2161 					sys = &sysent[rec->ttr_sysnum];
2162 					/*FALLTHROUGH*/
2163 #elif defined(__i386)
2164 				sys = &sysent[rec->ttr_sysnum];
2165 				switch (rec->ttr_marker) {
2166 				case TT_SYSC64:
2167 #endif
2168 				case TT_SYSC:
2169 					stype = "sysc";	/* syscall */
2170 					break;
2171 				case TT_SYSCALL:
2172 					stype = "lcal";	/* lcall */
2173 					break;
2174 				case TT_SYSENTER:
2175 					stype = "syse";	/* sysenter */
2176 					break;
2177 				default:
2178 					break;
2179 				}
2180 				(void) snprintf(data2, sizeof (data2), fmt2,
2181 				    stype, rec->ttr_sysnum);
2182 				if (sys != NULL) {
2183 					sym = kobj_getsymname(
2184 					    (uintptr_t)sys->sy_callc,
2185 					    &off);
2186 					if (sym != NULL) {
2187 						(void) snprintf(data3,
2188 						    sizeof (data3), fmt3s, sym);
2189 					} else {
2190 						(void) snprintf(data3,
2191 						    sizeof (data3), fmt3p,
2192 						    sys->sy_callc);
2193 					}
2194 				} else {
2195 					(void) snprintf(data3, sizeof (data3),
2196 					    fmt3s, "unknown");
2197 				}
2198 				break;
2199 
2200 			case TT_INTERRUPT:
2201 				(void) snprintf(data2, sizeof (data2), fmt2,
2202 				    "intr", rec->ttr_vector);
2203 				if (get_intr_handler != NULL)
2204 					vec = (struct autovec *)
2205 					    (*get_intr_handler)
2206 					    (rec->ttr_cpuid, rec->ttr_vector);
2207 				else
2208 					vec =
2209 					    autovect[rec->ttr_vector].avh_link;
2210 
2211 				if (vec != NULL) {
2212 					sym = kobj_getsymname(
2213 					    (uintptr_t)vec->av_vector, &off);
2214 					if (sym != NULL) {
2215 						(void) snprintf(data3,
2216 						    sizeof (data3), fmt3s, sym);
2217 					} else {
2218 						(void) snprintf(data3,
2219 						    sizeof (data3), fmt3p,
2220 						    vec->av_vector);
2221 					}
2222 				} else {
2223 					(void) snprintf(data3, sizeof (data3),
2224 					    fmt3s, "unknown");
2225 				}
2226 				break;
2227 
2228 			case TT_TRAP:
2229 			case TT_EVENT:
2230 				type = rec->ttr_regs.r_trapno;
2231 				(void) snprintf(data2, sizeof (data2), fmt2,
2232 				    "trap", type);
2233 				if (type < TRAP_TYPES) {
2234 					(void) snprintf(data3, sizeof (data3),
2235 					    fmt3h, trap_type_mnemonic[type]);
2236 				} else {
2237 					switch (type) {
2238 					case T_AST:
2239 						(void) snprintf(data3,
2240 						    sizeof (data3), fmt3s,
2241 						    "ast");
2242 						break;
2243 					default:
2244 						(void) snprintf(data3,
2245 						    sizeof (data3), fmt3s, "");
2246 						break;
2247 					}
2248 				}
2249 				break;
2250 
2251 			default:
2252 				break;
2253 			}
2254 
2255 			sym = kobj_getsymname(rec->ttr_regs.r_pc, &off);
2256 			if (sym != NULL) {
2257 				printf("%s %s %s %s+%lx\n", data1, data2, data3,
2258 				    sym, off);
2259 			} else {
2260 				printf("%s %s %s %lx\n", data1, data2, data3,
2261 				    rec->ttr_regs.r_pc);
2262 			}
2263 
2264 			if (ttrace_dump_nregs-- > 0) {
2265 				int s;
2266 
2267 				if (rec->ttr_marker == TT_INTERRUPT)
2268 					printf(
2269 					    "\t\tipl %x spl %x pri %x\n",
2270 					    rec->ttr_ipl,
2271 					    rec->ttr_spl,
2272 					    rec->ttr_pri);
2273 
2274 				dumpregs(&rec->ttr_regs);
2275 
2276 				printf("\t%3s: %p\n\n", " ct",
2277 				    (void *)rec->ttr_curthread);
2278 
2279 				/*
2280 				 * print out the pc stack that we recorded
2281 				 * at trap time (if any)
2282 				 */
2283 				for (s = 0; s < rec->ttr_sdepth; s++) {
2284 					uintptr_t fullpc;
2285 
2286 					if (s >= TTR_STACK_DEPTH) {
2287 						printf("ttr_sdepth corrupt\n");
2288 						break;
2289 					}
2290 
2291 					fullpc = (uintptr_t)rec->ttr_stack[s];
2292 
2293 					sym = kobj_getsymname(fullpc, &off);
2294 					if (sym != NULL)
2295 						printf("-> %s+0x%lx()\n",
2296 						    sym, off);
2297 					else
2298 						printf("-> 0x%lx()\n", fullpc);
2299 				}
2300 				printf("\n");
2301 			}
2302 			current -= sizeof (trap_trace_rec_t);
2303 		}
2304 	}
2305 }
2306 
2307 #endif	/* TRAPTRACE */
2308 
2309 void
2310 panic_showtrap(struct panic_trap_info *tip)
2311 {
2312 	showregs(tip->trap_type, tip->trap_regs, tip->trap_addr);
2313 
2314 #if defined(TRAPTRACE)
2315 	dump_ttrace();
2316 #endif
2317 
2318 #if !defined(__xpv)
2319 	if (tip->trap_type == T_DBLFLT)
2320 		dump_tss();
2321 #endif
2322 }
2323 
2324 void
2325 panic_savetrap(panic_data_t *pdp, struct panic_trap_info *tip)
2326 {
2327 	panic_saveregs(pdp, tip->trap_regs);
2328 }
2329